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A Theory of Vortex Merger
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This paper discusses a 2D vortex merger for the particular case of a weak point vortex an
extended vortex of nearly circular cross section. A Hamiltonian analysis describes the intera
of the point vortex with surface waves on the extended vortex. Critical layers around the exte
vortex are introduced where “point vortex–surface wave” resonances occur. Vortex merger o
only when there is an overlap of neighboring critical layers. In this case the point vo
cascades through a sequence of resonances as it spirals in and merges with the extended
[S0031-9007(97)03812-X]
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Two-dimensional (2D) vortex dynamics in an idea
fluid has received extensive theoretical and experimen
attention (see, e.g., survey [1] and cited literature). T
merger of like-signed vortices is particularly importan
since it is a crucial element in the decay of turbulence
2D flows [2]. Most previous work [3–9] has considere
the merger of two vortices of comparable size, where t
merger process involves the shearing apart of each vo
in the velocity field of the other. The gross distortion
of the vortex boundaries complicate the problem, and
simple analytical treatment has been possible. In t
Letter we focus on a limit where the merger takes pla
without such distortions. In particular, we consider th
limit where one of the two vortices may be approximate
by a weak point vortex during the merger process. Th
simplifies the analysis and provides useful insight into t
dynamics of vortex merger. The applicability limits for th
“weak point vortex” approximation will be defined below

The 2D motion of an incompressible ideal fluid i
governed by the set of equations [10]

=== ? y ­ 0 , z ­ ẑ ? === 3 y , s≠t 1 y ? ===dz ­ 0 ,
(1)

where y is the fluid velocity,z is the vorticity, andẑ
is the axis normal to the plane of motion. Equations (
are equivalent to the drift-Poisson equations for the 2
E 3 B drift evolution of a non-neutral plasma colum
in a uniform magnetic field [11]. The problem of vorte
merger can be described in the language of fluid dynam
or plasma physics [12], but we follow the more tradition
language of fluid dynamics.

Three approximations define our model. (i) The tot
circulation (vorticity integrated over the area)Gp of the
point vortex is assumed to be small compared to the to
circulationGext of the extended vortex,

Gp ø Gext . (2)

(ii) The extended vortex is treated in the “vortex patch
approximation, where vorticity is constant within a bound
ary curve and zero outside. (iii) The smaller vorte
which is approximated as a point vortex, must be inten
0031-9007y97y79(8)y1479(4)$10.00
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enough so as not to be sheared apart during the me
process.

To see that approximations (i) and (iii) can be satisfi
simultaneously, let us consider two uniform densit
circular vortices that have vorticitieszp andzext and radii
rp andRext, whererp ø Rext. As before, the subscripts
spd and sextd refer to the small (“point”) and extended
vortices, respectively. Approximation (i) [i.e., inequalit
(2)] may be written as

zpr2
p ø zextR

2
ext . (3)

To put condition (iii) in quantitative form, we first note
that the self-velocity field of the point vortex near it
location is of the order ofzprp. The shear in the velocity
field of the extended vortex produces a velocity differen
across the small vortex that is of the order

zextR2
ext

d
rp

d
, (4)

where d is the separation of the vortex centers. F
the small vortex to remain intact (nearly circular), it
necessary that the self-velocity field dominate, so
obtain the condition

zprp ¿
zextR2

ext

d
rp

d
. (5)

Combining inequalities (3) and (5) and usingd , Rext
yields the desired applicability conditions,

zext ø zp ø zext

µ
Rext

rp

∂2

. (6)

In contrast, most previous work considered the case wh
zext , zp.

In the limit (2), the point vortex orbits around th
extended vortex, whose displacement as a whole is ne
gible. While orbiting, the point vortex excites Kelvin
waves on the surface of the extended vortex (diocot
modes in the language of non-neutral plasmas), and th
waves, in turn, influence the dynamics of the point vorte
The energy of the interaction between like-signed vortic
© 1997 The American Physical Society 1479
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is positive and increases as the separation decreases
analogy with the interaction energy of two like-signe
charges), while the energy of the surface waves can
negative [11]. The difference in sign of these energi
makes possible an instability in which the point vorte
moves radially inward while a surface wave grows, wi
the total energy conserved. In what follows we will se
that such an instability plays a crucial role in the vorte
merger.

Since the point vortex is assumed to be weak (2
the amplitudes of the excited Kelvin waves are sma
Consequently, the surface of the extended vortex st
nearly circular during the vortex interaction, at least un
the point vortex comes very close to the surface of t
extended vortex,dr , RextsGyGextd.

The most efficient excitation of a surface wave tak
place when the orbital frequencyvrot of the point
vortex around the extended vortex satisfies the resona
condition,

vm 2 mvrotsrd ­ 0 , (7)
wherevm is the frequency of the surface wave andm is
the azimuthal wave number. The frequencyvrot is a func-
tion of the radial positionr of the point vortex, where the
center of the coordinate frame is the unperturbed cen
of the extended vortex. It is convenient to introduce un
where distance is normalized to the radiusRext and time
to the inverse of the self-rotation frequencyGexty2pR2

ext
of the extended vortex. In these units,

vrot .
1
r2

, (8)

andvm is given by [13]
vm ­ m 2 1 . (9)

Equations (7)–(9) determine a set of critical radial pos
tionsrm,

rm ­

µ
m

m 2 1

∂1y2

, (10)

near which the point vortex resonantly excites a surfa
wave.

We start by considering a simplified model that d
scribes the interaction of the point vortex with linear su
face waves. The dynamics for this model is governed
the Hamiltonian,

H ­ 2 g ln p 2
X̀

m­1

vmpm

1 2g
X̀

m­1

gmy4

p
m

s
pm

pm
cos

∑
m

p
g

q 2 qm

∏
. (11)

Here, g ø 1 is the total circulation of the point vortex
normalized to the total circulation of the extended vorte
the conjugate coordinate and momentum of the po
vortex are defined as

q ­ 2
p

g u , p ­
p

g r2, (12)
wheresr , ud are the polar coordinates of the point vorte
position; and the conjugate coordinate and momentum
1480
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themth surface wave are defined as

qm ­ 2cm , pm ­
4
m

z 2
m , (13)

wherezm exps2imcmd is the complex amplitude of this
wave. In the vortex patch approximation, the linear
perturbed vorticity distribution for the extended vorte
can be written as a superposition of surface waves

dzsr , ud ­
X̀

m­2`

mfi0

dsr 2 1dzm expsimu 2 icmd , (14)

where it is necessary thatz2m ­ zm, c2m ­ 2cm for
dz to be real, and them ­ 0 term is excluded because
the flow is incompressible. Note that, for incompressib
flow acting on a uniform vorticity patch, a perturbatio
dz sr , ud can develop only at the surface. The surfa
waves form a complete set.

The first term in Eq. (11) is the energy of the poin
vortex in the logarithmic potential of the extended vorte
the second is the energy of the surface waves, and
third is the interaction energy of the point vortex and th
surface waves. One can check that Hamilton’s equatio
of motion,

Ùq ­
≠H
≠p

, Ùp ­ 2
≠H
≠q

, (15)

Ùqm ­
≠H
≠pm

, Ùpm ­ 2
≠H
≠qm

, (16)

are the same as the equations of motion that follow fro
Eqs. (1) in the limit where the extended vortex is treat
in the vortex patch approximation, and the surface wav
are of small enough amplitude that nonlinear wave-wa
coupling is negligible. Of course, the self-field of th
point vortex does not contribute to the center of ma
motion of the point vortex, that is, Eqs. (15) describe th
motion of the point vortex in the field of the extende
vortex. At the end of this paper, the results of this simp
Hamiltonian model will be compared to a numerica
integration of Eqs. (1) using contour dynamics, and w
will see that the model captures the essential physics.

Since Hamiltonian (11) is invariant under rotatio
(i.e., u ! u 1 Du, cm ! cm 1 mDu), the total angular
momentumL is conserved:

L ­
p

g p 1
X̀

m­1

mpm ­ const. (17)

One can easily check thatfL, Hg ­ 0. It is useful to note
that Eqs. (12), (13), and (17) impose an upper bound
the separation distance between the point and exten
vortices for a given value ofL.

In the vicinity of the critical radiusrm defined by
(10), the interaction between the point vortex and t
mth surface wave dominates. Retaining only this wa
in the Hamiltonian yields a system with two degrees
freedom (the point vortex and the resonant wave). Sin
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there are two degrees of freedom and two constants
motion, H and L, Hamilton’s equations are integrable in
this approximation.

Suppose that at the initial moment the point vortex
located at a radiusr0 close torm,

r0 2 rm

rm
­ e ø 1 , (18)

and that the resonant surface wave has zero amplitu
zmst ­ 0d ­ 0. Constraint (17) then yields the result,

L ­ gr2
0 , 4z 2

m ­ gsr2
0 2 r2d . (19)

By using Eq. (19) and expanding Hamiltonian (11) i
sr0 2 rd, one obtains

h ­ r̃2 2 ar̃ 1
p

r̃ cosswd , (20)

wherew ­ mu 2 cm, the constanth marks the value of
the energy, the constanta is related toe as

a ­ e
22y3m2y3

g1y3

µ
m

m 2 1

∂sm21dy3

, (21)

and r̃ measures the radial displacement of the po
vortex,

r0 2 r ­ r̃drm ,

drm ­ g1y3 21y3

m2y3

µ
m 2 1

m

∂s2m25dy6

.
(22)

Note that the constanta determines the value ofL
through Eqs.(18) and (19).

The phase-space trajectories determined by Eq. (
describe the point vortex motion, which involves rotatio
around the extended vortex together with finite amplitu
oscillations in the radial direction. A typical phase spa
portrait is shown in Fig. 1. The radial motion of the poin
vortex is trapped inside a “critical layer” of characterist
width drm [see Eq. (22)].

The picture of trapped motion inside the critical laye
is valid when there is a single resonant wave that intera
with the point vortex. The latter assumption is justified
the limit where critical layers that correspond to differe
m numbers are well separated in space, so that there is
overlap between them:

rm 2 rm11 ¿ drm . (23)

In the limit (23), the point vortex undergoes small (th
order ofdrm) radial oscillations and no merger occurs.

FIG. 1. Phase-space portrait of the point vortex motion insi
the critical layer.
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However, if g exceeds a critical valuegc, the width
drm becomes sufficiently large that an overlap of neig
boring critical layers occurs,

rm 2 rm11 & drm . (24)

We will see that in this case the point vortex consecutive
excites surface waves cascading from one critical laye
another until it merges with the extended vortex. No
that Eq. (24) coincides with the well-known Chiriko
criterion [14] for the overlap of nonlinear resonances. T
value of gc can be estimated by substituting Eqs. (1
and (22) into Eq. (24). For the most distant critical laye
which corresponds to a separationr2 ­

p
2 between the

vortex centers, one findsgc to be of the order of1023.
When there is an overlap and more than one wave p

ticipates in the dynamics, Hamilton’s equations (15) a
(16) must be integrated numerically. Figure 2 prese
the results of a numerical integration for a case of a slig
overlap between critical layers,0 , sg 2 gcdygc ø 1.
Initially, all 30 wave amplitudes included are set equal
zero,zms0d ­ 0. Furthermore, the point vortex is place
near the critical radiusr2, so them ­ 2 wave [curve 2(a)]
grows rapidly and dominates the early evolution. T
curve below [Fig. 2(b)] shows the radial position of th
point vortex. Near the troughs of its early time oscilla
tions, the point vortex penetrates them ­ 3 critical layer
and excites them ­ 3 wave [curve 3(a)]. After severa
oscillations, the point vortex leaves them ­ 2 critical
layer, them ­ 2 mode saturates, and the interaction wi
the m ­ 3 wave starts to dominate. Then them ­ 4
wave [curve 4(a)] comes into play, and so forth. Su
a cascade finally leads to vortex merger.

If sg 2 gcdygc * 1, there is substantial overlap be
tween critical layers, and from the very beginning th

FIG. 2. Numerical integration of Hamilton’s equations (15
and (16). Time dependence of the mode amplitudes (a)
radial position of the point vortex (b) in the case of sligh
resonance overlap,0 , sg 2 gcdygc ø 1 [r0 ­ 1.418, g ­
2.5 3 1023, zms0d ­ 0]. The dashed line corresponds to th
m ­ 3 critical radiusr3. The dotted lines correspond to th
characteristic boundariesr3 6 dr3 of the critical layer [see
Eq. (22)].
1481
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FIG. 3. Numerical integration of Hamilton’s equations (1
and (16). Time dependence of the mode amplitudes (a)
radial position of the point vortex (b) in the case of th
trapped motion inside the critical layer,gygc , 1 [r0 ­ 1.418,
g ­ 1023, zms0d ­ 0].

point vortex interacts resonantly with a whole set
waves. In this case the point vortex passes directly fr
layer to layer and merges with the extended vortex.

In contrast, Fig. 3 shows the results of a numeri
integration for the same conditions as Fig. 2, except t
the strength of the point vortex is below the critical valu
gygc , 1. Only the m ­ 2 mode becomes excited t
a significant level and there is no merger, even if t
integration time is extended to104 rotation periods of
the extended vortex (i.e.,t . 6.28 3 104). This justifies
the “single wave–point vortex” analytic approximatio
used above for the analysis of the point vortex mot
inside the critical layer.

We have compared our simplified model based
Eqs. (11), (15), and (16) to numerical integration of t
full nonlinear equations (1) using contour dynamics w
240 nodes [15]. In the limit (23) of the trapped motio
of the point vortex inside the critical layer, one finds ne
exact agreement between the models. Contour dyna
reproduces Fig. 3 with an accuracy of a line thickness.
the slightly supercritical case,0 , sg 2 gcdygc ø 1, the
contour dynamics results are very close to those of
simplified model [see Fig. 2] and support the scenario
cascading excitation of the resonant surface waves.
the case of substantial overlap between critical lay
there remains qualitative agreement between result
the models; however, distinctions due to the influence
nonlinear “wave-wave” interactions become apparent.

The dependence of the time to merge versusg based
on a numerical integration of Eqs. (15) and (16) (op
circles) and contour dynamics (solid circles) is shown
Fig. 4. The point vortex is considered to be merged wh
its radial position becomes equal tor ­ 1, that is, to the
initial radius of the extended vortex. Ifg , gc there is no
resonance overlap and there is no merger. Ifg exceedsgc,
vortex merger occurs. Asg grows, the overlap become
increasingly substantial, and the merger time decrea
1482
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FIG. 4. The time to merge versusg for r0 ­ 1.418. Open
circles result from the numerical integration of Eqs. (15) an
(16), and solid circles result from the numerical integratio
using contour dynamics.

One can see that the critical value isgc . 0.002, which
is near the estimated value.
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