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Relaxation of 2D Turbulence to Vortex Crystals
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Two-dimensional turbulence normally relaxes through vortex merger and filamentation, with energy
flowing to large scales and enstrophy dissipated on fine scales. Experiments on magnetized electron
columns show that this relaxation can be arrested by spontaneous “cooling” of the chaotic vortex
motions, leading to regular lattices of vortices within a uniform background of weaker vorticity.

PACS numbers: 47.27.Jv, 47.32.Cc, 52.25.Wz, 52.35.Ra

In the relaxation of turbulence in nearly inviscid 2D
flows, energy flows to long wavelengths, while enstrophy
is dissipated on fine scales [1], leading to inviscid
invariants that are “fragile” or “robust” in the presence
of weak viscosity [2]. Relaxed states can be predicted
based on maximization of entropy [3,4] or minimization
of enstrophy [5], and surprising agreement with the
minimum enstrophy states has been found in experiments
in some parameter regimes [6].

However, experiments [7] and computation [8] demon-
strate that long-lived nonlinear vortices often dominate
the evolution, arising even from structureless initial con-
ditions. The vortices seem to move chaotically due to
mutual advection, resulting in pairwise merger events and
the formation of filamentary structures. A scaling theory
of relaxation [9,10] based on mergers with conservation of
energy and maximum vorticity predicts power law depen-
dences of vortex properties, e.g., number of vorticesNy ~

t2j , and simulations have suggestedj ­ 0.75. Contour
dynamics calculations suggest more complicated merger
and filamentation events, and give different scaling expo-
nents [11]. Electrolyte experiments with strong dissipa-
tion have shown a range of exponents [12].

Here, we observe the free relaxation of turbulence in
magnetized electron columns, which evolve as near-ideal
2D fluids. We find that the relaxation can be arrested
by the formation of vortex crystals: for some initial
conditions, the chaotic motion of the vortices is “cooled,”
no further merger events occur, and the vortices form a
rigidly rotating lattice within a uniform background of
vorticity. The vortex crystal state is observed to persist
for up to 104 turnover times, until dissipation acts on the
individual vortices. Similar geometric patterns of point
vortices have been seen in rotating superfluids, where
friction arises from interaction with normal fluid [13].

In our case, the cooling appears to be a 2D fluid
process, showing little length dependence, and occurring
in a few turnover times. We speculate that the cooling
is caused by the interchange of energy between the
motion of individual vortices and the background vorticity
[14], made irreversible by fine-scale dissipation or mode
damping [15].

Figure 1 shows the experimental device with the
imaging diagnostic. Electrons from a spiral tungsten
filament are trapped in a series of conducting cylinders
(radius Rw ­ 3.5 cm) enclosed in a vacuum chamber
(&1029 torr). The electrons are contained axially by
negative voltages (250 V) on the two end cylinders,
and confined radially by a uniform axial magnetic field
(Bz ­ 4 kG), resulting in a confinement time of about
100 sec. The trapped electron column typically has den-
sity n # 7 3 106 cm23, radiusRp , 1.5 cm, and axial
lengthLp , 50 cm. The electrons have average kinetic
energykT ø 1 eV and are effectively collisionless, with
mean free pathlee ø 3 km. Individual electrons bounce
rapidly axially s fz ; ȳy2Lp ø 0.4 MHzd, averaging
over any z variations. Kinetic energy perpendicular
to Bz is bound up in cyclotron orbits, which are fast
s fc ø 11 GHzd and small src ø 5 mmd enough to be
ignorable.

Electric fields then cause the electron guiding centers
to E 3 B drift across the magnetic field as an effectively
incompressible fluid. Thissr , ud flow of the electrons is
described by the 2D drift-Poisson equations [15,16],

≠n
≠t

1 v ? =n ­ 0, v ­ 2
c

Bz
=f 3 ẑ ,

=2f ­ 4pen , (1)

wherevsr , ud is the drift velocity and2e is the electron
charge. The drifts are predominantly azimuthal, with bulk
rotation timetR ø 170 ms. The electron densitynsr , ud
is proportional to the flow vorticityz sr , ud, since z ;
ẑ ? s= 3 vd ­ s4pecyBzdn. The electrostatic potential
fsr, ud is proportional to the stream function, and the
nonzero≠fy≠r at the wall gives a true free-slip boundary

FIG. 1. The cylindrical experimental apparatus with phosphor
screenyCCD camera diagnostic.
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condition. Equations (1) are isomorphic to the Euler
equation that governs 2D inviscid incompressible fluids.
For fine spatial scales or long times, plasma “viscous”
[17] or diffusive effects [18] not contained in Eqs. (1)
become significant; however, these arenot in general
modeled by the Navier-Stokes equation.

At any desired time, thez-integrated electron density
nsr, u, td is measured (destructively) by dumping the
electrons axially onto a phosphor screen, from which
the luminescence is imaged by a low-noise512 3 512
pixel CCD camera. The shot-to-shot variations in the
initial profiles are small, i.e.,dnyn & 1022, so the time
evolution can be inferred from a sequence of shots with
differing hold times.

For the experiments described here, we initially trap a
highly filamented electron density distribution from the
spiral electron source, rather than a smooth profile as
studied previously [6]. Many individual vortices then
form due to local Kelvin-Helmholtz instabilities, and this
turbulent state evolves and relaxes by chaotic vortex
advection and mergers.

Figure 2 shows the measured vorticityz sr , u, td at five
times for two slightly different initial conditions, varied
by changing the filament bias voltages. The upper se-
quence forms vortex crystals, whereas the lower sequence
relaxes rapidly to a monotonically decreasing profile. The
vortex crystal states consist of 5–11 individual vortices
each with vorticity 4–6 times the background vorticity,
arranged in a lattice pattern that rotates with the back-
ground. In plasma terms, rods of enhanced electron den-
sity (n , 7 3 106 cm23) are maintaining self-coherence
and positions relative to each other for several seconds,
while E 3 B drifting with a diffuse background (nB ,
2 3 106 cm23). Vortex crystal states are repeatably ob-
served over a range of filament bias voltages, but the char-
acteristics of the initialnsr , ud required for these states are
not yet understood.

Figure 3 shows the number of distinct vorticesNy, the
circulation in these vortices

P
Gy , and the average vor-

tex radiuskryl for the two sequences after distinct vortices

form. The vortex counting algorithm is essentially that
of McWilliams [19] without the exclusion of elongated
structures. In both sequences, the unstable filamentary
initial condition formsNy ­ 50 100 vortices of roughly
equal circulation, after whichNy initially decreases as
Ny , t2j, with j ø 1. This relaxation is generally con-
sistent with the scaling of Refs. [9]; the observedj range
from 0.4 to 1.1 as the initial conditions are varied, with 0.8
being commonly observed. Here, the merger, filamenta-
tion, and diffusion results in a decrease in the discrete vor-
tex circulation, roughly as

P
Gy , t20.6 in Fig. 3.

In the evolution of the top sequence in Fig. 2, the
relaxation is arrested by the “cooling” of the chaotic
vortex motions, with formation of vortex crystals by10tR .
The diamonds in Fig. 3 show that 8 to 10 distinct vortices
survive for about104tR . When the vortices all have
about the same circulation, the patterns are quite regular,
as seen at600tR in Fig. 2. After 104tR , Ny decreases
to 1 as the individual vortices decay away in place.
Other experimental images show that asNy decreases,
the remaining vortices readjust to a new rigidly rotating,
symmetrically spaced pattern.

The measured integral quantities, shown in Fig. 4, are
consistent with 2D inviscid motion on large scales and
dissipation on fine scales. From the measurednsr , ud
we calculate the number of electrons (per unit length)
NL ;

R
d2r n, or fluid circulationGtot ­ s4pecyBdNL;

the canonical angular momentum (fluid angular impulse)
Pu ; R24

w

R
d2r r2nyn0; the electrostatic energy (fluid

kinetic energy)Hf ; 2
1
2 R22

w

R
d2rsfyf0d snyn0d; and

the enstrophyZ2 ­
1
2 R22

w

R
d2rsnyn0d2. Here, the char-

acteristic density isn0 ; NLyR2
w , and the characteristic

potential isf0 ; eNL.
Experimentally, the circulation, angular momentum,

and energy are robust invariants. The circulation shows
systematic variations of 10%, probably due to slow
variation of the filament emission and slow ionization of
background gas whent * 0.1 sec. This variation ofGtot

does not strongly affectPu or Hf, since they are scaled
by n0, although the 5% rise inPu at late times indicates

FIG. 2(color). Images of vorticity at five times for two sequences from similar initial conditions. The black arcs indicate the wall
radius.
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FIG. 3. Evolution of number of vortices, vortex circulation,
and average vortex size for the two sequences.

a slightly broader column. The maximum vorticityzmax
shows a 30% increase for the crystals sequence, but
no significant change for the monotonic sequence. The
reason for this increase is not understood; it may be
due to filamentary structures att ­ 0 that are smaller
than the pixel size. In contrast, the enstrophyZ2 is a
“fragile” invariant, and initially decays a factor of 2 in
both sequences. For the crystals sequence,Z2 is constant
from 10tR until 104tR , at which time the individual
vortices decay in place.

FIG. 4. Evolution of the robust invariants of total circulation,
angular momentum, and energy; the maximum observed vortic-
ity; and the fragile enstrophy invariant for the two sequences.

Reduction of the chaotic advective motions of the in-
dividual vortices is required to form the vortex crystal
states. This “cooling” is shown in Fig. 5. Here, the
average magnitude of the random velocities of the in-
dividual vortices,jdV j, is relative to the rotating frame
in which the mean discrete vortex velocity is zero. The
velocities are obtained from the potentialfsr , ud calcu-
lated from the measurednsr , ud and boundary conditions
fsRw, ud ­ 0.

The measuredjdV j decreases a factor of 6 between2tR

and100tR for the crystal’s sequence, whereas only slight
cooling is seen beforeNy ­ 1 (and jdV j ­ 0 by defi-
nition) for the monotonic sequence. The residualjdV j

for t $ 100tR may indicate incomplete cooling, measure-
ment noise, or systematic errors such as uncertainty in the
position of the trap axis. We note that the magnitude of
jdVj expected without cooling would scale ass

P
Gyd1

and sNyd21y2, and these two dependencies would essen-
tially cancel, sinceNy , t21 and

P
G , t20.6.

We believe this cooling and cessation of relaxation
through mergers is a near-inviscid 2D fluid effect, i.e., in-
dependent of the details of the fine-scale dissipation. How-
ever, two essential characteristics of this system are the
nonzero total circulation and the boundary of the vortic-
ity patch, effects that may not be present in other systems.
It appears that the vortex cooling occurs due to an inter-
action between the individual vortices and the boundary
of the background vorticity. A weak interaction would be
described as the excitation of surface waves on the back-
ground, and these waves could be damped by direct or
beat-wave spatial Landau damping [15]. For strong in-
teractions and short wavelengths, this would correspond to
entrainment and mixing of low vorticity regions from the
edge of the column. Some of the experimental images sug-
gest this latter process, and it has been clearly observed in
2D vortex-in-cell simulations by one of the authors [14].
A similar process may cause negative (relative) vorticity
“holes” to become symmetrically situated, as observed in
previous experiments [20].

Figure 6 shows a selection of the symmetric crystal
patterns that have been observed. Apparently, there are

FIG. 5. Evolution of the average chaotic velocityjdV j of
the vortices for the two sequences, normalized byVedge ;
2pRpytR ­ 5.5 3 104 cmysec.
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FIG. 6(color). Selection of vortex crystal patterns obtained from initial conditions similar to those of Fig. 2.

many different “meta-equilibria” to which the system can
evolve under near-inviscid 2D dynamics. Experimentally,
these meta-equilibria appear to last “forever”s*1 secd,
i.e., until plasma diffusive or viscous effects, not included
in Eqs. (1), act to dissipate the individual vortices.

Because of these attractors, the system does not
evolve ergodically, and the final state cannot be pre-
dicted from statistics alone. Nor can this system be
adequately approximated as point vortices punctuated by
occasional merger events: the discrete vortex motion is
non-Hamiltonian due to interaction with the background
vorticity. In contrast, experiments on vortex dynamics
without a background have shown frequencies and insta-
bility rates closely corresponding with point vortex theory
[21]. It remains to be seen how ubiquitous these crystal
meta-equilibria are, and the extent to which “vortex
cooling” is significant in vortex dynamics even when
crystal patterns do not occur.
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