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A Theory of Vortex Merger
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This paper discusses a 2D vortex merger for the particular case of a weak point vortex and an
extended vortex of nearly circular cross section. A Hamiltonian analysis describes the interaction
of the point vortex with surface waves on the extended vortex. Critical layers around the extended
vortex are introduced where “point vortex—surface wave” resonances occur. Vortex merger occurs
only when there is an overlap of neighboring critical layers. In this case the point vortex
cascades through a sequence of resonances as it spirals in and merges with the extended vortex.
[S0031-9007(97)03812-X]

PACS numbers: 47.32.Cc, 03.40.Gc

Two-dimensional (2D) vortex dynamics in an ideal enough so as not to be sheared apart during the merger
fluid has received extensive theoretical and experimentairocess.
attention (see, e.g., survey [1] and cited literature). The To see that approximations (i) and (iii) can be satisfied
merger of like-signed vortices is particularly important, simultaneously, let us consider two uniform density,
since it is a crucial element in the decay of turbulence ircircular vortices that have vorticities and .« and radii
2D flows [2]. Most previous work [3—9] has considered r. and Re, Wherer. << Rex. As before, the subscripts
the merger of two vortices of comparable size, where thé+) and (ext) refer to the small (“point”) and extended
merger process involves the shearing apart of each vortesortices, respectively. Approximation (i) [i.e., inequality
in the velocity field of the other. The gross distortions(2)] may be written as
of the vortex boundaries complicate the problem, and no 2 R2 3
simple analytical treatment has been possible. In this Gt L LoxiRexe (3)
Letter we focus on a limit where the merger takes placelo put condition (iii) in quantitative form, we first note
without such distortions. In particular, we consider thethat the self-velocity field of the point vortex near its
limit where one of the two vortices may be approximatedlocation is of the order of.r.. The shear in the velocity
by a weak point vortex during the merger process. Thidield of the extended vortex produces a velocity difference
simplifies the analysis and provides useful insight into theacross the small vortex that is of the order
dynamics of vortex merger. The applicability limits for the

2

“weak point vortex” approximation will be defined below. foxtRexe 1 , (4)
The 2D motion of an incompressible ideal fluid is d d

governed by the set of equations [10] where d is the separation of the vortex centers. For
V-v=0, (=2-VXv, (0, +tv- V) =0, the small vortex to remain intact (nearly circular), it is

(1) necessary that the self-velocity field dominate, so we

) . ) i o obtain the condition
where v is the fluid velocity, ¢ is the vorticity, andz

is the axis normal to the plane of motion. Equations (1)
are equivalent to the drift-Poisson equations for the 2D
E X B drift evolution of a non-neutral plasma column
in a uniform magnetic field [11]. The problem of vortex
merger can be described in the language of fluid dynami
or plasma physics [12], but we follow the more traditional Rext \>
language of fluid dynamics. oxt K 6 K §e>ﬂ< - > : (6)
Three approximations define our model. (i) The total
circulation (vorticity integrated over the are&) of the  In contrast, most previous work considered the case where
point vortex is assumed to be small compared to the totafext ~ -
circulation T, of the extended vortex, In the limit (2), the point vortex orbits around the
extended vortex, whose displacement as a whole is negli-
I < Text. (2) gible. While orbiting, the point vortex excites Kelvin
(i) The extended vortex is treated in the “vortex patch”waves on the surface of the extended vortex (diocotron
approximation, where vorticity is constant within a bound-modes in the language of non-neutral plasmas), and these
ary curve and zero outside. (i) The smaller vortex,waves, in turn, influence the dynamics of the point vortex.
which is approximated as a point vortex, must be intens&he energy of the interaction between like-signed vortices

gexthxt E

d d’
Combining inequalities (3) and (5) and usi@g~ Rex:
c;:(’ields the desired applicability conditions,

Lirye >

(5)
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is positive and increases as the separation decreases (itwe mth surface wave are defined as

analogy with the interaction energy of two like-signed

charges), while the energy of the surface waves can be
The difference in sign of these energies

negative [11].

4

Gn = ~Ym.  Pm=—Lln. (13)
m

makes possible an instability in which the point vortex,yhere {m €XP(—imip,) is the complex amplitude of this

moves radially inward while a surface wave grows, with

wave. In the vortex patch approximation, the linearly

the total energy conserved. In what follows we will seepertyrped vorticity distribution for the extended vortex
that such an instability plays a crucial role in the vorteXcan pe written as a superposition of surface waves

merger.
Since the point vortex is assumed to be weak (2)

the amplitudes of the excited Kelvin waves are small.
Consequently, the surface of the extended vortex stays o
nearly circular during the vortex interaction, at least untiiwhere it is necessary that-,, = {u, ¥—m =

v 0(r,0) = i 8(r = D)imexplim0 — ihn), (14)

m=—o

m#0

— i, for

the point vortex comes very close to the surface of thed¢ to be real, and then = 0 term is excluded because

extended vortexdr ~ Rexi(I'/Text).

the flow is incompressible. Note that, for incompressible

The most efficient excitation of a surface wave takedlow acting on a uniform vorticity patch, a perturbation

place when the orbital frequencw,, of the point

8{(r,0) can develop only at the surface. The surface

vortex around the extended vortex satisfies the resonan#&éves form a complete set.

condition,

- mwrot(r) =0, (7)
where w,, is the frequency of the surface wave ands
the azimuthal wave number. The frequengy, is a func-
tion of the radial position of the point vortex, where the

W

center of the coordinate frame is the unperturbed center
It is convenient to introduce units

of the extended vortex.
where distance is normalized to the radiRis; and time
to the inverse of the self-rotation frequenEy,,/27R2,
of the extended vortex. In these units,

1

Wrot = ﬁ 5 (8)
andw,, is given by [13]
oy =m — 1. (9

Equations (7)—(9) determine a set of critical radial posi-

tionsr,,,
m

(10)

1/2
I'm = < > s

m—1

The first term in Eq. (11) is the energy of the point
vortex in the logarithmic potential of the extended vortex,
the second is the energy of the surface waves, and the
third is the interaction energy of the point vortex and the
surface waves. One can check that Hamilton’s equations
of motion,

. oH oH
G=—. h=-T_. (15)
ap dq
. oH oH
qdm = 5 m = T, (16)
OPm IGm

are the same as the equations of motion that follow from
Egs. (1) in the limit where the extended vortex is treated
in the vortex patch approximation, and the surface waves
are of small enough amplitude that nonlinear wave-wave
coupling is negligible. Of course, the self-field of the

point vortex does not contribute to the center of mass
motion of the point vortex, that is, Eqs. (15) describe the
motion of the point vortex in the field of the extended

near which the point vortex resonantly excites a surfacgqrtex. At the end of this paper, the results of this simple

wave.

Hamiltonian model will be compared to a numerical

We start by considering a simplified model that de'integration of Egs. (1) using contour dynamics, and we

scribes the interaction of the point vortex with linear sur-

will see that the model captures the essential physics.

face waves. The dynamics for this model is governed by gjnce Hamiltonian (11) is invariant under rotation

the Hamiltonian,

—yinp = > wupm

o od
\/;CO \/7q qm:|. (12)

Here, vy < 1 is the total circulation of the point vortex
normalized to the total circulation of the extended vortex

H

e}

+2)/Z

m=1

m=1
,ym/4
m

vortices for a given value af.

(ie.,0 — 0 + AO, ¢, — ¢, + mAB), the total angular
momentumL is conserved:
L=\yp+ Z mp,, = const a7
m=1
One can easily check thpt, H] = 0. Itis useful to note
that Egs. (12), (13), and (17) impose an upper bound on
the separation distance between the point and extended

the conjugate coordinate and momentum of the point |, he yicinity of the critical radiusr, defined by

vortex are defined as

g=—Jv0. p=Jyr. (12)

(10), the interaction between the point vortex and the
mth surface wave dominates. Retaining only this wave

where(r, #) are the polar coordinates of the point vortexin the Hamiltonian yields a system with two degrees of
position; and the conjugate coordinate and momentum difeedom (the point vortex and the resonant wave). Since

1480



VOLUME 79, NUMBER 8 PHYSICAL REVIEW LETTERS 25 AGUST 1997

there are two degrees of freedom and two constants of However, if y exceeds a critical valug,, the width
motion, H and L, Hamilton’s equations are integrable in ér,, becomes sufficiently large that an overlap of neigh-
this approximation. boring critical layers occurs,

Suppose that at the initial moment the point vortex is

— <
located at a radius, close tor,,, Fm = Tm+1 = 0T (24)
o — We will see that in this case the point vortex consecutively
0 V'm . . i
. T~ € <1, (18)  excites surface waves cascading from one critical layer to
m

another until it merges with the extended vortex. Note
and that the resonant surface wave has zero amplitudghat Eq. (24) coincides with the well-known Chirikov
{n(t = 0) = 0. Constraint (17) then yields the result,  criterion [14] for the overlap of nonlinear resonances. The
L=y, 422 = y(r2 — r?). (19) value of y. can be estimated by substituting Egs. (10)
By using Eq. (19) and expanding Hamiltonian (11) in anc_j (22) into Eq. (24). For the most distant critical layer,
(ro — r), one obtains which corresponds to a separation = V2 between the
h=7 — aF + F og) Vortex centers, one findg. to be of the order ot0~>.
roar 7 code), (20) When there is an overlap and more than one wave par-
whereep = mé — i, the constant marks the value of ticipates in the dynamics, Hamilton’s equations (15) and

the energy, the constantis related toe as (16) must be integrated numerically. Figure 2 presents
22323 1 g\ /3 the results of a numerical integration for a case of a slight
¥ €T <m - 1> ; (21)  overlap between critical layer§, < (y — y.)/ve < 1.

~ i i _ Initially, all 30 wave amplitudes included are set equal to
and 7 measures the radial displacement of the pointerg - (0) = 0. Furthermore, the point vortex is placed

vortex, near the critical radius,, so them = 2 wave [curve 2(a)]
ro — 1 = Fory, grows rapidly and dominates the early evolution. The
23 [ — 1\2m=5)/6 (22)  curve below [Fig. 2(b)] shows the radial position of the
Srm = y'/3 T/3< ) . point vortex. Near the troughs of its early time oscilla-
m m

tions, the point vortex penetrates the= 3 critical layer
Note that the constantr determines the value of.  and excites then = 3 wave [curve 3(a)]. After several
through Eqgs.(18) and (19). oscillations, the point vortex leaves the = 2 critical
The phase-space trajectories determined by Eq. (20ayer, them = 2 mode saturates, and the interaction with
describe the point vortex motion, which involves rotationthe m = 3 wave starts to dominate. Then the = 4
around the extended vortex together with finite amplitudevave [curve 4(a)] comes into play, and so forth. Such
oscillations in the radial direction. A typical phase spacea cascade finally leads to vortex merger.
portrait is shown in Fig. 1. The radial motion of the point  If (y — y.)/y. = 1, there is substantial overlap be-
vortex is trapped inside a “critical layer” of characteristic tween critical layers, and from the very beginning the
width 6r,, [see Eq. (22)].
The picture of trapped motion inside the critical layer 1.5 103
is valid when there is a single resonant wave that interacts

with the point vortex. The latter assumption is justified in 4 Cz

the limit where critical layers that correspond to different m |

m numbers are well separated in space, so that there is no

overlap between them: 0 : :
T — Fmt1 > Orp,. (23)

In the limit (23), the point vortex undergoes small (the
order of6r,,) radial oscillations and no merger occurs.

2 24| 1
_ v(r -1 )j ““““““““““ 1 ()
P =7
2107 | "merger”
2 ] L L L " 1y T " 1
0 time 150
1F FIG. 2. Numerical integration of Hamilton’s equations (15)
and (16). Time dependence of the mode amplitudes (a) and
radial position of the point vortex (b) in the case of slight
ot resonance overlaf) < (y — y.)/y. <1 [rp = 1418, y =

2.5 X 1073, £,(0) = 0]. The dashed line corresponds to the
m = 3 critical radiusr;. The dotted lines correspond to the
FIG. 1. Phase-space portrait of the point vortex motion insidecharacteristic boundaries; + 6r; of the critical layer [see
the critical layer. Eq. (22)].
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FIG. 3. Numerical integration of Hamilton’s equations (15) 0 e )

and (16). Time dependence of the mode amplitudes (a) an

:adial deSitg.OH of '(t:ihethpom'tt' Volrltex (b) ii tlhe Cfsf4(l)£ the Gircles result from the numerical integration of Egs. (15) and
raEpieOigno '08 |n_5|0e e critical layey/y. [ro = 1418, (16), and solid circles result from the numerical integration
y = , {m(0) = 0]. using contour dynamics.

BIG. 4. The time to merge versug for ry = 1.418. Open

point vortex interacts resonantly with a whole set ofpone can see that the critical valueqyis = 0.002, which

waves. In this case the point vortex passes directly fronk near the estimated value.

layer to layer anq merges with the extended vortex. ' This work was supported by the National Science
In contrast, Fig. 3 shows the results of a numericalzoundation under Grant No. PHY94-21318. We thank

integration for the same conditions as Fig. 2, except thapy. Greg Flynn for his initial help with numerical inves-

the strength of the point vortex is below the critical value tigations and Mr. Dezhe Jin for the use of his contour
y/ve < 1. Only them =2 mode becomes excited t0 gynamics code.
a significant level and there is no merger, even if the
integration time is extended tb0* rotation periods of
the (EXT[ended vortex (l.'el’: 6.22?,>< 104)'. Th|SJus_t|f|es_ *On leave from Budker Institute of Nuclear Physics,
the “single wave—point vortex analytlg approximation Novosibirsk, Russia 630090.
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