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Abstract of the Dissertation

On the Dynamics of Inviscid Relaxation in �D Fluids and

Nonneutral Plasmas

by

David Anton Schecter

Doctor of Philosophy in Physics

University of California� San Diego� ����

Professor Daniel H� E� Dubin� Chairman

Twodimensional ��D� �ows in atmospheres� oceans and plasmas can rapidly

relax to metastable patterns before viscosity a�ects the dynamics� This disserta

tion is on the mechanics of inviscid relaxation� Three topics are covered� vortex

motion driven by a background vorticity gradient� the inviscid damping �Landau

damping� of asymmetries on a circular vortex� and vortex crystal formation�

All topics were motivated by experiments with magnetized electron columns�

where the �r	 �� �ow of electrons is approximately governed by the �D Euler equa

tions� These equations also govern �D inviscid incompressible uniformdensity

�uids�

In one experiment� a turbulent �ow relaxed through the migration of vor

tices to extrema in the background vorticity� In Chapter �� a theory describing

this vortex motion is developed� Generally� the vortex speed is proportional to

the background vorticity gradient� however� a vortex that is prograde with respect

to the background shear moves slower than a retrograde vortex of equal strength�

xvii



Separate theories are given for the motion of prograde and retrograde vortices�

Both theories compare favorably to simulations and the experiment�

In Chapter 	� the rate at which a perturbed vortex relaxes toward an ax

isymmetric equilibrium is examined using linear perturbation theory� The initial

perturbation is created by the brief application of an external �ow �eld� mod

elling recent experiments� In the core of the vortex� the perturbation typically

behaves like an exponentially damped normal mode� An eigenmode analysis shows

that this �quasimode� is actually a wavepacket of neutral continuum modes that

decays through interference as the continuum modes disperse� Physically� a quasi

mode decays to conserve total angular momentum as vorticity is mixed in an outer

resonance layer� Theoretical decay rates are found to agree with the experiments�

In Chapter �� vortexincell simulations of �D Euler �ow are compared

directly to electron plasma experiments in which turbulent �ows relax to vortex

crystals� A vortex crystal is an array of intense vortices that rotates rigidly in a

lower vorticity background� The simulations and the experiments relax to vortex

crystals at the same rate� proving that vortex crystal formation in electron plasmas

does not require physics beyond the �D Euler equations� Vortex crystals are formed

due to the mixing of background vorticity by the intense vortices� which has a

cooling e�ect on the chaotic vortex motion�
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Chapter �

General Introduction

The free relaxation of two�dimensional ��D� turbulence has been actively

studied for decades� with applications in astrophysics� geophysics and plasma

physics �����	 One relaxation mechanism is viscosity� which causes the bulk ki�

netic energy of the 
ow to slowly dissipate	 However� �D 
ows typically relax to

stationary patterns on much faster time scales� while conserving the bulk kinetic

energy that was initially bound in the turbulence	

In this thesis we investigate three mechanisms of inviscid relaxation� in

three self�contained chapters	 In Chapter �� we study vortex motion driven by a

background vorticity gradient� which leads to the segregation of positive and nega�

tive vortices	 In Chapter �� we examine the inviscid damping �Landau damping� of

waves on an extended vortex� which occurs through a resonant interaction with co�

moving 
uid	 In Chapter �� we discuss the mixing of background vorticity by the

action of several like�sign vortices� and the resulting formation of a vortex crystal

equilibrium� which consists of several like�sign vortices locked in rigid rotation	

�



�

��� �D Fluid Experiments with Magnetized Elec�

tron Plasmas

All sections of this thesis were motivated by �D 
uid experiments with

magnetized electron plasmas ��� � ��� ���	 Figure �	� shows the experimental

apparatus	 The electrons are contained in a hollow cylindrical conductor	 Large

DC voltages are applied at both ends of the cylinder� to con�ne the electrons

axially	 A uniform magnetic �eld B is applied parallel to the trap axis �z�axis��

and prevents the electrons from escaping to the wall	

In these experiments� the electrons bounce rapidly from one end of the trap

to the other �along the z�axis�	 As a result� the r�� velocity of an electron can be

approximated by its average velocity over a bounce period	 The �D 
uid equations

that are obtained from this bounce averaging scheme can be written for the z�

averaged electron density n�r� �� t�� or the vorticity ��r� �� t�	 Both formulations of

the 
uid dynamics are shown in Fig	 �	�	

The equations for electron density are called the drift�Poisson equations	

They are shown in the left column of Fig	 �	�	 Here� �v�r� �� t� is the �E � �B drift

velocity �eld and ��r� �� t� is the electrostatic potential� which vanishes at the wall

ExB E

Phosphor

ẑ
V

CCD Camera

Rv

Rw

B
electrons

Figure ���� Experimental apparatus �Penning�Malmberg trap� for �D 
uid ex�
periments with magnetized electron plasmas	
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Figure ���� The approximate 
uid equations for electron density n and the vortic�
ity � of a magnetized electron plasma in a Penning�Malmberg trap	 The boundary
condition is �� � � � at the wall radius Rw	

radius Rw	 The electron density is simply advected in the incompressible 
ow	

The equations for vorticity are the �D Euler equations� which also govern

inviscid incompressible uniform�density 
uids	 Here� ��r� �� t� is a stream function

that is related to the electrostatic potential by the equation � � c��B	 Comparing

Poisson�s equation for � to Poisson�s equation for �� we see that the vorticity is

directly proportional to the electron density	 That is� � � ��ecn�B	 Therefore�

the vorticity is advected with the electron density	

Because � is proportional to n� vorticity measurements are �theoretically�

equivalent to density measurements	 Thus� vorticity is measured by dumping the

electrons onto a phosphor screen� and recording the density �vorticity� image with

a CCD camera	 Although this imaging is destructive� the initial conditions are

approximately reproducible� so that the time evolution of a 
ow can be studied	



�

Figure ���� The instability and subsequent relaxation of a �D vorticity �density�
distribution ����	 The time scale for relaxation is determined by the rate at which
� holes drift out of the distribution	 �R � ��	sec	

��� Vortex Motion Driven by a Background Vor�

ticity Gradient

Chapter � of this thesis was motivated by the experiment that is shown

in Fig	 �	�� taken directly from Huang� Fine and Driscoll ����	 This experiment

starts with an unstable vorticity distribution	 After about ���R ����	sec�� the


ow settles into a quasi�stationary state� where there are two symmetrically placed

holes �vorticity de�cits� in an approximately circular background	 These holes

are su�ciently deep so that they are �self�trapped�� and are not destroyed by the

background shear	

The continued relaxation of the 
ow is controlled by the slow drift of the

holes toward the edge of the background� where they are eventually sheared apart	

Figure �	� shows the radial position rh of the holes as a function of time ����	

The large scatter in the data is due to the destructive imaging technique	 Each



�

Figure ���� Hole radius rh as a function of time ����	 Here� rh is measured in
units of Rw � �
�cm	

datum corresponds to a separate evolution� with initial conditions that are slightly

di�erent than all others	 We believe that the slow drift of holes toward the edge

of the background is caused by the negative radial derivative of the background

vorticity distribution	 Similar motion of holes down vorticity gradients has been

observed in numerical simulations �e	g	 Ref	 �����	

The slow radial drift of vorticity holes that is observed in the electron

plasma experiment has several close analogies	 For example� hurricane trajectories

are in
uenced by vorticity gradients in the background winds� and the north�

south gradient in the Coriolis parameter� which can be thought of as a �potential�

vorticity gradient �������	 In rotating tank experiments� vortices move up and

down gradients in 
uid depth� which play the same role as gradients in the Coriolis

parameter ���� ���	

In Chapter � we examine the motion of both clumps �vorticity excesses�

and holes in a monotonic background� similar to the experimental distribution	

We calculate the rate at which clumps and holes ascend or descend a background

vorticity gradient under the conditions that �i� the vortices are point�like and �ii�



�

the background 
ow has strong shear	

Both clumps and holes act to level the local background vorticity gradient	

However� this mixing a�ects clumps and holes oppositely� clumps move up the

gradient� whereas holes move down the gradient ���� ���	 Eventually clumps settle

on peaks of background vorticity� whereas holes settle in troughs	 We will show

that the opposite motion of clumps and holes is a consequence of momentum

conservation	

The speed at which a vortex propagates along the gradient is di�erent for

prograde and retrograde vortices	 By de�nition� a prograde vortex rotates with the

local shear� and a retrograde vortex rotates against the local shear	 We show that

a linear analysis of the background vorticity evolution gives the motion of a weak

retrograde vortex	 For prograde vortices� like the holes in Fig	 �	�� the background

evolution is always nonlinear� and the vortices move at a slower rate	 This rate

can be obtained from a simple �mix�and�move� estimate	

A very strong background shear can arrest the propagation of a vortex

along a background vorticity gradient	 For both prograde and retrograde vortices�

we examine the critical shear level that is required to suppress gradient�driven

motion	 We �nd that the critical shear is much lower for a prograde vortex than

it is for a retrograde vortex	

We note that the theory of vortex motion on a background vorticity gradient

is similar to the clump�hole theory of plasma turbulence that was pioneered by

Dupree ���� ��� ��� ��� ��� ���	 Here� a clump is an excess of ion �or electron� phase�

space density� and a hole is a de�cit of the same quantity	 Plasma instabilities are

associated with the motion of clumps and holes along gradients in phase�space

density	 Although the physics of phase�space clumps and holes di�ers from vortex

motion in a �D Euler 
uid� many of the same techniques can be used to analyze
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Figure ���� Experiments on inviscid damping	 �a� An elliptical perturbation
�mode� that persists	 �b� An elliptical perturbation that decays through �lamen�
tation at rc	 Time T is measured in central rotation periods	

both problems	

��� Inviscid Damping

Chapter � of this thesis was motivated by the experiments that are shown

in Fig	 �	� ����	 Both experiments show the evolution of a monotonic vortex after

an impulse deforms it into an ellipse	 In experiment �a�� the impulse excites an

undamped elliptical mode� which persists for thousands of rotation periods� until

dissipated by nonideal e�ects	 In experiment �b�� the elliptical vortex relaxes

toward an axisymmetric state	 During the relaxation� �laments are shed at a

critical radius rc� and vorticity contours become circular in the core of the vortex	

We refer to this decay process as �inviscid damping�	 Similar relaxation has been

observed in numerical simulations� starting with the seminal work of Melander�

McWilliams and Zabusky ��� ��� ��� ���	

One notable feature of inviscid damping is that the ellipticity decays at

a rate that is approximately exponential ���� ���	 This experimental result is

signi�cant� since arbitrary perturbations need not decay exponentially	

In Chapter �� we will show that the early evolution of the experimental



�

vortices is well described by the linearized Euler equations	 These equations are

solved by expanding the perturbation into a sum of eigenmodes ���� ��� ��� ���	

We demonstrate that the eigenmodes of a monotonic vortex are neutrally stable�

and form an orthogonal basis	 Next� we derive a general formula for the response

of each eigenmode to a brief perturbation in the 
ow �eld	 We then study how

the total excitation relaxes through the interference� or �phase�mixing� of these

modes	

We �rst examine the evolution of initial conditions that are created by an

impulsive 
ow �eld� applied by sources outside the vortex	 These perturbations

are of the same type that were studied experimentally	 We �nd in general that

the quadrupole moments �ellipticity� of these perturbations have an early stage of

exponential decay� in accord with the experiments	 Furthermore� we show that the

decay rate is given a �Landau pole� of the equilibrium vortex ���� �� ���	

Next� we turn our attention from the quadrupole moment to the vor�

ticity perturbation ��	 When the damping is light� we �nd that the vortic�

ity perturbation �in addition to the quadrupole moment� decays exponentially

with time for all radii less than a critical radius rc� where �lamentation occurs	

That is� the vorticity perturbation acts like an exponentially damped eigenmode�

����r� t� � ��r�e��tcos�����qt� for r � rc	 The critical radius rc occurs where the


uid rotation frequency �o�r� is resonant with the perturbation� and satis�es the

equation ��o�rc� � �q	

These weakly damped vorticity perturbations are referred to as �quasi�

modes�� since they are not exact eigenmodes of the linearized Euler equations	

We will show that a quasi�mode is a wave�packet of neutral eigenmodes� which

occupy a narrow frequency band	 Exponential decay occurs due to interference of

these neutrally stable modes	 The decay rate is proportional to the band�width





of the wave�packet	 This band�width goes to zero as the vorticity gradient at rc

goes to zero	 With zero band�width� the quasi�mode is actually a single undamped

eigenmode	 This is the case in experiment �a� of Fig	 �	�� where rc is outside the

vortex	

We will show that quasi�modes �and discrete modes� dominate the experi�

mental excitations because the eigenmodes in the wave�packet have exceptionally

large multipole �quadrupole� moments	 A large multipole moment implies that

the eigenmode has a strong in
uence on the external 
ow	 By reciprocity� the

eigenmode couples strongly to 
ow �elds that are applied from outside the vortex�

like those which create the experimental perturbations	 Eigenmodes which do not

belong to the quasi�mode wave�packet tend to be self�shielding	 Therefore� these

eigenmodes couple weakly to externally applied 
ow �elds	

We also analyze the case of strong damping� using a Gaussian vortex as an

example	 Here� we �nd that the narrow wave�packet occurring in weakly damped

quasi�modes is replaced by a broad band wave�packet	 We show that this broad

band excitation corresponds to a vorticity perturbation that �laments over the

entire vortex� rather than in a thin critical layer	

To conclude this section� we mention that inviscid damping in �D hydrody�

namics is analogous to Landau damping �collisionless damping� in plasma physics

���� ��� ��� ��� ��� ��� ��� ���	 Landau damping usually refers to the decay of

compressional plasma waves due to their interaction with co�moving charged par�

ticles	 Here� vorticity waves decay due their interaction with co�moving vorticity

elements	 In addition to the physical analogy between inviscid damping and Lan�

dau damping� there is also a close mathematical analogy	 Thus� the term �Landau

damping� is sometimes used in place of �inviscid damping� ����	
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Figure ��	� Observed formation of a vortex crystal	

��� The Formation of Vortex Crystals

Chapter � of this thesis was motivated by experiments of the kind that

are shown in Fig	 �	�� which is taken directly from Fine et al ��	 This experiment

starts with a spiral vorticity distribution� that rapidly generates a �soup� of intense

vortices	 These vortices chaotically advect� merge and shed �laments that stretch

and mix to form a di�use background	 Eventually the chaotic motion of intense

vortices �cools�� mergers stop and the intense vortices tend to a pattern in rigid

rotation �far right of Fig	 �	��	 We refer to these patterns as vortex crystals	

The main point of Chapter � is to demonstrate that the formation of vortex

crystals observed experimentally can be explained without incorporating physics

beyond the �D Euler equations	 To this end� we compare the experiments directly

to vortex�in�cell �VIC� simulations that numerically integrate the �D Euler equa�

tions ���� ��	 The experiments and simulations are shown to relax at the same

rates to vortex crystals with similar vorticity distributions	 Close agreement be�

tween experiment and simulation provides strong evidence that �D Euler theory

alone can explain the formation of vortex crystals	

The formation of vortex crystals underscores the importance of understand�
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ing the dynamics of inviscid relaxation	 Vortex crystals can not be explained with

standard variational techniques that are sometimes used to predict �nal states of

the relaxation	 These include global maximum entropy postulates �������� and

global minimum enstrophy postulates ���� ��� ��� ���	 Both theories� in their vari�

ous forms� predict slowly varying distributions that �ll the con�nement region� not

arrays of small intense vortices that survive the stage of vortex mergers	

It was proposed recently that the arrest of vortex mergers and the sub�

sequent formation of vortex crystals is due to the ergodic mixing of the di�use

background by the intense vortices ����	 This hypothesis was justi�ed by showing

that the �nal states in the experiments are states that maximize the 
uid entropy

of the background� given the number of vortices and the energy� angular momen�

tum� and total circulation of the 
ow	 In Chapter �� we further demonstrate that

chaotic vortex motion is cooled through mixing of background vorticity	 For exam�

ple� we show that when the background vorticity is arti�cially removed from the

simulations� there is no vortex cooling	

��� Other Processes

There are several mechanisms of inviscid relaxation that we do not directly

address in this thesis� and which deserve some mention	 One is vortex merger

���� ��� ��� ��	 Vortex merger is the process whereby vortices of the same sign

attract one another and coalesce	 Vortex merger is one mechanism for the �inverse

cascade� of energy from small scales to large scales in �D 
ows ����	 Through vortex

merger� energy contained in the motion of many small�scale vortices is transferred

to the 
ow in and around a few large�scale vortices	

The processes that we do examine are related to vortex merger in that

they too e�ect the inverse cascade	 In particular� consider the result of vortex
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motion that is driven by a background vorticity gradient	 Positive vortices are

driven toward background vorticity peaks� and negative vortices are driven toward

background vorticity depressions �Fig	 �	��	 Just as in vortex merger� positive

vorticity tends to clump together� as does negative vorticity	

Inviscid damping also demonstrates the inverse cascade� in a less dramatic

fashion	 Through inviscid damping� asymmetrical perturbations on an extended

vortex decay	 For example� an elliptical vortex may become circular �Fig	 �	�	b�	

Thus� energy is transferred from high azimuthal wave�numbers �small scales� to

low azimuthal wave�numbers �large scales�	

Another process that we do not directly address is �lamentation ���� ���	

Fine vorticity �laments are shed by vortices during their motion� especially during

close�encounters �or mergers� with other vortices	 The stretching and mixing of

these �laments to form a di�use background is a manifestation of the �forward

cascade� of enstrophy �mean square vorticity� from large scales to small scales

����	

Of course� the background that is created by �lamentation �or by external

means� is central to the dynamics that we investigate in this thesis	 This back�

ground profoundly a�ects vortex motion	 We just mentioned how positive and

negative vortices segregate due to the presence of a background vorticity gradient	

However� the most stunning e�ect of background vorticity is that it can cool a

system of chaotic vortices into a vortex crystal equilibrium	



Chapter �

Vortex Motion Driven by a

Background Vorticity Gradient

��� Introduction

The interaction of self�trapped vortices with a background vorticity gradi�

ent often plays an important role in �D hydrodynamics� The interaction can cause

the vortices to move transverse to the direction of the background �ow� either up

or down the vorticity gradient� Experiments with magnetized electron columns

�Fig� ���� have shown how this transverse motion can set the time scale for the

relaxation of �D turbulence 	�
�� Hurricane motion is also in�uenced by gradients

in the background vorticity� This includes the north�south variation in the Coriolis

parameter� which can be thought of as a �potential� vorticity gradient 	����

The prediction of hurricane tracks is a problem of great practical impor�

tance� so it is hardly surprising that a considerable body of theoretical work has

been devoted to the subject 	������� Here� we consider the motion of vortices on

a background vorticity gradient in the regime where �i� the vortices are point�like�

and �ii� the background �ow has strong shear� Perhaps because this regime is not

of direct application to the motion of tropical cyclones� the results described in

this chapter have not been discussed previously �to our knowledge�� Nevertheless�

��
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while point�like vortices and strong background shear may be rare in geophysical

settings� they are common in nonneutral plasmas 	� �
� and may also be found on

planets like Jupiter that have intense storms in strong zonal winds 	����

Self�trapped vortices can be classi�ed as either prograde or retrograde� A

prograde vortex rotates with the local background shear� while rotation in the

opposite sense de�nes retrograde vortices� We �nd that a linear analysis of the

background vorticity evolution gives the motion of a su�ciently weak retrograde

vortex� For prograde vortices of any intensity� the background evolution is always

nonlinear� and the vortices move at a slower rate� This rate is given by a simple

�mix�and�move� estimate�

When the background shear is su�ciently large compared to the back�

ground vorticity gradient� prograde vortices no longer move across the �ow� In�

stead� they �atten the local vorticity gradient and come to an equilibrium with

the background� Retrograde vortices can also equilibrate with the background�

but an even larger shear is required� since they tend to move faster than prograde

vortices� Theoretical estimates for the size of the shear required for equilibration

in both cases are derived� and are found to compare favorably to simulations that

demonstrate this equilibration�

The theory and simulations presented in this chapter focus on incompress�

ible �D �ows for which viscosity can be neglected� Such �ows are governed by the

�D Euler equations�

��

�t
� �v � r� � 
� �v � �z �r�� r�� � �� �����

Here� �v�r� �� t� is the velocity �eld� ��r� �� t� � �z � r � �v is vorticity and ��r� �� t� is

a stream function� The coordinates �r� �� denote polar radius and angle� and t is

time� For analysis� the vorticity is decomposed into vortices �v� and background
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�b�� � � �b �
P
�v�

The vortices can be classi�ed as either clumps �regions of excess positive

vorticity� or holes �regions of excess negative vorticity� or de�cits of positive vor�

ticity�� This classi�cation is in addition to their classi�cation as either prograde

or retrograde� Clumps can in general be prograde or retrograde� and the same is

true for holes�

It is well known that clumps ascend a background vorticity gradient and

that holes descend the gradient �see for example Refs� 	��� ����� Figure ��� illus�

trates this phenomenon for the case of circular geometry� point�like vortices and

strong background shear� At t � 
� a clump �black spot� and a hole �white spot�

are placed in a circular shear��ow� The system is evolved with a vortex�in�cell

�VIC� simulation that numerically integrates the �D Euler equations �see Chapter

� for a description of the VIC simulation�� Eventually� the clump is driven to the

peak in background vorticity� whereas the hole is driven toward the minimum�

Figure ��� shows the gradient�driven separation of a clump and hole in

straight zonal �ow� The �ow is evolved using a VIC simulation in a periodic box� As

before �Fig� ����� the clump migrates to the peak in background vorticity� whereas

the hole migrates to the minimum� Thus� clumps and holes tend to opposite

T=0 1.5 7.5

+-
vorticity

Figure ���� VIC simulation of the gradient�driven radial separation of a clump
�black dot� and hole �white dot� in a circular shear �ow 	Eq� �������
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+-
vorticity

Figure ���� VIC simulation of the gradient�driven separation of a clump and hole
in straight zonal �ow� The numbers on each snap�shot indicate time�

extremes in the background vorticity� in both curved and uncurved geometry�

When the boundary conditions have rotational or translational symmetry�

the opposite drifts of clumps and holes are easily explained using conservation of

angular or linear momentum� Similar arguments have been used to explain the

motion of phase�space density clumps and holes in plasma turbulence 	����

We �rst consider a small clump �Fig� ����a� or hole �Fig� ����b� in an ax�

isymmetric background �b that decreases slowly with r� The vortex will partially

mix the background and move in response� If the �uid is contained by a cylin�

drical boundary� the motion is constrained by conservation of �canonical� angular

momentum� P��

It is convenient to write P� in terms of a background contribution and a

vortex contribution�

P� �
Z
d�r r���r� �� t� � �b

D
r�
E
b
� �vr

�

v� �����

Here �b � 
 is the total circulation of the background �ow� �v is the vortex

circulation� rv is the radial position of the vortex and hr
�i

b
denotes the �b�weighted

spatial average of r�� As shown in Fig� ���� local mixing increases hr�i
b
by �attening

the background �since � �
b
� 
�� To conserve P�� the clump ��v � 
� must decrease

rv and climb the background gradient� whereas the hole ��v � 
� must increase rv

and descend the gradient� as observed in Fig� ����
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b
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Γ  > 0v

Γ  < 0v

Figure ���� Local mixing of the background increases hr�i
b
� By conservation of

P�� clumps and holes react oppositely�

If the �uid is bounded by parallel walls at y � �Y � the �D Euler equations

conserve Px� the canonical linear momentum�

Px �
Z
d�x y��x� y� t� � �b hyib � �vyv� �����

Here �x� y� is a rectangular coordinate system in the plane of the �ow� The motion

of a vortex along the y�gradient in �b can be explained by conservation of Px� just as

motion along the radial gradient was explained by conservation of P� in cylindrical

�ow� If � �
b
�y� � 
� local mixing increases hyi

b
� By conservation of Px a clump must

climb the gradient and decrease yv� whereas a hole must descend the gradient and

increase yv�

When there is no local vorticity gradient� local mixing does not a�ect the

background vorticity distribution� Therefore� where � �
b
� 
� there is no local mecha�

nism for the vortex to exchange angular or linear momentum with the background�

This suggest that clumps will settle on hills of background vorticity and that holes

will settle in troughs� where � �
b
� 
� This relaxation principle is consistent with

Fig� ��� and Fig� ����

In this introduction� we have demonstrated that the opposite drifts of

clumps and holes along vorticity gradients is an important principle of organi�

zation in �D �ows at high �in�nite� Reynolds numbers� In the remainder of this
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paper� we calculate the time scale for this organization to occur� i�e� the rate at

which clumps climb vorticity gradients and the rate at which holes descend vortic�

ity gradients� We consider the speci�c case of a single small vortex in a circular

shear��ow� where the initial background vorticity is positive� axisymmetric and

decreases monotonically with radius r� In this background a clump is retrograde

and a hole is prograde�

In Section ���� we present a simple linear calculation of vortex motion that

is driven by a background vorticity gradient� A more detailed linear theory is

presented in Section ���� In Section ���� we compare linear theory to a nonlinear

VIC simulation� We �nd that linear theory works well only for retrograde vortices�

and fails for prograde vortices� In Section ���� we discuss why linear theory fails for

prograde vortices� In Section ���� we derive a simple mix�and�move estimate for the

motion of prograde vortices� In Section ���� we discuss how gradient�driven vortex

motion is suppressed when the background shear is su�ciently large� In Section

���� we discuss gradient�driven vortex motion as a mechanism of self�organization

in natural �ows� Many intermediate results are derived in the appendices�

��� Simple Calculation of Gradient�Driven Drift

We now determine the radial speed of the vortex� making a few reasonable

assumptions that reduce the math� A more detailed analysis is presented in Section

����

The vortex�s dominant translational motion is rotation about the center of

the background� We work in this rotating frame� so the vortex is nearly stationary�

and we de�ne a local �x� y� coordinate system centered at the vortex� In these

coordinates� the initial velocity due to the background is �v � Ay�x near the vortex�

where A is the shear� The initial background vorticity gradient is � �o�y �where �y
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points in the local r�direction��

Figure ��� shows the initial stream lines in the vicinity of a retrograde

clump �a� and a prograde hole �b�� The stagnation points in Fig� ����a are at a

distance l above and below the clump� where

l �
q
j�v	�
Aj� �����

We treat the vortex and the disturbance that it generates as perturbations

to the initial shear��ow� and suppose that the Euler equation for the evolution of

�b can be linearized� �
�

�t
� Ay

�

�x

�
� ��b � �� �

o

�v
�


x

x� � y�
� �����

Here� ��b�x� y� t� is the background vorticity perturbation� and we have used �v �

�v���x�� This assumes that the vortex is point�like and moves slowly compared to

the evolution of the background� We have also neglected the velocity perturbation

due to ��b� assuming that it is negligible compared to the vortex velocity �eld�

Equation ����� can be solved by the method of characteristics� yielding

��b �
��v
�


� �o
Ay

ln

�
x� � y�

�x� Ayt�� � y�

�
� �����

The radial velocity � �rv� of the vortex is the y�component of the velocity perturba�

tion that develops at the origin� By summing the contributions to the velocity �eld

l

y

x
(a)^

^

(b)

Figure ���� Initial stream lines for a retrograde clump �a� and a prograde hole
�b� in a shear �ow �v � Ay�x� A � 
�
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from each background vorticity element� we obtain the following integral expression

for �rv �here� u � x	y� �

�rv �
�v
�
�

� �
o

A

Z
L

l

dy

y

Z
��

��

du
u

u� � �
ln

�
u� � �

�u� At�� � �

�
�����

A small scale �l� and a large scale �L� cut�o� are introduced to escape in�

�nities in the y�integral� The small scale cut�o� describes the minimum distance

from the vortex at which nonlinearities in the background �ow can be ignored�

Thus� we identify the small scale cut�o� with l 	Eq� ������� the size of the shaded

trapping region in Fig� ����a� To determine the upper cut�o�� we note that curva�

ture in the unperturbed �ow can not be ignored for jyj �� rv� where rv is the radial

position of the vortex� We therefore set L � c � rv� where c is presumably O����

The integrals in Eq� ����� yield

�rv �
�v
�


� �
o

jAj
ln�L	l� � tan�� �T	��

� �� �
o
l� ln �c � rv	l� � tan

���T	��� �����

where T � jAjt and ��� is for clumps�holes� The u�integral� which gives the

time�dependence� is evaluated in Appendix I� For T �� �� the inverse�tangent is

approximately 
	� and �rv is approximately constant�

Equation ����� gives a reasonable scaling for the vortex speed� �rv increases

with �v and � �
o
� while it decreases as the local shear A intensi�es� However� the

validity of Eq� ����� rests on the accuracy of Eq� ������ which neglects curvature in

the unperturbed �ow� the velocity perturbation due to ��b� motion of the vortex�

and all nonlinear terms� We soon test Eq� ����� against a VIC simulation that

keeps all of these e�ects� but �rst� we carry out a more detailed linear calculation

for �rv that keeps stream�line curvature and the velocity perturbation due to ��b�

This calculation reproduces Eq� ����� and gives a precise value for c� which appears

in the logarithm�
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Before moving on to a more detailed analysis in cylindrical geometry� we

note that Eq� ����� also applies to gradient�driven drift in straight channel �ow� If

the background vorticity gradient is in the y�direction� then �yv replaces �rv� The

only di�erence appears in the logarithm� In straight channel �ow� the upper cut�

o� L is presumably the width of the channel� or the length scale for variations in

background vorticity�

��� Formal Linear Theory of Gradient�Driven Drift

This section contains a formal linear theory for the gradient�driven radial

drift of a point�vortex in cylindrical shear �ow�

To begin with� we break the background vorticity distribution into two

parts�

�b�r� �� t� � �o�r� � ��b�r� �� t�� ����

Here� �o is the initial axisymmetric distribution� and ��b is the disturbance that is

created by the vortex� Furthermore� we break the total stream function into two

parts�

��r� �� t� � �
Z

Rw

r

dr�r� o�r
�� � ���r� �� t�� ����
�

Here�  o�r� is the initial rotation frequency of the background� The perturbation

�� consists of a background contribution ���b� and a vortex contribution ���v��

�� � ��b � ��v� Both of these components are de�ned below�

r���b � ��b ������a�

r���v � �v
��r � rv���� � �v�

rv
������b�

The boundary conditions are ��b� ��v � 
 at the wall radius Rw�
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Next� we introduce the dimensionless parameter

l�rv �
�

rv

vuut����� �v

����o�rv�rv

������ ������

which is the trapping length 	Eq� ���
�� normalized to the orbital radius of the

vortex� The value of l�rv is a measure of vortex strength to shear strength� We

assume that the vortex is weak� or precisely that l�rv �� �� We further assume

that this condition permits us to linearize the Euler equation for the evolution of

the background vorticity perturbation� That is� we take the following equation for

the evolution of ��b�

���b
�t

 �o�r�
���b
��

� �

r
� �o�r�

���

��
� �	 ������

In contrast to the simple theory of gradient�driven vortex motion 	Eq� �������

stream�line curvature is kept in Eq� ������ by use of polar coordinates� The back�

ground stream function ��b is also kept� since �� � ��b  ��v�

It is convenient to expand the perturbation� using a Fourier series in the

polar�angle �� �
�� ��

��b

�
�� �

�X
m���

eim�

�
�� ��m��r� t�

Z�m��r� t�

�
�� 	 ����
�

Substituting Eq� ����
� into Eq� ������� it is found that each Fourier coe�cient of

the vorticity perturbation evolves independently� according to

�
�

�t
 im�o�r�

�
� Z � im

� �o�r�

r
�	 ������

Here� we have suppressed the superscript ��m�� on Z and �� This will be standard�

unless it would lead to ambiguity�

The background perturbation causes the vortex to leave its initial circular

orbit� Speci�cally� the vortex moves radially according to �rv � � �

rv

���

��

�����
�rv

� which



��

can be written

�rv �
�

rv

�X
m��

m � Im
h
��m��rv� t�e

im�v
i
	 ������

Here� Im stands for the imaginary part of the quantity in brackets� The angular

velocity of the vortex ��v is dominated by the unperturbed background rotation�

So� we use the following approximation�

��v � �o�rv�	 ������

The value of �rv is now calculated� using an unperturbed orbit approxi�

mation� In this approximation� the background perturbation is evolved with the

vortex moving along a �xed circular orbit� and �rv is taken to be the radial ve�

locity perturbation that develops at 
rv� The unperturbed orbit approximation is

justi�ed� assuming that �rv asymptotes to a �xed value rapidly compared to vortex

motion through the background� The vortex then drifts radially with the asymp�

totic speed� Of course� the asymptotic speed changes parametrically with the radial

position rv of the vortex�

According to Eq� ������� to calculate �rv� we must calculate the Fourier

coe�cients
n
��m�

o
of the stream function� Let �Z�r� s� and ���r� s� denote the

temporal Laplace transforms of Z�r� t� and ��r� t�� Here� s is the Laplace transform

variable� From Eq� ������� we have

	s im�o�r�� �Z � im
� �o�r�

r
��	 ������

From Eq� �������

	
d�

dr�


�

r

d

dr
� m�

r�



�� � �Z 

�v

��s

��r � rv�

r
	 ������

Note that Eq� ������ is written in a frame that rotates with the the orbital frequency

of the vortex� In this frame� ��v � �o�rv� � �� We have also set �v equal to zero�



�


Combining Eq� ������ with Eq� ������� we obtain the following equation for

���r� s��

���r� s� � �v

��s
G�rjrv� s�	 ������

Here� G is the Green�s function of the di�erential operator Ds�

Ds 	G�rjrv� s�� � ��r � rv�

r
� ������

and Ds is de�ned by the equation

Ds � ��

�r�


�

r

�

�r
� m�

r�
� im� �o�r�

r	s im�o�r��
	 ������

To obtain ��r� t�� we must invert the Laplace transform� This yields the following

integral expression for ��r� t��

��r� t� �
�v


��i

Z ��i�

��i�
ds
G�rjrv� s�

s
est	 ������

The integral in Eq� ������ is along the vertical line s � � i� in the complex plane�

where � is positive and �� � � ���

Following standard procedure� we neglect any poles of G�rjrv� s� that might

exist in the right half of the complex s�plane �including the imaginary axis�� We

then use the Plemelj formula to obtain the following limit of Eq� ������ as �� ���

��r� t� �
�v


��i

�
P
Z �

��
d�

G�rjrv� ��  i��

�
ei�t  i�G�rjrv� ���

�
	 ����
�

Here� P denotes the �principal part� of the integral� which has a singular integrand

at � � ��

From our simple calculation 	Eq� ������� we found that �rv rapidly asymptotes

to a constant value� We assume that the same is true here� and concern ourselves

only with this time�asymptotic limit� In Appendix IV� we show that the time�

asymptotic limit of the integral in Eq� ����
� is i�G�rjrv� ���� Therefore�
lim

t�� Im 	��r� t�� �
�v

��
Im

h
G�rjrv� ���

i
������
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Substituting Eq� ������ into Eq� ������� we �nd that the time�asymptotic value of

the radial drift is given by the following equation�

lim
t�� �rv �

�v

�rv

p
erv�lX
m��

m � Im
h
G�m��rvjrv� ���

i

� ��j��o�rv�jl�
p
erv�lX
m��

m � Im
h
G�m��rvjrv� ���

i
� ������

where �� is for clumps holes�

In Eq� ������� we have truncated the series at m �
p
erv�l� This cut�o�

is the inverse of the horizontal width �in radians� of the small trapping region

�TR� around a retrograde clump� which is shaded in Fig� ��
�a� Neglecting m 

p
erv�l amounts to neglecting the contribution to �rv from the TR� where the linear

equations are not valid� and the !uid is rapidly �T �� �� mixed by the vortex�

Although the TR is de�ned only for a retrograde vortex� we try the same cut�o�

for a prograde vortex�

For small m� the Green�s function G�rjrv� ��� must �in general� be found

numerically� Our method for this computation is given in Appendix II� However� for

large m� the imaginary part of the Green�s function can be calculated analytically�

From this analytic calculation� we obtain

Im
h
G�rvjrv� ���

i
� �� �o�rv�


m�j��o�rv�j
� m  �	 ������

Equation ������ is derived in Appendix III�

Because of Eq� ������� the sum in Eq� ������ diverges logarithmically as the

m�number cut�o� goes to in�nity" i�e�� as l�rv � �� Thus� for su�ciently weak

vortices� the time asymptotic radial drift is approximately given by

�rv � ��

�
� �o�rv� l

� ln �c � rv�l� 	 ������
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Figure ���� Comparison of Eq� ������ for �rv to the large
p
e rv�l approximation�

Eq� �������

Here� �� is for clumps holes� and c is determined by the low�m values of the

Green�s function G�m��rvjrv� ���� Note that Eq� ������ is equivalent to the T ��
limit of our back�of�the�envelope calculation� Eq� ������ Therefore� the e�ects of ��b

and curvature in the continuity equation 	which we neglected in deriving Eq� ������

are not important� provided that l�rv is su�ciently small�

In practice� we obtain the value of c by setting Eq� ������ equal to a nu�

merical solution of Eq� ������ for any large value of the m�number cut�o��
p
e rv�l�

The resulting equation is easily solved for c� As an example� we consider the radial

velocity of a vortex at rv � �	
� in the background distribution of Eq� ������ �see

next section�� For this case� we obtain c � �	
�� In Fig� ���� we plot the time

asymptotic value of �rv� given by Eq� ������� versus
p
erv�l� Also in this �gure� we

plot the time asymptotic value of �rv that is given by Eq� ������� with c � �	
��

Clearly� Eq� ������ is an excellent approximation of �rv for all l�rv �� �	�� Although

c could in general depend on rv� we �nd that for the vorticity pro�le of Eq� �������

the same c � �	
� works for all rv �� �	��

The linear theory presented in this section neglects poles �in the s�plane�

of the Green�s function G�rjrv� s�� This amounts to neglecting the excitation by

the vortex of discrete modes in the background� In the next section we will show



��

that neglecting the excitation of discrete modes is acceptable� for a case where the

background vorticity varies slowly with radius� However� vortex�mode interactions

may be important when there are large steps in the radial pro�le of the background

	����

��� The Success and Failure of Linear Theory

We now demonstrate that the linear equations of motion apply only to

retrograde vortices� and that nonlinear e�ects must be kept to explain the slower

drift of prograde vortices� We reach this conclusion by comparing a �nonlinear�

VIC simulation� to a numerical integration of the linearized equations 	Eqs� ������

�������

In the linear simulation� the vortex position 
rv and the Fourier coe�cientsn
Z�m�

o
of the background vorticity are evolved forward in time with third�order

Adams�Bashforth steps �� ��� steps per background rotation�� The Fourier co�

e�cients
n
��m�

o
of the stream function are each decomposed into a background

contribution ��b� and a vortex contribution ��v�� � � �b�v� Poisson�s equation

	the ��Fourier transform of Eq� ������a�� is solved for �b to second order accuracy

in the radial grid�point spacing �� Rw������� For m � p
e rv�t��l�t�� the vortex

component of � is given by

��m�
v �r� t� � � �v


�m

	
r�
r�


m �
��


r�
Rw

��m�
e�im�v�t��

where r��r�� is the greater �smaller� of r and rv�t�� The number of �excited�

Fourier components is made �nite in the linear simulation by setting ��m�
v � �

for m 
p
e rv�t��l�t�� With this scheme� the vortex never excites wave�numbers

�The VIC simulation is the same as that used in Chapter �� Here� we use at most ���������

gridpoints and �� ��� particles�
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Figure ���� Inward spiral of a retrograde clump� computed with a linear simula�
tion and a nonlinear VIC simulation� �a� sequence of contour plots� �b� �rv� �v�
vs� T � j��ojrv���t�

greater than the maximum value of
p
e rv�l over the vortex trajectory� This cut�

o� was used �and explained� previously in deriving an analytic expression for the

radial velocity of the vortex 	Eq� ��������

We consider the speci�c case where the initial background vorticity distri�

bution ��b at t � �� is given by

�o�r� �

�
�� �	�� � r r � �	�
� r  �	�	

������

The rotation frequency of this background is �o�r� � �	� � �	
�� � r� for r � �	��

The !ow is bounded by a circular wall with radius Rw � �� and there is free slip

at this wall �� � � at Rw�� The background chosen here represents a larger class�

where the radial derivatives � �o and ��o vary slowly with r�

We �rst examine the motion of clumps� which are retrograde in this back�

ground� Figure ��� shows the inward spiral of a clump toward the center of the

background� The clump strength l�rv is initially �	���
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Figure ���� �rv vs� l�rv for retrograde clumps in a linear simulation �diamonds�
and a VIC simulation �X�s�� The solid line is the theory prediction of Eq� �������
with c � �	
��

Figure ����a shows a sequence of contour plots for both the linear simulation

and the VIC simulation� Although the linear evolution is not identical to the VIC

simulation� several features appear similar� These include the rate at which the

clump travels toward the center of the distribution� and the wake that is left behind

the clump�

Figure ����b provides a more concise comparison of the clump trajectories�

The top graph shows the linear �dashed line� and the VIC �solid line� computations

of rv�t�� There is good agreement between the linear and VIC results� The bottom

graph shows that there is similar agreement for �v�t��

It is apparent from Fig� ����b that the clump rapidly accelerates to an

approximately constant radial speed� In Fig� ���� we plot the value of this speed as

a function of the clump strength l�rv� Here� all clumps start at rv � �	
 and the

background is always given by Eq� ������� The clump strength l�rv is varied by

changing �v only� The value of �rv is obtained from a straight�line �t to rv vs� t� as

rv decreases from �	��� to �	��� In the plot� �rv is normalized to � �or
�
v� Both � �or

�
v and

the clump strength l�rv are evaluated at rv � �	���� The diamonds correspond to
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linear simulations and each �X� corresponds to a VIC simulation� The solid curve

is Eq� ������� with c � �	
��

Figure ��� presents several important results� To begin with� the VIC

simulations generally agree with the linear simulations� This indicates that the

linear equations 	Eqs� ������������ are valid for retrograde vortices� when l�rv ��

�� Moreover� both simulations are well described by the analytic linear theory

of Eq� ������� which relies on the unperturbed orbit approximation and neglects

discrete modes of the background� The accuracy of Eq� ������ appears to improve

as l�rv approaches zero�

Good agreement between the simulations and our linear analysis 	Eq� �������

may seem surprising� especially because the analysis neglects the interaction of the

vortex with the discrete normal modes of the background �i�e� the analysis ne�

glects poles in the Green�s function G�� One can easily show that a vortex can

not resonate with a discrete mode of a monotonic background� provided that the

vortex is inside the background� For a discrete mode that varies like ei�m���t�� the

resonance condition is m�o�rv� � �� That is� the vortex radius must equal the

resonant radius of the mode� However� the resonant radius of a discrete mode can

occur only where � �o is zero� i�e� in a region outside the monotonic background 	
���

Therefore� a vortex inside the background can not resonate with a discrete mode�

Nevertheless� discrete modes can still exist� and there is a question as to

how much they in!uence the vortex motion� Figure ��� demonstrates explicitly

that the e�ect of the discrete modes is negligible� Here� we plot the radial velocity

perturbation that develops at 
rv as a function of time� for a vortex that is �xed on

its initial circular orbit� The vortex strength is l�rv � �	��� and the background

is given by Eq� ������� To calculate �rv� we used the linear simulation� but kept rv

arti�cially �xed at �	
�
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Figure ���� Radial velocity perturbation that develops at 
rv� for a clump �xed on
its initial circular orbit� The solid line is a linear simulation� and the dashed line
is the time�asymptotic theory neglecting discrete modes�

The value of �rv in Fig� ��� rapidly converges to Eq� ������� with c � �	
��

Therefore� in deriving Eq� ������� we were justi�ed in neglecting the discrete modes�

The only noticeable e�ect of these modes are small oscillations about the asymp�

totic value of �rv� These oscillations have the same frequency as the m � � discrete

mode� in a frame that rotates with the vortex� This frequency is given by the

equation �� � �o�Rw�� �o�rv��

We now consider the motion of prograde holes� Figure ��� shows the out�

ward spiral of a hole toward the edge of the background� As before� the background

distribution is given by Eq� ������� and the initial vortex strength l�rv is �	���

Figure ����a shows a sequence of contour plots for both the linear simula�

tion and the VIC simulation� In contrast to clump motion� here there is a dramatic

di�erence between the linear simulation and the VIC simulation� the linear equa�

tions give a radial drift that is much too fast� Fig� ����b shows rv�t� and �v�t� for

both the linear �dashed line� and VIC �solid line� simulations� After T � � there

is a sharp divergence between the linear and nonlinear trajectories� This rapid

break�down of linear theory is explained in the next section�
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Figure ��	� Outward spiral of a prograde hole� computed with a linear simulation
and a nonlinear VIC simulation� �a� sequence of contour plots� �b� �rv� �v� vs�
T � j��ojrv���t�

��� Nonlinear Trapping

In this section� we examine the time�scale for linear theory to break down

in the mixing layer that surrounds a vortex� We �nd that for a prograde vortex� the

time scale is practically instantaneous� This accounts for the apparent nonlinear

behavior of holes� that was observed in Section ��
� For a retrograde vortex� the

linear time scale becomes in�nite as l�rv � ��

Figure �����a shows the initial r�� !ow around a retrograde clump� with

strength l�rv � �� ����� Here� the stream lines are shown in a frame that rotates

with the clump� Figure �����b shows the r�� !ow around a prograde hole of the

same strength� Both !ows have mixing layers �shaded� centered at rv� in which

the ��averaged background vorticity would !atten with time �
d h�bi�
dr

� ��� were

the vortex to remain stationary�

The clump�s mixing layer consists of two regions� an inner trapping re�
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gion �ITR� and an outer trapping region �OTR�� This situation di�ers from the

�slab approximation� where there was only one trapping region 	shaded region in

Fig� ��
�a�� corresponding to the ITR� The hole�s mixing layer has only one part�

The success of linear theory for retrograde clumps and the failure of linear

theory for prograde holes can be understood by considering the stream lines in

Fig� ����� Linear theory breaks down when the trapped !uid �shaded� becomes

mixed over length scales � l� the small length�scale cut�o�� Thus� linear theory

breaks down for times greater than the orbital period of a !uid particle initially at


r�� where j
r� � 
rvj � l�

Let �� denote the orbital period of a !uid particle that has the initial polar

coordinates �rv���l�rv�� This initial position is indicated by a �	� in Fig� �����

The period �� is plotted as a function of vortex strength l�rv in Fig� ����� for both

2l

Θ

r

�Π Π0
0

rv �

ITR

OTR

a�

2l

Θ

r

�Π Π0
0

rv �

b�

Figure ��
�� Initial stream lines and mixing layers �shaded� for �a� a retrograde
clump and �b� a prograde hole at rv � �	
 in the circular shear !ow given by
Eq� ������� The stars correspond to the !uid particles whose orbital periods ��
give the linear time�scale�
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� Linear time scale for prograde and retrograde vortices�

retrograde clumps and prograde holes�

For retrograde clumps� the !uid particle is in the OTR� and �� diverges to

in�nity as the vortex strength goes to zero� This divergence occurs because the

particle velocity tends to zero �in the rotating frame� with the vortex strength�

while the length of the orbit tends to a �nite value �
�rv�� Thus� for retrograde

clumps� linear theory stays valid in�nitely long as l�rv � ��

For prograde holes� the !uid particle has an orbit of length � l and a

velocity that is proportional to l" therefore �� remains constant as l�rv � �� On the

other hand� the time scale for the hole to move a distance of order l becomes in�nite�

Thus� the time scale for linear theory to fail becomes �instantaneous� relative to

the time scale of vortex motion� This explains the sharp contrast between linear

theory and the VIC simulation of the hole trajectory 	Fig� �����

Note that linear theory fails for holes not because the hole has negative

vorticity� but because the hole is prograde with respect to the background shear

!ow in our example�
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��� Mix�and�Move Estimate for Prograde Vor�

tices

We now estimate the radial velocity of a prograde hole� using a �mix�and�

move� argument� A more detailed estimate� which gives the same result� is carried

out in Appendix VI�

A hole tends to mix a thin layer of background vorticity� and move a dis�

tance #r in response� The mixing layer �ML� was described in Section ���� and

corresponds to the shaded region in Fig� �����b� From this �gure� we see that the

ML extends from � � �� to � and has an average radial width of � �l�

Suppose that the hole levels the entire ML �
d h�bi�
dr

� �� and has a negligible

e�ect on !uid outside the ML� This mixing increases the background component

of P� by an amount

#P��b � �� �o
Z �

��
d�
Z rv�l

rv�l
dr r��r � rv�

� �
�� �or�vl� O�l��	

������

Here� we use the symbol ��� to indicate that the equation is an estimate� By

conservation of P�� the hole must increase rv by an amount #r� Assuming that

#r�rv �� �� we have

#r �
�#P��b

��vrv
� l

� �o
��o

������

To obtain the hole velocity also requires an estimate of the time #t for

the ML to !atten� Presumably� this time is given by the orbital period of a !uid

particle near the separatrix� which encloses the ML� We estimate that the average

angular speed � ��� of this !uid particle is � j��ojl� in the frame that rotates with

the vortex� Since the orbit covers � 
� radians ��� in both directions�� we have

#t � 
�

j��ojl
	 ������
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Figure ��
�� �rv vs� l�rv for prograde holes in a VIC simulation �circles� and an ex�
periment �square�� The solid line is the prediction of the �mix�and�move� estimate
	Eq� �������� and the dashed line is the prediction of linear theory 	Eq� ��������

Finally� the velocity of the hole is given by

�rv � #r

#t
� � �


�
l�� �o	 ������

Note that the l�scaling in linear theory 	Eq� ������� di�ers from the l�scaling

in Eq� ������ by a factor of ln�crv�l�� Therefore� our estimate suggests that a

retrograde vortex� which follows linear theory� will move in�nitely faster than a

prograde vortex as l�rv � ��

In Fig� ����� we compare Eq� ������ to the late time hole velocities that are

observed in the VIC simulations� As before� �o is given by Eq� ������ and the holes

are located initially at rv � �	
� The plotted values of �rv are from straight�line

�ts to rv vs� t� as rv increases from �	� to �	�� The ratio l�rv and the velocity

normalization � �or
�
v are evaluated at rv � �	���

The simulation velocities �denoted by O�s� are between �	� and �	� times

the values that are predicted by the mix�and�move estimate� Although the estimate

is not perfect� it is much more accurate than linear theory �dashed line��
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The drift velocity of holes down a vorticity gradient was recently measured

by Huang� Fine and Driscoll 	���� This experiment was performed on a magnetized

electron column� which behaves like an ideal �D !uid� The experiment starts with

an unstable !ow that rapidly evolves into an axisymmetric vorticity distribution

with two �occasionally �� holes �Fig� ����� Typically these holes are evenly spaced

in � and have roughly the same values for rv� The remainder of the relaxation is

controlled by the slow drift of the holes down the background vorticity gradient�

and out of the distribution�

There was some concern that the slow radial drift of holes was a �kitchen

e�ect� of the experiment� which has nothing to do with �D Euler !ow� However�

the measured value of �rv �plotted in Fig� ����� is within a factor of 
 of Eq� �������

which is at the level of our estimated error� Although strong conclusions should not

be drawn from a single datum� it appears that we have captured the fundamental

mechanism for the radial motion of holes in the experiments�

A more critical eye might notice� disregarding error bars� that the VIC

simulation gives a larger value of �rv than the experiment� This suggests that the

presence of an additional hole� which changes the structure of the ML� might slow

down the outward radial drift� This has been veri�ed by placing an additional hole

in the VIC simulation� ���o degrees opposite the original hole �and at the same rv��

The value of �rv decreases by a factor of �� in close agreement with the experiment�

��� The Suppression of Gradient�Driven Drift by

Large Shear

The mix�and�move estimate of the previous section assumes that the hole

continuously moves into new regions where the ��averaged background vorticity

has a slope
d h�bi�
dr


 � �o� However� if the mixing layer �ML� moves with the hole�



��

d h�bi�
dr

shortly becomes zero at rv� and the radial drift stops�

We postulate that most of the ML moves adiabatically with the hole� and

the radial drift is suppressed� when

tl  #t	 ����
�

Here� tl is the predicted time for rv to increase by l� which is the radial length scale

of the ML� and #t is the time required for the ML to be mixed�

In the previous section� we argued that the mixing time #t is approximately


��lj��oj 	Eq� �������� The �escape time� tl is given by l� �rv� Here� we assume that �rv

is given by Eq� ������� Putting these estimates into Eq� ����
� yields the following

condition for no radial drift �past a displacement of order l��

��o
� �o

 �	 ������

Equation ������ indicates that a large shear prevents the prograde hole from drifting

toward the edge of the background�

Alternatively� one can postulate that radial drift is suppressed when l 

#r� Here� #r is the radial displacement of the hole due to mixing of the entire ML�

and is determined by conservation of P�� In the previous section� we estimated that

#r � l� �o��
�
o 	Eq� �������� Using this result� we regain Eq� ������ for the suppression

of radial drift�

For the simulation data in Fig� ����� ��o��
�
o � ���� so only a small fraction

of the ML moves with the hole�� However� by arti�cially increasing j��oj in the VIC

simulation� so that ��o��
�
o is greater than �� we can examine hole motion when the

mix�and�move model breaks down�

Figure ���� shows how �rv changes with ��o��
�
o for holes of initial strength

l�rv � �	�� The background vorticity is given by Eq� ������" however� the shear ��o
�In the experiment� ��

o
�� �

o
� ��	
����
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Figure ����� VIC simulations of the motion of a prograde hole in di�erent levels
of background shear� �a� rv vs� T for di�erent shear levels� �b� �rv vs� �

�

o
�� �

o
�

Inset� equilibrium obtained for ��
o
�� �

o
� ��	
�

is generally not consistent with Poisson�s equation� Instead� the uid particles in

the VIC simulation are given an additional angular rotation frequency of the form

S � r� where the constant S is an adjustable parameter� The vortex strength l�rv

is kept �xed in this set of simulations by increasing �v in proportion to the shear

��
o
�

Figure �����a shows rv as a function of time for di�erent shear levels� Here�

T � j��
o
jrv���t� with �

�

o
evaluated for the case of no additional shear �S � ���

Figure �����b shows �rv vs� �
�

o��
�

o� The value of �rv is obtained by a straight line �t to

rv vs� t� as the hole moves from rv � ��� to ��	� For �
�

o
�� �

o
� �� �rv is approximately

constant� and equal to � ��	 times the simple mix�and�move estimate� Eq� ��������

However� �rv drops to zero at �
�

o
�� �

o
� �� as predicted by Eq� ������� A velocity of

zero means that the vortex stops drifting outward before a radial displacement of

l�

The inset of Fig� �����b is a contour plot of the equilibrium that forms when

��
o
�� �

o
� ��	
� Note that the ML has been attened� The grey levels are the same

�To obtain the mix�and�move estimate� one must evaluate l at rv � ����� not at the initial

radial position� rv � ���� At rv � ����� the vortex strength l�rv is ����� as opposed to the initial

strength of ����
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Figure ����� �rv vs� �
�

o��
�

o for prograde holes with initial strengths l�rv that
range from ���� to ���� The critical shear for the suppression of radial drift seems
independent of l� as predicted for prograde holes by Eq� �������

as in Figs� ��	 and ���� We note that the equilibration observed here is akin to the

formation of a Bernstein�Greene�Kruskal mode in a nonlinear plasma wave �����

Equation ������ suggests that� for prograde holes� the shear level required

to suppress outward radial drift does not depend on l� This result is consistent

with the VIC simulation data in Fig� ����� Here� the radial velocity is plotted as

a function of shear strength ��
o
�� �

o
� for initial hole strengths l�rv that range from

���� to ���� All cases show the same qualitative behavior� When ��
o
�� �

o
�
� �� �rv

is approximately given by the mix�and�move estimate� On the other hand� when

��
o
�� �

o
�
� �� �rv is zero�

A stronger shear is required to suppress the radial drift of a retrograde

clump� The general criterion is presumably the same as for a prograde vortex�

�t �� tl� However� the mixing time �t and escape time tl both di�er�

We show in Appendix VI that� for a retrograde vortex� �t �
��

j��
o
jl
q
ln�rv�l�

�

Furthermore� we use the linear theory for �rv �Eq� ������� with c � �� to estimate

the escape velocity tl � l� �rv� Then� the condition for an equilibrium to form
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Figure ����� VIC simulations of the motion of a retrograde clump in di�erent
levels of background shear� �a� rv vs� T for di�erent shear levels� �b� �rv vs� �

�

o��
�

o�
X�s� VIC simulations� The solid line connects points to aid the eye� Dashed line�
Eq� ������� with c a function of ��

o
� Inset� �equilibrium� obtained for ��

o
�� �

o
� ���

��t �� tl� becomes

��o
� �o

�� ���
q
ln�rv�l� ����	�

Eq� ����	� is more stringent than Eq� ������ for prograde vortices� Here� as l�rv �

�� an in�nite shear is required to suppress the radial drift�

Figure ���� illustrates how �rv changes with �
�

o
�� �

o
for retrograde clumps�

of initial strength l�rv � ���� As before� the background vorticity is given by

Eq� ������� and the shear is varied arti�cially� Figure �����a shows rv as a function

of time for di�erent shear levels� Fig� �����b shows �rv as a function of �
�

o��
�

o� The

value of �rv is obtained from a straight line �t to rv vs� t� as the clump descends

from rv � ���
� to ����� As �
�

o
�� �

o
increases� �rv increases and then drops to zero

at ��o��
�

o � ��� This transition point is just shy of the critical shear estimate�

���
q
ln�rv�l�� which is indicated on the graph�

The inset of Fig� �����b is a contour plot of the �equilibrium� that forms

when ��
o
�� �

o
� ��� Here� we put �equilibrium� in quotes� because the ML is not

fully mixed by the time the simulation was stopped �T � �����
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It is worth mentioning that linear theory still captures the initial increase

in �rv with shear� The dashed curve in Fig� �����b corresponds to linear theory�

Eq� ������� Equation ������ for �rv depends explicitly on l� rv and �
�

o
only� However�

it can vary with shear because c depends implicitly on ��
o
� Recall that c is obtained

by summing the Green�s functions in Eq� ����	�� which are pro�le dependent� Nev�

ertheless� the value of c asymptotes to a �xed value c� as �
�

o��
�

o ��� An equation

for c� is derived in Appendix III �Eqs� ���A�����A�����

Note that in Fig� �����b� the curve for linear theory was calculated with

l�rv � ����	� which is slightly greater than the initial vortex strength� l�rv � ����

The larger vortex strength is due to the change in l�rv from the initial vortex

position �rv � ���� to the point where the radial velocity is measured �rv � ���	���

��� Discussion� Gradient�Driven Drift as a Mech�

anism of Self�Organization in Natural Flows

Two�dimensional vortex motion driven by a background vorticity gradient

has been examined numerically and analytically� Clumps �vorticity excesses� move

up the gradient� whereas holes �vorticity de�cits� move down the gradient� A linear

analysis of the background vorticity evolution gives the motion of a retrograde

vortex� under the condition that the vortex strength l�rv is much less than one

�Eq� �������� For prograde vortices� the background evolution is always nonlinear�

and the vortices move at a slower rate� This rate is given by a simple mix�and�move

estimate �Eq� �������� For both prograde and retrograde vortices� we found that

there is a critical shear level� above which gradient�driven motion is suppressed

�Eqs� ���������	���

Our study of gradient�driven vortex motion was motivated by a �D uid

experiment with a magnetized electron column ����� The experiment by Huang�
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Figure ���	� Location of long�lived storms in Jupiter�s zonal ow ��	�� LRS� B�
GRS and WO denote Little Red Spot� Barges� Great Red Spot and White Ovals
respectively� �c� denotes cyclone and �a� denotes anticyclone� The comments on �v
and �b are mine�

Fine and Driscoll �Fig� ���� shows that holes are driven toward minima of the

background vorticity� This experiment provides one example of a general principle

that clumps and holes tend to migrate to �opposite� extremes in the background

vorticity distribution� In particular� clumps move to peaks and holes move to

troughs �Figs� ���������

It is natural to ask whether there is any evidence of clump�hole segregation

on planets with strong zonal winds� where there may be signi�cant background

vorticity gradients� For an answer� we refer to Fig� ���	� which shows the latitudes

of long�lived storms in Jupiter�s atmosphere� superposed on a sketch of the zonal

velocity hui� This �gure is taken directly from M�V� Nezlin et al ������ ��	�� Note

that positive hui corresponds to ow from west to east�

To understand Fig� ���	 in terms of vorticity� we �rst translate hui to back�

ground vorticity �b� To obtain the vorticity �b of the background zonal ow hui� we

use the formula �b � �
d hui

dy
� where y is the local rectangular coordinate that is pos�



��

itive in the northward direction� Therefore� extrema in the background vorticity �b

correspond to regions where the shear strength is maximal� To identify a storm as a

clump or a hole� we observe that in the northern hemisphere� an anticyclone rotates

clockwise and is therefore a hole� whereas a cyclone rotates counter�clockwise and is

therefore a clump� Contrarily� in the southern hemisphere� an anticyclone rotates

counter�clockwise and is therefore a clump� whereas a cyclone rotates clockwise

and is therefore a hole�

Our comments to the right of Fig� ���	 indicate that the clumps �Barges�

Great Red Spot� White Ovals� rest on peaks of background vorticity� whereas the

single hole on the graph �the Little Red Spot� rests in a trough� This pattern is

similar to the relaxed state of the simulated zonal ow in Fig� ���� in which a clump

was guided to a peak in zonal vorticity� and a hole was guided to a minimum� It

is not too far�fetched to speculate that the segregation of clumps and holes on

Jupiter is in part due to zonal vorticity gradient� however� it is also possible that

the vortices simply formed where they now reside�

The work presented in this chapter assumes that a background vorticity

gradient already exists� and does not address the question of how a zonal ow is

created� However� our results suggest that a pre�existing vorticity gradient may

become steeper due to the gradient�driven separation of clumps and holes in the

ow� Previously� we considered clumps� holes and background as separate entities�

but in fact all contribute to the overall vorticity� As clumps and holes congregate

at the peaks and troughs of the background� they steepen the overall vorticity

distribution� The gradient driven separation of clumps and holes analyzed in this

chapter provides a dynamical basis for calculating the rate at which such states are

approached� In order to study this transport process� it is necessary to consider

the interaction of many clumps and holes and their e�ect on background vorticity�



��

These subjects will be considered in future work�

��� Appendix I� Evaluation of the u�Integral

In this appendix� we evaluate the u�integral in Eq� ���
�� which gives the

time dependence of the vortex�s radial velocity �rv�

Let I�t� denote the integral�

I�t� �
Z

��

��

du
u

u�  �
ln

�
u�  �

�u� At��  �

�
� ���A��

To evaluate I�t�� we �rst expand the fraction u��u�  ��� using a sine transform�

The expansion is given below�

u

u�  �
�
Z
�

�

dke�ksin�ku� ���A��

Substituting Eq� ���A�� into Eq� ���A�� yields

I�t� �
Z
�

�

dk
Z
�

��

d�ln

�
��
�
�  At

�

��
 ��

� � At

�

��
 �

�
�	 e�ksin�k��cos
kAt

�

�
� ���A��

Here� we have made the transformation of variables u� �� where � � u� At���

The � integral in Eq� ���A�� is tabulated in Gradshteyn and Ryzhik ��
��

Z
�

��

d�ln

�
��
�
�  At

�

��
 ��

� � At

�

��
 �

�
�	 sin�k�� � ��

k
e�ksin



k
At

�

�
� ���A��

Substituting Eq� ���A�� into Eq� ���A��� we obtain

I � ��
Z
�

�

dke��k
sin�kAt�

k

� ��tan���T���sgn�A��

���A��

where T � jAjt� The second equation in ���A�� is the desired result�



�	

���� Appendix II� Numerical Solution of the Green�s

Function

In this appendix� we describe the numerical method that we use for �nding

the Green�s function G�rjrv� s� of the di�erential operator Ds �Eq� �������� in the

limit that s goes to zero along the positive real axis�

Since we are approaching the limit s � � along the positive real axis� we

set s � �� where � is a positive real� Then� Ds � D�� which is de�ned below�

D� �
	�

	r�
 
�

r

	

	r
�

m�

r�
�

� �
o
�r�

r ��o�r�� i��m�
� ���A	�

The Green�s function G�rjrv� �� satis�es the following equation�

D��G�rjrv� ��� �

�r � rv�

rv
� ���A
�

The solution for G has the form

G�rjrv� �� �

��
�

cf��r� r � rv

dh��r� r � rv�
���A��

Here� f� and h� satisfy the homogeneous equations

D��f�� h�� � �� ���A��

and the boundary conditions �
��
f����

h��Rw�

�
�	 � �� ���A���

Both boundary conditions in Eq� ���A��� are due to the fact that G is proportional

to the Laplace transform of the stream function !" �Eq� �������� which vanishes at

both the origin and the wall�

The boundary conditions on G at r � rv are given below��
�� dh��rv�� cf��rv�

dh���rv�� cf ���rv�

�
�	 �

�
�� �

��rv

�
�	 � ���A���



�


These boundary conditions can be used to obtain the values of c and d� The

solution yields the following equation for G�

G�rjrv� �� �

��
�

f��r�h��rv�

rvW��rv�
r � rv

f��rv�h��r�

rvW��rv�
r � rv�

���A���

Here� W� is the Wronksian determinant�

W��r� � f��r�h
�

�
�r�� h��r�f

�

�
�r�� ���A���

The functions f� and h� are obtained as follows� First� we observe that D�

reduces to the radial part of the Laplacian L� as both r � � and r � Rw�

D� � L �
	�

	r�
 
�

r

	

	r
�

m�

r�
� ���A���

The term in D� that is proportional to �
�

o does not contribute as r � �� because it

is subdominant to m��r�� The same term does not contribute as r � Rw� because

� �
o
� � in the gap between the background radius Rb and the wall radius Rw�

From Eq� ���A���� and the boundary conditions in Eq� ���A���� we obtain

f��r� � arm �r � ��� ���A���

and

h��r� � b

�
rm �

R�m
w

rm

�
�r � Rw�� ���A�	�

Our choice of a and b are arbitrary� they cancel in Eq� ���A��� for the Green�s

function G�

Equation ���A��� and Eq� ���A�	� provide boundary conditions for solving

Eq� ���A�� numerically� For f� the boundary conditions are�
�� f����

f �����

�
�	 �

�
�� a�m

am�m��

�
�	 � ���A�
�



��

Here� � is a parameter of the numerical integration� The value of � must be

su#ciently small that f� has converged to its true functional form� For h�� the

boundary conditions are
�
��
h��Rw�

h�
�
�Rw�

�
�	 �

�
��

�

�bm�Rw�
m��

�
�	 � ���A���

Finally� to obtain the radial drift of the vortex �Eq� ����	��� we needG�rjrv� ��

in the limit that �� �� Thus� we decrease � until G�rjrv� �� converges to its limit�

���� Appendix III� Analytic Solutions for the Green�s

Function

In this appendix� we demonstrate that the imaginary part of G�rvjrv� �
��

is given by Eq� ����
� for large m� We will also argue that Eq� ����
� is valid for

all m in the limit of �in�nite� shear�

������ Green�s Function for Large m

For analysis� it is convenient to rewrite the di�erential equation for the

Green�s function� Eq� ������� as follows�

�
L�

im� �o�r�

r �s im�o�r��

�
G�rjrv� s� �


�r � rv�

rv
� ���A���

Here� L is the radial part of the Laplacian� which is de�ned in Eq� ���A���� Note

that G has an implicit m�dependence�

We now decompose the Green�s function into two parts�

G�rjrv� s� � go�rjrv�  g��rjrv� s�� ���A���

Here go�rjr
�� is the standard Green�s function of L

L�go�rjr
��� �


�r � r��

r�
� ���A���



��

and go�rjrv� in Eq� ���A��� accounts for the vortex stream function� The explicit

functional form of go�rjrv� is given below�

go�rjrv� � �
�

�m

�
r�
r�

�m �
��

�
r�
Rw

��m�
� ���A���

where r��r�� is the greater �smaller� of r and rv�

The 	correction
 g� accounts for the response of the background to the

vortex� Substituting Eq� ���A��� into Eq� ���A��� gives the following di�erential

equation for g��

L�g��rjrv� s� �
im� �o�r�

r �s� im�o�r�
fgo�rjrv� � g��rjrv� s�g � ���A���

A formal integral solution to Eq� ���A��� is given below�

g��rjrv� s� �
Z Rb

�
dr�go�rjr

��
im� �o�r

��

�s� im�o�r��
fgo�r

�jrv� � g��r
�jrv� s�g � ���A���

where Rb is the radius of the background� We can use the Plemelj formula �and

some minor algebra� to evaluate the integral in the the limit s� ��� yielding

g��rjrv� �
�� � P

Z Rb

�
dr�

� �o�r
��

�o�r��

�
� �

g��r
�jrv� �

��

go�r�jrv�

�
go�rjr

��go�r
�jrv�

�
i�� �o�rv�

j��o�rv�j

�
� �

g��rvjrv� �
��

go�rvjrv�

�
go�rvjrv�go�rjrv��

���A���

Note that the Plemelj formula applies at r � rv� since �o�rv� � � in the rotating

frame�

So far� we have made no approximations� However� for large m� we will

assume that ���g��rjrv� ������ �� jgo�rjrv�j � ���A���

Then� for large m� the terms involving g��go in Eq� ���A��� can be neglected�

yielding

g��rjrv� �
�� � P

Z Rb

�
dr�

� �o�r
��

�o�r��
go�rjr

��go�r
�jrv� � go�rjrv�

i�� �o�rv�

j��o�rv�j
go�rvjrv��

���A���
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Figure ����� Convergence of Im�G to Eq� ���A��� as m���

Equation ���A��� gives a solution that is consistent with our original assumption�

Eq� ���A���� in the limit of large m� From Eq� ���A���� we have go � ��m� and by

inspection of Eq� ���A���� we have g� � ��m�� Therefore� jg�j �� jgoj for large m�

We are interested primarily in the imaginary part of G�rjrv� �
��� since

it alone contributes to �rv �Eq� ������� Since go is real� the imaginary part of

G�rjrv� �
�� is equal to the imaginary part of g��rjrv� �

���

In the large m limit� we argued that g��rjrv� �
�� is given by Eq� ���A����

The integral in Eq� ���A��� is real� So� in the large m limit� the imaginary part of

G�rjrv� �
�� is given solely by the second term on the right of Eq� ���A����

Im�G�rjrv� �
�� � go�rjrv�

�� �o�rv�

j��o�rv�j
go�rvjrv�� ���A���

Equation ���A��� is compared to a numerical solution in Fig� ����� Here� the

background is given by Eq� ������� and rv � ���� The numerical solution for

Im�G�rjrv� �
�� is in good agreement with theory� for m �

� ���

We now use Eq� ���A��� to evaluate Im�G�rvjrv� �
��� which appears in

Eq� ������ for �rv� Substituting Eq� ���A��� for go into Eq� ���A���� we �nd that

Im
h
G�rvjrv� �

��
i
�

�� �o�rv�
	
��



rv
Rw

��m��
�m�j��o�rv�j

� ���A���

For large m� �rv�Rw�
�m is negligible� and Eq� ���A��� reduces to Eq� ������ of the

main text�



��

������ Green�s Function for Large Shear

In Section ���� we discussed the e�ect of large shear on �rv� Our primary

point was that large shear brings �rv to zero� by causing the mixing layer to �atten

rapidly� However� this suppression of radial drift occurs only when ��o��
�
o exceeds

a critical level �Eqs� ������ ������ For weaker shear� we found that linear theory

provides a good approximation for �rv� in the case of a retrograde vortex� Moreover�

we saw that in linear theory� �rv asymptotes to a �nite value as ��o ��� provided

that l� � �o and rv are kept �xed �Fig� �����b� We now calculate this 	in�nite
 shear

limit of �rv�

We �rst demonstrate that Eq� ���A��� is valid for all m� as ��o � �� In

this limit� both terms on the right�hand�side of Eq� ���A��� tend to zero� for all m�

Therefore� for large shear and all m� Eq� ���A��� gives a self�consistent solution�

jg�j �� jgoj�

This means that for allm we can use Eq� ���A���� which gives an expression

for Im�G�rvjrv� �
�� based on Eq� ���A���� Substituting Eq� ���A��� into Eq� ������

for �rv� we obtain

lim
t��

�rv � �
�

�
� �o�rv�l

�

p
erv�lX
m��

�

m

�
��

�
rv
Rw

��m��
� ���A���

Note that this expression for �rv depends only on l� �
�
o� rv and Rw� If these quantities

are held �xed as ��o increases� there will be no change in �rv�

For small l�rv� Eq� ���A��� has the following approximate form�

lim
t��

�rv � �
�

�
� �o�rv�l

�ln�c�rv�l�� ���A���

where c� is de�ned below�

c� �
lim

l�rv � �

l

rv
exp

�
�
p
erv�lX
m��

�

m

�
��

�
rv
Rw

��m����
� � ���A���
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The functional dependence of c� on rv�Rw was obtained numerically and is plotted

in Fig� �����

Figure �����b of the main text demonstrates that Eq� ���A��� gives the

correct value for the 	in�nite
 shear limit of �rv� in linear theory�

���� Appendix IV� Time Asymptotic Limit of

the ��Integral

In this appendix� we evaluate the t�� limit of the ��integral in Eq� �������

which is required to obtain the late time limit of �rv�

Let J�t� denote this integral�

J�t� � P
Z �

��
d�

G�rjrv� �
� � i��

�
ei�t� ���A���

We now make the change of variables � � �� where � � �t� In terms of �� we

have

J�t� � P
Z �

��
d�

G�rjrv� �
� � i��t�

�
ei� � ���A���

In the t�� limit� Eq� ���A��� becomes

lim
t��

J�t� � G�rjrv� �
�� P

Z �

��
d�

cos� � isin�

�
� ���A���



��

The cosine term in Eq� ���A��� vanishes� since cos��� is odd� The sine term yields

lim
t��

J�t� � i�G�rjrv� �
��� ���A���

Equation ���A��� is the desired result�

���� Appendix V� Stream Lines in the Mixing

Layer

In this appendix� we examine the �ow around a small vortex� which can

be prograde or retrograde� In particular� we consider the �ow at t � �� before the

vortex perturbs the background� The results derived here are used in Appendix VI

to estimate the radial velocity of a prograde hole� which can not be calculated using

linear theory� The results are also used in Appendix VI to estimate the critical

shear �Eqs� ������ ����� for the suppression of radial drift�

Up to an arbitrary constant� the stream function around a vortex of circu�

lation �v in a shear �ow �o�r� is

	 �
Z r

�
dr�r��o�r

�� �
�v

��
ln
h
r� � r�v � �rrvcos�
 � 
v�

i
� ���A���

Here� we have neglected the image of the vortex due to the wall� We now go

into a rotating frame where �o�rv� is zero� and we set 
v equal to zero� Further�

more� we assume that ��o is approximately constant� Then� the stream function in

Eq� ���A��� simpli�es to

	 � ��o

�
r�

�
�

rvr
�

�

�
�

�v

��
ln


r� � r�v � �rrvcos


�
� ���A���

The important nonlinear dynamics occurs in the mixing layer �ML�� Con�

sequently� we focus on stream lines in this region� We refer the reader to Section

���� and in particular Fig� ����� for our de�nition of the ML�



��

All stream lines are contours along which 	�r� 
� is constant� A stream line

in the ML is parameterized by the angle 
� �� � 
� � ��� where it passes through rv

�the radial position of the vortex�� The stream line equation is 	�r� 
� � 	�rv� 
���

or equivalently

�� �
�

�
�� �

�
l

rv

��

ln

�
��� � �� � ��� cos
� � ��

���� cos
��

�
� �� ���A���

Here� � � �r � rv��rv and l is de�ned by Eq� ������� The sign of the third term is

��� for a prograde vortex ��v��
�
o � �� and ��� for a retrograde vortex ��v��

�
o � ���

For l�rv �� �� and 
 �� l�rv� we obtain the following approximation for

��

��
� �

���������
���������

�
l

rv

vuutln

�
�� cos
�
�� cos


�
prograde �a�

�
l

rv

vuutln

�
�� cos


�� cos
�

�
retrograde �b�

���A���

���� Appendix VI� Analysis of Nonlinear Motion

������ Detailed Mix�and�Move Estimate for �rv

We now carry out a detailed mix�and�move estimate for the radial velocity

�rv of a prograde hole in an initially axisymmetric background� where � �o��
�
o � ��

This detailed estimate yields the same expression for �rv as our simple estimate�

Eq� �������

As in the main text� we assume that the hole levels the ML �shaded region in

Fig� �����b� and has a negligible e�ect on �uid outside the ML� Then� a reasonable

estimate for �rv is given by

�rv �
�
��P��b

��vrv�

�
�

� ���A���

Here� �P��b is the change in the background�s angular momentum that occurs

upon �attening the coarse�grained vorticity distribution inside a stream line that
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encircles the hole� � is the orbital period of a �uid particle on that stream line� and

��� denotes an average over the stream lines in the ML� We have used conservation

of P� �Eq� ����� to relate the change in rv to the change in P��b� Note that the

orbital period � is in�nite on the separatrix� Therefore� if we used the particle orbit

on the separatrix to evaluate �rv� instead of an average� we would obtain �rv � ��

The change in P��b that occurs due to mixing is given by the following

integral�

�P��b�
�� � �� �or
�
v

Z ��

���
d

Z �����

������
d� �� � ����� ���A���

Here� � � �r � rv��rv� and ��� 
� � � gives the location of the hole� The function

���
� is the �positive� value of � at the polar angle 
 on a stream line given by

a particular value of 	� The angle 
� is the maximum angle reached by a �uid

particle on that stream line� For example� 
� � � for the separatrix� which can be

seen in Fig� �����b� Equation ���A��� assumes that � �o is constant over the ML� and

that the stream lines in the ML are approximately symmetric about rv �� � ���

The function ���
� is approximately given by Eq� ���A���a�� Substituting

Eq� ���A���a� into Eq� ���A���� we obtain

�P��b�
�� � ��� �or
�
vl
�
Z ��

���
d
 ln���

�
�� cos
�
�� cos


�
���A���

to lowest order in l� Figure ���� shows �P��b as a function of 
�� Here� we see that
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�P��b increases monotonically with 
�� due to the fact that the area enclosed by

the stream line increases with 
��

The orbital period of a �uid particle is given by

��
�� � �
Z �

���
d
� �
� ���A���

Here� �
 is the angular velocity of the �uid particle along the stream line� This

angular velocity has contributions from the background shear and the vortex �eld�

and can be written as follows�

�
 � ��orv �

�
��� �

�
l

rv

��
�

� � ��
�

� � �� � cos


��� � ������ cos
� � ���

�
� � ���A���

For the most part� �� is O�l�rv� �see Eq� ���A���� therefore� it is a reasonable

approximation to drop the second term in Eq� ���A���� Then� using Eq� ���A���a�

for ��� we have

�
 � ���ol

vuutln

�
�� cos
�
�� cos


�
� ���A���

where � is for �� � � and � is for �� � �� The expression for � becomes

��
�� �
�

j��ojl

Z �

���
d
 ln����

�
�� cos
�
�� cos


�
� ���A���

Figure ���� shows � as a function of 
�� Note that � becomes in�nite near the

separatrix �
� � ���
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Substituting Eqs� ���A��� and ���A��� into Eq� ���A���� we obtain the

following expression for �rv�

�rv � �
�

��
l�� �o hh�
��i� � ���A���

where the function h�
�� is de�ned below�

h�
�� �
�

�

Z ��

���
d
 ln���

�
�� cos
�
�� cos


�
Z �

���
d
 ln����

�
�� cos
�
�� cos


� � ���A���

The function h�
�� is plotted in Fig� ����� The values of h range from � to ��

Moreover� h is of order unity everywhere except in a thin layer near the separatrix

�
� � ��� Therefore� it is reasonable to choose an averaging scheme such that

hhi� � �� Then� Eq� ���A��� is equivalent to our simple estimate� Eq� �������

������ Mixing Times

We now estimate the time �t for a vortex to level the surrounding mixing

layer �ML�� This time was used in Section ��� to estimate the critical shear for the

suppression of radial drift� Recall that radial drift is suppressed when �t �� tl �

l� �rv�

We �rst determine the mixing time for the ML that surrounds a prograde

vortex �Fig� �����b� This mixing time �tp corresponds to a typical orbital period



��

of a �uid particle in the ML� These orbital periods are shown as a function of 
�

in Fig� ����� Unfortunately� the orbital periods range from zero to in�nity� so that

a 	typical
 value is not obvious�

However� a better de�nition for �tp is the time for most of the area in the

ML to be mixed� Of course� the entire ML takes in�nitely long to mix� since the

orbital period on the separatrix �
� � �� is in�nite� So� rather than set �tp equal

to ����� we set it equal to ������� That is�

�tp � ������ �
�

j��ojl

Z �

�	��
d
 ln����

	
�

�� cos


�
� ���A���

Here we have used Eq� ���A��� for the orbital period � � Note that there is nothing

special about 
� � ���� besides the fact that it is O����

In Section ���� we gave a rough estimate for the mixing time of a prograde

hole�

�tp � ���j��ojl ���A����

Equation ���A��� gives a value of �tp that� for all l�rv� is ���� times this rough

estimate�

We now calculate the mixing time �tr for the ML that surrounds a retro�

grade vortex �Fig� �����a� As for the prograde case� we require that most of the

ML is mixed by the time �tr� Therefore� we will estimate that �tr is the orbital

period � of a �uid particle� whose radial position at 
 � � is midway between

rv and the separatrix� A straight�forward calculation shows that the orbit of this

particle intersects rv at


� � 

�
l

rv

���	

� ���A���

where  � ���
e���
�

In analogy to Eq� ���A���� which gives � for particles orbiting a prograde

vortex� the following equation gives � for particles in the ML that surrounds a
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Using Eq� �
�A�
� for �� gives the mixing time �tr�

�tr � �
�
��l�rv�

���
�
�

�

j��

ojl

Z
���l�rv����

��
d� ln����

��
rv
l

���� 


��
�	� cos��

�
�

�
�A���

Here we have used cos�� � 	� ����
� Note that in contrast to the prograde case

�Eq� �
�A���� the integral in Eq� �
�A��� depends on l�

In Section 
�� we gave a rough estimate for the mixing time�

�tr �
��

j��

ojl
q
ln�rv�l�

�
�A���

Figure 
�

 shows that Eq� �
�A��� converges to ���	 times this rough estimate as

l�rv � ��

Part of this chapter has been published in Physical Review Letters David

A� Schecter and Daniel H� E� Dubin �� 
	�	�
	�� �	����� David A� Schecter was

the primary investigator and author of this paper�



Chapter �

An Eigenmode Analysis of the

Excitation and Inviscid Damping

of Small Perturbations on a �D

Vortex

��� Introduction

Two�dimensional �ows are often dominated by a single vortex or by a group

of interacting vortices� Although the vortex dynamics can be complicated� it is

possible to gain a precise understanding of certain elementary processes� One

example is the evolution of asymmetric perturbations on an initially circular vortex�

The evolution of elliptical perturbations on a circular vortex has been stud�

ied in recent experiments� where the working �D �uid is a magnetized electron

plasma ���� ��	� These experiments are carried out at high Reynolds numbers� so

that viscous e
ects are negligible� In some experiments the elliptical perturbation

persists� but more often it decays� We refer to this decay as �inviscid damping��

The excitation and inviscid damping of asymmetries primarily elliptical� on a �D

vortex are the main topics of this chapter�

Figure ��� shows an experiment where inviscid damping occurs� At t �

�� an elliptical perturbation is created on the vortex� Subsequently� the vortex

��
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Figure ���� Experiment� �a� The evolution of vorticity after an elliptical pertur�
bation is applied to an initially circular vortex� As �lamentation occurs at rc� the
vorticity contours relax back to circular form for r �

�
rc� �b� The relaxation of the

quadrupole moment ellipticity�� The dashed line indicates that the initial decay
is exponential� Time is measured in central rotation periods� T � t �o������ and
the quadrupole moment Q��� is normalized to its initial value�

relaxes toward an axisymmetric state� During the relaxation� �laments are shed

at a critical radius rc� and vorticity contours become circular in the core of the

vortex� Moreover� the ellipticity of the vortex decays exponentially by one order of

magnitude before reaching a terminal value� Here� the ellipticity is measured by

the amplitude of the m � � multipole moment the quadrupole moment��

The decay process observed experimentally e�g� Fig� ���� resembles pre�

vious numerical simulations of the �D Euler equations ���� ��� ��� ��	� We show�

in Section ���� that the initial exponential decay in the experiments is actually

governed by the linearized Euler equations�

To study the linear excitation and evolution of perturbations on a vortex�

we use an eigenmode formalism ���� ��� ��� ��	� In this formalism� the pertur�

bation is viewed as a sum of independent eigenmodes� We demonstrate that the

eigenmodes of a monotonic vortex are neutrally stable� and form an orthogonal

basis� Next� we derive a general formula for the response of each eigenmode to a
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�ow �eld that is brie�y superimposed on the vortex� We then study how the total

excitation relaxes through the dispersion� or �phase�mixing� of these modes�

We �rst examine the evolution of initial conditions that model the exper�

iments� These perturbations are formed by a brief application of a �ow �eld that

compresses the vortex along a minor axis and expands the vortex along a major

axis� thereby creating an ellipse� The applied �ow is generated by sources at the

wall of a con�nement cylinder� We refer to this applied �ow as an �external im�

pulse�� because the sources are outside the vortex� and act only for a brief period�

We �nd in general that after an external impulse� the quadrupole moment of the

vortex has an early stage of exponential decay� in accord with the experiments�

This result is signi�cant� since arbitrary perturbations need not decay exponen�

tially�

However� the possibility of exponential decay has been known for some time

���� ��� ��	� A Laplace transform solution to the initial value problem shows that

any perturbation will have a contribution from a �Landau pole�� This Landau pole

contribution behaves exactly like an exponentially damped mode� but can never

represent a complete solution to the initial value problem� since at late times the

decay turns algebraic ���� ��� ��� ��� ��	� The frequency �q and decay rate � of a

Landau pole depends only on the azimuthally symmetric equilibrium pro�le of the

vortex� We will show that a Landau pole correctly gives the observed exponential

decay of the quadrupole moment that follows an external impulse�

Next� we turn our attention from the quadrupole moment to the vortic�

ity perturbation ��r� �� t�� Here� r� �� is a polar coordinate system that has

its origin at the center of the vortex� When ���q �� �� we �nd that the vor�

ticity perturbation in addition to the quadrupole moment� decays exponentially

with time for all radii less than a critical radius rc� where �lamentation occurs�
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That is� the vorticity perturbation acts like an exponentially damped eigenmode�

��r� �� t� � �r�e��tcos�� � �qt� for r �
�

rc� The critical radius rc occurs where

the �uid rotation frequency �or� is resonant with the perturbation� and satis�es

the equation ��orc� � �q�

These weakly damped excitations are referred to as �quasi�modes�� since

they are not exact eigenmodes of the linearized Euler equations� We will show

that a quasi�mode is actually a wave�packet of neutral eigenmodes� which occupy

a narrow frequency band� Exponential decay occurs due to phase�mixing and

interference of these neutrally stable modes�

We then analyze the case of strong damping ���q � ��� using a Gaussian

vortex as an example� Here� we �nd that the narrow wave�packet occurring in

weakly damped quasi�modes is replaced by a broad band wave�packet� Because

the wave�packet is broad� the vorticity perturbation forms �laments over the entire

radial extent of the vortex� rather than in a thin critical layer� Thus� even though

the quadrupole moment behaves like an exponentially damped mode� the vorticity

perturbation does not�

We now provide an outline of the main text� In Section ���� we review

the eigenmode theory of linear perturbations on a circular vortex ���� ��	� In

Section ���� we discuss the eigenmodes of monotonic vortices� which are stable to

small perturbations ���	� Examples are given for a vortex with a discrete mode�

and a vortex with a quasi�mode�

In Section ���� we show that the excitation of an eigenmode due to an ex�

ternal impulse is proportional to the scaled� multipole moment of that eigenmode�

Therefore� the system exhibits reciprocity� the eigenmodes with the strongest in�

�uence on the external �ow are also the most sensitive to a brief �ow �eld that is

created by an external source�
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In Section ���� we examine in detail the response of several stable vortices

to an external m � � impulse� In all cases� we show that the quadrupole moment

of the induced asymmetry decays exponentially at a rate given by a Landau pole

of the vortex� In Section ���� we demonstrate that linear theory properly describes

the initial evolution of perturbations in the experiments with magnetized elec�

tron columns� In Section ���� we examine the importance of Landau poles in the

evolution of arbitrary perturbations� which need not be generated by an external

impulse� We �nd that the exponential decay of a Landau pole commonly dom�

inates an intermediate stage of the evolution when ���q �� � weak damping��

but rarely dominates when ���q � � strong damping��

In Section ���� we brie�y discuss eigenmode theory for non�monotonic pro�

�les� which can be unstable ���	� Several equations that were derived strictly for

monotonic vortices are here generalized� In Section ���� we carry out a numerical

stability analysis of a �hollow� vortex� with the primary goal of illustrating pitfalls

in the numerical technique� In Section ����� we discuss conservation of energy�

angular momentum and the moments of vorticity during inviscid damping�

In Appendix I� we explain how inviscid damping is a consequence of angular

momentum conservation� In Appendix II� we discuss an analogy between the

eigenmode problem of the �D Euler equations and the eigenmode problem of the

�D Vlasov Poisson equations� which are used in the kinetic theory of plasma waves�

In Appendix III� we review how to calculate Landau poles numerically ���	�

��� Linear Eigenmode Theory

In this section� we outline a numerical technique for calculating the eigen�

modes of a �D vortex ���� ��	� An eigenmode expansion will be used in later

sections to calculate the linear evolution of small perturbations�
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����� The Eigenvalue Equation

We consider a vortex that is governed by the �D Euler equations� which

assume incompressibility and zero viscosity�

�a� ����t � �v � r� � 	�

�b� �v � 
z �r��

�c� r�� � ��

����

Here� �v�r� �� t� is the velocity �eld� ��r� �� t� � 
z �r��v is the vorticity and ��r� �� t�

is a stream function� We also assume that the �uid is bounded by a circular wall

at which there is free�slip� i�e�� � � 	 at the wall radius Rw�

The vorticity distribution can be decomposed into an axisymmetric equi�

librium �o�r� and a perturbation ���r� �� t��

��r� �� t� � �o�r� � ���r� �� t�� �����

If the perturbation is small� we can approximate its evolution with the linearized

Euler equations�

���

�t
� �o

���

��
�



r
� �o
���

��
� 	 �����

�
��

�r�
�



r

�

�r
�



r�
��

���

�
�� � ��� �����

Here� ���r� �� t� is the perturbation to the stream function� � �o�r� is the radial

derivative of �o�r� and �o�r� is the angular rotation frequency of the unperturbed

circular �ow�

�o�r� �


r�

Z r

�
dr�r��o�r

��� �����
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The present aim is to express an arbitrary perturbation as a superposition

of eigenmodes� We will look for eigenmodes of the form

�� � ��r�ei�m���t�

�� � ��r�ei�m���t��

�����

where m � � �� � � ��� In Eq� ������ the radial eigenfunctions � and � depend

implicitly on the azimuthal wave�numberm and the eigenfrequency 	� Substituting

this ansatz into Eq� ����� and Eq� ������ we �nd that the radial eigenfunctions must

satisfy the following pair of equations�

�	 �m�o� � �
m

r
� �o� � 	 �����

�
d�

dr�
�



r

d

dr
�

m�

r�

�
� � �� �����

Equations ����� and ����� can be transformed into a single integral equation

for the vorticity eigenfunction �� First Eq� ����� is solved with a Green�s function�

��r� �
Z Rw

�
dr�r�Gm�rjr

����r��� �����

The Green�s function Gm incorporates the boundary conditions that � � 	 at Rw

and that � is �nite �zero� at the origin� Speci�cally�

Gm�rjr
�� � �



�m

�
r�
r�

�m �
�

�
r�
Rw

��m�
� ���	�

Here� r� is the larger of r and r�� and r� is the smaller of r and r�� Substituting

Eq� ����� into Eq� ������ we obtain the following integral eigenvalue equation�

�	 �m�o�r�� ��r� �
m

r
� �o�r�

Z Rw

�
dr�r�Gm�rjr

����r�� � 	� ����

It is convenient to introduce a compact notation and rewrite the eigenvalue

equation as follows�

I ��� � 	�� �����



��

Here� I denotes the linear integral operator de�ned below

I ��� � m�o�r���r��
m

r
� �o�r�

Z Rv

�
dr�r�Gm�rjr

����r��� �����

Note that I is determined by m and the equilibrium distribution �o�r� �through

�o and � �o�� Equation ����� assumes that the vorticity perturbation is restricted

to r less than the vortex radius Rv� beyond which the equilibrium vorticity �o�r� is

zero� This restriction is not necessary� but it will simplify our discussion in what

follows� It is straight�forward to generalize to perturbations that extend past Rv

by increasing the upper limit of integration in Eq� ������

Equation ����� produces two kinds of eigenmodes� discrete modes and

continuum modes� A general linear perturbation� of the form 
��r� t�eim�� can be

expanded into a sum of the discrete modes plus an integral of the continuum modes

���� ��� ��� ����


��r� t� �
X
d

A�	d��d�r�e
�i�dt �

Z
d	A�	����r�e

�i�t �����

The discrete modes have eigenfunctions ��r� that are spatially smooth� Therefore�

a discrete mode is a physical solution to the linearized Euler equations� On the

other hand� the radial eigenfunction of a continuum mode has a singular point

where the �uid rotation is resonant with that mode ���� ��� ��� �	�� In Section ����

we discuss continuum modes in greater detail� For now� let it su�ce to say that

only integrals of the continuum modes have physical meaning�

����� A Numerical Solution to the Eigenvalue Equation

and the Initial Value Problem

In general� the integral eigenvalue equation must be solved numerically� To

do so� we consider � and I on a radial grid�

ri � f�r� ��r� � � � � N�rg� �����



��

Then� the eigenvalue equation for I is approximated by a system of N linear

equations�
NX
j��

Mij��rj� � 	��ri�� �����

Here� the index i runs from  to N � The matrix elements of M are real� and they

are given below�

Mij � m�o�ri�
ij �m
rj
ri
� �o�ri�Gm�rijrj��r� �����

In deriving this expression forMij� we have used trapezoidal integration to approx�

imate the integral operator I�

So� the eigenmodes of an ideal axisymmetric vortex can be found numer�

ically by solving the eigenvalue problem of the matrix M � The solution gives N

eigenmodes of the form �k�ri�e
i�m���kt�� where k � � �� � � �N � These eigenmodes

include the discrete modes and a �nite set that represents the continuum�

A linear perturbation on the vortex is approximated by a superposition of

these eigenmodes� Speci�cally� �� and �� can be expanded as follows�

���ri� �� t� �
��X
m��


��m��ri� t�e
im� � c�c�

�
��X
m��

NX
k��

A
�m�
k �

�m�
k �ri�e

i�m���
�m�
k

t� � c�c�

�����

���ri� �� t� �
��X
m��


��m��ri� t�e
im� � c�c�

�
��X
m��

NX
k��

A
�m�
k �

�m�
k �ri�e

i�m���
�m�
k

t� � c�c�

�����

Here� the approximation symbol refers to the fact that the expansion is numerical

��nite N�� The superscript m denotes the azimuthal wave�number and Ak is a

constant expansion coe�cient that is obtained from the initial perturbation �ex�

plicit formulas for Ak are provided in later sections�� If the perturbation consists



��

of multiple wave�numbers� then separate sets of �k and 	k must be obtained for

each value of m�

The numerical expansion �Eq� ������ breaks down after a �nite time � �

due to the �nite number �� N� of eigenmodes that represent the continuum� This

time � increases as the frequency spacing �	 between neighboring eigenfrequencies

decreases� As a rule� we �nd that the maximum di�erence between neighboring

eigenfrequencies in the discretized continuum is proportional to the maximum shear

and to the radial grid�point spacing �r �� Rv�N�� That is�

�	max � maxfjm��

o�rjg� ����	�

It is reasonable to expect that after a time

� � ����	max� �����

arti�cial bouncing should occur in the amplitude of the vorticity perturbation� This

arti�cial bouncing is typically observed� However� it is possible that the expansion

will be valid for longer times if the eigenmodes are excited in a narrow frequency

band� Speci�cally� if this frequency band is centered at �	 � m�o��r�� then the time

scale for accurate results should extend to � � ��� jm��

o��r��rj�

For this thesis� the eigenvalue problem was solved numerically using the

double precision LAPACK routine� DGEEV� This routine computes the eigenfre�

quencies and the left and right eigenvectors of a general matrix� Typically� N is

between 	� and 	�� and the computations take between one minute and one hour

of cpu time on the present ����� DEC ALPHA workstations�
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��� The Eigenmodes of a Monotonic Vortex

We de�ne a �monotonic vortex as a vortex whose equilibrium pro�le de�

creases monotonically with r until reaching zero at Rv�

� �o�r�  	 for 	  r � Rv� and

�o�r� � 	 for r 	 Rv�
������

In Sections ���� we study the excitation and decay of asymmetries on monotonic

vortices� In preparation� we now examine the eigenmodes of a monotonic vortex�

����� General Results

The eigenmodes of all monotonic vortices have several common features�

For example� all eigenfrequencies of a monotonic vortex are real� Therefore� all

eigenmodes of a monotonic vortex are neutrally stable��

To verify the neutral stability of eigenmodes� we de�ne the following inner�

product�

hf� hi �
Z Rv

�

r�

j� �o�r�j
f ��r�h�r�dr

�
NX
i��

r�i
j� �o�ri�j

f ��ri�h�ri��r�

������

Here� the asterisk denotes the complex conjugate and the second equality is the

discretized �i�e� working� de�nition of the inner�product�

The matrixM is Hermitian �self�adjoint� with respect to the inner�product

in Eq� ������� That is�

hf�Mhi � hh�Mfi� � ������

Equation ������ can be veri�ed in a straight�forward manner� when two conditions

are kept in mind� �� that the Green�s function Gm�rijrj� is symmetric with respect

�For a cylindrical analogue to Rayleigh�s in�ection point theorem that proves the stability of
monotonic pro�les� see Ref������



�

to interchange of ri and rj� and ��� that � �o  	 for all ri � Rv� Because M is

Hermitian� its eigenfrequencies f	kg are real�

In addition� Hermiticity assures us that M has N linearly independent

eigenvectors f�kg� Assuming that the eigenfrequencies are distinct� the eigenvectors

are orthogonal�

h�k� �k�i �

�
positive real k � k�

	 k 
� k��
������

The orthogonality relations in Eq� ������ can be used to derive a formula

for the coe�cients fAkg of the eigenmode expansion� The formula is given below�

A
�m�
k �

D
�
�m�
k � 
��m��r� 	�

E
D
�
�m�
k � �

�m�
k

E � ������

Here� 
��m��r� 	� is the mth Fourier�coe�cient of the vorticity perturbation at time

t � 	� The inner�product is the weighted sum that is de�ned by Eq� �������

����� The Eigenmodes of a Top�Hat Vortex

As an example� we consider a vortex for which the equilibrium vorticity

�o slowly decreases from the center and then rapidly drops to zero in a transition

layer of width 
r centered about the radius ro� This vortex is shown in Fig� ����a�

and will be referred to as Top�Hat �� The exact functional form of Top�Hat  is

not important� nevertheless� it is given below�

�o�r� �

�
����

h
� �	 tanh

�
r�ro
�r

�i h
 � �	��

�
Rv�r
Rv

�i
r  Rv

	 r 	 Rv�
������

where 
r � 	�	� ro � 	�� and Rv � 	����� Here� and throughout this chapter� all

lengths are given in units of Rw� In addition� all frequencies are given in units of

�o�	�� Thus� �o�	� �  in Eq� �������

The m � � eigenmodes of Top�Hat  typify the eigenmodes for all m�

Figure ����b shows a selection of eigenfunctions f�kg from them � � spectrum� The
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eigenfunctions are labelled by their eigenfrequencies� Some of the corresponding

stream functions f�kg are shown in Fig� ����c� Note that each eigenfunction �k is

normalized so that its peak amplitude is � This normalization will be used for all

numerical results�

In the m � � spectrum� we �nd that there exist N� eigenfrequencies that

fall in the range ��o�Rv�  	k  ��o�	�� As the number of radial grid�points N

increases� this subset of eigenfrequencies becomes increasingly dense� In the limit

as N goes to in�nity� the distance between neighboring eigenfrequencies becomes

zero� Therefore� this subset represents the continuum of I���� For an arbitrary

wave�number m� a similar continuum will exist� The upper and lower limits of this

continuum are given below�

m��Rv�  	k  m��	�� ������

The radial eigenfunction �k of a continuum mode has a singular point at

its critical radius rc�k� The critical radius of an eigenmode is the radius at which

the unperturbed �uid corotates with that eigenmode� It is de�ned by the following

equation�

	k � m�o�rc�k�� ������

On one side of rc�k� the radial eigenfunction �k tends toward positive in�nity� On

the other side of rc�k� �k tends toward negative in�nity ���� ��� �	�� The N � 

critical radii of the continuum modes are distributed with approximate uniform

spacing across the vortex�

In the m � � spectrum of Top�Hat � there also exists a discrete eigenfre�

quency 	d that lies outside the continuum� The critical radius rc�d of this discrete

mode� de�ned by 	d � m�o�rc�d�� lies in a gap of zero vorticity between the vortex

radius Rv and the wall radius Rw� As a result� the eigenfunction of the discrete
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Figure ���� Top�Hat � �a� Equilibrium pro�le� 	d and rc�d denote the frequency
and critical radius of the m � � discrete mode� �b� m � � eigenfunctions �eigen�
vectors of the matrix M�� All eigenfunctions are zero at r � 	� To aid the eye�
opposite extremes are connected at the singular point of each continuum eigen�
function� �c� Stream functions for several eigenmodes� each stream function is
divided by its peak amplitude�

mode �top of Fig� ����b� has no singular point�

It is straight�forward to derive an approximate analytic expression for this

discrete mode� The analytic solution is best understood if we �rst consider the

discrete modes of a uniform circular vortex�patch�

�o�r� �

�
 r � ro
	 r � ro�

����	�

In ��	� Kelvin derived a dispersion relation for waves that propagate along the

edge of this patch ����� Formally� these waves are delta�function disturbances at



��

ro�

�� � 
�r � ro�e
i�m����t�� �����

Substituting Eq� ����� into the linearized Euler equations� one �nds that

	� �


�

�
m�  �

�
ro
Rw

��m�
� ������

An additional calculation shows that the critical radius of each wave is given by

r� � ro

�
m

m�  � �ro�Rw�
�m

����
� ������

This critical radius lies outside the vortex�patch for all m� therefore� the modes

studied by Kelvin are discrete eigenmodes�

Because Top�Hat  resembles a uniform vortex�patch� the discrete modes

of Top�Hat  are similar to those of a uniform vortex�patch� Of course� the discrete

modes of Top�Hat  are not delta�functions� Replacing 
�r� ro� in Eq� ����� is a

sharply peaked but �nite eigenfunction�

�d�r� �
Gm�rjro�

m�o�r�� 	d



r
� �o�r�� ������

This approximate result is obtained from the integral eigenvalue equation �Eq� �����

under the assumption that � �o�r� is sharply peaked at ro� At the top of Fig� ����b�

Eq� ������ is compared to the m � � discrete eigenfunction of Top�Hat � The two

are in excellent agreement� In addition� we can use the Kelvin frequency 	� as an

estimate for 	d� Numerically� we �nd that 	d � ����� This value di�ers by less

than two percent from 	� � ��	�� Here� we have used ro � 	��Rw to evaluate 	��

Although we have focused on a monotonic vortex with a single sharp edge

at ro� it is important to note that discrete modes exist on monotonic vortices of

all kinds� For example� discrete modes can exist even when the vorticity gradient

� �o is roughly constant across the entire vortex� If there are multiple peaks in � �o�
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then there can be multiple peaks in the radial eigenfunction of the discrete mode�

In short� discrete modes can be found in a wide variety of forms� but in all cases�

the discrete modes are extended versions of the �edge�waves� that can propagate

on a uniform vortex�patch�

����� Discrete Mode to Quasi�Mode

In this subsection� we compare the undamped discrete mode� which exists

when � �o�rc�d	 
 �� to the exponentially damped quasi�mode� which exists when

� �o�rc�d	 � ��

The discrete mode of Top�Hat � can be �merged� with the continuum by

stretching the vortex radius Rv past rc�d� Top�Hat � in Fig� ��a is equivalent

to Top�Hat �� except for a skirt of vorticity that tapers past rc�d� As expected�

all eigenmodes of Top�Hat � are continuum modes� all eigenfrequencies lie inside

the continuum �Eq� ����	�� and all eigenfunctions have singular points at their

respective critical radii �Eq� ����	��

However� the discrete eigenmode of Top�Hat � has not disappeared entirely�

This can be seen by inspection of the continuum modes� Figure ��b shows a

selection of eigenfunctions from the m 
 � continuum� The dashed continuum

modes have eigenfrequencies near �d� the discrete eigenfrequency of Top�Hat ��

They closely resemble the discrete mode of Top�Hat �� except that each continuum

mode has a singular point near rc�d �the critical radius of the discrete mode	�

These �exceptional� continuum modes have an important physical signif�

icance� they combine to form a quasi�mode� Consider the discrete mode of Top�

Hat � as an initial condition on Top�Hat �� This initial condition will now evolve

as a superposition of continuum modes� Figure ��c shows the expansion coe��
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cients Ak versus �k� The distribution is sharply peaked near the eigenfrequency �d�

therefore� the perturbation consists primarily of the exceptional continuum modes�
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Figure ���� Top�Hat �� �a� Equilibrium pro�le� rc�d and �d denote the frequency
and critical radius of the m 
 � discrete mode of Top�Hat �� �b� m 
 � eigenfunc�
tions �eigenvectors of the matrix M	� All eigenfunctions are zero at r 
 �� The
dashed curves correspond to exceptional eigenmodes� �c� Expansion coe�cients
Ak for the discrete eigenfunction �d of Top�Hat �� expanded in the continuum
eigenfunctions of Top�Hat ��
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A Lorentzian distribution gives an accurate description of the peak�

Ak �
�

��k � �q	
� � ��

���	

A least�squares �t in the peak region �solid line	 gives �q 
 ����� and � 
 �������

Note that the central eigenfrequency �q is slightly greater than the eigenfrequency

of the original discrete mode ��d 
 �����	�

As the continuum modes disperse� their superposition will behave like an

exponentially damped version of the original discrete mode� To see this� �rst

recall that the eigenfunctions f�kg of the exceptional continuum modes are roughly

equivalent to the eigenfunction �d of the original discrete mode� for r �� rc�d 
 �����

Second� the sharp peak in Ak involves only these exceptional continuum modes�

Consequently� for r �� ���� the eigenmode expansion �Eq� ����	� of the excitation

simpli�es to

���r� t	 � �d�r	
X
k

Ake
�i�kt� ���	

Substituting the Lorentzian form of Ak �Eq� ���	� into Eq� ���	� we obtain the

desired result� �� � �d�r	e
����i�q�t for r �� �����

As a �nal remark� quasi�modes �like discrete modes	 exist on vortices of

all kinds� Here� we have focused on a top�hat vortex� in which case the radial

eigenfunction of the quasi�mode has a single sharp peak� The main reason for

giving this example is to make clear the connection between quasi�modes and the

discrete modes of a uniform vortex�patch ����� However� on di�erent vortices�

quasi�modes can have broad �eigenfunctions� with multiple peaks� the variety of

quasi�modes is in�nite� just as the variety of discrete modes is in�nite�
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��� Eigenmode Excitability

In this section� we determine how the eigenmodes respond to an external

impulse� These results are used in the next section to examine the linear evolu�

tion of impulse�generated perturbations� We focus on �D �uid experiments with

strongly magnetized electron columns� These experiments were discussed brie�y

in the introduction �Fig� ��	 of this chapter�

����� �D Fluid Experiments with Strongly Magnetized Elec�

tron Columns

The experiment consists of a long column of electrons in a uniform axial

magnetic �eld ���� A diagram of the experimental apparatus is shown in Fig� ���

The electrons are enclosed by a hollow cylindrical conductor� Large DC voltages

are applied on rings at both ends of the cylinder to keep the electrons from escaping

in the axial direction� The strong �� Tesla	 magnetic �eld B�z counters the outward

radial force of the electric �eld � �E	� and prevents the electrons from escaping to

the wall�

In these experiments� the time period over which electrons bounce from one

end of the trap to the other �along the z�axis	 is much less than the characteristic

time scale for the �ow of electrons in the r�	 plane �i�e� an eddy turn�over time	�

ExB E

Phosphor

ẑ
V

CCD Camera

Rv

Rw

B
electrons

Figure ���� Side view of a Penning�Malmberg apparatus that is used for studying
�D Euler Dynamics�
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As a result� the �instantaneous� r�	 velocity of an electron can be approximated

by its average velocity over a bounce period� The �D �uid equations obtained from

this bounce�averaging scheme are known as the drift�Poisson equations �����

�a	 
n�
t � �v � rn 
 ��

�b	 �v 
 �z � cr��B�

�c	 r�� 
 �en�

���	

Above� �v�r� 	� t	 is the �E� �B drift velocity �eld� n�r� 	� t	 is the z�averaged electron

density� and ��r� 	� t	 is the electrostatic potential� The boundary condition is

� 
 � at Rw� since the wall of the trap is grounded�

The equations for the vorticity of the r�	 �ow can be obtained directly

from Eq� ���	� They are the �D Euler equations �Eq� ���	�� The stream function

relates to the electrostatic potential by the the relation � � c��B� and the vor�

ticity relates to the electron density by the equation � 
 �ecn�B� The vacuum

between the electron column and the conducting wall corresponds to a region of

zero vorticity� The boundary condition � 
 � at the conducting wall corresponds

to free�slip at the wall of a circular container�

Because � is proportional to n� vorticity measurements are �theoretically	

equivalent to density measurements ���� Thus� vorticity is measured by dumping

the electrons onto a phosphor screen� and recording the density �vorticity	 image

with a CCD camera ���� Although this imaging is destructive� the initial conditions

are reproducible� so that the time evolution of �ows can be studied�

The experiments start with a symmetric monotonic vortex of electrons� An

external electric �eld is then applied for a short time� The electric �eld varies with

both r and 	� and deforms the vortex� We now calculate the eigenmode expansion

of this vorticity perturbation�
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����� Eigenmode Excitability and the Reciprocity Princi�

ple

In order to determine the extent to which each eigenmode is excited by an

external impulse� it is convenient to break the stream function perturbation into

an �internal� part and an �external� part�

���m��r� t	 
 ��
�m�
int �r� t	 � ��

�m�
ext �r� t	� ���	

The internal part is due to the vorticity perturbation �� inside the vortex� Specif�

ically� the internal part is the following integral of vorticity�

��int�r� t	 

Z Rv

�
dr�r�Gm�rjr

�	���r�� t	� ���	

Here� Gm�rjr
�	 is the Green�s function given by Eq� ����	� and we have suppressed

the superscript ��m	� to avoid cumbersome notation� The �external� stream func�

tion corresponds to the electric �eld that is is applied brie�y in the experiments to

deform the vortex� The source of ��ext is at the wall radius Rw� So� ��ext satis�es

Laplace�s equation for r � Rw� and has the form

��ext�r� t	 
 f�t	
�

r

Rw

�m
� ����	

The linearized Euler equation for the evolution of vorticity is given below�


��


t
� im�o�r	�� �

im

r
���ext � ��int	 �

�

o 
 �� ����	

Substituting Eq� ���	 and Eq� ����	 into Eq� ����	� we obtain


��


t
� iI ���� 


im

�Rw	m
f�t	 rm��� �o� ����	

Here� I is the integral operator de�ned previously in Eq� ���	�

The vorticity perturbation �� can be expanded in the eigenfunctions of I�

���r� t	 

X
k

ak�t	�k�r	� ���	



��

Here� �
P

k� is a formal sum that includes an integral over the continuum modes plus

the discrete mode� We use a �discrete� notation since in practice our expansion is

numerical� Substituting Eq� ���	 into Eq� ����	 gives a �rst order ODE for the

time evolution of ak�

dak
dt

� i�kak 
 �
im

�Rw	m
Xkf�t	� ����	

In Eq� ����	� Xk denotes the eigenmode �excitability�� which is de�ned by the

equation

Xk � �
h�k� r

m��� �oi

h�k� �ki



Z Rv

�
rm���k�r	dr

h�k� �ki
� ����	

For the second equality� we have used Eq� ���	� which de�nes the inner product�

Equation ����	 can be solved easily for general f�t	�

ak�t	 
 �
im

�Rw	m
Xk e

�i�kt

Z t

�
dt�f�t�	ei�kt

�

� ����	

We are concerned only with times t after the impulse� during which the perturba�

tion is free to relax� Since the forcing function f vanishes after the impulse� and

before t 
 �� the upper and lower limits of integration in Eq� ����	 can be set to

positive and negative in�nity� Thus� Eq� ����	 reduces to

ak�t	 
 �
im

�Rw	m
XkF

�

k e�i�kt� ����	

where F �

k is the complex conjugate of the Fourier transform of f�t	� evaluated at

�k�

In the experiments with electron columns� the electric impulse is typically

applied over a time interval much less than the turnover time of the vortex ��

���o	� It is therefore reasonable to approximate the applied �ow �eld as a delta�

function impulse of strength �� i�e� f�t	 
 ���t	� Then� F �

k 
 � for all �k and

Eq� ����	 yields

ak�t	 
 �
im�

�Rw	m
Xk e

�i�kt� ����	
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It is of interest to note that the excitability Xk is proportional to the

�normalized	 multipole moment of the eigenmode� We de�ne the mth multipole

moment of a vorticity perturbation by the equation

Q�m��t	 �
Z Rv

�
dr rm�����m��r� t	� ����	

For an eigenmode� we have �� � �k�

The amplitude of the multipole moment measures the in�uence of the vor�

ticity perturbation on the external �ow� This is because ���m� varies like Q�m��rm

for r � Rv �when there is no wall	� Since the eigenmode excitability Xk is propor�

tional to the �normalized	 multipole moment of the eigenmode� the system exhibits

reciprocity� the eigenmodes with the strongest in�uence on the external �ow are

also the most sensitive to a brief �ow �eld that is created by an external source�

��� The Inviscid Damping of Impulse�Generated

Perturbations

In this section� we examine the linear response of a monotonic vortex to an

external� m 
 �� ��t	 impulse� After the impulse� the quadrupole moment of the

perturbation generally oscillates at a frequency �q� and decays at an exponential

rate �� Both �q and � are given by a Landau pole of the equilibrium pro�le�

As the quadrupole moment decays exponentially� the vorticity perturbation

can behave like a damped mode �i�e� a quasi�mode	� or undergo a more compli�

cated evolution that involves spiral wind�up ���� �� ��� ���� We will demonstrate

that the vorticity perturbation is a damped quasi�mode when ���q �� �� and that

spiral wind�up occurs when ���q � ��
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����� The Excitation of a Quasi�Mode on a Top�Hat Vortex

We �rst examine the response of Top�Hat �� The equilibrium pro�le and

the eigenmodes of this vortex are shown in Fig� �� Suppose that at time t 
 � the

vortex is perturbed by an m 
 �� ��t	 impulse� as described in the previous section�

Figure ���a shows the excitability spectrum Xk� which gives the amplitude of each

eigenmode after the impulse� The excitability spectrum is sharply peaked near

the exceptional continuum modes of the vortex �dashed modes in Fig� �	� In

fact� this peak has the same Lorentzian structure �solid line	 as the quasi�mode

perturbation that was described in Section � �Eq� ���	��

We now demonstrate that this excitation behaves like an exponentially

damped mode� as we explained it should in Section � Figure ���b shows the

vorticity perturbation at T 
 � and at T 
 � rotation periods� During this

time interval� the vorticity perturbation �for r �� �	 rotates with constant phase

velocity and decays an order of magnitude�

Figure � shows the evolution of the perturbation�s quadrupole moment

Q����t	 on a log�linear plot� The initial decay is exponential� and a least�squares �t

to the early time data gives a decay rate of � 
 �� ����� This decay rate agrees

with our earlier prediction that was obtained by �tting the expansion coe�cients

of the quasi�mode to a Lorentzian function of �k �Eq� ���	��

We now compare the observed decay rate of the quasi�mode to the decay

rate given by the Landau pole of the equilibrium pro�le� The Landau pole for a

Top�Hat vortex was calculated analytically by Briggs� Daugherty and Levy �����

This Landau pole has the following decay rate�

�BDL �
�

�m
ro�

�

o�r�	
�
ro
r�

��m��
�
��

�
r�
Rw

��m��
� ����	

Here� ro is the radius where j� �o�r	j is maximal� and r� is given by Eq� ��	�
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Figure ���� The excitation and decay of an m 
 � quasi�mode on Top�Hat �� �a�
The excitability spectrum� The solid line corresponds to the Lorentzian �t of the
quasi�mode�s frequency spectrum� which was obtained in Section ��� �b� The
vorticity perturbation at T 
 � and at T 
 � rotation periods� The left graph
in �b	 shows the amplitude �solid line	 and phase �dashed line	 of the Fourier
coe�cient �� 
 j��jei�� The right �gures in �b	 are contour plots of �� in the
plane of the vortex�

Note that r� is the critical radius of a Kelvin mode on a uniform vortex patch

that extends out to ro �Eq� ���	�� The actual critical radius of the quasi�mode

approximately equals r��

The dashed line in Fig� �� corresponds to the exponential decay that is

given solely by the Landau pole �Eq� ����	�� Clearly� the Landau pole gives the

correct decay rate of an impulse�generated perturbation on a top�hat vortex� It is

worth noting that the decay rate �BDL is proportional to the vorticity gradient at

the critical radius� This indicates that the damping is due to a resonant interaction

with co�rotating �uid� A qualitative explanation of this resonance damping is given

in Appendix I�

There are two notable features that distinguish the quasi�mode from a

genuine exponentially damped eigenmode� First� Q��� makes a transition toward

algebraic decay at approximately ��� rotation periods� Second� as the original
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vorticity perturbation decays� a smaller perturbation grows in a thin layer about

the critical radius� Eventually� the amplitude of this smaller perturbation saturates�

but its phase continues to evolve�

The structure of this bump is analytically tractable� During its growth� the

stream function is approximately that of a Kelvin mode at ro that is exponentially

damped�

�� � �im�

�
ro

Rw

�m
�o���Gm�rjro�e

���BDL�i���teim� � c�c� ������

Here� Gm is the Green�s function de�ned by Eq� ����	
� �o�	
 is the equilibrium

vorticity at r � 	� �� is de�ned in Eq� �����
 and �BDL is de�ned in Eq� ����	
�

The amplitude of the stream function depends on the strength of the impulse that

created the initial perturbation� ��ext � ���t

�

r
Rw

�m
�

Substituting Eq� �����
 into the linearized Euler equation for the evolution

of vorticity Eq� ����
�� it is simple to show that� near the critical radius�

lim
t��

j��j � �
�

�

j�j� �o�r�

�
ro
Rw

�m �
ro
r�

�m��
�
��

�
r�
Rw

��m�
r�

�BDL r�
�

m�o���r�o

��
� �r � r�


�
� �����
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Figure ���� Evolution of the quadrupole moment of Top�Hat � after an external
impulse� The dashed line indicates exponential damping� with decay rate given by
Eq� ����	
�
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Equation �����
 indicates that the width of the bump is proportional to the decay

rate � � �BDL of the quasi�mode� This relationship is simple to understand when

the quasi�mode is viewed as a wave�packet of continuum modes� The decay rate �

is the peak�width of the wave�packet�s frequency spectrum� Xk� The peak�width

de�nes a critical layer in the vortex� where the continuum modes are resonant with

the �uid rotation and have singular spikes� the thickness of this critical layer is

proportional to �� As the continuum modes disperse� the singular spikes unravel�

forming a bump across the critical layer�

Equation �����
 is compared to the numerical solution in Fig� ���� for the

case where � �o�r�
 � ��	� � �	���o�	
�Rw� There is good agreement between the

two� and we �nd that the agreement improves as � �o�r�
 decreases�

We have seen that an external impulse excites a quasi�mode on a top�hat

vortex� and we have studied the evolution of this quasi�mode in detail� We now

explain why the quasi�mode is excited� The simplest explanation is obtained in the

limit of zero vorticity gradient in the critical layer� in which case the quasi�mode

is actually an undamped discrete mode�

Figure ����a shows the excitability spectrum Xk of an impulse�generated

perturbation on Top�Hat � �Fig� ���
� Top�Hat � has zero gradient in the criti�
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Figure ���� The excitation of an m � � discrete mode on Top�Hat �� �a� The
excitability spectrum� �b� The vorticity perturbation at T � 	 and at T � ��	
rotation periods� The left graph in �b
 is the amplitude �solid line
 and phase
�dashed line
 of the Fourier coe�cient� �� � j��jei�� The right �gures in �b
 are
contour plots of �� in the plane of the �ow�

cal layer� and therefore supports a discrete mode� The discrete mode is excited

approximately ��
�
orders of magnitude higher than any of the continuum modes�

Figure ����b veri�es that the excitation behaves as though it consists only of a dis�

crete eigenmode� The vorticity perturbation is plotted at T � 	 and at T � ��	�

The phase of the perturbation remains uniform in r �increasing linearly with time
�

and the amplitude remains constant�

The discrete mode is excited far above the continuum� because its eigen�

function �d�r
 Eq� �����
� is approximately the same as the initial state of the

impulse�generated perturbation� ���r	 	
 � rm��� �o�r
� By orthogonality� the con�

tinuum eigenfunctions have a much smaller overlap with the initial perturbation�

Physically� the discrete mode dominates the excitation because its multipole mo�

ment is much greater than the multipole moments of the continuum modes� which

tend to be self�shielding� By reciprocity� the discrete mode is much more sensitive

to an external impulse than any of the continuum modes�
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Figure ���� Gaussian vortex� Equilibrium pro�le and m � � eigenfunctions
�eigenvectors of the matrix M
� All eigenfunctions are zero at r � 	�

����� The Excitation of a Gaussian Vortex

Figure ��� shows the equilibrium pro�le of a Gaussian vortex�

�o�r
 � e��
�r
Rw


�

� �����


Here� the Gaussian extends to r � ����Rw� beyond which �o is constant� Below

the equilibrium pro�le is a selection of the Gaussian�s m � � eigenfunctions f�kg�

There are no discrete modes� and there is no small group of continuum modes that

seem more exceptional than the others� We now examine the linear response of

this Gaussian to an externally applied� m � �� ��t
 impulse�

Figure �	 shows how the quadrupole moment evolves after the impulse

is applied to the Gaussian� Before �	 rotation periods� the quadrupole moment

oscillates with a constant frequency and decays four orders of magnitude� at an

exponential rate� After �	 rotation periods� the frequency decreases andQ��� begins



��

to decay at a much slower rate�

Also shown in Fig� ���	 is the evolution of the quadrupole moment� were

it given solely by a Landau pole of the equilibrium pro�le �dashed lines
� For a

Gaussian pro�le� Eq� ����	
 is no longer a good approximation to the imaginary

frequency of the Landau pole� Instead� the Landau pole was calculated numerically

using the method of Spencer and Rasband� This calculation is outlined in Appendix

III� The Landau pole gives a frequency �q � 	���� and a decay rate � � 	�	���

It is clear from Fig� ���	 that there is excellent agreement between pure Landau

damping and the initial decay that is given by the full eigenmode expansion�

However� the excitation does not �t our de�nition of a quasi�mode� the

vorticity perturbation is at no place and at no time closely approximated by a

function of the form z�r
e��tei�m���qt�� Instead� the vorticity perturbation under�
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Figure ��	
� Evolution of the quadrupole moment of a Gaussian vortex after an
external impulse �Q��� � jQ���jei�
� The dashed lines correspond to the evolution
that is given solely by the Landau pole�
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Figure ��		� Response of the Gaussian to an external impulse� �a� The excitabil�
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 are contour
plots of �� in the plane of the �ow�

goes a complicated evolution that includes the formation of thin striations across

the entire vortex �spiral wind�up
� This can be seen in Fig� �����b� which shows

the amplitude and phase of the vorticity perturbation at T � 	 and at T � ��

Global �lamentation of vorticity is characteristic of strongly damped ����q �

�
 excitations� Strong damping implies a broad peak in the frequency spectrum

of the excitation� This broad peak is evident in Fig� �����a� which shows the ex�

citability Xk as a function of �k� The continuum modes in the peak region have

critical radii than span a large portion of the vortex� As the continuum modes

disperse� their singular spikes at the critical radii unravel� This accounts for the

observed �lamentation across the vortex�

We now demonstrate that exponential damping can be removed on a Gaus�

sian by setting � �o equal to zero at the critical radius of the Landau pole� By setting

� �o equal to zero at the critical radius� we remove the mechanism for resonant damp�



��

ing� Therefore� a discrete mode should appear in the eigenspectrum� Figure �����a

shows the partially �attened Gaussian� Directly below the equilibrium pro�le is

the eigenfunction of the expected discrete mode�

The critical radius of this discrete mode lies inside the �attened layer� and

its eigenfrequency is degenerate with the continuum� This degeneracy can occur

because the vortex is not strictly monotonic� However� we are justi�ed in calling

the mode �discrete� for the following two reasons� ��
 it has no singular spike

at its critical radius� and ��
 it corresponds to a discrete point in the excitability

spectrum �Fig� �����b
� In contrast� all continuum modes have singular spikes�

Furthermore the continuum modes with critical radii in the region of zero vorticity

gradient have exactly zero excitability �Xk � 	
� Physically� these continuum

modes are not excitable because they correspond to vorticity perturbations where
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ζ
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ξ
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Figure ��	�� Gaussian vortex with a �at interval� �a� Equilibrium pro�le and
the m � � discrete mode� �b� Excitability of the m � � eigenmodes�
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� �o equals zero� and the application of an incompressible �ow �eld can not produce

a �linear
 vorticity perturbation where � �o equals zero�

��� Comparison of Linear Theory to Experiments

In the introduction� we mentioned that exponential decay is commonly

observed in �D �uid experiments with magnetized electron columns �e�g� Fig� ���
�

This behaviour is consistent with the linear response theory of Section ���� which

gave exponential decay for both Top�Hat and Gaussian vortices� We now directly

compare linear response theory to the early evolution of the experimental vortices�

We �nd that the exponential decay predicted by linear theory is in good agreement

with the experiments�

We examine two experimental vortices� which are both shown in Fig� �����

Here� the ��� markers are experimental data� and the solid lines are analytic func�

tions that approximate the equilibrium pro�les� These analytic functions are used

to calculate the Landau poles of the vortices� Note that Fig� �����b corresponds to

the vortex in Fig� ����

In the experiments� the vortices �electron columns
 are perturbed by an

asymmetric electrostatic potential� applied to the wall for a short time interval�

as described in Section ���� The applied potential is dominated by the m � �

azimuthal wave�number� and therefore deforms the vortex into an ellipse�

Figure ���� shows how the quadrupole moments evolve in both experiments�

The X�s correspond to the experimental data� The diamonds give the predicted

linear evolution� Here� linear theory is calculated by expanding the the initial

vorticity perturbation in continuum modes� Speci�cally� each eigenmode evolves

according to Eq� �����
� which assumes that the perturbation was generated by a

��t
 impulse�
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Figure ��	�� Equilibrium pro�les for two experimental vortices� The pro�le in
�b
 corresponds to the vortex in Fig� ����

In both experiments� linear response theory is in good agreement with the

initial evolution of the quadrupole moment� Furthermore� in both experiments�

Q����t
 behaves like an exponentially damped mode� with frequency �q and decay

rate �� We note that in Figure �����b� there is some discrepancy between the

experimental value of �q and linear theory� This frequency di�erence may indicate

that the early evolution in the experiment is slightly nonlinear� Another possibility

is that a ��t
 impulse approximation is not su�ciently accurate�

As expected from Section ���� �q and � are given by Landau poles of the

equilibrium pro�les� To obtain a Landau pole of an experimental vortex requires

an analytic continuation of �o�r
 in the complex r�plane �see Appendix III� or Refs�

��� ��� �	�
� To obtain this continuation� we approximate the experimental pro�le

with a combination of analytic functions� such as Gaussians� hyperbolic tangents

and polynomials� To obtain a Landau pole also requires a continuation of �o�r
�

This continuation is obtained from Eq� ����
� which says that �o�r
 is proportional

to the integral of r�o�r
� Of course� the integral is now in the complex plane� The
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Figure ��	�� Evolution of Q��� in two typical experiments� The equilibrium pro�
�les for experiments �a
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ory� The dashed lines show the evolutions that are given solely by the Landau
poles� In both �a
 and �b
� jQ���j is normalized to its initial value�

solid lines in Fig� ���� show our analytic approximations �evaluated on the real r�

axis
 of �o�r
 for both experiments� Using these analytic approximations� we obtain

the following Landau poles� For experiment �a
� the Landau pole is �q � 	����

� � 	�	��� For experiment �b
� the Landau pole is �q � 	�	��� � � 	�	�	�

The dashed lines in Fig� ���� are the Landau pole contributions to Q����t
�

These contributions vary with time exactly like e��te�i�qt� It is apparent from

Fig� ���� that the Landau pole contribution provides a good approximation for the

initial evolution of Q��� in both experiments�

After about � rotation periods� the experiments diverge from linear theory�

and the amplitude of Q��� begins to oscillate� These nonlinear oscillations are due

to mixing of trapped vorticity at the critical radius rc� Eventually the amplitude



��

becomes constant� as the vortex relaxes to a rotating �cat�s eyes� equilibrium �e�g�

Fig� ����a� far right
�

The nonlinear stages of the vortex evolution are beyond the scope of this

thesis� However� we mention that the linear stage can be made arbitrarily long by

decreasing the amplitude of the initial perturbation ��� ��� ����

��� The Role of the Landau Pole in Non�Impulse�

Generated Perturbations

����� The Early and Intermediate Evolution of the Multi�

pole Moment

Linear perturbations that are not generated by an external impulse do not

necessarily have an early or intermediate stage of exponential decay� given by a

Landau pole� This becomes clear if one puts the origin of time after the transition

toward algebraic decay that was observed in the previous section �e�g� Fig� ���
�

Here� we examine whether exponential decay is common �in a practical sense
 to

arbitrary perturbations� or special to excitations that are generated by an external

impulse� We will demonstrate that exponential decay� given by a Landau pole� is

common when the Landau pole satis�es ���q 

 �� but rare when ���q � ��

We �rst consider decay on Top�Hat � �Fig� ���
� which supports a weakly

damped ����q 

 �
 quasi�mode� Figure �����a shows the amplitude of Q��� as

a function of time for a variety of m � � perturbations on Top�Hat �� Curve A

serves as a reference for the exponential decay of a quasi�mode that is excited by

an external impulse at time t � 	� The dashed lines correspond to exponential

decay at the rate given by the Landau pole� Eq� ����	
�

Curves B�D correspond to initial perturbations that each have a single



��

peak in a thin strip �of width � � 	�	�
�

���r	 	
 �

�
� � cos

h
��
�
�r � d


i
jr � dj 
 ���

	 jr � dj � ����
�����


The values of d �the center of the peak
 for curves B� C and D are 	��� 	��� and

	�� respectively� Curve E corresponds to an initial vorticity perturbation that

increases linearly with r until dropping rapidly to zero at Rv�

���r	 	
 �

��
	 r �

�
�� e���

r�Rv
Rv

�
r 
 Rv

	 r � Rv�
�����


Finally� curve F gives the evolution of a complex ripple�

���r	 	
 �

�
sin�

�
���r
���

�
ei

���
��� r 
 L

	 r � L	
�����


with L�	���

In E and F � there are no clear signs of a quasi�mode or exponential decay�

On the other hand� the quasi�mode contributes to an intermediate stage of D� as

indicated by the dashed line� Moreover� the quasi�mode dominates two or more

decades of decay in A� B and C� Note that in C� the initial bump� centered at

the critical radius� resonantly drives the quasi�mode for a short period of time�

increasing the amplitude of the quadrupole moment by a factor of �ve� Thus� the

weakly damped ����q 

 �
 quasi�mode plays an important role in the evolution

of most of the perturbations considered here�

When considering similar perturbations on a Gaussian vortex �Fig� ���
� we

�nd that exponential decay� given by a Landau pole� is less common� Figure �����b

shows the evolution of the quadrupole moment as a function of time for a variety

of m � � initial conditions� Curve A serves as a reference for the exponential

decay of a perturbation that is excited by an external impulse at time t � 	� The

dashed line corresponds to exponential decay� at a rate given by the Landau pole�
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Figure ����� Evolution of the quadrupole moments for arbitrary m � � pertur�
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damping of Q��� determined by the Landau poles� with � � � � �	���o
	� in 
a�
and � � ���� �	���o
	� in 
b��

which was determined numerically 
see Appendix III�� Curves B�D correspond to

initial conditions that are given by Eq� 
����� with � � 	�	�� The values of d for

curves B� C and D are 	�	�� 	�� 
the critical radius� and 	��� respectively� Curve

E corresponds to an initial condition that increases linearly with r �Eq� 
�������

Curve F shows the decay of a complex ripple �Eq� 
������ with L � 	����

Besides A� only curve B shows a possible stage of exponential damping�

Thus� it appears that when ��� � �� the Landau pole plays a lesser role in the

evolution of arbitrary perturbations�

����� Late�Time Decay

Even when the Landau pole has some role in the early stages of inviscid

decay� exponential damping eventually succumbs to algebraic decay� Late�time



��

algebraic decay is well known from various analyses ��� ��� ��� �	� ���� Here�

we use eigenmode theory to construct a simple proof that the multipole moment

decays algebraically in the late�time limit� We assume only that there are no

discrete modes� that the continuum has a �nite frequency range� and that the

Fourier transform of Q�m�
t� has no singularities�

If there exist no discrete modes� then the multipole moment can be written

as a �nite Fourier integral over the continuum�

Q
t� �
Z �max

�min

d� �Q
��e�i�t� 
�����

Here� �max � m�o
	� and �min � m�o
Rv�� For convenience� we have dropped

the superscript 
m� on the multipole moment�

Assuming that �Q
�� is a smooth function of �� Eq� 
����� can be expanded

using integration by parts 
twice��

Q
t� �
i

t
�Q
��e�i�t

����
�max

�min

�
�

t�
�

�
� d �Q
��

d�
e�i�t

�����
�max

�min

�
Z �max

�min

d�
d� �Q
��

d��
e�i�t

�
� �


�����

The expression in square brackets is �nite for all times so that the second term

on the right�hand�side of Eq� 
����� decays at least as fast as t��� If Q
�� does

not vanish at atleast one end point� Eq�
��� implies that Q � t�� in the late time

limit� otherwise� Q � t�n� where n is a positive integer greater than one�

The particular structure of �Q
�� determines the time scale before the lead�

ing order term dominates the expansion� A sharp peak in �Q
�� prevents the

expansion from converging rapidly� For a quasi�mode� the velocity spectrum is

approximately Lorentzian
�
�Q
�� � �

����q�����

�
� and the period before algebraic

decay is much greater than the e�folding time ����
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��� Generalization of the Eigenmode Expansion

to Non�Monotonic Equilibria

When the equilibrium vorticity varies non�monotonically with radius� ex�

ponentially growing and algebraic instabilities can dominate the linear evolution�

The exponential instabilities are immediately apparent as eigenvalues of M with

positive imaginary parts� An algebraic instability will appear as a singularity in

the expansion coe�cients Ak of an arbitrary perturbation� In Sections � and � we

outlined a procedure for obtaining the eigenmode expansion of a perturbation on a

monotonic vortex� In this section� we generalize the procedure to cover all possible

equilibria�

The expansion formula is made more inclusive by introducing �right�handed�

and �left�handed� eigenvectors� Let �R denote an eigenvector of the real matrix

M � and let �R denote its eigenfrequency� Furthermore� let �L and �L denote an

eigenvector and eigenfrequency of MT � the transpose of M � �R will be called a

right�handed eigenvector and �L will be called a left�handed eigenvector� Although

M and MT have the same set of eigenvalues� the right�handed eigenvectors do not

generally equal the left�handed eigenvectors�

However� from basic linear algebra we know that �L and �R satisfy the

following orthogonality equation�

h�L� �Ris � 	 if �L �� ��R� 
�����

The standard inner�product that is used in Eq� 
����� is de�ned below�

hf� his �
NX
i��

f �
ri�h
ri�� 
���	�

In what follows� we will assume that a vorticity perturbation is well ap�



�		

proximated by a sum over right�handed eigenmodes�

��
ri� �� t� �
��X
m��

NX
k��

A
�m�
k �

�m�
R�k 
ri�e

i�m���
�m�
k

t� � c�c� 
�����

Equation 
����� can be used to derive the expansion coe�cients Ak� The result is

given below�

A
�m�
k �

D
�
�m�
L�k � 	�

�m�
r� 	�
E
sD

��m�
L�k � �

�m�
R�k

E
s

� 
�����

Here 	��m�
r� 	� is the mth Fourier coe�cient of the vorticity perturbation at t � 	�

and �L�k is the eigenvector of M
T that corresponds to the eigenfrequency ��R�k�

When � �o does not equal zero at any radial grid�point� the left�handed eigen�

vectors are proportional to the right�handed eigenvectors� Speci�cally� one can

verify that

�L
ri� �
r�i

� �o
ri�
��R
ri� for �L � ��R� 
�����

When the vortex is monotonic� � �o 
 	 for all ri and Eq� 
����� is valid� Then�

Eq� 
����� can be substituted into Eq� 
����� and we arrive at our previous formula

for the expansion coe�cients� Eq� 
������

In the case of a monotonic vortex� we were able to prove that M has N

linearly independent eigenvectors� where N is the order of the matrixM � We have

given no proof of completeness for the general case� However� for all cases we have

studied� we �nd that M has N linearly independent eigenvectors�

��� A Hollow Vortex

A simple example of a non�monotonic vortex is the hollow vortex that is

shown in Fig� �����a 
taken directly from Ref� ������ The radial pro�le of this vortex

is given by the following equation�

�o
r� �

��
	 � � �

�
r
Rv

��
� �

�
r
Rv

��
� 

�
r
Rv

��
r 
 Rv

	 r � Rv�

����
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where Rv � 	��Rw� It is well known that this vortex behaves much di�erently

than a monotonic vortex� an arbitrary m � � perturbation will grow like t���� and

perturbations with m � � will grow exponentially�

However� there is some concern that discretization can lead to misleading

results in a numerical stability analysis� In this section� we discuss the possibil�

ity of �nding spurious instabilities� which are artifacts of the discretization ����

These instabilities disappear as the radial grid�point spacing goes to zero� We

also demonstrate that the numerical eigenmode expansion accurately captures the

m � � algebraic instability� and that this instability is associated with a �singu�
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larity� in the expansion coe�cient Ak�

����� The Eigenmodes

Figure �����b shows the numerical eigenspectrum for m � � perturbations

on the hollow vortex� There exists one complex conjugate pair of eigenfrequencies

that stand far away from the real axis� Im��k� � ����� � �	��� These eigenfre�

quencies stay �xed as the grid�point spacing �r goes to zero� They are genuine

exponentially damped and growing eigenmodes of the vortex� The imaginary parts

of the additional complex eigenfrequencies disappear as �r goes to zero� Therefore�

these eigenmodes are spurious� their imaginary parts exist only in the discretized

problem� The genuine unstable eigenmode is shown in Fig� �����b�

Figure �����a shows the numerical eigenspectrum for m � � perturbations

on the hollow vortex� A selection of the 
right�handed� radial eigenfunctions is

shown in Fig� �����c� The eigenmodes consist of a genuine discrete mode� contin�

uum modes and a complex conjugate pair of spurious modes� The eigenfunction

of the discrete mode 
top� is proportional to � �o and its eigenfrequency is equal

to �o
Rw�� The growth�decay rates 
Im��k�� of the spurious modes go to zero

as the grid�point spacing �r goes to zero 
see Fig� �����c�� For �r � �		�� the

e�folding time is ���� �	� central rotation periods� This e�folding time far exceeds

any time�scale that we will consider� So� the spurious eigenmodes are e�ectively

neutral�

����� The Algebraic Growth of an m�� Perturbation

Although the eigenmodes are neutrally stable� Smith and Rosenbluth ����

showed that a generic m�� perturbation on a hollow vortex will grow asymptoti�



�	�

10-6

10-5

10-4

10-3

0.001 0.01

Im
(ω

)

∆r/R
w

~∆r

(c)spurious mode
(m=1)

10-5

0

10-5

Im
(ω

) (a)m=1 spurious

-4 10-3

0

4 10-3

0 0.2 0.4 0.6 0.8 1 1.2

Re(ω)

(b)m=2 genuine

Figure ����� Eigenspectra of a hollow vortex� �a� m � �� �b� m � �� �c�
Growth rate 
Im���� of the spurious m � � eigenmode vs� the grid�point spacing

�r��

cally with time like t���� Speci�cally� the late�time growth is given by

	�
���
SR
r� t� � �e�i
	o�rz�t�

��
� �
����� ��t

���

o
rz�

�����
���

h
rz�H
r � rz��
�

o
r�� 
�����

Here� rz is the radius at which the shear is zero�

��

o
rz� � 	� 
�����

H is the heaviside step function�

H
r � rz� �



� r 
 rz
	 r � rz�


�����

and h is the following integral over the initial vorticity perturbation�

h
r� �
�

r�

Z r

o
dr�r��	����
r�� 	�� 
�����
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Note that the asymptotic perturbation is proportional to to � �o
r� for r 
 rz� In

addition� the asymptotic perturbation �Eq� 
������ can grow to in�nity for r 
 rz

without a�ecting the vorticity distribution for r � rz� This is because the stream

function of the asymptotic perturbation vanishes for r � rz�

We have tested the accuracy of the numerical eigenmode expansion by

comparing it to the algebraic growth that is predicted by Smith and Rosenbluth�

At t � 	� the hollow vortex was given a sinusoidal m � � perturbation�

	����
r� 	� � sin
�
�r

Rv

�
� 
�����

The perturbation was decomposed into eigenmodes with expansion coe�cients

determined by Eq� 
������ At later times� the perturbation is obtained from a
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sum over these eigenmodes� with their appropriate time�dependent phase�shifts


Eq� ���� Figure �����a shows the amplitude of the perturbation as a function of

time on a log�log plot� The amplitude is measured at the arbitrary radius �r� As

expected� the perturbation grows like t���� Figure �����b shows the amplitude and

phase of the computed perturbation compared to 	�
���
SR after �	 rotation periods�

the two are in excellent agreement�

The algebraic growth of an m � � perturbation presents a paradox� For

the case of a monotonic vortex� a perturbation consisting of neutral eigenmodes

eventually decays as the eigenmodes disperse and �phase�mix�� Here� we are faced

with the unsettling result that an m � � perturbation on a hollow vortex will grow

in�nitely large due to a similar dispersion of neutral continuum modes�

Figure ���� provides the answer to this paradox� Figure ���� shows that

the expansion coe�cients Ak of our initial perturbation �Eq� 
������ diverge near

the largest eigenfrequency� At t � 	� the eigenmodes with �in�nite� amplitude

are hidden through destructive interference� Dispersion unmixes these eigenmodes

and causes the perturbation to grow like t���� in accord with the theory of Smith

and Rosenbluth�
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���� Conservation of Energy� Angular Momen�

tum and the Moments of Vorticity

The �D Euler equations conserve the bulk kinetic energy E� the total cir�

culation � and all higher moments of the vorticity Zn� n � �� �� � � � ��	 With

cylindrically symmetric boundary conditions� the �D Euler equations also conserve

the canonical angular momentum P�	 These invariants are de
ned below�

E � ��
�

R
d�r ���

P� �
R
d�r r���

� �
R
d�r ��

Zn �
�
n

R
d�r �n n � ��

��	��

Note that our de
nitions of energy and angular momentum are simpli
ed for con�

venience	 The actual bulk kinetic energy �per unit length in the z�direction� of the

�ow is �E� where � is the uniform mass density of the �uid	 The actual angular

momentum �per unit length� is �
�
� ��R�

w � P��	

So far� we have encountered perturbations that in linear theory can decay

to zero or grow to in
nity	 It is of interest to understand how the invariants in

Eq	 ��	�� are conserved during this process	

We 
rst consider the conservation of energy E	 The energy decomposes

into contributions from each azimuthal wave�number m	 Speci
cally�

E � Eo � ��
Z Rv

�
drr

�
�o��

��� �
�

�
����������

�
� ��

�X
m��

Z Rv

�
drr���m����m���

��	��

Here Eo is the energy of the unperturbed circular �ow	 The term to the far right of

Eq	 ��	�� accounts for the energy of all components with m � �	 The middle term

is the energy of the m � � component ��o is the equilibrium stream function�	 It is



��

second order in the perturbation amplitude since ����� is a second order quantity�

������

�t
� �

�

r
Im

�
�X

m��

m
�

�r

�
���m����m��

��
� ��	��

Although it is possible to associate an energy with each azimuthal wave�

number m� it is not generally possible to assign an energy to an individual eigen�

mode	 This is because the eigenmodes of an ideal �D vortex do not �diagonalize

E�	 This can be seen explicitly for the case of a monotonic vortex� where the en�

ergy of the mth component of vorticity has the following expansion in the complex

eigenmode amplitudes fak�t�g�

�E�m� � ���
Z Rv

�
drr���m����m��

� ��
X
k

jakj
�
�
�k�

�
�o �

	k

m

�
�k

�
� ��

X
k ��k�

a�kak� h�k��o�k�i �

��	��

Equation ��	�� was derived using the relationship between �k and �k that is given

by Eq	 ��	�	 The inner product 
�� is that de
ned by Eq	 ��	���	 We have used

a discrete notation for the eigenmode expansion since in practice it is numerical	

In the familiar case of a string or a drumhead� cross�terms do not appear

in the eigenmode expansion of energy	 Instead� the energy is a sum of terms that

are proportional to jakj
�	 In linear theory� these terms will stay constant� provided

that the eigenfrequencies are real	 On the other hand� the real eigenfrequencies

of a monotonic vortex do not ensure conservation of energy for an individual m�

number	 The cross�terms in Eq	 ��	�� permit interference that can lead to the

growth or decay of �E�m�	 For example� when a quasi�mode with m � � decays�

�E��� goes to zero	

Of course� the energy of the quasi�mode does not vanish	 A few steps of

algebra show that the second order change in �E��� exactly cancels the second

order change in �E�m� that occurs through phase�mixing	 In other words� the



���

m � � component of vorticity provides a source or sink of energy for linear �ow

with m � �	

Unlike energy� the canonical angular momentum P� and the total circula�

tion � have no direct contributions from wave�numbers with m � �	 Only the

m � � component of vorticity contributes to these quantities�

P� � P��o � ��
R Rv

� drr������� and

� � �o � ��
R Rv

� drr������

��	��

In time� a perturbation with m � � will change ����� according to Eq	 ��	��	

However� this change will conserve P� and �	

Conservation of Zn occurs much like the conservation of E	 For the case of

small amplitude perturbations� it is possible to approximate Zn as a second order

integral�

Zn � Zn��o� � ��
Z Rv

�
drr ��o�

n�� ����� � ���n� ��
Z Rv

�
drr�n��o

�X
m��

���m����m��

��	��

In Eq	 ��	�� it is evident that the m � � component of vorticity provides a source

or sink of Zn for the linear evolution of perturbations with m � �	

���� Summary

In this chapter we examined the excitation and inviscid damping of small

perturbations on a circular vortex	 We showed that after an external impulse

deforms the vortex� the multipole moment Q�m� of the perturbation oscillates at

a constant frequency 	q� and decays at an exponential rate �	 Furthermore� we

found that both 	q and � are given by a Landau pole of the equilibrium pro
le	

This result is signi
cant� since perturbations that are not generated by an external

impulse need not decay exponentially �see Section �	��	
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During exponential damping� the vorticity perturbation can be a quasi�

mode� or undergo a complicated evolution that involves spiral wind�up	 These

di�erent behaviors can be understood with an eigenmode analysis	 When �	q 



�� the excitation is dominated by a small group of exceptional continuum modes�

which occupy a narrow frequency band of width �� centered at 	q	 This wave�packet

of exceptional continuum modes behaves like an exponentially damped discrete

mode �for r 

� rc�	 On the other hand� strong damping ��	q � �� corresponds

to a more uniform excitation of the continuum modes	 The critical radii �singular

points� of these continuum modes span the entire vortex	 Consequently� as the

continuum modes disperse� their singular spikes �dephase� across the entire vortex	

This accounts for the observed spiral wind�up	

For a top�hat vortex� we were able to explain why the Landau�pole domi�

nates after an external impulse is applied to the vortex	 Here� the Landau�pole was

clearly associated with a quasi�mode �or a single discrete mode in the limit that

� � ��	 As mentioned in the previous paragraph� this quasi�mode is a small group

of exceptional eigenmodes	 We showed that� for r 
� rc� the eigenfunctions of these

modes are approximately equal to the radial perturbation that is generated by the

impulse	 By orthogonality� the other modes of the vortex have a much smaller

overlap with the initial condition� therefore� the the other modes are not excited	

Physically� the excitation of a quasi�mode on a top�hat vortex is due to

the exceptionally large multipole moments of the eigenmodes in the wave�packet	

Because these eigenmodes have large multipole moments� they have the strongest

in�uence on the external �ow	 By reciprocity� they are also the most easily excited

by an external impulse �as discussed in Section �	��	

We did not provide an explanation for why the Landau pole dominates

the response of a Gaussian vortex	 This result came as a surprise� since on the
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Gaussian� there is no small group of eigenmodes �quasi�mode wave�packet� with

exceptional large multipole moments	 This is evident in the the strong damp�

ing ��	q � �� of the excitation� which implies a broad peak in the excitability

spectrum	

In addition to our study of inviscid damping� we outlined the eigenmode

method for solving the initial value problem	 While this technique is not new

���� ��� we provided details which� to our knowledge� have not been discussed

elsewhere �e	g	 the orthogonality relations in Eq	 ��	����	 We have also veri�


ed explicitly that the numerical eigenmode expansion gives accurate results �e	g	

Fig	 �	���	 Of course� the expansion generally breaks down for lengths less than

the radial grid�point spacing �r� and times greater than the minimum value of

� ��m��
o�r��r	

���� Appendix I� A Physical Explanation of In�

viscid Damping�

In this appendix� we explain inviscid damping using conservation of canon�

ical angular momentum� P� �
R
d�r r��	 Note that P� is a convenient sim�

pli
cation of the actual angular momentum L� which is given by the equation

L � �z �
R Rw

� d�r �r � ��v � �
�
� ��R�

w � P��	 Here� � is the uniform mass density of

the �uid� and � is the total circulation of the �ow �Eq	 ��	���	

������ The Angular Momentum of a Mode

For simplicity� we consider a uniform circular vortex patch of radius ro and

vorticity � � �	 Suppose that a ripple of azimuthal wave�number m is created on

the edge of the vortex patch� in such a way that the area of the �incompressible�
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Figure ����� Elliptical deformation of a uniform circular vortex patch	

vortex patch is conserved	 Figure �	�� illustrates this perturbation for the case of

m � �	 Here� the ripple corresponds to an elliptical deformation	

Let rp��� t� describe the radius of the perturbed vortex patch	 With the

ripple�

rp��� t� � ro � �rm�t� � am�t�cos �m� � �m�t�� � ���A��

Here am�t� and �m�t� are the amplitude and phase of the asymmetric part of the

ripple	 The symmetric part �rm�t� is required to conserve the area of the vortex

patch	 To lowest order� �rm is related to am by the following equation�

�rm � �
a�m
�ro

� ���A��

When the vortex patch is isolated� the ripple behaves like an undamped

mode ����	 Speci
cally� am�t� is constant and �m�t� � �	t	 Here� 	 is approxi�

mately �� times� the Kelvin frequency 	� that is de
ned in Eq	 ��	���	

The angular momentum P
�m�
� of the mode is de
ned as the di�erence in P�

between the vortex patch with and without the mode	 That is�

P
�m�
� �

Z ��

�
d�

Z rp

�
dr r�� �

Z ��

�
d�

Z ro

�
dr r��� ���A��

Using Eq	 ��	A�� for rp� Eq	 ��	A�� for �rm� and carrying out the integrals in

Eq	 ��	A��� we obtain the following expression �to lowest order in am� for the
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Figure ����� Kelvin�s cat�s eyes at the critical radius rc	

angular momentum of the mode�

P
�m�
� � ��r�oa

�
m� ���A��

������ Inviscid Damping

Now suppose that there is a low level �

 �� of vorticity outside the vortex

patch	 If this low level of vorticity decreases monotonically with r� it will cause

the mode to decay	

To see this� we examine the �ow at the critical radius rc �� ro�� where the

�uid rotation is resonant with the mode �m�o�rc� � 	�	 In a frame that rotates

with the mode� the streamlines near rc form cat�s eyes ����	 These cat�s eyes �grey�

are illustrated in Fig	 �	��� for the case of m � �	

In time� the vorticity in the cat�s eyes is mixed	 Since � �o�rc� 
 �� this

mixing increases the mean�square�radius of the �ow �i	e	 P��	 The only way for

the system to conserve total P� is for the mode amplitude am to decay	 We refer

to this process as �inviscid damping	�

The rate of change of the mode angular momentum is equal and opposite to

the rate of change of P� in the skirt of low�level vorticity that is outside the vortex

patch	 Let P
�s�
� denote the angular momentum in the skirt	 The time derivative of
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P
�s�
� can be expressed as the following integral�

 P
�s�
� � ��

Z Rw

�
dr r�

������s

�t
� ���A��

Here� �����s �r� t� is the m � � vorticity perturbation in the skirt	 Using Eq	 ��	��

for the time derivative of �����s � and integrating by parts� we obtain

 P
�s�
� � ��m

Z Rw

�
dr r Im

h
���m����m��

s

i
� ���A��

We will assume that the stream function ���m��r� t� is dominated by the

mode	 That is�

���m��r� t� 	
am�t�

�
�roGm�rjro�e

�i�t� ���A�

Here� Gm is the Green�s function that is de
ned by Eq	 ��	���	 In Eq	 ��	A�� the

phase of the mode is simply �	t	 This neglects any phase perturbation due to the

low�vorticity skirt	

The evolution of ���m�
s is obtained from the linearized Euler equation�

����m�
s

�t
� im�o�r���

�m�
s � i

m

r
� �o�r���

�m� � �� ���A��

Here� ���m� is given by Eq	 ��	A�� and is proportional to the mode amplitude am	

The solution to Eq	 ��	A�� is given by

���m�
s �r� t� � am

m�ro
�r

� �o�r�Gm�rjro�

m�o�r�� 	

h
e�i�t � e�im�o�r�t

i
� ���A��

provided that ���m�
s is initially zero� and that am is approximately constant over

the integration period t	

Substituting Eq	 ��	A� and Eq	 ��	A�� into Eq	 ��	A�� gives the following

expression for the time derivative of the angular momentum in the skirt�

 P
�s�
� � ���a�mm

���r�o

Z Rw

o
drG�

m�rjro��
�
o�r�

sin ��m�o�r�� 	�t�

m�o�r�� 	
� ���A���
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After a few cycles �i	e	 m�ot 	 	t �� ��� the integrand in Eq	 ��	A��� becomes

sharply peaked at the critical radius rc� and the integral asymptotes to a 
xed

value	 This asymptotic value is given below�

 P
�s�
� � ������r�omG�

m�rcjro�
� �o�rc�

j��
o�rc�j

a�m ���A���

By conservation of angular momentum� the time derivative of the mode

angular momentum must balance the time derivative of the angular momentum in

the skirt	 That is�

 P
�m�
� � �  P

�s�
� � ���A���

We will use Eq	 ��	A��� for the time derivative of P
�s�
� � with am now a function

of time	 This approximation is good� provided that the mode amplitude am varies

slowly compared to the rate at which  P
�s�
� equilibrates� under the condition of 
xed

am	 That is� the decay rate � of the mode must satisfy �	 

 �	

Substituting Eq	 ��	A�� and Eq	 ��	A��� into Eq	 ��	A���� we obtain

d

dt
a�m �

�

�m
ro�

�
o�rc�

�
ro
rc

	�m��
�
��

�
rc
Rw

	�m
��

a�m� ���A���

Here� we have used ��
o � ��r�or

� �r � ro�� and Eq	 ��	��� for the Green�s function

Gm	 The solution to Eq	 ��	A��� is am�t� � am���e��t� where the decay rate � is

given below�

� �
��

�m
ro�

�
o�rc�

�
ro
rc

	�m��
�
��

�
rc
Rw

	�m
��
� ���A���

This decay rate is equal to the decay rate �Eq	 ��	���� with r� � rc� that was

calculated by Briggs� Daugherty and Levy ����	

Note that when � �o�rc� � �� mixing at rc decreases P� in the skirt	 In this

case� the amplitude �am� of the mode must increase to conserve angular momen�

tum	 In other words� positive vorticity gradient at rc leads to an instability	 This

instability is evident in Eq	 ��	A���� which gives a positive growth rate �negative
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�� when � �o�rc� � �	

���� Appendix II� Analogy to Plasma Kinetic

Theory

In this appendix� we brie�y mention some similarities between the eigen�

modes of an inviscid �D vortex and the eigenmodes of a neutral plasma that is

governed by the �D Vlasov�Poisson equations	

������ Linearized Vlasov�Poisson System

Consider a gas of electrons that is immersed in a neutralizing background

of positively charged ions	 Let F �x� v� t� denote the electron distribution in x�v

phase�space� where x is the position of an electron and v is its velocity	 F can be

written as a sum of two parts�

F �x� v� t� � fo�v� � f�x� v� t�� ���A���

Here� fo is the equilibrium distribution and f is a perturbation	 We will assume

that the evolution of f is given by the linearized Vlasov�Equation�

�f

�t
� v

�f

�x
�

e

me

��

�x

�fo
�v

� �� ���A���

Here� �e is the charge of an electron� me is the mass of an electron and ��x� t� is

the electrostatic potential	 The electrostatic potential satis
es Poisson�s equation�

���

�x�
� ��e

Z
dvf� ���A��



���

������ The Eigenmodes of the Distribution Function

The evolution of f will be constructed from eigenmodes of the form

f � g�v�ei�kx��t�� ���A���

Substituting Eq� ���A��� into Eq� ���A��� and Eq� ���A���	 we 
nd that the velocity

eigenfunctions must satisfy the integral equation

�� � kv� g�v� �
��e�

mek
f �o�v�

Z
dv�g�v�� � � ���A���

Equation ���A��� has the same form as the eigenvalue equation for an ideal ax�

isymmetric vortex �Eq� �������� The structure of the eigenmodes is completely

determined by fo�v�	 just as the vortex eigenmodes are determined by �o�r��

However	 there are several di�erences worth mentioning� First	 the �shear�

factor� is always the linear function kv� In contrast	 the shear�factor in the vortex

eigenmode equation is m�o�r�	 which is generally not linear with r� Second	 the

integral over the distribution function g has a weight factor of �� In the vortex

eigenmode problem	 the weight factor is r�Gm�rjr���

A complete solution to the eigenmode problem �Eq� ���A���� was derived by

Van Kampen ������ and Case ������ ���	 ���� Their solution consists of continuum

modes of the form

g�v� � �P

�
��e�

mek�
f �o�v�

�v � ��k�

�
� ����k�� �v � ��k� � ���A��

Here	 P denotes the �principal part� and ����k� is a normalization factor� Note the

singularity at the critical velocity vc � ��k	 which is analogous to the singularity

at the critical radius of a vortex continuum mode�

In some cases	 the equilibrium distribution fo supports a discrete mode�

For example	 consider a monotonic distribution	 where fo decreases to zero in both
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directions from v �  to v � �vmax� The distribution fo can have a discrete mode

of the form

gd�v� �

���
��

��e�

mek�
f �o�v�

v � ��k
jvj � vmax

 jvj � vmax�
���A���

provided that vmax � vc � ��k� A cold plasma �vmax � � is guaranteed to have a

discrete mode with � equal to the �plasma frequency�	 �p �
q
��e�no�me� Here	

no is the equilibrium electron density de
ned by the equation	 no �
Z
fodv�

Now suppose that a tail is added to the �cold� distribution function� If

this tail extends past the critical velocity vc	 the discrete mode will fracture into a

wave�packet of continuum modes� According to Landau	 this wave�packet should

produce an electrostatic potential that damps exponentially with time ����� This

scenario is very similar to the transformation of a discrete mode into a quasi�mode

by attaching a skirt to a vortex�

������ Numerical Solution

For a numerical solution	 we can discretize the continuous velocity coordi�

nate v� In particular	 we will choose an evenly spaced grid	

vi � f�N�v���N � ���v� � � � � �N � ���v�N�vg � ���A���

The integral eigenvalue equation �Eq� ���A���� is now approximated by a system

of �N � � linear equations�

NX
j��N

M
�k�
ij g�vj� � �g�vi�� ���A���

Here	 the index i runs from �N to N � The matrix elements of M �k� are real and

given below�

M
�k�
ij � kvi�ij �

��e�

mek
f �o�vi��v� ���A���
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In deriving this expression for M
�k�
ij 	 we have used trapezoidal integration to ap�

proximate the integral that appears in Eq� ���A����

The eigenvalues of M �k� will inform us of any exponential instabilities�

Moreover	 we can use the eigenmodes of M �k� to solve any initial value problem	

f �x� vi� t� �
X
k

NX
l��N

A
�k�
l g

�k�
l �vi�e

i

�
kx��

�k�
l

t

�
� ���A���

The expansion coe�cients are obtained by projecting the initial perturbation onto

the left handed eigenvectors of M �k��

The evolution of the electrostatic potential 	 is of more practical value than

the evolution of f � This potential can be written as a sum over contributions from

each eigenmode

	�x� t� �
X
k

NX
l��N

��k�
l e

i

�
kx��

�k�
l

t

�
� ���A���

The expansion coe�cient �
�k�
l is an integral over the eigenmode g

�k�
l �v��

�
�k�
l � �

��e

k�
A
�k�
l

Z
dvg

�k�
l �v�� ���A���

���� Appendix III� Landau Poles

In this appendix	 we review how to calculate numerically the Landau poles

of a monotonic vortex� We present a brief summary �without derivations� of the

main points in Refs� ���	 ��	 ��	 and refer the reader to these articles for greater

detail	 and a more precise treatment�

Note that Refs� ���	 ��	 �� concern themselves primarily with the evolution

of

��


r
�Rw� t�� In this thesis	 we examine the evolution of the multipole moment

Q�t�	 which is de
ned in Eq� ������� These two quantities di�er only by a constant

of proportionality� Speci
cally	 Q�t� � �Rw�
m�� 
��


r
�Rw� t��
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������ The Laplace Transform of the Multipole Moment

The multipole moment Q�t�	 of a perturbation that varies like eim� can be

written formally as a contour integral in the complex � plane�

Q�t� � �
�

��

Z
���i�

���i�
d� �Q���e�i�t� ���A���

where � is a positive real number� We will refer to the contour of integration in

Eq� ���A��� as the �inversion contour�� The function �Q��� is the usual Laplace

transform	 de
ned by �Q��� �
Z
�

�
dtQ�t�ei�t�

A solution for �Q���	 in terms of the initial vorticity perturbation ���r� �	

can be extracted from the literature ���	 ����

�Q��� �
i�Rw�

m��

���Rw� ��

Z Rw

�
dr

r

Rw

���r� �����r� �

� �m�o�r�

�
N ���

���Rw� ��
�

���A���

Here	 the function ���r� �� is a smooth solution to the equation

�
�

r





r
r




r
�
m�

r�
�
m

r

� �o�r�

� �m�o�r�
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and is regular at the origin� By �regular at the origin�	 we mean speci
cally that

���� �� � �
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no poles!
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Im[r]

contour defining Q(ω)
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0
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~

for  Q(ω)
~

Figure ����� �a� When the radial integration contour is along the real r�axis	 �b�
there are no poles in �Q��� that correspond to zeros of ���Rw� ���
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Figure ����� �a� When the radial integration contour is deformed into the upper
half�plane	 �b� a Landau pole appears in �Q����

Note that Eq� ���A�� is nothing more than the eigenmode equation for

stream function perturbations ���� that vary like ��r�ei�m���t�� The only di�er�

ence is that �� need not vanish at r � Rw	 and therefore �nontrivial� solutions

exist for arbitrary ��

Suppose that the vortex extends to the wall �i�e� Rv � Rw�	 so that there

are no discrete modes ����� Then	 there are no values of �	 for which ���Rw� �� � �

The analytic properties of �Q��� for this case are shown schematically in Fig� �����

There are no poles in �Q���	 but there is a branch�cut along the real axis	 in the

interval m�o�Rw� � � � m�o��� This branch�cut arises from the singularity in

the integrand that de
nes N ����

It is possible to deform the branch�cut below the real�� axis	 by deforming

the radial contour	 in N ���	 above the real�r axis� The new branch�cut	 de
ned

by m�o �Re�r� � i Im�r�� � �	 is sketched in Fig� ����� If the branch�cut in the

complex ��plane bends su�ciently far below the real�axis	 a Landau pole �� �

�q � i� will appear in the analytic continuation of �Q���	 between the branch�cut

and the real ��axis�

The Landau pole corresponds to a zero of ���Rw� ��� This zero is now

possible	 since ���r� �� is de
ned along the deformed radial contour �Fig� �����a�	
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Re[ω]

Im[ω]

deformed
inversion contour

Figure ����� The inversion contour can be deformed to wrap around the
branch�cut and the Landau pole� The contribution from the Landau pole gives
a term in Q�t� that decays exponentially�

and not the real r�axis� So	 the Landau pole can be calculated by 
nding a discrete

mode of Eq� ���A��	 along the deformed radial contour� The boundary conditions

on this unphysical discrete mode are ���� �� � ���Rw� �� � �

The inversion integral �Eq� ���A���� can be deformed around the Landau

pole and the branch�cut	 as illustrated in Fig� ��� The contribution from the Landau

pole gives a term in Q�t� that is proportional to e��te�i�qt� As we have seen	 this

term dominates the early evolution of Q�t�	 when the initial perturbation is caused

by an external impulse�

Note that the locations of Landau poles in the complex ��plane are deter�

mined solely by the equilibrium pro
le �o�r�	 and have no relation to the initial

perturbation�

������ Numerical Computation of a Landau Pole

In Section ���	 we examined the response of a Gaussian vortex to an external

m � � impulse� We showed that the initial evolution of the quadrupole moment

was dominated by the Landau pole� In this subsection	 we discuss speci
cally how

this pole was computed� A similar procedure was used to calculate the Landau



���

poles of the experimental pro
les�

As mentioned previously	 a Landau pole is a solution to the mode equation

�Eq� ���A��� along a deformed contour in the complex r�plane� The speci
c con�

tour that we used to calculate the Landau pole of the Gaussian vortex �Eq� �������

is the following parabola�

r�s� � Rw

h
s� i�s� s��

i
� ���A���

where s is a real parameter	 which satis
es  � s � ��

The mode equation ���A�� can be rewritten as a di�erential equation in

s	 �
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where ����s� �� � ���r�s�� ��	 and r
��s� � Rw �� � i��� �s��� The asymptotic form

of the ���r� �� is r
m	 as r� � This implies that ����s� �� must satisfy the following

boundary conditions at s � � �� ��

�i� ������ �� � rm���� and

�ii�

 ���


s
��� �� � m r���� rm������

���A���

The value of � is typically � ���	 and the accuracy of the solution improves as

�� �

The Landau pole is the complex value of � that yields ������ �� � � This

value of � is found using a standard shooting technique� For the Gaussian vortex in

Eq� ������	 we obtained the following value for the Landau pole� � � �������� i�

Part of this chapter will appear in the AIP Proceedings of the ���� Non�

neutral Plasmas Workshop	 D� A� Schecter	 D� H� E� Dubin	 A� C� Cass	 C� F�

Driscoll	 I� M� Lansky and T� M� O�Neil	 ed� J� J� Bollinger� D� A� Schecter was

the primary investigator and author of this paper�



Chapter �

Vortex Crystals from �D Euler

Flow� Experiment and Simulation

��� Introduction

Experiments and numerical simulations have shown that the free relaxation

of �D turbulence typically involves the chaotic advection and merger of intense

vortices and the production of vorticity �laments that evolve to increasingly small

length scales� In the past� variational principles have been used to predict the �nal

state of the coarse�grained vorticity distribution� In some cases� the �nal states are

seen to maximize entropy functionals ������	� but di
erent initial conditions can

lead to states of minimum enstrophy ���� ��� ��� �	�

Strongly magnetized electron columns have recently been used to study

the relaxation of �D turbulence experimentally� One of the �rst of these experi�

ments showed that certain hollow vortices relax to minimum enstrophy states after

they experience a Kelvin�Helmholtz instability ��	� More recent experiments on

electron columns ��	 suggest that ideal �D turbulence can self�organize into states

where enstrophy is not globally minimized and entropy is not globally maximized�

In these experiments� the chaotic advection of intense vortices �cools�� mergers

cease and the vortices settle into a lattice that rotates rigidly in a lower vorticity

���
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Figure ���� Vortex crystals observed in magnetized electron columns ��	� The
color map is logarithmic� This �gure shows vortex crystals with �from left to right�
M � �� � �� �� and � intense vortices immersed in lower vorticity backgrounds� In
a vortex crystal equilibrium� the entire vorticity distribution ��r� �� is stationary
in a rotating frame� i�e�� � is a function of the variable �� � �

�
�r�� where � is the

stream function and � is the frequency of the rotating frame�

background� These rigid patterns persist for around ��� rotation periods before

they are �nally dissipated by nonideal e
ects� When the intense vortices have

equal strength� the patterns are symmetric� and for this reason they have been

called vortex crystals� A selection of vortex crystals is displayed in Fig� ��� �taken

directly from Ref� ��	��

Although similar vortex crystals have been seen in dissipative systems such

as two��uid liquid helium ���	� the rapid relaxation of a strongly magnetized elec�

tron column is believed to closely follow �D Euler dynamics� It is surprising that

inviscid �uid equations should provide a mechanism for cooling the chaotic ad�

vection of the intense vortices to a lattice in rigid rotation� to our knowledge� no

previous experiment or simulation has demonstrated the spontaneous formation of

vortex crystals from freely relaxing nondissipative turbulence� In order to show

that the observed relaxation of turbulent �ow to vortex crystals can be explained

without incorporating physics beyond the ideal �D �uid model� we compare the
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experiments directly to vortex�in�cell �VIC� simulations that numerically integrate

the �D Euler equations ��� �	� The experiments and simulations are shown to

relax at the same rates to vortex crystals with similar vorticity distributions� Close

agreement between experiment and simulation provides strong evidence that �D

Euler theory alone can explain the formation of vortex crystals�

Of course� any numerical integration of the �D Euler equations will di
er

from an exact solution� There is always concern that a new result is an artifact

of the particular discretization scheme� However� we have con�rmed that the VIC

simulations conserve the robust integral invariants of �D Euler �ow� Moreover� the

relaxation to a vortex crystal state occurs at the same rate whether the number

of point�vortices in a simulation is � � ���� � � ��� or � � ���� In addition� the

rate of relaxation does not change when the simulation�s grid�point spacing �cell

size� is increased by a factor of � or �� Only subtle di
erences in the �nal vorticity

distribution appear when the simulation parameters are changed� For example� an

additional small vortex may appear in the �nal pattern�

By adding a slight random walk to each point�vortex in our simulation�

we can observe the e
ect of a simple di
usive viscosity on the formation of vortex

crystals ���	� Using this technique� we will show explicitly that viscosity in the

Navier�Stokes equations acts to counter the formation of vortex crystals rather

than enhance the rate at which the system of intense vortices relaxes to a pattern

in rigid rotation� The reason is simple� viscosity acts to di
use the intense vortices

and level the vorticity distribution� The very high Reynolds number that is required

to see vortex crystals may help explain why the formation of vortex crystals has

not been observed in previous experiments or simulations of the Navier�Stokes

equations�

As mentioned previously� vortex crystals cannot be explained either by
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considering global maximum entropy states������	 or minimum enstrophy states

���� ��� ��� �	� Although complex vorticity patterns consisting of several asym�

metric vortices can be predicted on the basis of maximum global entropy theory for

certain special initial conditions� these patterns �corresponding to negative tem�

perature states� typically consist of rather large slowly varying vortices that �ll the

con�nement region� not the intense small vortices observed here� Furthermore� it

is clear from observations of the evolution that the central regions of intense vor�

ticity in the strong vortices arise from the initial �ow� which consists of an intense

striated vorticity pattern� and that these central regions remain unmixed with the

larger low vorticity background� Global maximum entropy theory� which presumes

ergodic mixing of all vorticity elements� clearly does not apply to this �ow�

However� maximum entropy theory may apply to part of the �ow� the low

vorticity background� In a recent Letter ���	� Jin and Dubin hypothesized that

the turbulent �ow is brought to a vortex crystal equilibrium due to the violent

mixing of the di
use background by the intense vortices� Assuming that the mixing

of the background is ergodic� they argued that a vortex crystal is a state that

maximizes disorder �entropy� in the background� subject to the constraints of �D

Euler �ow� This regional maximum �uid entropy theory �so called because only

the background vorticity is mixed� and the strong vortices are taken to be point�

like without internal degrees of freedom� was shown to accurately predict the �nal

positions of the intense vortices and the �nal background vorticity distributions of

the experiments in Fig� ���� given the number of vortices and the energy� angular

momentum and circulation�

Here� we present further evidence that the system is driven to a vortex

crystal equilibrium through the turbulent mixing of the background by the intense

vortices� First� we observe that the intense vortices do not cool to a vortex crystal
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when the background is removed from the simulation� We also �nd that the intense

vortices do not cool in the opposite limit� when the background circulation domi�

nates the circulation of the intense vortices� Presumably� the relaxation rate goes

to zero in this limit because the vortices become ine
ective mixers� As expected�

the relaxation rate peaks at some intermediate level of the background� which is

strong enough to in�uence the intense vortices but weak enough to be mixed�

��� Concerns with �D Euler Theory and the Need

to Compare Experiment to Simulation

����� Experiment

Figure ��� shows the experimental apparatus �Penning�Malmberg trap�

with CCD imaging diagnostic� The electrons are con�ned radially by the force

of a uniform magnetic �eld that is applied along the z�axis� They are trapped

axially by negative voltages at opposite ends of the con�nement cylinder�

The imaging diagnostic destructively measures the z�integrated electron

density� By raising one end�potential rapidly to ground� the electrons are dumped

onto a phosphor screen that radiates photons in proportion to the number of in�

cident electrons� and the image is recorded with a �� � �� pixel CCD camera�

Although the imaging is destructive� variations in the initial conditions are small

��n�n � ������ so by dumping the electrons at a sequence of times we are able to

study �ows with this technique�

����� Ideal �D Fluid Approximation

We can approximate the r�� �ow of electron density in our magnetized

electron columns with the �D drift�Poisson equations ��� �� ��	�

�n��t � �v � rn � � � ��a�
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�v � �z � cr��B � ��b�

r�� � �	en 
 ��c�

Here� n�r� �� t� is the z�averaged electron density� �v�r� �� t� is the �E� �B drift in the

r�� plane� and ��r� �� t� is the electrostatic potential� The equations are �D because

the electron motion has been averaged over a bounce period in the z�direction� The

boundary condition at the wall of the con�nement cylinder is ��Rw� �� t� � ��

The equations that evolve vorticity� � � �z � r��v� can be obtained directly

from the drift�Poisson equations� They are the Euler equations�

����t � �v � r� � � � ��a�

�v � �z �r� � ��b�

r�� � � � ��c�

which also govern the �ow of �D inviscid incompressible �uids� The new �eld � is

a rescaled electrostatic potential� � � c��B� and serves as a stream�function for

the �ow� Comparing Eqs� ����� and ������ we see that the vorticity is proportional

to the electron density by the relation � � �	ecn�B� So� by measuring the electron

density we are also taking a direct measurement of vorticity� insofar as �D drift�

Poisson theory is a good model for the experiment� The condition that � equals

zero at Rw corresponds to a free�slip boundary condition at the wall of a circular

container�

However� there is concern that the approximations used to derive Eqs� �����

and ����� neglect terms that are essential to the formation of vortex crystals� To

begin with� Eqs� ����� and ����� describe the experiments only if the time scales

associated with electron motion satisfy the inequalities �c � �z � � �E� �B� Here� �c

denotes the period for an electron�s small gyrations around a magnetic �eld line
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Figure ���� Cylindrical Penning�Malmberg trap and destructive imaging diagnos�
tic� �E is the electric �eld produced by the electrons and �B is the uniform applied
magnetic �eld� V �E� �B denotes the counter�clockwise �E � �B drift of the electrons�
Rw � ��� cm	 Rp � ���� ��� cm	 and Lp � �
 cm�

�its cyclotron motion�	 �z is the time required for an electron to bounce between

the ends of the plasma column in the z�direction	 and � �E� �B is the time scale for

�E � �B drift� In our experiments	 �c � �
���s	 �z � ��s	 and the internal turnover

time for a typical vortex is � �E� �B � �
�s� Although �c is much less than �z and

� �E� �B	 the condition that �z � � �E� �B is only weakly satis�ed� In addition to time

scale constraints	 there are length scale constraints� For example	 the drift�Poisson

approximation breaks down at length scales that are smaller than the cyclotron

radius �rc � �
�m�� Furthermore	 one assumes that the plasma is in�nitely long

in deriving Eqs� ���� and ���� since all variation in the z�direction is neglected�

In reality	 Lp � �
cm and Rp�Lp � 
�
��

A well�studied correction to the in�nite�length approximation is that caused

by the static electric �elds that con�ne the plasma in the z�direction� These �elds

modify the bounce�averaged drift that is given by Eq� ���b	 and depending on

circumstances this modi�cation can enhance or suppress shear��ow instabilities

���	 �

	 �
��� In general	 the modi�ed drift increases with the kinetic energy of

the electrons and a spread in electron energy will cause a vorticity pro�le to smear
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��
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Another correction to ideal �uid theory arises from the �nite number N of

�point�vortices� in the experiment� Each electron is like a �D point�vortex after

averaging over its z�motion� The Euler equations evolve the ensemble averaged

density of a point�vortex gas only in the lowest order mean��eld approximation	

which neglects �uctuations due to �nite N � These �uctuations can be treated with

a collision term on the right hand side of the continuity Eq� ���a or ���a ��
�	 �
���

This collision term is believed to be responsible for the eventual dissipation of

vortex crystals that occurs in the experiments� The time scale for a vortex crystal

to dissipate ��
���
� rotations� far exceeds the time required for a vortex crystal

to form ��
��

 rotations�� However	 the collision term �due to �nite N� may be

enhanced at small length scales	 and it was previously feared responsible for driving

the turbulent �ow to the metastable vortex crystal equilibrium�

����� Vortex�In�Cell Simulation

In this chapter	 we address concerns over the ideal �D �uid model by com�

paring the experiment directly to a VIC simulation that numerically integrates the

�D Euler equations ���	 ���� In the simulation	 N � � � �
� point�vortices are

distributed to match the initial vorticity pro�le of the experiment� The vorticity is

interpolated from the point�vortices to a square grid �usually ���� ���� on which

Poisson�s equation is solved with the boundary condition ��Rw� �� t� � 
� The

interpolation transfers vorticity from each point�vortex to the four nearest grid�

points with the method of area weighting ���	 ���� Poisson�s equation is solved

with a �ve�point �nite di�erence scheme that employs multigrid relaxation� The

velocity �eld is obtained on the grid by taking the gradient of � and is then in�

terpolated back to the particle positions� The particles move forward in time with
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second�order Adams�Bashforth steps�

In what follows	 we will show that the VIC simulations are in good quan�

titative agreement with the experiments and that the simulation results are not

sensitive to large variations in N or in the grid�point spacing� In doing so	 we

will demonstrate that vortex crystals are not caused by �nite length e�ects	 �nite

cyclotron radius e�ects	 �nite N e�ects or by any dynamics on time scales rapid

compared to �E� �B drift �such as cyclotron motion or axial motion�� In other words	

although there exist subtle di�erences between a magnetized electron column and

an ideal �uid	 the observed vortex crystals can be explained without incorporating

physics beyond �D Euler theory �Eq� ������

��� Comparison of Experiment to Simulation

����� Integral Invariants

Before making a detailed comparison of experiment to simulation	 it is

important to check that both conserve the robust integral invariants of �D Euler

�ow� The �D Euler equations with ��symmetric boundary conditions conserve the

energy H � ��

�

Z
d�r���	 the canonical angular momentum P� �

Z
d�r�r��	 the

total circulation �tot �
Z
d�r�� �� number of electrons� and all higher moments of

the vorticity distribution Zm � �

m

Z
d�r��m	 where m � �� �� ����� By construction	

our simulations conserve �tot� They also conserve energy and angular momentum

by roughly one part in �
�� The experiments show up to �
� declines in �tot over

the �rst �

ms ��

��


 rotations�	 whereas the normalized quantities H���
tot and

P���tot �uctuate by only a few percent� The experimental decay in �tot over time

is probably caused by the slow ionization of background gas	 which results in a loss

of electrons� Although a small decrease in �tot is undesirable	 it seems incidental

to the formation of vortex crystals� As we will see	 the simulations produce vortex



���

crystals while conserving �tot�

Although Z� and all higher moments of vorticity Zm are conserved by the

�D Euler equations	 their measured values are generally not conserved in freely

relaxing �D turbulence� This is because any physical measurement of vorticity at

a given position is an average over a cell of small but �nite area� As vorticity

�laments stretch and narrow to microscopic length scales	 the measured vorticity

along the �laments will decrease� An example of this decrease can be observed in

Fig� ��	 where the low vorticity �blue� regions increase in area over time�

The integralsH	 P� and �tot are insensitive to measurement coarse�graining

of the vorticity� On the other hand	 enstrophy Z� and all higher moments Zm are

fragile invariants	 and their measured values will change due to coarse�graining�� In

the experiments	 vorticity is coarse�grained on a ���� ��� pixel CCD camera	 and

the measured enstrophy Z� typically decays by a factor of � during the formation of

a vortex crystal� In the VIC simulations	 vorticity is coarse�grained on a ���� ���

square grid	 and the enstrophy of the coarse�grained vorticity also decays by a

factor of � during the formation of a vortex crystal� We emphasize that a decay in

the enstrophy of a coarse�grained vorticity distribution is entirely consistent with

the �D Euler equations�

����� Vortex Crystal Formation

We now proceed with a detailed comparison of experiment to simulation�

Figure ���a shows an experiment where an annular vorticity distribution evolves

into a vortex crystal� Figure ���b shows the results of a VIC simulation that

starts with the same annular initial condition� The simulation has N � � � �
�

point�vortices and a ���� ��� square grid� We will refer to the �ow in Fig� �� as

�Many papers on the statistical mechanics of �D turbulence discuss the e�ect of coarse�graining
on the integral invariants of �D Euler �ow� See for example� Ref� ���	



���

-1
3

vo
rt

ic
ity

 (
10

  s
ec

  )

450

0.45

4.5

45

50 µs     200 µs   1ms ≈ τ     10 ms      50 ms

Rw

rot

(a)

(b)

Figure ���� Sequence I	 the formation of a vortex crystal from an annular vorticity
distribution� �a� experiment	 �b� simulation� The color map is logarithmic and the
experimental vorticity is obtained from the relation � � 	ecn�B� All vorticity
below the shot�noise threshold ��thresh � ��� � �
�sec��� was removed from the
simulation�s initial condition� The evolution is shown in a reference frame that
rotates with frequency ������ �
�rad�sec�

Sequence I�

In both the experiment and the simulation	 a Kelvin�Helmholtz instability

generates a �soup� of intense vortices� These vortices chaotically advect	 merge

and shed �laments that stretch and mix to form a di�use background� Eventually

the chaotic vortex motion cools	 mergers stop and in both cases the intense vortices

tend to a pattern in rigid rotation� Although our simulation does not reproduce

the experiment exactly	 both �ows produce similar vortex crystals�

Most di�erences between the experiment and simulation emerge before one

rotation period� These di�erences include the precise shapes and arrangement of

intense vortices	 and the �lamentation which appears to be more �smeared� in

the experiment than in the simulation� We speculate that these di�erences are
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primarily due to the additional drifts in the experiment that are caused by the

electrostatic con�nement �elds and that vary with the axial kinetic energy of the

electrons ���	 �
���

Despite subtle di�erences	 the experiment and simulation show good quan�

titative agreement in several key areas� First	 they have similar evolutions in the

number M of intense vortices� As in Ref� ���	 the vortex census used here is es�

sentially that of McWilliams ��
� without the exclusion of elongated vortices� we

de�ne an intense vortex as a connected patch of vorticity for which � 
 �min and

for which the mean diameter d 
 dmin� Here �min and dmin are parameters of the

counting algorithm� These parameters were changed slightly from those used in

Ref� ���	 so that vortices smaller than dmin � �
�cm in diameter were not counted�

A brief discussion of the uncertainties inherent in this census method can be found

at the end of this section�

Figure ��a shows that the evolution of the number M of intense vortices

in the simulation �solid symbols� falls within the scatter of the experimental data

�open symbols�� The high degree of scatter at late times in the experiment is

a consequence of slight di�erences in the initial conditions associated with each

experimental �shot�� Recall that each experimental datum is taken from a separate

evolution due to the destructive imaging technique� After the Kelvin�Helmholtz

instability and before M reaches its �nal value	 the evolution in the number of

intense vortices resembles a power�law decay	 M � t�� for 
�� � t��rot � �� Here

�rot � ��
� ms is the time averaged rotation period of the vortex crystal in the

simulation �Fig� ���b�� Linear least�squares �ts to log�log plots of the data give

�sim � 
���
�� and �exp � 
���
��� Power�law decays in M have been observed in

previous simulations of ideal �D �uid equations ��
� and in simulations on discrete

vortices that follow punctuated Hamiltonian dynamics ����� Power law decays
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Figure ���� �a� Number of vortices M versus time for Sequence I� �b� Cooling
curves vrms�t� for same �ow� Black	 dark grey and light grey correspond to simu�
lations with N � ���
�	 ��
� and ���
� respectively� Open circles correspond
to the experiment� The vertical dashed line indicates the time at which M reaches
its terminal value� The slanted dashed lines suggest power�law decays� Time t
is normalized to the rotation period of the vortex crystal in the simulation �Fig�
���b�	 �rot � ��
� ms�

occur in many processes where the decay rates �c�c are proportional to powers of

the concentration c	 such as colloidal aggregation	 certain chemical reactions and

two or three body recombination ��
	 �
���

During the formation of vortex crystals	 the chaotic advection of the intense

vortices slowly relaxes	 and as mergers stop the intense vortices tend to a pattern

that rotates rigidly in a lower vorticity background� We refer to this process as vor�

tex cooling� Vortex cooling is observed to occur at the same rate in the experiment

and simulation� To show this requires a quantitative measure of vortex cooling�



���

First	 the positions f�rig �i � �� �� � � � �M� and the velocities f�vig of the intense

vortices are calculated relative to the �ow�s center of vorticity� �ri �
R
Ai
d�r��� �

�min���r��rcv��
R
Ai
d�r���� �min� and �vi �

R
Ai
d�r���� �min���v� ��rcv��

R
Ai
d�r���� �min��

Here	 Ai denotes the region occupied by the ith intense vortex and �rcv is the �ow�s

center of vorticity de�ned by the equation �rcv � �

�tot

R
d�r��r�� The mean rotation

of the intense vortices about �rcv is then subtracted from each �vi	 giving a set of

velocity �uctuations f�vig about the mean rotation� �vi � �vi � ri ���t� �	 where

���t� � PM
i�� vi���

PM
i�� ri �radial�weighted averaging�� A discussion of the error in

the measurement of �vi can be found at the end of this section�

As the pattern of intense vortices approaches uniform rotation	 the root�

mean�square value of the velocity �uctuations tends to zero� i�e�	

vrms � �
PM

i�� �v
�
i �M���� � 
 as t��� We will refer to the graph of vrms versus

time as the cooling curve of the �ow�

Figure ��b shows the cooling curves for the experiment and for the sim�

ulation of Sequence I� The cooling curves are approximately the same� Although

one decade of vortex cooling does not su!ce to accurately determine the functional

form of vrms�t�	 a power�law gives a good description at late times	 vrms � t���

Linear least�squares �ts to log�log plots of the data give �sim � �exp � 
�� � 
��

for times greater than one rotation period�

A similar comparison to simulation has been made for an experiment that

was taken directly from Ref� ���� We will refer to this �ow as Sequence II� Here	 the

vorticity in the experiment starts as a tightly wound �lament	 as seen in Fig� ���

Using N � ���
� point�vortices and a ������� square grid	 our simulation failed

to produce a vortex crystal from this initial condition� As reported in Ref� ���	

small�scale details appear crucial in determining whether the spiral distribution

will evolve into a vortex crystal or into an axisymmetric equilibrium� The essential
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Figure ���� Sequence II	 the formation of a vortex crystal from a spiral vorticity
distribution� �a� experiment	 �b� simulation� All vorticity below the shot�noise
threshold ��thresh � ���� �
�sec��� was removed from the simulation�s initial con�
dition� The evolution is shown in the laboratory frame�

details may have been lost due to the �nite resolution of the CCD imaging� Oth�

erwise	 the simulation�s failure to produce a vortex crystal can only be blamed on

slight dynamical di�erences with the experiment� To compensate	 we began the

simulation at a later stage of the �ow ��  rotations�	 at which time there were

multiple intense vortices �M � ����

Figure ���a shows the evolution in the number of intense vortices over

time for the simulation �solid black circles� and the experiment �open circles�� The

light grey data will be discussed shortly� The decay rates are similar	 but the �nal

number of intense vortices in the simulation �M � �� falls below the experimental

average �M 	 ��� Note that in the simulation the last merger event occurs at ��

rotation periods� The �nal drop in M from � to � �at t��rot 	 �
� corresponds

to a small vortex being sheared apart as it periodically passes regions of intense

shear��ow produced by neighboring strong vortices�
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Figure ���� �a� Number of vortices M versus time for Sequence II� �b� Cooling
curves vrms�t� for the same sequence� Black corresponds to the simulation in
Fig� ���b	 open circles correspond to the experiment and light grey corresponds to
a simulation that was initialized to include measured vorticity below the shot�noise
threshold �grey fuzz in the experimental images�� The dashed lines show that the
cooling exponent � changes after mergers stop� Both lines correspond to power�law
�ts of the simulation data� Time t is normalized to the rotation period of the vortex
crystal in the simulation where the shot�noise is removed	 �rot � 
��� ms�

The cooling curves for the simulation and the experiment are shown in

Fig� ���b� These cooling curves show close agreement during the initial turbulent

phase of the �ow	 when mergers of intense vortices occur regularly� During this

time period	 least�squares �ts to the data give cooling exponents �sim � 
��� 
��

and �exp � 
� � 
��� However	 the cooling curve in the simulation levels o�

before cooling stops in the experiment� We can resolve this discrepancy in part by

observing that in both cases cooling appears to stop shortly after the last merger



���

event� Beyond the last merger	 least squares �ts to the data give cooling exponents

�sim � 
�
� 
�� and �exp � 
��� 
���

An additional simulation was initialized to include the measured back�

ground vorticity below the shot�noise threshold �the grey fuzz in the experimental

images�� The data for this simulation is shown in grey in Figs� ���a and ���b�

This �ow di�ers from the previous simulation �black� in that the �nal merger

event occurs at a much later time	 a time that appears to be more consistent with

the experiment �open circles�� In addition	 the cooling curve levels o� at a lower

value of vrms� This enhanced cooling may result from the additional merger at

t��rot 	 �

 or from an interaction with the low�vorticity �below the shot�noise

threshold� background that was added to the exterior �ow�

We end this section with a brief word on the uncertainty in the number of

intense vortices M and in the measure of chaotic vortex motion vrms� To calculate

M and vrms we use an automated vortex survey ��
�� This survey has adjustable

parameters �min and dmin that are used to identify intense vortices in a turbulent

�ow� Recall that a vortex is de�ned to be a connected patch of vorticity for which

� 
 �min and for which the mean diameter d 
 dmin� There is good agreement

between the experiment and simulation regardless of the common parameters that

we choose to analyze them both� However	 the exact values of M and vrms will

change with the speci�c parameter choice� For example	 we have calculated M�t�

and vrms�t� for Sequence I �Fig� ��� with values of �min between �� � �
� and

����
�sec�� and with values of dmin between �����
�� and �����
��cm� During

the initial break�up of the annulus	 there were large variations in the number of

vortices M due to changes in �min and dmin �M�M � ��� However	 the uncertainty

in M dropped to � �
� after � rotation period and to 
� after the last merger�

Before the last merger	 the uncertainty in vrms was � �
� on average� After the



�


last merger	 the uncertainty in vrms dropped to less than ���

��� Discretization E�ects and Viscosity

A magnetized electron column and a VIC simulation each consist of a �nite

number of point�vortices N � �The electron column consists of N lines of charge	

each line charge corresponds to an electron trajectory averaged over the fast axial

motion�� The �D Euler equations govern the ensemble averaged vorticity distribu�

tion of a point�vortex gas only in the lowest order mean��eld approximation	 which

neglects �uctuations due to �nite N � These �uctuations are thought to cause the

slow dissipation of vortex crystals that is observed in experiments with magnetized

electron columns� An example of this dissipation process is shown in Fig� ��� Here	

the decay occurs between �

 and �


 rotation periods� The dissipation time scale

is much greater than the time required for the system to reach a metastable vortex

crystal equilibrium ���
��

 rotations�	 but this fact alone does not eliminate the

possibility that �uctuations due to �nite N drive vortex cooling�

A statistical treatment of �nite N e�ects leads to a collision term on the

right hand side of the continuity Eqs� ���a or ���a� Unlike the constant viscosity

� of Navier�Stokes �ow that leads to a simple di�usion of vorticity along stream�

lines	 ����t"�v 
r� � �r��	 the collision term of a point�vortex gas must conserve

H and P�� The correct form for the collision term of a point�vortex gas is still

unresolved and is a topic of current research� For the case of axisymmetric �	 a

Klimontovich approach has been used to derive an explicit result ��
�	 �
��� A

more general equation for the collision term has yet to be written down� However	

as N decreases the collision term should have an increasing e�ect on the evolution

of ��

We examined the importance of �nite N e�ects on the formation of vortex
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50 ms    1000 ms     5000 ms

Figure ���� Finite N e�ects� �a� Dissipation of a metastable vortex crystal in
an experiment� This dissipation is believed to be a �nite N e�ect and conserves
H���

tot and P���tot� The color map is the same as in Fig� ���

crystals by changing the number of point�vortices in a simulation �Fig� ���b� from

���
� to ��
� to ���
�� For N � ��
� and ���
� an additional small vortex

appeared in the �nal crystal	 but the total circulation of the intense macroscopic

vortices	
PM

i�� �i	 remained the same within ��� Furthermore	 the cooling curves

forN � ��
� and ���
� fall within the scatter of the cooling curve forN � ���
�

�Fig� ��b�� This result suggests that the �nite number of point�vortices is not

important to the observed vortex cooling� This argument is strengthened by the

fact that the experiment �Sequence I� has � �
� particles and cools at the same

rate as the simulations�

We have also increased the grid�point spacing in the simulation by factors

of � and 	 keeping N �xed at �� �
� particles� Once again	 only subtle changes

were observed� When the grid�point spacing was doubled	 � additional vortices

appeared in the vortex crystal� When the grid�point spacing was increased by a

factor of 	 the two small vortices disappeared� In both cases	 the cooling curves

overlapped the original	 within the scatter of the data�
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Figure ���� The e�ect of viscosity in the Navier�Stokes equations� �a� The evo�
lution of an unstable annulus to a vortex crystal with viscosity � � 
����cm��sec
added to the simulation� �b� When � � ����cm��sec	 the viscosity is su!ciently
high to prevent formation of a vortex crystal� The color map is the same as in
Fig� ����	 and the evolution is shown in a reference frame that rotates with fre�
quency ������ �
�rad�sec� The Reynolds number R is de�ned in the text�

While on the topic of nonideal e�ects	 it is also of interest to estimate

the minimum level of viscosity in the Navier�Stokes equations that is required to

prevent the formation of a vortex crystal� Speci�cally consider Sequence I	 where

a vortex crystal forms from an unstable annulus �Fig� ���� In Sequence I	 the

�nal merger occurs at T 	 �ms ���� rotations�� After mergers stop	 the spacing

L between vortex centers is � �cm and the average vortex radius � satis�es the

condition � � L����	 which is required to prevent pair�wise mergers �����



��

Now consider a �ow with the same annular initial condition but with kine�

matic viscosity �� Over time	 viscosity will expand each vortex such that � � p�t�

De�ne the critical viscosity �c by the equation �c � �L������ ���T �� If � 
� �c	

the expanded vortices at time T are no longer stable against mergers in the vor�

tex crystal con�guration� In other words	 if � 
� �c	 viscosity should prevent the

formation of a vortex crystal� For Sequence I	 �c is approximately cm��sec�

It is possible to model Navier�Stokes viscosity in a VIC simulation by adding

a Gaussian random walk to the �uid drift of each point�vortex ����� Figure ���a and

Fig� ���b show the evolution of the annulus in Sequence I with � � 
����cm��sec

and � � ����cm��sec respectively� Once again	 the simulations use �� �
� point�

vortices and a ������� square grid� In Fig� ���a	 the vorticity distribution evolves

into a pattern that resembles a vortex crystal� The estimated time for viscosity

to generate a merger instability in this pattern is � ��
ms	 which is well beyond

the simulation�s run time� In Fig� ���b	 there appears to be no intermediate time

scale during which the �ow can be described as a vortex crystal� This result more

or less agrees with our expectation that a vortex crystal should not form if � 
� �c�

To summarize our observation in dimensionless terms	 we de�ne a Reynolds

number R by the equation R � �tot��� In Fig� ���a R � �����
�	 and in Fig� ���b

R � �����
�� It is apparent from Fig� �� that vortex crystals will form in Sequence

I only if R 

 �
��

��� Ideal Fluid Mechanism for Vortex Cooling

In this section	 we address the question of how �D Euler �ow can bring a

system that consists of intense self�trapped vortices and a di�use background of

small scale vorticity �laments to a vortex crystal equilibrium� This relaxation is de�

scribed by the cooling curve vrms�t�	 where vrms is the root�mean�square velocity



�

�uctuation of the intense vortices� As the �ow relaxes to a vortex crystal equilib�

rium	 the chaotic advection of the intense vortices cools and vrms tends to zero�

In Sequence I	 vortex cooling continues inde�nitely after mergers stop �Fig� ��	

indicating that there exists a cooling mechanism independent of merger events�

Such cooling would not occur if the intense vortices were simply advecting in their

mutual �elds like an isolated Hamiltonian system of point�vortices� However	 the

vortices are not isolated in that they can interact with the background�

Recall from the introduction that the observed vortex crystals are in ex�

cellent agreement with states that maximize disorder ��uid entropy� in the back�

ground ��
�� According to regional maximum �uid entropy theory	 vortex cooling

is caused by the ergodic mixing of the di�use background by the intense vortices�

If the vortices are unable to mix the background	 then no vortex cooling should

occur	 as veri�ed by the following numerical results�

First consider Sequence I �Fig� ���b� at � rotation periods	 after which

the number of intense vortices M and the total circulation of the intense vortices

PM
i�� �i remain �xed� Suppose that all vorticity below � 	 �
� sec�� is arti��

cially removed from the simulation at this time	 leaving only the intense vortices�

Evolving this arti�cial system forward	 we observe no cooling of the vortex motion�

This result is shown in Fig� ��	 and indicates that vortex cooling is not caused by

internal motions within the vortices�

Figure ��
 o�ers a more detailed description of how the cooling exponent

� varies with the ratio of the background circulation �b to the total circulation �tot

�the di�erence between �tot and �b is
PM

i�� �i	 the total circulation in the intense

vortices�� To obtain these data	 the original background vorticity was multiplied

by constants ranging from 
 to �� Circles correspond to Sequence I �starting at

� rotations� and squares correspond to Sequence II �starting at ��� rotations��
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Figure ��	� Cooling curves for vortex crystal with �black� and without �grey�
background vorticity� Time t is normalized to the rotation period of the vortex
crystal with background vorticity	 �rot � ��
� ms�

In both sets of simulations	 the number of intense vortices M remained �xed	

with the exception of the data point to the far right	 in which a small vortex

was sheared apart toward the end of the simulation� As the background vorticity

level increases from zero	 vortex cooling increases and we observe growth in �� As

�b��tot continues to increase	 � reaches a maximum value and then begins to fall�

A rise and fall of � as �b��tot increases from 
 to � is consistent with

our view that vortex cooling �in the absence of mergers� requires the turbulent

mixing of an inhomogeneous background by the intense vortices� When there is

no background	 there is no vortex cooling� When �b��tot is close to �	 the velocity

�eld is dominated by the contribution from the background vorticity� Presumably	

the cooling rate becomes small in this limit because the vortices essentially become

passive test particles and lose their capacity to mix the background�
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Figure ��
�� Cooling exponent � versus �b��tot� Circles correspond to Sequence
I �Fig� ���b� starting at t 	 �� msec �� rotation periods�	 and squares correspond
to Sequence II �Fig� ���b� starting at t 	 
 msec ���� rotation periods�� The
shaded symbols mark the cooling exponents for the original simulated �ows� To
obtain the remaining data	 the original background vorticity �� � �� �
� sec�� in
Sequence I� � � �����
� sec�� in Sequence II� was multiplied by constants ranging
from 
 to ��

��� Conclusion

The conventional picture of freely relaxing �D turbulence �with a single

sign of vorticity� involves the chaotic advection of intense vortices punctuated by

occasional mergers until only a single vortex remains� In experiments with magne�

tized electron columns	 we have seen that mergers can stop due to the spontaneous

formation of a vortex crystal� In this chapter	 we have argued that the observed

vortex crystals can be explained without incorporating physics beyond �D Euler

theory �Eq� �����	 despite small di�erences between a magnetized electron column

and an ideal �D �uid� Our argument was based on a comparison of two experi�

ments to the results of a VIC simulation that numerically integrates the �D Euler



��

equations� We found good quantitative agreement in the evolution of the number

of intense vortices M and in the cooling of their chaotic advection	 described by

vrms�t��

Even so	 there were some issues to address� A magnetized electron col�

umn and a VIC simulation both consist of a �nite number of point�vortices N �

The �D Euler equations govern the ensemble averaged vorticity distribution of a

point�vortex gas only in the lowest order mean �eld approximation	 which neglects

�uctuations due to �nite N � A statistical treatment of these �uctuations leads to a

collision term on the right hand side of the continuity equation ��a	 which goes to

zero as N goes to in�nity and the �uctuations become negligible ��
�	 �
��� There

was concern that the collision term due to �nite N was responsible for vortex cool�

ing� However	 the cooling curve vrms�t� did not change in Sequence I �Fig� ���

when N was decreased from ���
� to ��
� to ���
� �Fig� ��b�� Moreover	 the

simulation curves fell within the scatter of the cooling curve for the experiment	

which had N � �
� point�vortices� These results strongly suggest that �nite N

e�ects are not important to the formation of vortex crystals�

Another question concerned viscosity in the Navier�Stokes equations� In

Sec� IV	 we showed that a small level of viscosity can destroy the process of vortex

crystal formation entirely �Fig� ���� Speci�cally	 we found that Sequence I requires

a Reynolds number R � �tot�� much greater than �
� to produce a vortex crystal�

For R � �
�	 viscosity expands the vortices su!ciently fast so that they merge

before they have time to settle into a vortex crystal geometry�

We have also discussed a mechanism for vortex cooling that is consistent

with inviscid incompressible �D �uid dynamics �Eq� ������ In a recent paper

��
�	 Jin and Dubin showed that vortex crystals are well described as states that

maximize an entropy functional of the background vorticity distribution	 subject



��

to the constraints of �D Euler �ow� This result suggests that the system is driven

to a vortex crystal equilibrium through a process that requires the ergodic mixing

of the background vorticity�

When the background circulation is much less than the combined circula�

tion of the intense vortices �but not zero�	 it is reasonable that the vortices can

generate the required mixing� On the other hand	 when the background circula�

tion dominates	 the vortices become less e�ective mixers� Therefore	 if the vortex

cooling is driven by the turbulent mixing of the background by the intense vortices	

the cooling rate should �rst rise and then fall as �b increases from zero� Our sim�

ulation results are consistent with this picture �Fig� ��
�� When the background

was removed	 there was no vortex cooling and the intense vortices remained out of

equilibrium� Only when the intense vortices were immersed in a low level of back�

ground vorticity did they cool toward a pattern in uniform rotation� As �b��tot

was adjusted closer to �	 the rate of vortex cooling dropped below the accuracy of

our measurements�

Finally	 we note that the vorticity distributions in magnetized electron

columns have two distinct features that may contribute to the arrest of vortex

mergers and to the formation of vortex crystals� First	 they have a single sign

of �positive� vorticity� The e�ect on vortex crystal formation of adding negative

vorticity to the �ow is a subject of current research� Second	 the background vor�

ticity has a sharp edge where � drops rapidly to zero� The interaction between the

intense vortices and surface�waves �Kelvin�waves� at the edge can not be ignored

in a general treatment of the dynamics� A detailed study of this nonlinear inter�

action has recently been carried out and it has been shown to contain a plausible

mechanism of vortex cooling at late times ��
���
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This chapter has been published in Physics of Fluids 

	 D� A� Schecter	

D� H� E� Dubin	 K� S� Fine and C� F� Driscoll	 �
���� ������� D� A� Schecter was

the primary investigator and author of this paper�



References

��� D�G� Dritschel and B� Legras� �Modeling oceanic and atmospheric vortices��

Phys� Today ��� �� ��		
��

��� A� P� Ingersoll� �Atmospheric dynamics of outer planets�� Science ���� 
�

��		��

�
� P� S� Marcus� �Numerical simulations of Jupiter�s Great Red Spot�� Nature

���� �	
 ��	����

��� P� S� Marcus� �Vortex dynamics in a shearing zonal �ow�� J� Fluid Mech

���� 
	
 ��		��

��� J� Pedlosky� Geophysical Fluid Dynamics �Springer�Verlag New York Inc��

�	����

��� R� C� Davidson� Physics of Nonneutral Plasmas� pp� ��	�
�� �Addison�

Wesley Pub� Co�� �		��

��� C� F� Driscoll� K� S� Fine� X��P� Huang� T� B� Mitchell� and B� P� Clug�

gish� �Vortices and turbulent relaxation in magnetized electron columns��

in Transport� Chaos and Plasma Physics �� S� Benkadda� F� Doveil and Y�

Elskens� editors� pp� �	��	 �World Scienti�c� Singapore� �		���

��� C� F� Driscoll and K� S� Fine� �Experiments in vortex dynamics in pure

electron plasmas�� Phys� Fluids B �� �
�	 ��		��

��



���

�	� K� S� Fine� A� C� Cass� W�G� Flynn� and C� F� Driscoll� �Relaxation of �D

turbulence to vortex crystals�� Phys� Rev� Lett� ��� 
��� ��		���

��� X�P� Huang� K�S� Fine and C�F� Driscoll� �Coherent vorticity holes from �D

turbulence decaying in a background shear �ow�� Phys� Rev� Lett� ��� ����

��		���

���� A�C� Cass� �Experiments on vortex symmetrization in magnetized electron

columns�� Ph�D� dissertation� University of California at San Diego ��		���

���� C�H� Liu and Lu Ting� �Interaction of decaying trailing vortices in spanwise

shear �ow�� Comp� � Fluids ��� �� ��	����

��
� C�G� Rossby� �On the displacements of intensity changes of atmospheric vor�

tices�� J� Mar� Res� �� ��� ��	����

���� V� A� Bogomolov� �On the Motion of a Vortex on a Rotating Sphere��

Izvestiya� Atmos� and Oceanic Phys� ��� �	� ��	����

���� M� DeMaria� �Tropical cyclone motion in nondivergent barotropic model��

Mon� Weath� Rev� bf ��
� ��		 ��	����

���� R�K� Smith and W� Ulrich� �An analytic theory of tropical cyclone motion

using a barotropic model�� J� Atmos� Sci ��� �	�
 ��		��

���� J� L� Evans� G� J� Hollan and R� L� Elsberry� �Interactions between a

barotropic vortex and an idealized subtropical ridge� Part I� Vortex motion��

J� Atmos� Sci� ��� 
� ��		���

���� W� Ulrich and R�K� Smith� �A numerical study of tropical cyclone mo�

tion using a barotropic model� II� Motion in spatially varying zonal �ows��

Q� J� R� Meteorol� Soc� ���� �� ��		���



���

��	� R�K� Smith� �An analytic theory of tropical cyclone motion in a barotropic

shear �ow�� Q� J� R� Meteorol� Soc� ���� ��� ��		���

��� G�M� Reznik� �Dynamics of singular vortices on the beta�plane�� J� Fluid

Mech� ���� �� ��		���

���� R�K� Smith and H� C� Weber� �An extended analytic theory of tropical cy�

clone motion in a barotropic shear �ow�� Q� J� R� Meteorol� Soc� ��	� ���	

��		
��

���� R�K� Smith��On the theory of tropical cyclone motion�� in Tropical Cyclone

Disasters� Lighthill et al �ed��� Peking Univ� Press� Beijing� ��� ��		
��

��
� R�K� Smith and W� Ulrich� �Vortex motion in relation to the absolute vor�

ticity gradient of the vortex environment�� Q� J� R� Meteorol� Soc� ��	� ��

��		
��

���� G� M� Reznik and W�K� Dewar� �An analytic theory of distributed axisym�

metric barotropic vortices on the ��plane�� J� Fluid� Mech ��	� 
� ��		���

���� G�G� Sutyrin and G�R� Flierl� �Intense vortex motion on the beta plane�

Development of beta gyres�� J� Atmos� Sci� ��� ��
 ��		���

���� R�T� Williams and J� C��L� Chan� �Numerical studies of the beta e�ect in

tropical cyclone motion� Part II� Zonal mean �ow e�ects�� J� Atmos� Sci� ���

��� ��		���

���� G�K�Korotaev and A� B� Fedotov� �Dynamics of an isolated barotropic eddy

on a beta�plane�� J� Fluid� Mech� ���� ��� ��		���

���� Bin Wang and Xiaofan Li� �Propagation of a tropical cyclone in meridionally

varying zonal �ow� An energetic analysis�� J� Atmos� Sci� ��� ���� ��		���



��


��	� G�G� Sutyrin� J� S� Hesthaven�J� P� Lynov and J� Juul Rasmussen� �Dynam�

ical properties of vortical structures on the beta�plane�� J� Fluid� Mech ����

�
 ��		���

�
� Stefan G� Llewllyn Smith� �The motion of a non�isolated vortex on the beta�

plane�� J� Fluid� Mech ���� ��	 ��		���

�
�� G�F� Carnevale� R�C Kloosterziel and G�J�F� Van Heist� �Propagation of

barotropic vortices over topography in a rotating tank�� J� Fluid Mech� ����

��	 ��		���

�
�� H�E� Willoughby� �Linear motion of a shallow�water� barotropic vortex��

J� Atmos� Sci� ��� �	� ��	����

�

� H�L� Berk� C�E� Nielsen and K�V� Roberts� �Phase space hydrodynamics of

equivalent nonlinear systems�� Phys� Fluids ��� 	� ��	���

�
�� T�H� Dupree� �Theory of phase�space density holes�� Phys� Fluids ��� ���

��	����

�
�� R�H� Berman� D�J� Tetreault� T�H� Dupree� and T� Boutros�Ghali� �Com�

puter simulation of nonlinear ion�electron instablility�� Phys� Rev� Lett ���

���	� ��	����

�
�� T�H� Dupree��Growth of phase�space density holes�� Phys� Fluids ��� ���

��	�
��

�
�� P�W� Terry� P�H� Diamond� T�S� Hahm� �The structure and dynamics of

electrostatic and magnetostatic drift holes�� Phys� Fluids B �� ��� ��		��



���

�
�� J� Juul� Rasmussen� J� P� Lynov� J�S�Hesthaven�and G�G� Sutyrin� �Vortex

dynamics in Plasmas and Fluids�� Plasma Phys� Control� Fusion ��� B�	


��		���

�
	� M�V� Melander� J�C� McWilliams and N�J� Zabusky� �Axisymmetrization

and vorticity�gradient intensi�cation of an isolated two�dimensional vortex

through �lamentation�� J� Fluid Mech� ���� �
� ��	����

��� D�A� Bachman� �Nonlinear phenomena in a pure electron plasma studied

with a �D �uid code�� Ph�D� dissertation� California Institute of Technology

��		���

���� P� Koumoustakos� �Inviscid axisymmetrization of an elliptical vortex�� J�

Comp� Phys� ���� ��� ��		��

���� M�T� Montgomery and J� Enagonio� �Tropical cyclogenesis via convectively

forced vortex rossby waves in a three�dimensional quasigeostrophic model��

J� Atmos� Sci� ��� 
��� ��		���

��
� S� Pillai and R�W� Gould� �Damping and trapping in �D inviscid �uids��

Phys� Rev� Lett� ��� ���	 ��		���

���� K�M� Case� �Stability of inviscid plane Couette �ow�� Phys� Fluids �� ��


��	���

���� N�J� Balmforth and P�J� Morrison� �Singular eigenfunctions for shearing �u�

ids�� preprint�

���� G�G� Sutyrin� �Azimuthal waves and symmetrization of an intense vortex��

Sov� Phys� Dokl� ��� �� ��	�	��



���

���� M�T� Montgomery and C� Lu� �Free Waves in Barotropic Vortices� Part I�

Eigenmode Structure�� J� Atmos� Sci� ��� ���� ��		���

���� R� J� Briggs� J� D� Daugherty� and R� H� Levy� �Role of Landau damping in

crossed��eld electron beams and inviscid shear �ow�� Phys� Fluids ��� ���

��	���

��	� N�R� Corngold� �Linear response of the two�dimensional pure electron

plasma� Quasimodes for some model pro�les�� Phys� Plasmas �� �� ��		���

��� R�L� Spencer and S�N� Rasband� �Damped diocotron quasi�modes of non�

neutral plasmas and inviscid �uids�� Phys� Plasmas �� �
 ��		���

���� A�V� Timofeev� �Resonance e�ects in oscillations of nonuniform �ows of con�

tinuous media� in Reviews of Plasma Physics ��� B�B� Kadomstev �ed���

Consultants Bureau� New York� �	
 ��		���

���� L� Landau� �On the vibration of the electronic plasma�� J� Phys� U�S�S�R�

��� �� ��	����

��
� N�A� Krall and A�W� Trivelpiece� Principles of Plasma Physics� San Francisco

Press ��	����

���� F�F� Chen� Introduction to plasma physics and controlled fusion � � Plenum

Press ��		��

���� N�G� Van Kampen� �On the theory of stationary waves in plasmas�� Physica

��� 	�	 ��	����

���� K�M� Case� �Plasma oscillations�� Annals of Physics �� 
�	 ��	�	��



���

���� T�M� O�Neil� �Collisionless damping of nonlinear plasma oscillations��

Phys� Fluids �� ���� ��	����

���� A� Leonard� �Vortex methods for �ow simulations�� J� Comp� Phys� ��� ���

��	���

��	� C� K� Birdsall and A� B� Langdon� Plasma Physics Via Computer Simulation�

�Adam Hilger� �		���

��� D�Z� Jin and D� H� E� Dubin� �Regional maximum entropy theory for vortex

crystal formation�� Phys� Rev� Lett� ��� ��
� ��		���

���� M� R� Brown� �Experimental evidence of rapid relaxation to large�scale struc�

tures in turbulent �uids� Selective decay and maximal entropy�� J� Plasma

Physics� Vol� ��� Part �� �
 ��		���

���� D� Lynden�Bell� �Statistical mechanics of violent relaxation in stellar sys�

tems�� Mon� Not� R� Astron� Soc� ���� �� ��	����

��
� R� Robert and J� Sommeria� �Statistical equilibrium states for two�

dimensional �ows�� J� Fluid Mech� ��	� �	� ��		���

���� J� Miller� P� B� Weichman and M� C� Cross� �Statistical mechanics� Euler

equations and Jupiter�s Great Red Spot�� Phys� Rev� A� ��� �
�� ��		���

���� J� Miller� �Statistical mechanics of Euler equations in two dimensions�� Phys�

Rev� Lett� ��� ��
� ��		��

���� A� Thess� J� Sommeria and B� J�utner� �Inertial organization of a two�

dimensional turbulent vortex street�� Phys� Fluids �� ���� ��		���



���

���� L� Onsager� �Statistical hydrodynamics�� Nuovo Cimento Suppl� �� ��	

��	�	��

���� G� Joyce and D� Montgomery� �Negative temperature states for the two�

dimensional guiding�center plasma�� J� Plasma Phys� ��� �� ��	�
��

��	� D� L� Book� Shalom Fisher� and B � E� McDonald� �Steady�state distributions

of interacting discrete vortices�� Phys� Rev� Lett� ��� � ��	����

��� T�S� Lundgren and Y�B� Pointin� �Statistical mechanics of two�dimensional

vortices�� J� Stat� Phys� ��� 
�
 ��	����

���� R�A� Smith and T�M� O�Neil� �Nonaxisymmetric thermal equilibria of a cylin�

drically bounded guiding�center plasma or discrete vortex system�� Phys�

Fluids B �� �	�� ��		��

���� D� Montgomery� X� Shan and W� H� Matthaeus� �Navier�Stokes relaxation

to Sinh�Poisson states at �nite Reynolds numbers�� Phys� Fluids A �� ���

��		
��

��
� F� P� Bretherton and D� B� Haidvogel� �Two�dimensional turbulence above

topography�� J� Fluid Mech� ��� ��	 ��	����

���� W� H� Matthaeus and D� Montgomery� �Selective decay hypothesis at high

mechanical and magnetic Reynolds numbers�� Annals New York Academy

of Sciences� �
 ��	���

���� X��P� Huang and C� F� Driscoll� �Relaxation of �D turbulence to a metae�

quilibrium near the minimum enstrophy state�� Phys� Rev� Lett� ��� ����

��		���



���

���� M� V� Melander� N� J� Zabusky and J� C� McWilliams� �Symmetric vortex

merger in two dimensions� causes and conditions�� J� Fluid�Mech �	�� 



��	����

���� G� F� Carnevale� J� C� McWilliams� Y� Pomeau� J� B� Weiss� and W� R�

Wang� �Evolution of vortex statistics in two�dimensional turbulence�� Phys�

Rev� Lett� ��� ��
� ��		���

���� K�S� Fine� C�F� Driscoll� J�H� Malmberg and T�B� Mitchell� �Measurements

of symmetric vortex merger�� Phys� Rev� Lett� ��� ��� ��		���

��	� I�M� Lansky� T�M� O�Neil and D�A� Schecter� �A theory on vortex merger��

Phys� Rev� Lett� �	� ���	 ��		���

��� R� Fjortoft� �On the changes in the spectral distributions of kinetic energy

for two�dimensional non�divergent �ow�� Tellus �� ��� ��	�
��

���� D�G� Dritschel� �The repeated �lamentation of two�dimensional vorticity in�

terfaces�� J� Fluid� Mech �	�� ��� ��	����

���� N�K��R� Kevlahan and M� Farge� �Vorticity �laments in two�dimensional

turbulence� creation� stability and e�ect�� J� Fluid� Mech� ���� �	 ��		���

��
� G�K� Batchelor� �Computation of the energy spectrum in homogeneous two�

dimensional turbulence�� Phys� Fluid Supp� II� II��

 ��	�	��

���� Reta Beebe��Characteristic zonal winds and long�lived vortices in atmo�

spheres of the outer planets�� Chaos �� ��
 ��		��� for data�

���� I�B� Bernstein� J�M� Greene and M�D� Kruskal� Phys� Rev� ���� ��� ��	����



��	

���� M�K� Nezlin� �Rossby solitary vortices� on giant planets and in the labora�

tory�� Chaos �� ��� ��		��

���� I�S� Gradshteyn and I�M� Ryzhik� Table of Integrals� Series and Products�

Fifth Edition� ed� A� Je�rey� Academic Press� Inc�� ��
 ��		���

���� A�P� Bassom and A�D� Gilbert� �The spiral wind�up of vorticity in an inviscid

planar vortex�� J� Fluid� Mech� ���� �	 ��		���

��	� T�S� Lundgren��Strained spiral vortex model for turbulent �ne structure��

Phys� Fluids ��� ��	
 ��	����

�	� W�McF� Orr� �Stability and instability of steady motions of a perfect �uid��

Proc� R� Irish� Acad� ��� � ��	���

�	�� S�N� Brown and K� Stewartson� �On the algebraic decay of disturbances in

a strati�ed linear shear �ow�� J� Fluid� Mech� ���� ��� ��	���

�	�� Lord Kelvin� �On the vibrations of a columnar vortex�� Phil� Mag� ��� ���

������

�	
� A�J� Berno� and J�F� Lingevitch� �Rapid relaxation of an axisymmetric vor�

tex�� Phys� Fluids �� 
��� ��		���

�	�� P�B�Rhines and W�R�Young� �How rapidly is a passive scalar mixed within

closed streamlines��� J� Fluid Mech� ���� �

 ��	�
��

�	�� R�A� Smith and M�N� Rosenbluth� �Algebraic instability of hollow electron

columns and cylindrical vortices�� Phys� Rev� Lett� ��� ��	 ��		��

�	�� Lord Kelvin� �On a disturbing in�nity in Lord Rayleigh�s solution for waves

in a plane vortex stratum�� Nature ��� �� ������



��

�	�� L� J� Campbell and R� M� Zi�� �Vortex patterns and energies in a rotating

super�uid�� Phys� Rev� B ��� ���� ��	�	��

�	�� A�J� Chorin� �Numerical study of slightly viscous �ow�� J� Fluid Mech� ��

�����	� ��	�
��

�		� R� A� Smith� �E�ects of electrostatic con�nement �elds and �nite gyroradius

on an instability of hollow electron columns�� Phys� Fluids B �� ��� ��		���

��� C� F� Driscoll� �Observation of an unstable l � � diocotron mode on a hollow

electron colulmn�� Phys� Rev� Lett� ��� ��� ��		��

���� A� J� Peurrung and J� Fajans� �A limitation on the analogy between pure

electron plasmas and two�dimensional inviscid �uids�� Phys� Fluids B �� ��	�

��		
��

���� D� H� E� Dubin and T� M� O�Neil� �Two�dimensional guiding�center transport

of a pure electron plasma�� Phys� Rev� Lett� ��� ���� ��	����

��
� D� H� E� Dubin and T� M� O�Neil� �Two�dimensional bounce�averaged colli�

sional particle transport in a single species non�neutral plasma�� Phys� Plas�

mas �� �
� ��		���

���� J� C� McWilliams� �The vortices of two�dimensional turbulence�� J� Fluid

Mech� ��	� 
�� ��		��

���� S� Chandrasekar� �Stochastic problems in physics and astronomy�� Rev� Mod�

Phys� ��� � ��	�
��

���� D� Z� Jin� Ph�D� dissertation� University of California at San Diego ��			��


