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ABSTRACT OF THE DISSERTATION

Experimental Studies of Thermal Fluctuations in Electron Plasmas

by

Nobuyasu Shiga

Doctor of Philosophy in Physics

University of California, San Diego, 2003

Professor C. Fred Driscoll, Chair

We have detected the thermally excited charge fluctuations in pure electron

plasmas over a temperature range of 0.05 < kBT < 10eV. These fluctuation spectra

have both a global mode component and a random particle fluctuation component.

At low temperatures, the mθ = 0, kz = 1, 2, 3, . . . Trivelpiece-Gould modes are

weakly damped and dominate, since the random particle component is suppressed

by Debye-shielding. As the temperature increases, the broad random particle

component increases in between the modes.

We have developed 3 different non-perturbative methods to determine the

plasma temperature. These 3 methods are valid in different regimes depending on

the Debye length normalized by the plasma radius λD

Rp
, and on the plasma length

normalized by the plasma radius Lp

Rp
.

The first method focuses on the near-Lorentzian spectrum of thermal fluctu-

ations near a weakly damped mode. Each weakly damped mode has the same

viii



energy as the electron temperature. The measured emission spectrum together

with a plasma-antenna impedance calibration uniquely determines the tempera-

ture of the plasma, using Nyquist theorem. Experimentally this method gives the

correct temperature, agreeing with the standard “dump” temperature measure-

ments when λD

Rp
< 0.3.

The second method utilizes the emission spectrum over a broad frequency

range encompassing several modes and the non-resonant fluctuations between

modes. The Nyquist theorem together with a kinetic theory calculation of the

plasma-antenna impedance determines the temperature from the broad fluctua-

tion spectrum. Kinetic theory implicitly assumes that Landau damping is the

only damping mechanism, and also assumes an infinite length for the plasma. This

method works if λD

Rp
> 0.2 so that Landau damping is dominant, and if Lp

Rp
> 20 so

that finite-length corrections to Landau damping are negligible.

The third method utilizes the total (frequency-integrated) number δN of the

fluctuating image charges on the antenna, and comparison with the thermodynamic

calculation determines the plasma temperature. This method works when λD

Rp
> 0.2

so that the plasma and load impedances satisfy |Zp| � |Z`|; but one need to

separately determine the plasma density n, Lp, and Rp to calculate the expected

δN(T ).
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Introduction

Non-neutral plasmas are unique in that they can be trapped in a rotating

near-thermal-equilibrium state by static electric and magnetic fields. Steady-state

confinement of N = 103 − 109 electrons, ions, or anti-matter particles [1, 18, 22] is

routinely used in plasma experiments, atomic physics [41], and spectroscopy [31].

The thermal equilibrium characteristics become most evident with the formation

of Coulomb crystals [33] when pure ion plasmas are cooled to the liquid and solid

regimes at sub-Kelvin temperatures, but the higher temperature plasma regime

studied here is also well-described by near-equilibrium statistical mechanics [37].

These stable near-thermal-equilibrium plasmas exhibit fluctuating electric fields,

which are excited and damped by the random motions of the particles.

In the
:::::
high

::::::::::::::
temperature

::::::
limit , this fluctuation is a random motion of electrons

with no interaction to each other, as is the case for the ideal gas. Therefore,

the density fluctuation spectrum reflects the thermal velocity distribution of the

plasma, which is a Gaussian with width ∼ vth/Lp. Preliminary work by the Group

at Brigham Young University [34] focused on the fluctuation spectrum in-between-

modes, neglected the interactions between particles.

As the temperature decreases from this high temperature limit, Debye shielding

suppress the random motion of particles, and the collective effects (i.e. waves)

become dominant. These weakly damped plasma waves may be considered to be

1



2

the normal modes of the system; in traps with finite length and radius, these modes

appear at discrete Trivelpiece-Gould (T-G) standing mode frequencies [38, 43].

In an isolated equilibrium plasma, each standing mode would have an average

electrostatic potential energy of 1
2
kBT per mode; here, the mode coupling to the

receiver electronics can be comparable to the coupling to the (rotating) thermal

equilibrium plasma, complicating the picture slightly.

Somewhat simpler center-of-mass “trap modes” are commonly observed in

the
:::::::::::::::
single-particle

::::::::
regime with highly tuned resonant circuits in hyperbolic traps

[44], diagnosing the number of particles, but not their temperature. At higher

frequencies, thermal excitation of cyclotron modes are readily observed in warm

non-neutral [20] and hot fusion plasmas [15]; upper hybrid modes have also been

used as a thermal diagnostic [40]. Temperature information can also be obtained

by measuring changes in the
::::::::::::
frequencies of particular modes; this is in some sense

a simpler version of the methods developed here [2]. In space plasmas, thermal

noise diagnostics [32] are substantially different because of the lack of boundaries.

In the crystallized regime, equipartition of mode energy has been observed in dusty

plasmas [35]. In mirrors of a laser resonator [19], thermally excited vibrations are

carefully analyzed assuming that each mode has energy kBT .

Historically, the ionospheric microwave back-scattering observations in the

1960s were the first observations of the fluctuation spectrum in plasmas [4]. The

scattering is due to the electrons that are “bound” to ions, and therefore the spec-

trum of the backscattering around the incident wave frequency reflects the ion mo-

tion, instead of the electron motion. The observed spectrum revealed the strongly

damped ion-acoustic wave on top of a Gaussian ion velocity distribution [14]. The-

ory calculations predicted that as the ratio of electron temperature and ion tem-

perature Te/Ti increases, the ion-acoustic waves become more prominent due to

decreased damping. This transition was not observed experimentally because it

is difficult to change the temperature of the ionosphere. On the other hand, in

our laboratory plasma, the analogous transition was observed as we changed the
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temperature of the electron plasma.

In this thesis, we present observations of thermally excited fluctuations in

pure electron plasmas over a temperature range of 0.05 < kBTp < 10eV , using

a room temperature (0.03eV) receiver. At high temperature (λD/Rp >0.3), the

spectrum is a broad Gaussian that reflects velocity distribution of the electrons,

with heavily damped modes visible in addition. As the temperature decreases,

the broad Gaussian spectrum decreases in amplitude due to Debye-shielding; and

instead, the mode peaks rises up because Landau damping decreases exponentially

as the temperature decreases.

We have developed three different non-pertubative strategies to determine the

plasma temperature. The first method focus on the spectrum near a mode. Each

weakly damped mode spectrum is nominally a Lorentzian at frequency ωm with

half-width γm, superimposed on the receiver-generated noise modified by plasma

absorption. By Nyquist’s theorem, the thermal noise driving a mode is propor-

tional to kBTp and proportional to the real part of the mode/antenna impedance

Zm [20]. The impedance Zm can be obtained directly from the received spectra

when the receiver impedance and noise-temperature T` are significant; or it can be

calculated from a kinetic theory of random test particles incorporating the plasma

dielectric. The impedance Zm represents the impedance of the plasma Zp(ω) near

the mode at ωm. The dissipation of Zm represents the mode damping γm, cou-

pled to the receiver by a “geometric” capacitance G. This diagnostic determines

Tp, T`, ωm, γm and G.

The second method requires the emission spectrum over a broad frequency

range spanning several modes in order to compare to the kinetic theory calculation.

Unfortunately, Kinetic theory implicitly assumes that Landau damping is the only

damping mechanism and neglects all geometrical end effects. This theory matches

the measured spectra extremely well if the temperature is large enough that Landau

damping is dominant and if the plasma is long compared to the radius. Outside

these regimes, the theory limitation become apparent. This diagnostic determines
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4 plasma parameters Tp, n0, kz, Rp. The mode characteristics ωm, γm and G then

follow from theory.

The third method requires only the total (frequency-integrated) number fluc-

tuation δN , and comparison with a thermodynamic calculation determines the

plasma temperature. This theory does not assume the form of damping, but one

needs to determine n, Lp, Rp separately to calculate the fluctuation δN(T ) for com-

parison to the measured δN .

As long as a mode of interest is weakly damped, the first method is robust, and

a single emission spectrum determines the temperature with moderate accuracy

(± 20%). This method does not assume the form of the damping; but it does

assume that the mode is in “equilibrium” with the plasma, i.e. not being excited

by external effects. This method can readily obtain the plasma temperature 100

times per second, given only a passive antenna signal. When the temperature

is high enough that the mode spectrum deviates from a Lorentzian, one can use

kinetic theory calculation if the plasma is long enough that finite-length corrections

to Landau damping are negligible. Finally, one can use the thermodynamics to

calculate the total fluctuation for plasmas with λD

Rp
> 0.2 so that |Zp| � |Z`|. This

thermodynamic calculation has no assumption of the damping but requires the

separate determination of n0, Lp, Rp.
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Experimental Apparatus

Fluctuation measurements were obtained from pure electron plasmas contained

in two similar Penning-Malmberg traps (“IV” and “EV”) shown schematically in

Figure 2.1. These two traps differ mainly in plasma diameter and magnetic field

strength. The IV trap consists of a series of hollow conducting cylinders of radius

Rw = 2.86 cm contained in ultra-high vacuum at P ≈ 10−10 Torr with a uniform

axial magnetic field of Bz = 30 kG. Electrons are injected from a hot tungsten

filament, and contained axially by voltages Vconf ≈ −200 V on end electrodes.

Typical plasmas have N ≈ 109 electrons in a column length Lp ≈ 41 cm, with a

plasma radius Rp ≈ 0.2 cm and a central density n0 ≈ 107 cm−3. (For EV, the

parameters are Bz = 0.375 kG, Rp = 1.7 cm, Rw = 3.8 cm, and Lp = 15 ∼ 37 cm.)

Collimator
Plate Secondary

Solenoid

A3A1 A2 A4

CollectorFilament

Analyzer section (EV)

Figure 2.1: Schematic diagram of a cylindrical Penning-Malmberg trap.

The plasma density profile n(r) and the temperature Tp are obtained by dump-

5



6

ing the plasma axially and measuring the total charge passing through a hole in a

scanning collimator plate. Both measurements require shot-to-shot reproducibility

of the injected plasma, and we typically observe variability δn/n ≤ 1%. On IV,

a weak “rotating wall” perturbation at fRW ∼ 0.5 MHz is used to obtain steady-

state confinement of the electron column. [3, 26] The EV plasmas expand radially

towards the wall with a characteristic “mobility” time of τm ≈ 100 sec, so the

electrons are repetitively injected and dumped. The spectrum analyzer scans an-

alyzed here typically require about 0.5 sec to complete and 10 msec for transient

digitizer.

To control the temperature, we apply auxiliary “wiggle” heating by modulat-

ing one electrode voltage at a frequency fh = 0.8− 1.0 MHz, where fh is adjusted

so that all harmonics are distinct from the T-G mode of interest. On the EV appa-

ratus, a “heating burst” is applied before the measurement; on the IV apparatus,

the heating is applied continuously to balance the cooling due to the cyclotron

radiation.

2.1 Temperature Diagnostics

Destructive temperature diagnostic are commonly used to obtain the parallel

and perpendicular temperatures T‖ and T⊥(r); this thesis develops non-destructive

(passive) methods. For simplicity, we generally express temperatures in energy

units, eliminating the constant kB. That is, kBT and T will be used interchange-

ably, with kB written in CGS formulas.

2.1.1 Perpendicular Temperature

The T⊥ diagnostic on the EV apparatus operates by measuring the change in

the parallel energy of the dumped electron when a secondary magnetic field causes

some perpendicular energy to be transformed to the parallel direction. This is

commonly called a ‘magnetic beach’ analyzer [27]. After the end gate has been
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lowered, the plasma expands (‘disassembles’) towards the collimator. During this

disassembly, the plasma electrostatic energy increases the parallel velocities in

a complicated fashion. However, since the time for a gyro orbit (∼1 nsec) is

small compared to the disassembly time (∼1 µsec), the gyromagnetic moment

µ = mv2
⊥/2B is conserved, and the collimated beam that passes through the hole

enters the analyzer region with its perpendicular energy distribution unchanged.

The collimated beam then encounters a potential barrier caused by the sec-

ondary magnetic field Bs of the analyzer solenoid. Since the space charge of the

diffuse beam is small, each electron conserves its total kinetic energy H⊥ +H‖ =

1
2
(v2
⊥ + v2

‖) as well as the gyromagnetic moment. In order to conserve both quan-

tities, the average parallel energy must change by δH‖ = −(Bs/Bz)kBT⊥ within

the analyzer solenoid. This change in parallel energy is measured by applying re-

tarding voltages to the analyzer electrodes. If an electron’s v‖ drops low enough,

it will not make it through cylinder A3. By measuring the density collected at the

end as a function of the voltage on A3, and repeating with different Bs values, the

perpendicular energy distribution was constructed to ∼ 15% accuracy.

2.1.2 Parallel Temperature

In IV, the parallel temperature T‖(r = 0) is measured only at the radial center

using an “evaporative” technique [13]. For this measurement, the dump voltage is

slowly ramped to ground over a time (∼10 ms) which is long compared to the dump

time for a density measurement (∼ 1µs). During the slow ramp of the confinement

potential, electrons with sufficient parallel energy escape the confinement region,

and are collected by the end plate. The number of collected electrons vs ramped

voltage is digitized and fit to the tail of a Maxwellian distribution, which defines T‖.

Since the space charge potential is most negative at the center of the plasma, the

electrons escape from there first. The diagnostic thus measures the temperature

parallel to the magnetic field at the axial center of the plasma T‖(0). In practice, we

take the average value of the temperature for 3 shots, with a shot-to-shot deviation
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in the calculation that is typically δT/T ≈ 0.2.

2.1.3 Equilibration Rates

The rate at which electrons get thermalized along any single field line is much

larger than the cross-field transport rates required for “global” thermal equilibrium.

We will consider this local thermalization rate first.

Electrons thermalize along the magnetic field lines due to collisions with other

electrons. The electron-electron collision frequency for 90◦ scattering collisions is

given by

νee ≡
16
√

π

15
n v̄ b2 ln(rc/b)

≈ 180sec−1
[ np

107cm−3

] [1eV

Tp

]3/2

ln

{(
B

380G

)−1(
kBT

1eV

)3/2
} (2.1)

Here, rc ≡ v̄/Ωc is the cyclotron radius and b ≡ e2/kBT is the distance of closest

approach for thermal elections. At the magnetic field in IV, B = 30, 000 Gauss,

the numerical factor in Eq. (2.1) decreases from 180 to 104.

The rate at which the parallel and perpendicular degrees of freedom come into

equilibrium with each other is accurately described by the rate predicted from

”classical” short-range collisions [28], as

ν⊥‖ ≡
3

2
νee. (2.2)

In the following chapters, we make no distinction between the perpendicular tem-

perature, T⊥, and the parallel temperature, T‖. In essence, we assume that these

degrees of freedom are in equilibrium with each other.

In practice, we also ignore radial variations in the temperature, and describe

the plasma with one value of Tp. In EV, Tp is found by taking an error-weighted

average of the measured (nearly uniform) values of T⊥(r) across the diameter of

the plasma. In IV, the temperature is only measured at r = 0, and here we use

Tp = T‖(0). We can experimentally verify that the variations are typically small

in EV, as shown in Figure 2.2, but I must assume that they are also small in IV.
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There are theoretical reasons why the temperature should be relatively uni-

form. The heat conduction theory of Dubin and O’Neil predicts relatively rapid

transport of heat across magnetic field lines [11], and these predictions have been

recently verified with experiments on pure-ion plasmas by Hollmann and An-

deregg [24,25].

2.2 Global and Local Thermal Equilibrium

Non-neutral plasmas are unique in that they relax to a state of “global” ther-

mal equilibrium [12,37]. This global equilibrium state is characterized by a uniform

temperature Teq, a uniform fluid rotation frequency ωeq, and a nearly uniform den-

sity characterized by the central density neq. The three parameters(Teq, ωeq, neq)

are themselves uniquely determined by the total number of particles Ntot, the total

energy H, and the total angular momentum Pθ of the plasma [7,39,42]

Experiments have characterized the relaxation of a markedly non-equilibrium

initial plasma, e.g. a “hollow” density profile [8]. On the collisional time scale(1/νee ∼

1 - 10ms) thermal equilibrium is quickly established axially along each field line (lo-

cal thermal equilibrium). Due to the azimuthal rotation and assumed θ-symmetry,

the plasma can be thought of as being composed of cylindrical shells. Each in-

dividual shell is itself in equilibrium, but different shells are not in equilibrium

with each other. On a longer time scale, the plasma evolves to a global thermal

equilibrium state due to transport of heat and particles across the magnetic field.

For the plasmas studied, the time to come to global thermal equilibrium was found

to be on the order of τeq ∼ 1-10 sec. We have performed fluctuation measurement

in both global and local equilibrium plasmas. In IV plasmas, measurements were

performed 100 sec after the injection, so the plasma had fully equilibrated. In EV

plasmas, measurements were performed 0.5 sec after the injection, so we typically

made the initial condition with a near-equilibrium profile n(r).

Typical density n(r) and T⊥(r) profiles for EV plasma are shown in Fig. 2.2.
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This data was taken with the EV machine, with parameters p = 10−10 Torr,

0

1 107

0

2

4

-2 0 2

T
⊥

 [
eV

]

Radius [cm]

n 
 [

 c
m

-3
 ]

λD = 0.31cm

Hole size

n

T
⊥

Figure 2.2: Typical Radial Profile of Density (circles) and Temperature (diamonds)

for an EV plasma

Bz=380 Gauss, n0 = 1.1 × 107cm−3, having a confinement length Lp=27.73 cm,

having a collimator hole diameter= 0.32 cm. The density n(r) at each radius was

averaged over 4 shots, and the perpendicular temperature T⊥ was obtained as a

result of about 80 shots at each radius. The Debye length λD is defined as

λD ≡
√

kBTp

4πe2n0

= 0.235cm

[
Tp

1eV

]1/2 [
107cm−3

n0

]1/2

. (2.3)

The temperature is flat over radius even though the density is not yet constant

over radius, because the heat transport across the magnetic field is much faster

than the particle transport [24].



3

Temperature Diagnostic using a

Weakly Damped Mode

When the temperature Tp of the plasma is low such that λD/Rp < 0.3, weakly-

damped standing mode fluctuations are thermally excited and dominate the spec-

trum. In this chapter, we will focus on the fluctuation spectrum near a weakly

damped resonant mode, in order to determine the temperature of the plasma.

These modes are Trivelpiece-Gould (TG) standing modes in finite length plasmas.

3.1 Trivelpiece-Gould Modes

In this section, we will review the TG mode conceptually, and show how we

characterize the kz = 1, 2, 3, . . . , mθ = 0 standing modes by transmission exper-

iments. The active excitation allows the modes to be unambiguously identified,

making the passive spectral measurements conceptually simpler.

3.1.1 Theory Review

Before we talk about Trivelpiece-Gould (TG) modes, we first consider plasma

oscillations in an electron plasma with no boundary. Imagine a displacement of

charge fluctuations +δn and −δn, separated by the distance k−1 as illustrated in

11
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Figure 3.1(a) top. This k is a wave number. +δn denotes an excess of electrons. All

electric field lines that comes out of the −δn are connected to +δn, and therefore

all the electric field contributes to force on the +δn. In such a case, there is no

oscillation below the plasma frequency ωp, as shown in Figure 3.1(a) bottom.

a)

-δn +δn -δn +δn

b)

ω

k

ωp

ω

kz

ωp

k-1 kz
-1

m
z
=1,2,3

acoustic
regimethermal correction

Figure 3.1: Cartoon of the electric field and resulting plasma wave dissipation

when +δn and −δn is displaced by k−1 in (a) a plasma without boundary, and (b)

a plasma which is confined by a conducting cylinder wall.

Now we consider the case that the plasma is confined in a conducting wall

cylinder. Some of the electric field lines are terminated on the cylinder as shown

in Figure 3.1(b) top. This reduces the restoring force on the δn, and lowers the

wave frequency. The electrostatic wave propagating in a conducting wall is called

a TG mode [43]. The dispersion relation of the wave in z direction is shown in

Figure 3.1(b) bottom. More electric field is terminated at the cylinder when −δn

and +δn are separated farther (smaller kz), and the oscillation frequency reaches
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to zero when kz reaches to zero.

In this thesis, we identify the TG mode by 3 mode numbers: mz, mθ, mr. A

cartoon of the lowest 3 modes are shown in Figure 3.2. For mz and mr, the number

of nodes gives the mode number. For mθ, number of peaks in δn versus θ gives the

mode number mθ. In this thesis, we will focus on mθ = 0, mr = 1 and mz = 1, 2, 3

because these have the strongest coupling to our cylindrical wall antennae (Figure

2.1.

δn

mz mode mr modemθ mode

mz=1

mz=3

mz=2

δn

mθ=1

mθ=3

mθ=2

rRp

δn

z
mr=1

mr=3

mr=2

~Lp

Figure 3.2: Cartoon of δn in the directions of z, θ and r.

In the limit of kzλD � 1 and Rpkz � 1, the frequencies of the Trivelpiece-

Gould mode resonances for mθ = 0 and mr = 1 can be approximated as:

ωm ≈ ωp

(
Rp

Rw

)
(Rwkz)

[
1

2
ln

Rw

Rp

]1/2
[
1 +

3

2

(
v̄

vφ

)2
]
, (3.1)

with damping

γ ≈ −
√

π

8
ω
(vφ

v̄

)3

exp

{
−1

2

(vφ

v̄

)2
}

(3.2)

The wave frequencies scale with the plasma frequency fp ≡ ωp/2π = 28 MHz

(n/107 cm−3)1/2, reduced by the fill ratio Rp/Rw and by the trap radius compared
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to the axial wavelength. [7] The modes that travel along z are typically described

theoretically in the “infinite length” limit, where they would be written as δn ∼

Aδn(r)exp(ikzz − iωmt − γmt). The axial wave numbers for resonant standing

modes in length Lp are given approximately by kz = πmz/Lp, where axial mode

number is mz = 1, 2...5. We have also included thermal corrections, which depend

on the ratio of v̄ ≡ (T/m)1/2 to the wave phase velocity vφ, where vφ ≈ ωm/kz is

ill-defined to the extent that kz is approximate.

3.1.2 Transmission Mode Spectra

A schematic of the
::::::::::::::
transmission measurement is shown in Figure 3.3. We

l

a

l

antenna

Vexc

Tracking
Generator

G

Figure 3.3: Schematic of the transmission measurement.

perform transmission experiments by applying a sinusoidal voltage at frequency f

with amplitude Vexc to a cylindrical electrode at one end of the electron plasma

column. Vexc excites density perturbations δn in the column, which propagate

axially and induce the measured voltages Va on a distant cylindrical antenna with

finite load impedance. Here, the wave excitation cylinder has length Lexc = 5.8 cm,
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and the cylinder used as a antenna has La = 11.7 cm. The load impedance on

IV (or EV) is R` = 690 Ω in parallel with C` = 440 pF (or 190 pF). Plasma

parameters were B = 3T, Lp=41cm, n0 = 107cm−3 and Tp = 0.15eV.
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no drive

Thermally excited modes

c)
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-130
-120
-110
-100
-90
-80

V
a   

[d
B

m
] -100 dbm driveb)

-140
-130
-120
-110
-100
-90
-80

-80 dbm drive

R
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m
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 1

m
Z
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m
Z
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m
Z

 =
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m
Z

 =
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a)

Figure 3.4: Spectrum of mr = 1, mθ = 0, mz = 1, 2, ..., 5 Trivelpiece-Gould modes

for 3 drive amplitudes including no drive, i.e. thermally excited.

Figures 3.4(a) and 3.4(b) show the spectrum of azimuthally symmetric mθ = 0

standing Trivelpiece-Gould modes excited by wall excitations of Vexc = −80 dbm

(22 µV) and -100 dBm (2.2 µV) at frequencies f = 0.01− 10 MHz.
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The antenna/mode coupling is essentially the capacitive coupling G between

the cylindrical wall antenna and the radially centered plasma, weighted by sin(kz ·z)

mode dependence. This G is defined in Eq. (3.4) and the aspect of capacitive

coupling is illustrated in Appendix C. The lesser sensitivity for mz = 2 apparent

in Figure 3.4 is because this particular detection antenna of length La is centered

around a node.

The peak amplitudes received for the continuously driven sinusoidal modes are

independent of the bandwidth (BW = 3 kHz) of the spectrum analyzer; whereas

the spectral amplitude of the inter-mode noise decreases as (BW)−1/2, as will be

explained in §??. At Vexc = −100 dBm, the mode fluctuations have amplitude

δn/n ∼ 10−5. The peak labeled RW at 450kHz is an artifact of the non-resonant ro-

tating wall drive with mdrive
θ = 2. The mθ = 0 mode measurements presented here

have also been obtained with the drive off, and there appears to be no significant

coupling between the weak RW drive and the weak T-G modes at incommensurate

frequencies.

These modes exhibit exponential damping at a rate γtot which will be seen in

Eq. (3.3) to be the sum of γm from inherent plasma mode effects such as Landau

damping, and γ` due to dissipative loading by the amplifier.

3.2 Emission Spectra

Small peaks representing thermally excited modes are still visible in Figure

3.4(c) when the transmitter electrode is grounded (Vexc = 0). These peaks have

spectral amplitudes on the antenna of Va = −124 dBm measured over a bandwidth

of 3 kHz, representing voltage fluctuations on the electrode with spectral density

Va/
√

df ≈ 2.6nV/
√

Hz. Here, the apparent mode amplitudes scale as BW−1/2 as

expected for BW < γ, since the apparent power (∝ V 2
a ) is a fraction BW/γ of the

total mode power in the antenna circuit. (see Appendix A for more detail) These

peaks are the thermally excited modes. We now focus on the mz = 1 mode in
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Figure 3.4.

v   / v =φ
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Figure 3.5: Spectra of the thermally excited mr = 1, mθ = 0, mz = 1, mode for dif-

ferent plasma temperatures; the solid lines are fits to Eq. (3.16). The temperature

Tmode
p is from emission measurement. The temperature T dump

p is from standard

dump technique.

Figure 3.5 shows received spectra of the thermally excited mz = 1 mode for

4 different plasma temperatures from 0.03 to 1.4eV. The spectra are nominally

Lorentzian for these weakly damped modes. The mode frequency fm increases by

20% with the elevated temperature, as expected from Eq. (3.1). The half width at

relative amplitude (1/
√

2) of the spectral peak represents the total damping, γtot.

This total damping consists of the internal “mode” damping γm and the external

“load” damping γ`:

γtot ≡ γm + γ`. (3.3)
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Here the internal damping is predominantly Landau damping, but any other in-

ternal damping (e.g. collisional) would also be included in γm. The width of the

peaks in Figure 3.5 increases substantially as Landau damping becomes significant

for Tp ≥ 0.5 eV, i.e. for vφ/v . 5. Additionally, a substantial distortion of the

Lorentzian plasma mode is observed for the lowest temperature shown in Figure

3.5; this will be seen to represent load noise reflected by the plasma. This reflected

noise adds out of phase on the low frequency side and adds in phase on the higher

frequency side, resulting in a spectral shape of a “dip and a peak”.

Figure 3.10(b) shows a circuit modeling the reception of thermal noise from

the plasma. Near a resonant mode at frequency ωm with intrinsic damping γm, the

ratio of antenna current to voltage (i.e., the plasma/antenna admittance) Z−1
p , is

well approximated by a simple pole Z−1
m , as

Z−1
p (ω) ∼ Z−1

m (ω) =
Gω2

m

i(ω − ωm) + γm

. (3.4)

Z−1
p is the admittance of the plasma at all frequencies and Z−1

m is an approximation

that is true only near mode frequency ωm. G is the geometric (capacitive) coupling

coefficient between the plasma mode and the receiving electrode; here G ≈ 0.5 pF

(or 0.45 cm in CGS units). This is discussed further in Appendix C. On resonance,

the mode impedance is real with magnitude

Rm ≡ ZRe
m (ωm) = γm/Gω2

m, (3.5)

where we use the following notation ZRe ≡ Re{Z} and ZIm ≡ Im{Z}. Near ωm,

this may be written Zm(ω) ∼ Rm + i(ω − ωm)/γm

The external electronics (load) has a measured input resistance R` and capac-

itance C`, or a total load impedance Z` given by

Z−1
` (ω) = R−1

` + iωC`. (3.6)

This is essentially constant over the mode resonance, since fR`C`
≡ (2πR`C`)

−1=0.5MHz

for IV (1.4MHz for EV) satisfies fR`C`
< fm. That is, the load is essentially ca-

pacitive and non-resonant. This load impedance is easily measured with a vector
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impedance meter. This almost constant Z` differs from the resonant-circuit loads

commonly used in harmonic traps with a small number of particles, [44] simplifying

the spectral interpretation somewhat.

3.3 Review of Nyquist theorem

We use Nyquist approach to calculate the fluctuation spectrum. We will review

the Nyquist theorem and consider the spectral shape for the impedance with simple

pole Zm in Eq. (3.4) in this section. Figure 3.6 summarizes the Nyquist theorem

for simple resistor and for Zm.

A resistor in thermal equilibrium at temperature T generates fluctuating volt-

age (current) across the resistor due to the random motion of the electrons. The

Thevnin (Norton) equivalent circuit sees this resistor as a voltage (current) source

in series (parallel) with a resistor shown in Figure 3.6(a)((b)) [16, 30,36]

The Nyquist theorem for the Thevnin equivalent circuit states that the mean

square voltage < V 2 > across a resistor R, in thermal equilibrium at temperature

T is given by

< V 2 > = 4 kB T̂ R BW

= 4 T R BW
(3.7)

where T̂ is the temperature in [◦K] while we express temperature T in energy

unit [J]. we note that temperature of the plasma Tp is normally expressed in [eV]

in this thesis, therefore one needs to multiply with 1.6 × 10−19 calculating the

fluctuation of plasma. BW is the frequency bandwidth within which the mean

voltage fluctuations < V 2 > are measured.

For the Norton equivalent circuit, the mean squared current < I2 > across a

resistor R is proportional to the admittance R−1, as

< I2 >= 4 T R−1 BW (3.8)

The original Nyquist theorem is easily generalized for any linear passive ele-

ment whose complex impedance is Z(f). The power spectral densities are now
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Figure 3.6: Thevenin and Norton equivalent circuit model of Johnson noise with

Zm having the form of Eq. (3.4) voltage V and current I are the average value.
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expressed as

V 2

df
= 4T Re{Z}, and

I2

df
= 4T Re{Z−1}

(3.9)

Figure 3.6 (c) and (d) shows a case with a simple pole for Zm as in Eq. (3.4). V 2
m

df

is still constant versus frequency, but I2
m

df
is now a Lorentzian with center frequency

ωm and width γm.

In order to measure the voltage, we must connect a load Za to Zm as shown

in Figure 3.6(e) and (f). The signal at the amplifier Va is the voltage Vm reduced

by the voltage divider ratio Z`

Zm+Z`
. Therefore,

V 2
a

df
= 4 T ZRe

m

∣∣∣∣ Z`

Zm + Z`

∣∣∣∣2 . (3.10)

Using Eq. (3.4),

V 2
a

df
= 4 T ZRe

m

∣∣∣∣ Z`

ZRe
m + ZRe

`

∣∣∣∣2 γ2
tot

γ2
tot + (ω − ω′m)2

, (3.11)

here,

γtot ≡ γm + γ` =

(
1 +

ZRe
`

Rm

)
γm,

δωm ≡ ωm − ω′m ≡ ZIm
` ω2

m G.

Figure 3.6(f) illustrates that the imaginary part of the load, ZIm
` , shifts the

mode frequency fm to f ′m; and the real part of the load, ZRe
` , increases the damping

γm to γtot. Both Thevenin and Norton equivalent circuits give the same measured

power spectral density V 2
a

df
= 4 T ZRe

m

∣∣∣ Z`

Zm+Z`

∣∣∣2.
3.4 Determination of Zp

In order to determine the temperature from the measured power spectral den-

sity V 2

df
using the Nyquist theorem, we need to determine Zp. In this section, we

will discuss how to measure the Zp(ω) directly with reflection/absorption measure-

ment; and then, show how to model Zp near a mode with simple pole Zm(ω).
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3.4.1 Reflection/Absorption measurement

A direct measurement of Zp is obtained with a reflection/absorption measure-

ment, [20] whose schematic is shown in Figure 3.7(a). The direct measurement

of Zp uses a directional coupler and lock-in detector to determine the complex

reflection coefficient r(f) for a weak signal at frequency f incident on the receiving

antenna and plasma. This reflection coefficient is defined as the voltage fraction

(and phase) which is reflected by the plasma-loaded antenna compared to that

reflected by an open circuit without antenna or plasma, i.e.

r ≡ Vrefl(plasma)

Vrefl(open)
. (3.12)

This reflection coefficient depends on the impedance Zpc connected to the direc-

tional coupler compared to the impedance Z0 = 50 Ω of the coupler itself, and is

given implicitly by

Zpc = Z0
(1 + r)

(1− r)
. (3.13)

Here, Z−1
pc = Z−1

p + iωC` is the total admittance of the plasma-loaded antenna,

given by the plasma admittance Z−1
p of Eq.(3.4) in parallel with the capacitive

admittance iωC` of the electrode and connecting cable.

Figure 3.7(b) shows the measured amplitude and phase of the reflected signal

for an EV plasma as the frequency is scanned across the mz = 1 mode. The

entire signal is reflected at frequencies f far from the mode frequency fm, because

the plasma impedance [Eq. (3.4)] is large off-resonance, i.e. |Zp(f)| � Z0. On

resonance, 37% is reflected and about 63% of the incident wave is absorbed by the

plasma. In essence, the depth of the reflection dip indicates how close Rm is to

the 50 Ω of the directional coupler, since ZIm
m (fm) = 0. A fit (solid line) to the

r(f) data using the simple pole Zm in Eqs. (3.4) and (3.13) gives the parameters

of Zpc as Rm = 111 Ω, fm = 4.073 MHz, γm/ωm = 1.15× 10−3, and C` = 145 pF,

resulting in G = γm/(ω2
mRm) = 0.41 pF (or 0.37 cm in CGS).

Figure 3.7(c) shows the reflection measurement with a launched rf wave that

has larger amplitude (-90dBm) than (b). The damping is smaller by a factor
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Figure 3.7: (a) Schematic of reflection/absorption measurement with a launched

sinusoidal wave. (b)Measured reflection coefficient |r| and it’s phase with fits to

Eq. (3.4), with rf at -100dBm. (c)Same rf at -90dBm. The parameters G, C`, fm

are robust; whereas Rm and γm vary, since Landau damping decreases with wave

amplitude. Plasma parameters were Tp =1.4eV, n0=1.2×107cm−3, Lp =23cm,

Rp=1.4cm.
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of 2 because the launched wave is so large that particles are trapped in the wave,

and therefore Landau damping is suppressed.[Danielson] This large amplitude wave

leads to a smaller measured value of Zp (e.g. Rm = 60Ω instead of 111Ω). However,

the measured coupling coefficient G is the same, because G is purely geometrical

and doesn’t depend on the damping.

Figure 3.8 shows that the measured plasma impedance Rm increases to much

larger than 50Ω as the temperature increases, as expected from strong Landau

damping at high temperatures. The geometric capacitive coupling coefficient is

independent of temperature also as expected. In practice, large amplitude rf gives

0.1
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Figure 3.8: Coupling coefficient G and plasma-mode impedance Rm versus plasma

temperature.

better S/N in measurement of robust parameter G because when Landau damping

is suppressed by trapping effect, the impedance is close to 50Ω at fm. However, this

large amplitude obscures the fragile parameters Rm and γm as already mentioned.
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Figure 3.8 shows that the coupling coefficient G is robust, i.e. it changes by

less than a factor of 2 when the plasma temperature changes from 0.7 eV to 3.5 eV.

The simple low temperature limit of Eq. (3.17), for EV plasma parameters, gives

10
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104

10-3 10-2
γm  / ωm  

R
m

   
 [

 Ω
 ] Theory

 G = 0.42 pF 

fm  =  4.2 MHz

Figure 3.9: Normalized plasma mode impedance versus the plasma-mode damping

rate.

G = 0.42 pF, shown with a dashed line. In contrast, the mode impedance Rm varies

from 30Ω to 2000Ω in that temperature range, as Landau damping increases the

mode damping γm. Since G is almost constant, Eq. (3.5) predicts that Rm will

increase as γm/ω2
m. The solid line represents Rm = γLandau/ω

2
mG, where γLandau is

calculated from plasma parameters (see Appendix C). The discrepancies may be

due to a 20% error in the temperature calibration of the EV apparatus, or possibly

finite length plasmas may require a correction to Landau damping as described in

more detail in §4.7.

Figure 3.9 illustrates that the measured Rm (from the depth of the refrection

dip) is directly proportional to the measured mode damping γm (from the width
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of the reflection dip); here again the dashed line is the simple theory prediction

G = 0.42 pF.

3.5 Temperature Determination from Mode Spectrum

Now we are ready to determine the temperature of the plasma from the fluc-

tuation spectrum. Figure 3.10(a) shows the schematic diagram of plasma emission

measurement. We use an interior cylinder as the “passive” receiver antenna. This

l l

Ip Il

Va

G

Figure 3.10: (a) Schematic diagram of plasma emission measurement. (b) Electri-

cal circuit analogue to the plasma mode and antenna.

antenna is connected to the amplifier outside the vacuum chamber with a coax

cable. This coax cable is approximated as an additional capacitance added to

the inherent input (load) capacitance of the amplifier, giving a total capacitance

C`. Then the plasma fluctuation signal is amplified with amplifier, then feed to
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spectrum analyzer.

Figure 3.10(b) shows the Thevenin equivalent circuit for this measurement.

This merely adds a noise current source I` which represents the Johnson noise

from the load to a Figure 3.6(f). While both Norton and Thevenin equivalent

circuit picture gives the same answer, we used Norton equivalent circuit to describe

plasma noise because the plasma density fluctuation induces the image charge on

the antenna, which is a current source, rather than a voltage source.

The plasma noise source Ip and the load noise source I` are added in quadrature

because they are not correlated and therefore crossterm vanishes as you take time

average. This total noise current then induces Va as it flow through Ztot which is

defined as

Z−1
tot ≡ Z−1

m + Z−1
` . (3.14)

Therefore the voltage power spectral density V 2
a

df
measured at the antenna is

given by

V 2
a (f)

df
=

[
I2
p

df
+

I2
`

df

]
|Ztot|2

=
[
4TpRe{Z−1

p }+ 4T`Re{Z−1
` }
] ∣∣∣∣ Zp Z`

Zp + Z`

∣∣∣∣2 .

(3.15)

Using Eqs. (3.3), (3.4), (3.6), and (3.14), Eq. (3.15) can be explicitly written

as

V 2
a (f)

df
= 4TpRm

|Z`|2

|Rm + ZRe
` |2

γ2
tot

γ2
tot + (ω − ω′m)2

+ 4T`Z
Re
`

{
1− 2(ω − ω′m)δωm + (γ2

tot − γ2
m − δω2

m)

γ2
tot + (ω − ω′m)2

} (3.16)

The first term of Eq. (3.16) describes the Lorentzian “plasma” emission spec-

trum centered at ω′m of width γtot previously descrived in Eq. (3.11), with am-

plitude “proportional to” TpRm. Thus, the emission spectrum alone does not

determine Tp unless prior knowledge of the coupling coefficient G allows Rm to be

obtained from Eq. (3.5). For Rm � ZRe
` , the peak amplitude V 2

a

df
(fm) scales as R−1

m ,
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and the width is γm ∝ Rm. For Rm � ZRe
` , the peak amplitude V 2

a

df
(fm) scales as

Rm, and the width is γm + γ` = (Rm + ZRe
` )Gω2

m.

The second term describes the “load” noise as a uniform background, plus a

“dip and peak” from the 2(ω−ω′m)

γ2
tot+(ω−ω′m)2

term, plus a Lorentzian absorption, with all

3 spectral components proportional to T`Z
Re
` . Some of the load noise is “shorted

out”, or absorbed, by the plasma; some is reflected by the plasma, with a phase

shift varying as ω − ωm.

Surprizingly, making the load about as “noisy” as the plasma produces the

“optimal spectra”, allowing a calibrated determination of Tp in one measure-

ment. That is, determination of the antenna/plasma coupling G requires a reflec-

tion/absorption measurement. This can either be a separate measurement using

a launched sine wave; or it can be obtained from the “emission” spectrum alone

using the naturally launched load noise. This is illustrated in Figure 3.11

Figure 3.11(a) shows the received spectrum of the mθ = 0, mz = 1 mode in

the EV apparatus, when the load is much colder than the plasma. The spectrum

is completely described as the sum of the two term in Eq. (3.16), with a Lorentzian

”plasma” term and a smaller load noise term (dashed). Since Z` is known, the spec-

trum is parametrized by 5 parameters: plasma temperature Tp, mode frequency

ωm, mode damping γm, coupling coefficient G and load temperature T`. However,

the “load” component here is too small for the characteristic dip and peak to give

an accurate calibration of the coupling coefficient G. Using G = 0.43 pF (0.39 cm

in CGS) from a separate measurement described below, a 4 parameter fit of the

data to Eq. (3.16) gives Tp = 1.89 eV, fm = 4.063 MHz, γm/ωm = 2.1× 10−3 and

T` = 0.35 eV.

Here, we used a Fortran program to calculate the spectrum and fit to the

measured spectra. The fitting routine “sNLS1” in the SLATEC library was used

to perform on the 4 parameter fit. The purpose of “sNLS1” is to minimize the

sum of the squares of M(number of data points) nonlinear functions in N variables

by a modification of the Levenberg-Marquadt algorithm. In practice, it convergis
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Figure 3.11: (a) Spectra of the thermally excited mθ = 0, mz = 1 mode for Tp =

1.9 eV and T` = 0.3 eV. (b) Same with noise added to the antenna (“T`” = 2.5 eV).

The long-dashed line is the full Eq. (3.16) fitted to the data, with the solid line

being the plasma component, and the short-dashed line being the load noise filtered

by the plasma.
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well even if the initial estimates for the parameters are not very accurate.

In Figure 3.11b, noise has been deliberately
:::::::
added to the antenna, correspond-

ing to an effectively higher load temperature. The received spectrum has the same

Lorentzian “plasma” component, but the dip and peak from the plasma “shorting”

the load noise is more pronounced. This phase-sensitive reflection and absorption

of the load noise by the plasma determines the antenna coupling coefficient G. A

full 5-parameter fit of the received spectrum of Figure 3.11(b) to Eq. (3.16) then

gives Tp = 1.84 eV, fm = 4.067 MHz, γm/ωm = 1.6× 10−3, G = 0.43 pF (0.39 cm

in CGS) and T` = 2.5 eV. The standard dump diagnostic gives T dump
p = 1.9 eV,

with no measureable difference for Figure3.11(a) and (b).

Figure 3.11(b) demonstrates that the plasma temperature can be obtained in

one measurement, if the load is “noisy enough.” Of course, if the emission from

the load were to dominate the spectrum, the plasma component proportional to Tp

might be obscured. For Eq. (3.15) to be valid, the load noise must be uncorrelated

with the plasma mode. Even a sinewave of constant amplitude which tracks the

frequency of the analyzer (from a tracking generator) satisfies the criterion. Thus,

the “noise” source in Figure 3.11 can be a sine wave generator. This makes it

more apparent that a reflection/absorption measurement is being combined with

an emission measurement. In practice, this is often the easiest and most effective

source when using a swept analogue analyzer.

We note that the damping rate γm is measurably smaller when the noise added

to the load drives the mode to large amplitude, because the wave traps particles

at the phase velocity, thereby reducing the Landau damping. The thermal com-

ponents (solid curve on Figure 3.11(b)) can be viewed as small test waves in the

presence of a larger amplitude wave excited by the load noise.

We have also calculated the coupling coefficient G analytically using kinetic

theory. Taking a uniform density collisionless plasma of radius Rp with z-periodic

boundaries of period Lp, this analysis reproduces the impedance of Eq. (3.4)

for frequencies near a plasma resonance. In the limit of Tp → 0, assuming that
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λD � Rp and that kzRw � 1, we find that

G =
[4πε0]LpF

2
m

1 + x2 ln2(Rw/Rp)

' [4πε0]LpF
2
m

1 + 2ln(Rw/Rp)

(3.17)

Here the sinusoidal mode factor is Fm ≡ (kzLp)
−1[sin(kzz2) − sin(kzz1)], with z1

and z2 representing the left and right ends of the antenna cylinder, measured from

the end of the plasma; x is a dimensionless quantity that satisfies the equation

xJ1(x) ln(Rw/Rp) = J0(x), and is related to the frequency of the plasma mode by

x = kzRp(ω
2
p/ω

2
m − 1)1/2. For Rw/Rp � 1, one sees x ≈

√
2/ ln(Rw/Rp), which

gives the appsoximate expression in Eq.(3.17).

All equations in this chapter except those for capacitance (e.g. Eq. (3.17)) are

equally valid in CGS or SI; in CGS the equations for capacitance would have no

[4πε0].

Equation (3.17) for G presumes that the plasma column is penetrating the

cylindrical antenna completely. When the antenna is at the end of the plasma and

the plasma only partially penetrates the electrode, the plasma end point zp would

replace the electrode end z2 in estimating Fm.

3.5.1 Digitized FFT spectrum

Alternately, one can use transient digitizer and a numerical FFT to obtain

the spectrum, instead of using an analogue spectrum analyzer. We used an 8-bit

transient digitizer (Aeon 3248) that digitizes at 10Msample/sec with 32k words

memory. Interestingly, more bits of digitization accuracy do not significantly im-

prove the spectral measurement. We put 5MHz low pass filter before digitizer

(after the amplifier) to remove the signal above the Nyquist frequency which is

5MHz to avoid aliasing. Figure 3.12(a) shows an example of raw fluctuation data

Va(t). Figure 3.12(b) is the measured probability versus amplitude, with a Gaus-

sian fit. This figure demonstrates that the measured fluctuation is a random signal

with Gaussian amplitude distribution.
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Figure 3.12: (a) Digitized amplitude of the plasma noise. (b) amplitude probability

with Gaussian fit.

Figure 3.13(a) shows a cartoon of the signal from N points of data digitized

every ∆ seconds. For our digitizer, N = 32, 000 points and ∆ = 0.1µs, giving a

total record time τ = 3.2ms. Discrete Fourier Transformation of xk ≡ Va(k∆) gives

X̃n at N+1 discrete points representing the frequency range −fNyquist to fNyquist.

X̃n ≡
N−1∑
k=0

xke
2πikn/N (3.18)

The one-sided magnitude square of X̃n, denoted by Pn is

Pn = |X̃n|2 + |X̃N−n|2

= 2|X̃2
n [V 2],

(3.19)

For 0 < n < N
2
− 1. The discrete version of Parseval’s theorem is then

N−1∑
k=0

x2
k =

1

N

N/2−1∑
n=0

Pn (3.20)
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Figure 3.13: (a) Cartoon of the discrete signal. (b) and it’s Fourier transformed

spectrum.

Finally, the discrete power spectral density
(

V 2

df

)
n

is defined as(
V 2

df

)
n

≡ 1

τ
Pn∆2

= 2
∆

N
|X̃n|2

(3.21)

Figure 3.14 shows the ”digital” spectrum is obtained from a plasma similar to

that used in Figure 3.7, but with a different Tp = 0.96 eV. White noise current

was added on receiver as in Figure 3.10, with average amplitude corresponding

T` = 1.1eV.

Figure 3.14(a) was obtained as follows. 0.3 second after the inject of the

plasma, 1) the digitizer recorded data for 3.2 ms. 2) The recorded data was

transformed to a computer through CAMAC. Steps 1) and 2) were repeated

3 times. This required 132ms to take the 96k words of data. Then we cal-

culate the discrete power spectral density V 2

df
using N=96k; giving an effective

BW=10MHz/N=104Hz. These spectral conponents are then averaged over 100

conponents (10kHz), resulting in a Signal-to-noise of S/N =
√

10 kHz
104 Hz

∼ 10.

Figure 3.14(b) is obtained with spectrum analyzer with parameters BW=10kHz,
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video filter=100Hz, total scan time =0.5 sec. S/N for this spectrum analyzer mea-

surement is given by S/N =
√

video filter
BW

= 0.1. There are 10 times more data

points in (b) than (a) because we digitized 10 points in 1
video filter

=0.01 sec. We

can see from the Figure 3.14 that these 2 spectra have about the same S/N .
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Figure 3.14: (a) Mode spectrum obtained with transient digitizer and a numerical

FFT; (b) the same spectrum obtained with an analogue spectrum analyzer.
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It takes 50 times loner time to get the same S/N for spectrum analyzer because

spectrum analyzer is using only 10kHz BW worth of spectrum out of the scan range

of 0.5MHz. This ratio of BW versus scan range, 1/50 is the same factor that the

spectrum analyzer is 50 times inefficient compared to the transient digitizer.

Once obtained the power spectral density, we can perform the same fitting to

Eq. (3.16). The result of fit is in the figure, showing that both methods gives the

same result.

3.6 Mode spectrum Temperature Diagnostic
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Figure 3.15: Plasma temperature measured by mode emission technique, compared

to the standard dump temperature measurement. The triangles are from the IV

apparatus and the diamonds are from the EV apparatus.

Figure 3.15 displays the plasma temperature Tmode
p obtained from the emission
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spectra near a mode versus the plasma temperature T dump
d measured by dumping

the plasma. Data was taken for plasmas with a range of “geometric” parameters

(n, Rp, Lp) on both EV (circles) and IV (triangles), with varied amounts of plasma

heating. Most of the values of Tmode
p were obtained from a 4-parameter fit to the

emission spectra, together with a separate measurement of G for each (n, Rp, L).

On IV, the value of G was determined from a single 5-parameter fit to the non-

Lorentzian “T = 0.06 eV” spectrum of Figure 3.5, giving G = 0.21 pF (0.19 cm in

CGS).

Implementation of the “high temperature load” technique has obviated the

directional coupler reflection measurements, and essentially identical values of Tp

are obtained with a single spectrum.

Figure 3.15 demonstrated that Tmode
p and T dump

p agrees well over a wide range

of plasma parameters. We conclude that the mode emission spectra determines the

temperature of plasma with about ±15% error; here we note that measurement of

T dump
p itself typically has ±15% error.
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Temperature diagnostic in a

strongly damped mode regime

In the previous chapter, we focused on the spectrum near a weakly damped

mode (with γ
ωm

< 0.1) and modeled the mode spectral shapes with Lorentzians.

When the mode is strongly damped, the spectrum deviates substantially from

a Lorentzian. Here, we present the first experimental studies of the complete

spectrum of a trapped plasma near thermal equilibrium.

We measure the thermal emission spectrum over a broad frequency range (0.5-

18MHz) encompassing the lowest 5 to 7 plasma modes. A kinetic theory calculation

of Zp [10,21] incorporating Landau damping describes the spectra very well, both

in the strongly damped and weakly damped mode regimes, so long as plasma is

long compared to the radius of plasma (i.e. Lp

Rp
& 20). However, the kinetic theory

overestimates the actual Landau damping when the plasma is short (Lp

Rp
. 20), and

therefore underestimates the temperature. For short plasmas (10< Lp/Rp <20),

our experiments show that Landau damping may be 10 times less than “expected”;

this may be interpreted as due to a 10-20% ambiguity in kz.

We also determine the plasma temperature by comparing the total (frequency-

integrated) fluctuation measurements to calculations based on thermodynamic the-

ory [12]. The thermodynamic argument is robust, in that it does not depend on

37
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the shape of the spectrum; but it requires that we separately determine the plasma

parameters n, Lp, and Rp.

4.1 Apparatus with Transmission Cable Model

When we look at high frequencies, we need to calibrate for the transmission

line resonance, since the wavelength of the signal in the cable becomes comparable

to the cable length. The experiments here were performed in the same apparatus

as in the previous chapter, with more rigorous 50Ω termination of cables at the

outside of the machine; but conceptually, we need to be more complete.

Figure 4.1 shows the apparatus with a more complete electronic model and

its equivalent circuit. The transmission line and capacitance between antenna and

neighboring cylindrical electrodes Cn are conceptually added onto Figure 2.1(a).

In this chapter, we used EV apparatus only, whose parameters are B = 0.375kG,

Rp = 1.0 →1.7cm, Rw=3.8cm, n ∼ 8× 106cm−3, Lp = 15 → 37cm.

For some spectrum measurement, all of the coax cables other than the one con-

nected to the antenna were terminated outside of the vacuum chamber with 50Ω in

order to avoid the transmission cable resonance which causes unwanted extra noise

on antenna above 10MHz. The difference is shown in Figure 4.7)(shorted cables)

and Figure 4.6(b)(50Ω terminated). The resistive damping of the mode caused by

these 50Ω termination γ
ωm
∼ GωmR50Ω(see Eq.(3.5)) is estimated to be about 10−3,

which is comparable to the internal plasma damping for weeakly damped plasma

modes. This means that for low temperature plasmas where damping is weak, the

measured damping can be doubled compared to the internal plasma damping.

Figure 4.1(b) is the circuit analogue of Figure 4.1(a). We now separate the load

impedance Z` in previous chapter Figure 2.1 into 3 parts. 1) Zn is the impedance

to the “next” cylinder, i.e. from the antenna through the neighbor cylinder, then

terminated to ground with 50Ω. 2) The transmission cable from the antenna to the

receiver amplifier is modeled with a repeating LCR circuit. 3) The impedance Z`
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Figure 4.1: (a) Schematic diagram including transmission cable to receiver and

electrode-electrode capacitance Cn. (b) Electrical circuit analogue.

of the receiver amplifier is a resistor R`=690Ω and capacitor C`=60pF in parallel.

This C` only include a 40pF inherent amplifier capacitance and the cable to the

machine (20pF) in this chapter. The sum of the simple capacitances of Zn(2 ×

27pF∼50pF), transmission cable(80pF), and receiver amplifier Z`(60pF) adds up

to the load capacitance C` ∼ 190pF used in the simple model of Z` in figure 2.1.

The voltage measured at the receiver amplifier Va doesn’t necessarily equal the

voltage on the antenna Vw, due to the transmission cable resonance. This will be
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discussed in §4.3.

4.2 Emission Spectrum over a Broad Frequency Range
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Figure 4.2: (a) Power spectral density at the amplifier with plasma (diamonds)

and without plasma (solid line) (b) Difference of power spectral density with and

without plasma(diamonds). Solid line is an attempt to fit a Lorentzian.
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Figure 4.2(a) shows the measured emission spectrum over a frequency range en-

compassing two plasma modes. The mode peaks are significantly non-Lorentzian,

with strong non-resonant features. The power spectrum at the receiver V 2
a

df
is shown

with the plasma present (diamonds) and without plasma (solid line). Here, we used

an analogue spectrum analyzer with BW=100kHz, video filter=100Hz, and scan

time=0.5sec for a scan range=5MHz. This data was then averaged over 16 plasma

“shots.” Figure 4.2 is a combination of 2 sets of data with frequency ranges of 0.5

to 5.4MHz and 5.4 to 10MHz.

The plasma parameters obtained from “dump” measurements are Tp = 5.7eV,

n0=1.0×107cm−3, Lp = 27cm, and Rp=1.6cm. We used the “2D Poisson solver”

[DavidsonKevin] to obtain n, Lp, Rp. This is a computer program that takes the

measured z-integrated charge as a function of radius and distributes the charge in

z so as to consistent with the resulting potential, assuming a Maxwell distribution

of particles. Lp and Rp are the positions at which the density drops to half. Wiggle

heating of 5V, with frequency swept from 0.5MHz to 4MHz in 50ms, was applied

200ms prior to the measurement.

The emission attributable to the plasma is shown in Figure 4.2(b); this is the

difference of the power spectral density with and without plasma. The attempt to

fit the plasma noise with a Lorentzian is shown by a solid line. The plasma modes

show significantly more power on the low-frequency sides of the modes.

Figure 4.2(b) shows 2 modes, corresponding to mz = 1 and 2. This high

temperature plasma has λD/Rp & 0.3. In this high temperature regime, mode is

strongly damped and broad spectrum arises in between modes. That is the simple

pole model of plasma impedance Z−1
m does not describe the spectral shape any

longer.
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4.3 Transmission Line Resonance

For frequency ranges above 5MHz, the receiving cable impedance must be

treated properly. For frequencies below 5MHz, the cable mainly contributes an

additional capacitance which was incorporated as part of the load. However, when

the frequency becomes high enough that the length of the transmission cable is no

longer small compared to the wavelength in the cable, a more complete analysis is

required.

The transmission cable is modeled with repeating L, C,R components, as

shown in Figure 4.1(b). L, C,R refers to the inductance, capacitance, and re-

sistance per unit length of the cable, and bear no direct relation to the plasma

model of Appendix C. We define Vwp as the voltage induced by the plasma on

the wall side and Vap as a voltage induced by the plasma, transmitted through the

cable, and measured at amplifier side as shown in Figure 4.1(c). This Vwp and Vap

equals Vw and Va respectively when thereis no load-generated noise (I` = 0).

We calculate the transmission line voltage ratio ξ is defined as the ratio of the

two voltages at the both ends of the transmission line. ξ depends on the cable

impedance Z0 (≈ 90Ω), the cable length LT and propagation constant Γ, and the

receiver impedance Z` [17], as

ξ(ω) ≡ Vap(ω)

Vwp(ω)
=

∣∣∣∣ Z`

Z`cosh(ΓLT ) + Z0sinh(ΓLT )

∣∣∣∣, (4.1)

where

Γ ≡
√

ω2LC + iωRC

Z0 ≡
√
R+ iωL

iωC

Figure 4.3 shows the calculated ξ(f) from Eq.(4.1), for 3 cases: (1) Z` =

690Ω//60pF (our amplifier); (2) 90Ω//30pF (Z0 = 90Ω with 1 foot length BNC

cable); (3) 50Ω//30pF (popular input impedance of amplifier with BNC cable).

The coax cable that connects the cylinders to the outside of the vacuum chamber is
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Figure 4.3: Calculated voltage Vap induced by plasma on the amplifier, normalized

by the voltage Vwp presumably induced by the plasma directly on the antenna wall

versus frequency, for 3 different receiver impedances.

a hand made coax cable with 0.33mm central copper wire and 0.46cm inner diam-

eter copper tube as a shield, insulated with an alumina tube in between. This coax

is well modeled with the L, C,R parameters of Figure 4.3. These parameters were

obtained by comparing the resluting calculated impedance to reflection/absorption

measurements of the cable. The central copper cable itself has DC resistance of

only 0.3Ω/m, so R presumably represents r.f. dissipation in the alumina dielec-

tric. The impedance of our receiver Z` ∼ 690//60pF was separately obtained by

a reflection/absorption measurement.

We can see from the Figure 4.3 that the spectrum changes as we change the

receiver impedance Z`. When Z` ∼ Z0 ∼ 90Ω, ξ is flat. When Z` = 50Ω < Z0,

ξ decreases as the frequency goes up. When Z` = 690Ω > Z0, Vap is resonantly
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amplified by the transmission cable, causing Vwp to have a peak at 19MHz, with a

peak gain of 6× in voltage. This transmission cable resonance is advantageous for

our measurement, because the electrostatic fluctuations of plasmas have smaller

spectral densities at higher frequencies.

Using a lower Z` that matches Z0 avoids this cable resonance, but would give

less signal. In order to see the difference of the signal depending on the receiver

impedance, we then calculate the voltage Vap that we would measure when an

oscillating charge q(ω) is induced on the antenna.

The image charge qw = Ip/iω on the antenna wall induces a voltage Vwp on

the amplifier as

Vap = ξ Ip |Zp
tot|

= ξ qw iω |Zp
tot|

(4.2)

where

(Zp
tot)

−1 = Z−1
p + Z−1

n + Z−1
in

Zin = Z0

(
Z`cosh(ΓLT ) + Z0sinh(ΓLT )

Z0cosh(ΓLT ) + Z`sinh(ΓLT )

)
.

(4.3)

Zp
tot is a total impedance of Zp, Zn, and Zin, that plasma current Ip sees (Figure

3.10). Zin is an input impedance of the transmission cable terminated with Z` at

the end [17]. The image charge induce a voltage Vwp = Ip|Zp
tot| at the antenna,

then calibrated for the transmission cable by ξ.

Figure 4.4 shows the calculated voltage |Vap| induced on the receiver, normal-

ized by the voltage that would have induced on single capacitance C` (that is,

qw/C`) versus frequency. This ratio Vap

qw/C`
is essentially the efficiency to measure

the charge induced on the antenna as a voltage on the amplifier.

For 690Ω, the frequency below 2MHz is dominated by resistive load, since

fR`C`
= 1.2MHz R` = 690Ω and C`=190pF; this causes the response to fall to

zero at f = 0. At intermediate frequencies, the behavior is determined by the

capacitance and is roughly constant. For f >10MHz, Va increases due to the cable

resonance. The same calculation is plotted for R`=90Ω and 50Ω. These Z` have
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Figure 4.4: Calculated voltage Vr induced by charge qw on receiver amplifier nor-

malized by qw/C` for 3 cases of Z`.

a larger resistive regime, and therefore lower gain for measuring charge on the

antenna.

High receiver resistance R` gives a broader “capacitive” frequency range. Since

lower C` gives higher V (=q/C) in capacitive regime, an ideal amplifier would have

low C` with high R`.

In calculating the fluctuating voltage Va, we use the same Nyquist approach

as in the previous chapter. Applying the Nyquist theorem to the circuit shown in

Figure 4.1(b), we get

V 2
a

df
(ω) = ξ2

I2
p

df
|Zp

tot|2 +
I2
`

df
|Z`

tot|2

= 4kBTp Re{Z−1
p }

V 2
ap

V 2
wp

|Zp
tot|2 + 4kBTr Re{Z−1

` } |Z`
tot|2

(4.4)
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The voltage measured at amplifier V 2
a has 2 components. 1) One is the fluc-

tuating voltage induced by plasma current running through the total impedance

seen at antenna Zp
tot(see Eq (4.3)), corrected for the cable resonance volatege ra-

tio ξ2. 2) The other is the receiver amplifier noise current running through total

impedance Z`
tot that the load current I` sees. Where,

(
Z`

tot

)−1
= Z−1

` + Z−1
out

and, Zout is an output impedance of the transmission cable terminated with 1
1/Zp+1/Zn

at the antenna side and calculated as

Zout = Z0

(
1

1/Zp+1/Zn
cosh(ΓLT ) + Z0sinh(ΓLT )

Z0cosh(ΓLT ) + 1
1/Zp+1/Zn

sinh(ΓLT )

)
. (4.5)

4.4 Kinetic Theory Calculation of Plasma Admittance

In this chapter, we will use kinetic theory for calculating the plasma admittance

Z−1
p . All the quantities on the right hand side of Eq. (4.4) are independent of the

plasma parameters and are measurable, except for Zp and Tp. Therefore, we need

to determine Zp in order to determine Tp.

The following kinetic theory calculation was primarily developed by Prof. R.W.

Gould [21]. An independent calculation by Prof. D.H.E. Dubin [10] was also used,

giving identical spectra.

The current flowing onto an antenna cylinder in response to a plasma charge

is calculated by integrating the displacement current over the surface area A =

2πRwLa of the antenna. This gives

I = −iωε0

∫
A

Er dS, (4.6)

where Er is the radial electric field at the wall. The electrostatic potential is

assumed to spatial Fourier decomposition

φ(r, z) =
∑
m

φm(r)cos(kzz), 0 < z < Lp
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with kz ≡ mπ/Lp, and m ≡ mz; then

Er = −
∑
m

φ′m(r)cos(kzz).

Eq.(4.6) can be written

I = −iωε0A
∑
m

φ′m(Rw)Mm,

where Mm represents the overlap of the mode m with the antenna cylinder, as

Mm ≡
1

A

∫
A

cos(kzz)dS

= cos(kzzc) sin

(
kz(z2 − z1)

2

)[
kz(z2 − z1)

2

]
=

1

kzLa

[sin(kzz2)− sin(kzz1)]

=
Lp

Lr

Fm.

(4.7)

The antenna ends z1, z2 and the sinusoidal mode factor Fm entered the coupling

coefficient G of Eq. (3.17). When kz(z2 − z1) � 1 and the antenna is located at

the end of plasma, Mm goes to unity. This M is a dimensionless “structure factor”

which depends only on the location and size of the antenna cylinder in relation to

the mode.

When a potential V is applied to the antenna, this excites various Fouier

components φm, of magnitude

φm(Rw) = 2V Mm.

Thus we can write

I = −iωε0A/Rw

∑
m

χm(ω)M2
m2V, (4.8)

so that

Z−1
p (ω) = I/V = −iω2

ε0A

Rw

Lw

Lp

∑
m

χm(ω)M2
m

= −iω4πε0
L2

a

Lp

∑
m

χm(ω)M2
m,

(4.9)
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where χm(ω) = −Rwφ′m(Rw)/φ(Rw) is a dimensionless susceptibility under strong

magnetic field, expressed as

χm(ω) = G3
F (ω) + G1

F (ω) + G2

, (4.10)

F (ω) ≡ H(ω)Rp

[
J ′0(H(ω)Rp)

J0(H(ω)Rp)

]
,

G1 ≡ kzRp
I ′0(kzRw)K ′

0(kzRp)−K ′
0(kzRw)I ′0(kzRp)

K ′
0(kzRw)I0(kzRp)− I ′0(kzRw)K0(kzRp)

,

G2 ≡ kzRp
I0(kzRw)K ′

0(kzRp)−K0(kzRw)I ′0(kzRp)

K0(kzRw)I0(kzRp)− I0(kzRw)K0(kzRp)
,

G3 ≡ kzRw
K ′

0(kzRw)I0(kzRp)− I ′0(kzRw)K0(kzRp)

K0(kzRw)I0(kzRp)− I0(kzRw)K0(kzRp)
,

H(ω) ≡ kz

√
−ε3, ε3 = 1− 1

k2
zλ

2
D

X ′(yn),

yn =
vφ

v̄
=

1

kzλD

ω

ωp

,

where X(yn) is the plasma dispersion function [normally denoted Z(yn)].

This kinetic theory calculation assumes 1) the z-boundary conditions are periodic

(as for kz in an infinite length plasma), 2) the plasma has constant density out to

Rp, and 3) that kinetic Landau damping is the only significant damping mechanism

(e.g. electron-neutral collisions are negligible).

4.5 Experimental Spectra Fit to Theory

The measured broad spectra show stunningly close agreement with the predic-

tions of kinetic theory. Figure 4.5 shows the voltage power spectra on the receiver

amplifier.

At T dump
p = 0.7eV , we can see up to mz = 7 modes. The mz = 1 mode

has small spectral density because the antenna is centered on a node. As the

temperature increases to 2.7eV, each mode frequency increases somewhat due to

thermal pressure, the damping increases strongly due to Landau damping, and the

broad inter-peak spectrum increases. At T dump
p = 5.4eV , the modes are damped

within one cycle, and the broad spectrum becomes dominant.
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Figure 4.5: Emission spectral density on the receiver amplifier for Tp=0.7, 2.7, and

5.4eV. Lower curves are receiver noise spectra without plasma. Upper curves show

kinetic theory of Eq. (4.4), . . . , (4.10), with Tp, n0, Lp, Rp as fit parameters. For

Tp=2.7 and 5.5 eV, only 10% of the measured data are shown in dots to make the

fit curve visible.
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After injection, we applied a wiggle heating 200ms prior to the spectrum mea-

surement, in order to change the temperature Tp = 2.7eV (and 5.4eV). All of the

transmission cables that are connected to the cylinders are terminated with 50Ω,

except for the one connected to the antenna.

Lower lines on each spectrum are the fluctuation spectrum without plasma,

representing receiver noise.

For T dump
p =2.7 and 5.4eV, we used spectrum analyzer with Band Width(BW)=300kHz,

video filter=100Hz, scan time=0.5s, and scan range=20MHz. For T dump
p =0.7eV,

we used BW=100kHz and took 4 separate scan over 5MHz to get 0 to 18MHz spec-

trum. Spectral density at each frequency was averaged over 16 shot. For Tp=2.7

and 5.5 eV, 10% of the measured data are shown in dots to make the fit curves

visible.

Now we explain how the temperature was determined through fit to kinetic

theory. We rewrite the Eq. (4.4) to make Z−1
p more explicitely visible:

Va

df
(ω) =4kBTpRe{Z−1

p }ξ2|Z−1
p + Z−1

n + Z−1
in |−2

+
I2
`

df
Re{Z−1

` }

∣∣∣∣∣∣Z−1
` + Z−1

0

( 1
Z−1

p +Z−1
n

cosh(ΓLT ) + Z0sinh(ΓLT )

Z0cosh(ΓLT ) + 1
Z−1

p +Z−1
n

sinh(ΓLT )

)−1
∣∣∣∣∣∣
−2

(4.11)

We directly measure all quantities on the right hand side such as Z`, ξ, Z−1
n , Z−1

in ,

Γ, LT , Z0,
I2
`

df
, except for Tp and Zp. The measured spectrum without plasma was

used to calculate the receiver amplifier noise I2
r

df
in Eq(4.4). Zp is calculated by the

kinetic theory and has 4 parameters, Tp, n0, Lp, Rp.

Thus, the right hand side of Eq. (4.11) has 4 parameters, and fitting to the

measured spectral data determines all 4 parameters. We used a Fortran program

to calculate the spectrum for any given set of 4 parameters, and fit to the measured

spectra. The SLATEC Fitting routine sNLS1 was used to carry out the 4 parameter

fit. sNLS1 minimizes the sum of the squares of M (number of data points) nonlinear

functions in N variables by a modification of the Levenberg-Marquadt algorithm.
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When the modes were very weakly damped, as for Tp=0.7eV, the fitting routine

did not readily converge to the correct answer, and we needed to start with the

parameters that were close to “right” ones. In contrast, the fit converged easily

for spectrum with strong damping of the modes.

At all 3 temperatures in Figure 4.5, the kinetic theory calculates the emission

spectrum so well that allowed us to determine the plasma parameters, Tp, n0, Lp,

and Rp, from the broad emission spectrum. This means that we can determine

the all 4 plasma parameters with an emission data digitized over 1
2πγmin.

sec. Here,

γmin. is the damping of the mode that has the minimum damping of all mz.

One oddity is that Lkin
p obtained from the fit is consistently 17% higher than

Ldump
p obtained from the Poisson solver. This is due to “end effect” on Landau

damping in finite length system, and is discussed in more detail in Sec. 4.7.

Here, we calculate the charge number fluctuation spectrum δN2
w

df
from the mea-

sured V 2
a

df
on the antenna. All the experimental complications like receiver noise

spectrum V 2
a (f)
df

are removed from δN2
w

df
, so it is easier to compare with theory di-

rectly.

We calibrate the δN2
w

df
fromV 2

a

df
as follows.

δN2
w

df
=

I2
p

df

1

ω2e2

=
∆V 2

a

df
ξ−2|Zp

tot|−2 1

ω2e2
,

(4.12)

where ∆Va

df
is a difference of the voltage spectrum V 2

a

df
with and without plasma.

∆Va

df
is corrected for the transmission line resonance ξ, converted to the current

by |Zp
tot|−2 then finally divided by ω2e2 to obtain charge fluctuation δN2

w

df
. |Zp

tot|−2

includes Z−1
p , and we used the Z−1

p that was obtained by the previous fit.

Figure 4.6 displays the spectrum of δN2
w

df
for the thermal emission measurements

of Figure 4.5. At 0.7eV, we see that measurement and theory agrees within 30%

over a wide range in frequency, encompassing 7 modes; and that the dynamic range

for the amplitude is about three orders of magnitude. Moreover, correspondence
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Figure 4.6: Charge number fluctuation spectra for the data of Figure 4.5, with

kinetic theory fits.
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is obtained at all temperatures, here ranging over a factor 8.

Our detection electronics loses gain below 1.5MHz, because the amplifier be-

comes resistive belowfRC = 1
2πRC

∼1.2MHz, with gain proportional to frequency

squared (as described above).

4.6 Effect of the 50Ω Termination of the Cable

The received emission spectrum is slightly enhanced above 10MHz when cables

from the neighboring sectors are shorted to ground rather than terminated with

50Ω. We note this mainly because grounded cylinders are the norm in these traps.

Figure 4.7 shows the spectrum with shorted transmission cables connected to the

neighboring wall electrodes. This plasma is created in the same way as the Tp =

2.7eV plasma in Figure 4.5 and 4.6; but the received specrum from 10-15MHz is

up tp 4× larger than kinetic theory, which closely modeled measurements with

50Ω terminations.

The measured broad fluctuation is larger than kinetic theory calculation above

10MHz shown in Figure 4.7(b) This extra noise is probably due to fluctuating

voltages on neighboring cylinders coupling into the antenna. The neighboring

cylinder cable resonance also enhanced the receiver noise near 14MHz as shown in

Figure 4.7(a).

Both the extra noise of plasma above 10MHz, and the resonant receiver noise

at 14MHz are avoided by terminating the cables with 50Ω in Figures 4.5(b) and

4.6(b).

We note that 90Ω would better matche the cable impedance Z0, and would

therefore terminate the cable resonance better than 50Ω. However, the resistive

load damping of the mode is proportional to the resistance of the termination.

50Ω was at the level that broadens the cable resonance enough, and yet keeps the

resistive damping lower.
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Figure 4.7: (a) Emission spectral density with neighboring electrode cables shorted

to ground. (b) Equivalent charge number fluctuation.
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4.7 Broad Spectrum Temperature Diagnostic

This broad spectrum gives an accurate diagnostic of the plasma temperature

Tp (and also diagnoses n0, Rp, and Lp) for plasma with Lp & 20. For shorter

plasmas, the method becomes inaccurate because kinetic theory
:::::::::::::::
overestimates the

actual Landau damping in finite length plasmas.

Figure 4.8 displays the plasma temperature T kin
p obtained from the emission

spectra fitted to the kinetic theory calculation, versus the plasma temperature

T dump
p measured by dumping the plasma. Transmission cables were terminated

1

10

1 10

Tfit

Tfit

Tfit [eV]

Tfit

Tfit

Tfit

T
pki

n   [
eV

]

Tp
dump  [eV]

Lp = 36cm
36cm
27cm

15cm
23cm

1.2cm < R
p
 < 2.0cm

7*106cm-3 < n
0
 < 9*106cm-3

50Ω terminated

Figure 4.8: Temperature obtained with kinetic theory versus temperature obtained

with dump. Length varies from 15 to 36cm.

with 50Ω for solid diamonds(◆) and were shorted for all the open symbols.

The fit gives accurate temperatures for 36cm plasmas, even when the cables

were not terminated with 50Ω. This is because the spectrum below 10MHz domi-
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nates, and the fit is not significantly affected by the transmission cable resonance

above 10MHz. For shorter plasmas, T kin
p is systematically lower thanT dump

p . The

kinetic theory assumes periodic z-boundary condition, and therefore significantly

overestimates the Landau damping for finite length plasmas.

Fitting the kinetic theory to broad emission spectra determines the plasma

temperature Tp, as well as n0, Rp, and Lp. We find that Tp is accurately deter-

mined for long plasmas (with Lp/Rp & 20); but that the fit is less satisfactory

for shorter plasmas, because kinetic theory with periodic z-boundaries does not

properly model Landau damping in finite-length plasmas.

Figure 4.9 is an example of such a case, where the kinetic theory at the actual Tp

predicts much broader peaks (stronger damping) than the measured peak width.

The solid line is a kinetic theory calculation at the actual plasma temperature,

showing γ ∼ 2× too large. The dashed line is a best ”fit”, giving temperatures

about 2× too small. This fit also gives n0R
2
p about 1.3× too large, and Ntot about

1.5× too large.

That is kinetic theory overestimates the Landau damping by a factor of 2 for

this length. The fitting routine matches the damping by lowering the temperature.

Landau damping is predicted to depend on the mode phase velocity vφ ≡ ω/kz;

but the definition of kz for finite length plasmas is problematical. We define an

“effective wave number” keff
z as that which gives the measured mode frequency

ωm in linear(infinite-length) wave theory. This keff
z is then used to calculate vφ,

as vφ = ωm/keff
z . This keff

z is typically 20% lower than mπ
Lp

, as was first discussed

by Spencer [29].

Figure 4.10 shows the predicted and observed damping γ (normalized by mode

frequency ωm) versus thermal velocity v̄2 over phase velocity v2
φ ≡ (ω/keff

z )2

squared. The symbols show experimental data for various Lp. Here, γ is the

half-width at half-maximum of the δN2 spectrum, measured on the higher side of

the mode. We picked the mode that has the largest amplitude out of the spectra

that were used for Figure 4.8 in order to determine γ and ωm. For long plasmas,
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Figure 4.9: Effects of overestimated landam damping in kinetic theory for damping

and Landau damping for shorter (Lp=23cm) plasma. Solid line is a kinetic theory

calculation at the actual Tp=6.2eV, using Lk
p=27cm to match the mode frequencies.

Broken line is a kinetic theory fit, giving T kin
p =3.9eV with compensating errors in

n0, Lp, Rp.

agreement between theory and experiment is quite close; for short plasmas theory

predicts larger damping than is observed.

In the theory, v̄2

v2
φ

tells where the wave phase velocity is located in the veloc-

ity distribution, and thus determines the Landau damping. For shorter plasmas,

damping is systematically low or else, keff
z is low compared to the theory. Clearly,

end effects play a substantial role for short plasmas. As an extreme example,
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Figure 4.10: Damping γ normalized by the mode frequency ωm versus (v̄/vφ)
2

a football-shaped plasmas in a harmonic potential theoretically has no damping

for modes corresponding to mz =1 and 2 [9]. Here, no ”adjustment” of kz in

infinite-length theory is likely to eliminate the damping.

Overall, our 4 parameter fit to theory determines Tp, n, Lp, Rp within 30% ac-

curacy for the long plasmas where kinetic theory calculates the damping correctly.

For short plasmas, the fit temperature deviates by 50% because the damping differs

from theory by up to 5×.

4.8 Total Fluctuation Temperature Diagnostic

All errors associated with the details of the spectrum can be avoided by looking

at the total frequency-integrated fluctuation level δN2
w induced on the wall antenna.

Thermodynamic theory[Dubin,O’Neil] calculates δN2
w for any given Tp, n0, Rp, and
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geometry. This thermodynamic argument is more general than kinetic theory, in

the sense that it doesn’t invoke the shape of the spectrum.

The work of Dubin resulted in

δN2
w

Nw

=
4λ2

DLa

R2
pLp

∑
n=1

M2
m

−k̂z I0(kzRp) I1(k̂zRp) + kz I0(k̂zRp) I1(kzRp)

I0(kzRw) D
, (4.13)

with

D ≡ k̂z I1(k̂zRp)
{

I0(kzRp) K0(kzRw)− I0(kzRw) K0(kzRp)
}

−kz I0(k̂zRp)
{

I1(kzRp) K0(kzRw) + I0(kzRw) K1(kzRp)
}
,

k̂z

2
≡k2 +

1

λ2
D

, and λ2
D ≡

kBTp

4πn0e2
,

Here, δN2
w is normalized by the total number of the electrons Nw inside the antenna

region.

This rather complicated function is well approximated by a simpler form,

δN2
w

Nw

∼=
α1

1 + α2(
Rp

λD
)2

. (4.14)

This form shows that the fluctuation level is a constant in the high temperature

limit, (Rp/λD � 1), and is proportional to the temperature at low temperatures

(Rp/λD � 1).

In the limit Tp →∞, we obtain

δN2
w

Nw

= α1

= 2
La

Lp

∑
n=1

M2
m

I2
0 (kzRp)− I2

1 (kzRp)

I2
0 (kzRw)

→ 1− La

Lp

for large
La

Rw

≈ 0.79 for our geometry.

(4.15)

This represents the uncorrelated density fluctuations of the ideal gas in a cylinder.

This limit was simulated and compared to experiments in Ref [34].

One caution is that the number of image charges on the antenna does not

exactly equal the number of plasma charges with z1 < z < z2, because some of
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the electric field from the charge near the end of the antenna “leaks out” and

terminates elsewhere on the wall. Thus, the ideal gas analogy is only rigorous in

the limit of La

Rw
� 1. In our case, La

Rw
= 2 is not large enough to use this simple

form.

In the low temperature limit where kλD � 1,

δN2
w

Nw

=
α1

α2

(
λD

Rp

)2

= 4
La

Lp

(
λD

Rp

)2∑
n=1

M2
m

I0(kzRp)

I0(kzRw)

1

−I0(kzRp)K0(kzRw) + K0(kzRp)I0(kzRw)

→ 1− La/Lp

1
2
ln(Rw

Rp
)

(
λD

Rp

)2

for large
La

Rw

.

(4.16)

Therefore

α2 =
1

2
ln

(
Rw

Rp

)
for large

La

Rw

≈ 0.54 for our geometry.

(4.17)

As the temperature decreases, Debye shielding supress the random particle

fluctuations. At low temperatures, collective effects become dominant, and the

total fluctuation is propotional to kBT .

Figure 4.11 shows the predicted and measured total fluctuation level versus

temperature Tp or λD. Close agreement is obtained over a range of 10 in Tp. The

solid line is the thermodynamic calculation of Eq. (4.13) using the (measured)

parameters shown.

Experimental points(diamonds) were obtained by first calculating δNr

df
from Eq.

(4.12), using the same spectra in Figure 4.5 and Figure 4.6 and then integrated

δNr

df
from 0 to 18MHz, with 2 assumptions. First, we assumed |Zp| � |Z`| so that

1
Zp

becomes negligible, allowing us to calculate δNw without using kinetic theory

calculation of Zp. This is a good assumption except for the frequencies near a

very weakly damped mode. For example, the minimum Zp(∼ 1200Ω) of Figure 4.5

is given at the peak of the mz = 2 mode for T=0.7eV, which is still larger than
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Figure 4.11: Total fluctuation square normalized by total number versus Debye

length normalized by the Radius of the plasma. Solid line is the result of thermo-

dynamic argument. Broken line is the plot of approximated form. Solid diamonds

are measured data with transmission cables terminated with 50Ω and open dia-

monds are with shorted cables.

Z`. Secondly, we also assumed that below 2MHz, the fluctuation spectral density

is flat with the value at 2MHz. This is required since our receiver loses gain

below 2MHz, as the input impedance becomes resistive rather than capacitive.

Nw is obtained by Nw = NtotLa/Lp, with Ntot and Lp determined by a dump

measurement. Integrating up to 18MHz is sufficient, since δN2
w

dfNw
< 10−8 at 18MHz.

The measured total fluctuations with properly terminated cables(◆) are within

20% agreement with calculation of the thermodynamic argument. The measured

fluctuations with shorted cables still show fair agreement with despite the fact

that the spectrum has extra fluctuation above 10MHz. For example, for the open
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diamond at λ/Rp = 0.67, shorted cables give a 20% increase in δN2 above 10MHz.

The measured total fluctuation compared to the theory line of Eq. (4.13) de-

termines the temperature of the plasma. This total fluctuation serves as a “robust”

temperature diagnostic, because this method does not depend on the shape of the

spectrum. However, Rp, n0 and Lp need to be pre-determined in order to calculate

the predicted total fluctuation.

1
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23cm shorted
15cm shorted
T_theory

Tp
dump  [ eV ]

T
pδN

  [
 e

V
 ]
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Figure 4.12: Temperature obtained from measured total fluctuation, compared

with thermodynamic argument versus temperature obtained with dump. Length

varies from 15 to 36cm. All the transmission cables that are connected to cylinders

except for the one connected to the antenna were terminated with 50Ω for solid

diamonds. The same cylinders were shorted for open symbols.

Figure 4.12 shows the temperature T δN
p of the plasma obtained from the mea-

sured total fluctuation, versus T dump
p . Solid symbols are data taken with the prop-

erly terminated cables. Open symbols are plasmas with shorted cables. Open
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symbols estimate T δN
p consistently higher, because of the extra fluctuations. Nev-

erthless, this temperature diagnostics determines temperature within 50% accuracy

and is independent of the form of the damping.

The charge number spectrum needs to be calibrated at each frequency and

measuring the root-mean-square voltage with broad frequency(0 to 18 MHz) would

not give the right total number fluctuation level.
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Summary

We have developed three different non-perturbative strategies to determine the

plasma temperature.

The first method focuses on the spectrum near a mode, and approximates Z−1
p

with a simple pole. This Zp doesn’t presume any particular cause of the damping,

other than that it is weak. This diagnostic determines Tp, T`, ωm, γm, and G from

the spectrum. This method has proven to be fairly robust in a ”quiet” plasma

environment. However, we note that each mode represents 1 degree of freedom

out of 109, and so it could easily be excited by an external signal (e.g. noise on a

pulser) at the mode frequency. The second method utilizes the emission spectrum

over a broad frequency range, fitting it to kinetic theory. Kinetic theory implicitly

assumes that Landau damping is the only damping mechanism, and neglects end

correcion to this damping. This theory matches the measured spectra extremely

well, if the temperature is large enough that Landau damping is dominant, and if

the plasma is long compared to the radius. This diagnostic determines all 4 fitting

parameters, giving Tp, n0, kz, Rp.

Third method utilizes the total frequency-integrated number fluctuation, and

requires prior knowledge of n0, Lp, Rp. The frecuency integral requires a complete

spectrum which is corrected for cable resonance. Comparison with a thermody-

namic calculation determines the plasma temperature, so no assumptions are made

64
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as to the form of damping.

1)mode analysis

λD
Rp

0

Lp / Rp20

0.3

2)kinetic theory3)thermodynamic
theory

Figure 5.1: The plasma regime that 3 methods works.

Figure 5.1 summarizes the plasma regimes for which each method works. As

long as the chosen mode is weakly damped, the first method is robust, and a single

emission spectrum determines the temperature. When the temperature is high

enough that the mode spectrum deviates from a Lorentzian, one can use kinetic

theory calculation if plasma is long. For short plasmas at high temperatures, one

can use the thermodynamics to calculate the total fluctuation; but this requires

the separete determination of n0, Lp, Rp.



Appendix A

Spectrum Analyzer

Many spectral concepts are subtle (or ambiguous in general usage), so we begin

with an overview of spectral analysis.

Figure A.1 shows a cartoon of the block diagram of an analogue spectrum

analyzer (HP 141T/8553B) [16, 23]. Digital FFT analysis will be continued in

§3.5.1. Voltage signal x(t) is applied to the 50Ω input and filtered through a band

Block
Diagram

Input
x(t) BW

ω0

x(t)

Bandpass
Filter

1/ 2
<Vrms>

Signl
Shape

Vrms

Envelope
Detector

Video
Filter Output

x(t)

t

x(t)

t

Vrms(t)

t

BW
1

1/2πω0

~

~

Figure A.1: Block diagram of how the spectrum analyzer process the input sig-

nal(top) and the cartoon of the signal shape(bottom).

pass filter. Both the center frequency ω0 and the bandwidth BW of the filter are

adjustable. Then, an envelope detector together with a 1/
√

2 calibrater obtains

66
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the root-mean-square-voltage V rms over the BW centered at ω0 . In this thesis, we

use the word “power” as synonymous to “squared;” the voltage or current squared

is proportional to the power.

It takes about 1
BW

sec for the envelope of the filtered signal to reach a stationary

value. For example, if we turn on a sinusoidal wave with amplitude Ao at t = 0,

the envelope relaxes towards Ao with time constant 1
BW

. We can further average

this power output with a video filter circuit to obtain < V rms >. The video filter

bandwidth ∆fvideo is a reciprocal of the video filtration time. The maximum of

1
BW

or 1
fvideo

gives the overall response time τspe of the spectrum analyzer.

The spectrum analyzer can be operated in 2 different regimes, namely,

power measurement mode or,

power spectral density measurement mode.

These 2 modes can be selected by the choice of BW and it’s defference is explained

in Figure A.2. A) chooses the BW to be broad enough to cover the whole spec-

V2

df

a) Total Power measurement

signal

BW

V2

df signal

BW

b) Power spectral density measurement

ω ω

Figure A.2: Illustration of the 2 operation modes of spectrum analyzer.

trum of signal, and the peak amplitude of the output of the spectrum analyzer

is the total power of the input signal. This is illustrated in Figure A.2(a). The

transmission spectra of Figure 3.4(a), (b) is operated in this regime. input signal
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is essentially a delta function, so changing the BW will not change the output

power. B) chooses the BW to be narrow enough to resolve the spectrum of sig-

nal, shown in FigureA.2(b). We define the power spectral density V 2

df
(f) as the

power in a unit frequency band width [Hz] centered at frequency f and measured

as V 2

df
(f) ≡ (V rms)2

BW
, which is really a power spectral density averaged over BW.

In dealing with random signal with a Gausian Amplitude distribution, we need

to be a little careful with the power amplitude calibration. HP8553B assumes that

the root mean square of the signal is 1√
2

= 0.707 of the peak envelope ampli-

tude, which is true for stationary sinusoidal wave. However, for a random x(t)

with a Gaussian amplitude distribution, the output of the envelope detector is the

Rayleigh-distributed envelope. The mean value of the Rayleigh-distributed noise is

0.886 of the peak envelope amplitude. Therefore output of the Spectrum analyzer

is factor of 0.798 low and need to be calibrated.

In order to obtain the spectrum, we sweep the center frequency ω0 of the band

pass filter. The time it takes to sweep over BW should be longer than τspe, so that

the spectrum analyzer has time to reach the full amplitude. This means that wider

BW allows us to sweep faster, but we also need to make sure that BW is narrow

enough to resolve the spectrum. For example, If we want to measure the spectrum

over a 5MHz span with BW=100kHz and fvideo=100Hz, the scan rate need to be

less than 10MHz/s. This leads to 0.5 second total scan time over 5MHz scan. This

total scan time is marginally OK in EV and perfectly fine in IV because the plasma

evolves in the order of 1 second, or 100second in EV and IV respectively.

The output of the spectrum analyzer is recorded digitally as a function of

frequency.



Appendix B

Power Spectral Density of

Damped Harmonic Oscillator

A plasma mode is analogous to a damped harmonic oscillator. Here, we will

discuss the significance of the power spectral density through the example of a

damped harmonic oscillator [5].

First, consider a case that the excitation of damped oscillator takes place only

once at t=0 as shown in Figure(a). The resulting impedance response h(t) oscillates

with frequency ω0, and is damped at a rate γ. h(t) has finite square integral∫ ∞

−∞
h2(t) dt =

ω2
0 + 3γ2 − 2γω0

4γ(γ2 + ω2
0)

∼ h2
0

4γ
when γ � ω0.

(B.1)

This square integral is proportional to it’s energy.

The Fourier transform H(ω) of h(t) defined as

H(ω) ≡
∫ ∞

−∞
h(t) e−iωt

=
h0

2

[
1

γ + i(ω − ω0)
+

1

γ + i(ω + ω0)

]
,

(B.2)

and the “Energy spectrum” |H(ω)|2 is

|H(ω)|2 ≡ H(ω)H∗(ω). (B.3)
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e-γt

h(t)

t

|H(ω)|2

γ

h0

ω
ω0

h0
2

4γ2

a) b)

0

0

Figure B.1: Signal shape of a single excitation of damped harmonic oscillator in

(a) real time space and (b) frequency space.

|H(ω)| has a Lorentzin spectral shape with amplitude
h2
0

4γ2 and half width at half

maximum γ. Area S of one Lorentzian is given by

S = (Amplitude)(half width)π

=
h2

0

4
γπ.

(B.4)

Parseval’s theorem is ∫ ∞

−∞
h2(t) dt =

1

2π

∫ ∞

−∞
|H(ω)|2 dω (B.5)

Now we consider a case where the oscillator is excited repeatedly every τ second

as described in Figure B.2(b). We now realize that both square integral of h′(t)

and the Fourier transform H ′(ω) diverges to infinity. However, the mean square

of h′(t) defined as

< V 2 > ≡ lim
X→∞

1

2X

∫ X

−X

|h′(t)|2 dt

=
1

τ

∫ ∞

−∞
|h′(t)|2 dω

=
h2

0

4γτ

(B.6)
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h(t)

t
γm

h0

ω
ω0

h0
2

4γ2τ

a) b)

0

τ

V2
df

Figure B.2: Signal shape of a periodically excitated damped harmonic oscillator

in (a) real time space and (b) frequency space.

is still finite.

This < V 2 > represents power. Power spectral density V 2

df
is defined as follows

V 2

df
≡ lim

X→∞

1

2X
H ′(ω)H ′∗(ω)

=
1

τ

∫ ∞

−∞
|H(ω)|2 dω

=
2πh2

0

4γτ

(B.7)

The plasma mode is thermally excited, which means mode is excited to random

amplitude with random duration at random phase. Thermally excited mode signal

falls in the power finite signal class and therefore we deal with the power spectral

density of the fluctuation, not the energy spectrum.



Appendix C

Transmission line model of the

trapped plasma

Wineland and Dehmelt [44] modeled the ”trap mode” of a small number of

electrons in a harmonic potential using a simple LCR series circuit. Similarly,

the collective electron plasma modes in long cylindrical Penning-Malmberg traps

have previously been modeled [43] as an extended LCR transmission line, shown

in Figure C.1. In this regard, the coupling coefficient G for an antenna is simply

L R
C

L =
mLp

Ne2
C =

1+2ln(Rw/Rp)
R = 2Lγ

unit length Δz

Total length Lp

4πε0

Figure C.1: Transmission line model of plasma in a Penning-Malmberg trap
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the capacitance between the plasma and the antenna section of the wall, weighted

by a ”node factor” F 2
m of the mode. The electrostatic wave propagating through

the plasma along the z-axis is analogous to an electromagnetic wave propagating

along a coaxial cable. The only difference is that inertia for the plasma wave is

provided by the mechanical inertia of the electrons, whereas inertia for the EM

wave is provided by the energy being stored in the magnetic field.

The transmission line circuit shown here is described by 3 parameters L, C,R,

all normalized per unit length ∆z, as shown in Figure C.1. L (the inductance per

unit length) represents the inertia of the electron current, and is therefore propor-

tional to m/e for the electron; and it is also inversely proportional to the charge

line density eN/Lp. Cp (the capacitance along z axis per unit length) represents

the ratio of electric field induced and displaced charge along axis. C (the capaci-

tance between the cylindrical wall and the plasma) represents how much voltage

is induced on the wall when charge is present in the plasma. R (the resistance per

unit length) represents the damping of a mode.

Overall, this simple model gives expressions of vφ,G as:

vφ ≡
ωm

km

=
1√
LC

= ωpRp

[
1

2
+

1

2
ln

Rw

Rp

]1/2

,

(C.1)

G = CLpF
2
m. (C.2)

The finite length Lp discretizes the modes at km = mzπ/Lp. The sinusoidal mode

factor Fm enters squared because impedances Z representing voltage over current

inherently involve transmission and reception. Eq. (C.1) is analogous to Eq.(3.1),

with T = 0 and Rw � Rp. One can reproduce Eq.(3.1) by adding a thermal

pressure term [6] in the calculation of L.



Appendix D

Noise Measurement of Modes

This Appendix D presents a set of calculations and discussions developed by

prof. R.W. Gould. It served as a conceptual basis for the experiment. These

(unpublished) notes are included here for completeness and for present and future

referenceability.

D.1 Part I

For noise purposes, the plasma can be represented by a noise voltage source Vs

in series with its internal impedance Zs (Thevenin) or, alternatively, a noise current

source Is in parallel with its internal admittance, Ys ( Norton), as shown in Figure

D.1. Ys is just the reciprocal of Zs. These two approaches are equivalent and

will give the same results, but one may be preferable than the other, depending

on circuit details. In this case, the Norton equivalent seems preferable because

several of the circuit elements appear in parallel and parallel admittances simply

add. According to Nyquists theorem the mean square open-circuit noise voltage

per unit bandwidth df, is V 2
s /df = 4kTRe{Zs}, and the mean square short-circuit

noise current per unit bandwidth df, is I2
s /df = 4kTRe{Ys}.

In [21] it was shown theoretically that the plasma admittance, as would be

measured at a sector probe when the frequency is close to that of one of the

resonant modes, would be of the form

74



75

Zs

Vs Zl

a)

YsIs Zl

b)

Thevenin Equivalent Norton Equivalent

Figure D.1: (a) Thevenin and (b) Norton equivalent circuit.

Ys ≡
1

Zs

≈ Rm

j(ω − ωm) + γm

+ jBc (D.1)

where ωm is the resonant frequency of one of the many modes, γm is the damping

rate of that mode, Rm is the residue at this simple pole (related to a coupling

factor), and Bc comes from a sum over all the nonresonant mode and represents

a sector capacitance. From physical arguments one would expect a pole at the

frequency of each mode because at that frequency only a tiny voltage applied to

the sector is required to produce a large induced charge (or current) on the sector.

Since a measurement cannot be made at the sector itself, we include the capacitance

of the cable from the sector to the point at which the measurement can be made

(at the flange). This cable capacitance appears in parallel with Ys so it appears as

additive term in Eq. (D.1). Hence it just increases the value of Bc. Note that we

are using the electrical engineering convention, exp(jωt) rather than the physics

convention exp(−iωt). In Fig. D.2 we show a discrete component representation

of the admittance of Eq. (D.1), together with the parallel cable capacitance and a

”load” which represents the input admittance of the noise-measuring preamplifier:

its input resistance in parallel with a small stray capacitance. The LRC circuit on

the left gives the simple pole in the admittance Ys.
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plasma cable load

Figure D.2: Component representation of Eq.(D.1), with cable and load.

We will use this expected form of the admittance function to discuss the mea-

surement results. Hopefully, the measurements will be consistent with this form,

and be able to determine values for the various parameters. To reduce the num-

ber of parameters needed we will normalize all admittances to the characteristic

admittance (Yo = 1/Zo = 1/50Ω = .02f) of the transmission line on which di-

rectional coupler measurements of the plasma admittance is based, and use lower

case letters to denote these normallized admittances. We also introduce a new

frequency variable x = (ω − ωm)ωm which is zero at the mode center, a new

dimensionless damping parameter ε = γm/ωm, and a new dimensionless residue

parameter ρ = Rm/ωmYo, so that Eq. (D.1) can be rewritten as

ys =
ρ

jx + ε
+ j bc (D.2)

Typically ρ ∼ .001, bc ∼ .25(200pf at 4Mhz) and ε, the mode damping, varies

with temperature from .0001 or less to about .01. We note that and ε = ρ and

x = 0, corresponds to the plasma impedance of 50Ω at resonance, were it not

for the cable capacitance. We also note that we could still reduce the number

of parameters by one more if we were to divide x and ρ by ε. However, in the

experiment, the mode damping is an important parameter, and we don’t want to

obscure that parameter.

Finally the complex reflection coeffecient of this admittance, as measured with

a 50Ω directional coupler is
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r =
1− ys

1 + ys

(D.3)

The inverse of this relation,

ys =
1− r

1 + r
(D.4)

is needed to convert measurements of the complex reflection coefficient to an

admittance.

Eqs. (D.1)-(D.4) are examples of bilinear transformations (see any book on

complex variables). For example, if we think of x as a complex frequency variable,

although mostly we are interested in real values of x, then Eq. (D.2) maps a point

in the complex x plane to another point in the complex ys plane. It also maps

curves in the complex x plane into curves in the complex ys plane. Circles in the

x plane are mapped in to in the ys plane. A straight line, such as the real x axis, is

a special case of a circle which has infinite radius. Frequencies in the upper half x

plane correspond to damped disturbances, poles in the upper half plane to damped

(stable) modes, and the upper half x plane maps into the interiorof the unit circle

in the complex r plane.

In Figure D.3(a), we show how the real x axis maps into the complex ys plane

for three different values of damping ε = .0003, .001, and .003 with ρ = .001 and

bc = .25.

The bilinear transformation Eq. (D.3) maps the circles of Figure D.3(a) into

the circles of Figure D.3(b) in the complex reflection coefficient plane, all within

the unit circle. In both sets of plots, frequency is a parameter, going from 10 half-

linewidths below resonance to 10 half-linewidths above resonance. As the frequency

increases from below resonance to above resonance, curves are traced out in a

clockwise direction (using the exp(jωt) convention). In the complex ys plane the

curves asymptote to jbs far from resonance. The middle circle, in both plots, is for

ε = .001(ε = ρ). This corresponds to a mode damping such that plasma admittance

is very nearly equal to 1/50Ω at resonance. The outer circles, in both plots, are for
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1.5

1

0.5

-0.5

-1

0.5 1 1.5 2 2.5 3

Complex ys plane.
(ε=0.0003 - outermost circle)

Complex r plane.
(ε=0.0003 - outermost circle)

Figure D.3: (a)Complex ys plot and (b)Complex r plot.

lower temperature (narrower linewidth) and higher plasma admittance, whereas

the inner circles are for higher temperature (broader linewidth) and lower plasma

admittance. In the complex r plane the curves asymptote to (1− jbs)/(1 + bs) far

from resonance. We have chose to plot the in the complex admittance plane with

frequency as a parameter, but the real and imaginary parts of ys versus frequency

are contained implicitly in these maps and we show them explicitly in Figures

D.4(a) and D.4(b), respectively.

Re{ys}

x

Im{ys}

x

Figure D.4: (a) Real and (b) Imaginary part of ys versus x.
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Since the measurement of r will be a measurement of its magnitude and phase

we show in Figure D.5 what these are expected to look like using this model. This

is just a different way of looking at the information presented in Figure D.3(b) and

it is straightforward to go from one display to the other. In Figure D.5(a), the

case with heaviest damping (ε = .003) has the smallest ”dip” and in Fig D.5(b),

the smallest phase variation. The lightly damped case (ε = .0003) has the biggest

phase variation (2π when one accounts for the artificial discontinuity) because

in Figure D.3(b), the curve encircles the origin. The asymptotic phase, far from

resonance, is 2∗Atan(bc) ∼ 28◦. In the absence of the sector and cable capacitance,

this would be zero, and the plots of Fig. 5ab would be symmetric and antisymetic

aboutthe center frequency.

a) b)

Figure D.5: (a) Magnitude and (b) Phase of r versus x.

We note that any error in measuring the phase (which should be zero with an

open circuit) has the effect of rotating the curves in Figure D.3(b) about the origin

by an angle equal to the phase error. In turn, this changes the admittance map

(and therefore the real and imaginary parts of the admittance), although a rotated

circle in Figure D.3(b) still transforms to a circle (another circle) in Figure D.3(a).

The mean square noise current per unit bandwidth in the Norton equivalent

circuit is, according to the Nyquist theorem, equal to 4kTYoRe{ys}(Yo = .02mho)

and so should look like Figure D.4(a). This is the current which would flow if the
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y` were a short circuit (y` = ∞).

However, the noise measuring circuit preamplifier has an input admittance:

y` = .05 + jb` (1000Ω resistor in parallel with some small stray capacitance). The

noise current flows through the preamplifier input admittance measuring circuit

and generates the noise voltage which is observed by the measurement circuit. To

get this noise voltage, we take the noise current to flow into the parallel combination

of ys and y` which is just the sum of ys and y`. Thus

v2
meas/df =

4kT

Yo

Re{ys}
|ys + y`|2

(D.5)

When y` = 0 (amplifier has infinite input impedance) this expression just gives

the Thevenin result for the open circuit noise voltage because YoRe{ys}/|ys|2 is

just Re{Zs}. Thus the effect of adding the load is to reduce v2
meas/df by a factor

F =

∣∣∣∣ ys

ys + y`

∣∣∣∣2 → 1, when y` = 0, (D.6)

from that which would appear across the cable capacitance alone. F is plotted

versus frequency in Figure D.6. The minima occur because ys passes close to zero

on the low side of resonance (see Figure D.3(a)). The deepest curve is for a lightly

damped mode (ε = .0003). This effect is strongly dependent on the value of cable

capacitance.

Suggested measurement proceedure.

Directional coupler measurement of admittance. a) with the input to

the directional coupler open, adjust the reference phase of the lock-in so that the

phase of the reflection is zero. Placing a short at the input of the directional

coupler should change that phase to 180◦. In both cases the magnitude of the

reflection coefficient should be unity. Replacing the short at the input by a 50Ω

termination should give a reflection coefficient of zero, with a phase which is un-

defined. Of course, small errors in the directional coupler and/or termination may

not give precisely zero for the reflection coefficient. b) From the measurement of

the complex reflection coefficient, the complex admittance (or its reciprocal the
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F

x

Figure D.6: Plot of F versus x.

complex impedance) can be calculated from Eq. (D.4). It is probably useful to

plot the r and ys obtained this way in the complex plane, as well as a plots of there

real and imaginary parts versus frequency.

Noise measurement. Measure the mean square noise voltage (per unit fre-

quency interval) v2
meas/df , versus frequency.

Temperature determination. At this point there are several ways one

could proceed. Refering to Eq. (D.5), it would be useful to plot both v2
meas/df

and Re{ys}/|ys + y`|2 versus frequency. According to Eq. (D.5), they should be

proportional differing by a factor 4kT/Yo. If they are then the temperature is easily

determined. There are bound to be some differences, hopefully only minor. Then

one might determine the temperature from the peak value of the noise emission,

provided that it is close to the peak value of Re{ys}/|ys + y`|2.

A suggestion: The cable and sector capacitances complicate the data analysis

and interpretation somewhat. Since the measurements are made over a rather

narrow band of frequencies, this capacitive admittance can be cancelled by placing

an inductor in parallel with the cable. For example, at 4 MHz a 7.9µ inductance

cancels 200pf cable capacitance. This cancelation is much broader than the rather

narrow line widths, and probably also than the shifts in mode frequency produced

by changes in plasma temperature. This has the added advantage of increasing
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the sensitivity since the input impedance of the preamp (1k) becomes the load,

rather than the cable capacitance, about 5 times higher. The main penalty is that

the inductance should be changed if the frequency is changed more that 10-20%.

Note, Sateesh Pillai used this trick in studying the resistive destabilization of the

m = 2 diocotron mode. Since the m = 1 diocotron mode has a substantially

different frequency one probably doesn’t have to worry about its destabilization.

If the inductive cancelation scheme seems to be of interest, I can provide you with

figures similar to those above, with bc = 0, and a little interpretation.
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D.2 Part II

Will external loading cool a mode? We know that a mode is, in general,

damped so that when a mode is excited the mode energy Wm decays according to

dWm

dt
= −2γmWm. (D.7)

where γm is the linear decay constant of the mode. In the case of thermal

excitation the mode energy is Wm = kTm. However, we do not expect the energy

of a thermally excited mode to decay, rather the decay is balancedby continuous

excitation by random processes to give the thermal equilibrium fluctuation level

of the mode. This can be accounted for by adding another term to Eq. (D.7),

dTm

dt
= −2γm(Tm − Tp) (D.8)

where Tp is the plasma temperature and Tm is the ”mode” temperature, and

we have substituted Wm = kTm. In steady state dTm/dt = 0 and the mode temper-

ature is equal to the plasma temperature. If somehow we manage to temporarily

increase or decrease the mode temperature, this equation says that it will return

to the plasma temperature in a time 1/(2γm).

When there is additional mode damping by some process external to the

plasma, such as damping due to an external load, it is convenient to describe that

additional damping by an additional damping constant, γ`. If the external load

has a temperature T` different from the plasma temperature, then it will also be a

source (or sink) of thermal energy for the mode. This can be modeled by adding

still another term to Eq. (D.8)

dTm

dt
= −2γm(Tm − Tp)− 2γ`(Tm − T`). (D.9)

So we have the plasma trying to drive the mode to temperature Tp and the

load trying to drive the mode to temperature T`. The linear decay time of the

mode consists of the internal part plus the external part and is just the sum of
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the two contributions, γm + γ`. In the steady state dTm/dt = 0, and the mode

temperature is somewhere and between Tp and T`

Tm =
γmTp + γ`T`

γm + γ`

(D.10)

If the additional contribution to the mode damping due to the load is much

smaller than that due to the plasma, γ` � γp, then Tm will be very close to to

the plasma temperature, Tp. Conversely, if the external damping dominates, then

Tm will be close to the load temperature. In this discussion we have assumed

that cooling one mode of the plasma, does not significantly affect the plasma

temperature because of the very large number of modes and particles (> 107).

In order for a measurement of the fluctuation level of a mode to give an accurate

measure of plasma temperature, the external contribution to mode damping should

be small. Alternatively, one could correct for the load contribution to temperature

using Eq. (D.10) if one knows γm, γ`, and T`.

Now, let’s examine the experimental situation more specifically. Near a mode

resonance, the plasma admittance has the form

Ys ≈
Rm

j(ω − ωm) + γm

+ jBc (D.11)

This suggests an equivalent circuit for the noise measurement shown in Figure

D.7(a), and its equivalent, Figure D.7(b):

Cp
Rp
Lp

Cs Cc Rin Cin

a) b)

Cp
Rp
Lp

Cl
Rl

Figure D.7: (a) Equivalent circuit for noise measurement and (b) its equivalent

circuit.



85

For purposes of discussion, we have combined the three parallel capacitances

( Cs the sector capacitance, Cc the cable capacitance, and Cin the preamp input

capacitance) into a single capacitance, Cs + Cc + Cin (which is dominated by the

cable capacitance). We then expressed this parallel capacitance and parallel input

resistance, Rin, of the preamp as a series circuit, R` and C`, as shown in Figure

D.7(b). We see immediately that C` appears in series with Cp and this reduces

the capacitance of the resonant circuit slightly (since C` � Cp) and therefore shifts

the mode frequency slightly upward. We also see that R` appears in series with Rp

and this increases the resistance so that damping of the mode is increased.

One can also see that so that γ`/γp = R`/Rp so that the additional fractional

damping is just equal to the additional fractional resistance which the load adds.

According the earlier argument, we should make this small to minimize the error

in the temperature determination. To estimate this,

R` = Re

{
1

1
Rin

+ jωCin

}
=

Rin

1 + ω2C2R2
in

≈ 1

ω2C2Rin

(D.12)

since Rin (∼ 1kΩ to 10kΩ) and 1/ωC ∼ 300Ω. Thus R` is in the range 90Ω to

9Ω. Clearly the larger the input resistance of the preamp, the less mode damping

the preamp introduces, and therefore the smaller the error in temperature. Since

Rp is 50Ω, and higher for higher plasma temperature, a preamp input resistance

of 10kΩ or greater is desireable.

It is rather hard to estimate T`, the load temperature, since it may involve not

only some resistance at room temperature, but possibly some contribution from

the noise of the first stage of the preamp, normally higher than room temperature

unless it is cooled.
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