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Test Particle Diffusion and the Failure of Integration along Unperturbed Orbits
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(Received 28 May 1997)

This paper discusses a new effect in the kinetic theory of single species plasmas in the guiding-
center regimerc ø lD . If two guiding centers collide once, their velocities parallel to the magnetic
field are eventually reversed through interactions with surrounding particles, and the same two guiding
centers then collide several times. These multiple collisions are ignored in the method of integration
along unperturbed orbits (IUO) that is usually applied in plasma kinetic theory problems. This effect
leads to a factor of 3 enhancement in the predicted rate of collisional test particle diffusion as
compared to theory based on IUO. The new prediction is in agreement with recent experiments.
[S0031-9007(97)04177-X]

PACS numbers: 52.25.Fi, 52.20.Dq, 52.25.Wz
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The collisional diffusion of test particles across a mag
netic field has recently been measured in a single spec
ion plasma confined in a Penning-Malmberg trap in th
regimerc ø lD (whererc is the cyclotron radius andlD

is the Debye length) [1]. In this paper we present a ca
culation of the collisional test particle diffusion coefficien
D , and compare it to the measurement. The calculati
involves a novel effect in plasma kinetic theory: an en
hanced diffusion coefficient arising from multiple binary
collisions between the same pair of particles. The multip
collisions are caused by velocity diffusion of the particl
trajectories.

Before we can explain this new effect, we mus
first explain why previous theoretical calculations of th
test particle diffusion coefficient fail to reproduce the
experimental data. The well-known classical diffusio
coefficient [2],

D class ­
5
4

niir
2
c ­

4
3

p
p nȳb2 lnsrcybdr2

c , (1)

describes cross-field steps of average sizerc due to
velocity-scattering collisions at ratenii. Here,nii is the
ion-ion collision frequency,ȳ ­

p
Tym is the thermal

speed,b ­ e2yT is the distance of closest approach,n
is the density, andT is the temperature. This diffusion
arises from interactions with impact parameterr in the
interval b & r & rc. Equation (1) predicts a diffusion
rate approximately an order of magnitude below th
measured diffusion [1].

Lifshitz and Pitaevskii recognized that whenrc ø lD

there are collisions with impact parameters in the rang
rc ø r & lD that are neglected in the derivation o
Eq. (1) [3]. These relatively long-range collisions resu
in negligible velocity scattering, can be treated with
guiding center theory, and provide the dominant transpo
mechanism whenrc ø lD. However, this guiding-center
theory of test particle diffusion also predicts a diffusion
coefficient that is less than the experimental measurem
(roughly by a factor of 3) [1]. We will show that this
guiding-center theory fails because it employs the meth
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of integration along unperturbed orbits (IUO), and this
method misses the novel effect referred to above.

Under the approximation of IUO, two particles collide
only once as they stream past one another along the ma
netic field; in an infinite plasma they never have anothe
encounter. However, this is not an accurate picture of th
actual dynamics. Velocity-scattering collisions with sur
rounding particles cause the velocities of the two collid
ing particles to diffuse over time. Eventually the velocity
diffusion causes the two particles to reverse their relativ
velocity parallel to the magnetic field, and they collide
again; in fact, they may collide several times. This effec
is neglected in IUO, and we will show that it leads to an
increase in the test particle diffusion coefficient by a fac
tor of 3, bringing it into agreement with the experimenta
measurement.

Surprisingly, this factor of 3 enhancement need no
vanish even when the velocity diffusion becomes arb
trarily weak. This is because a decrease in the veloci
diffusion rate merely increases the time one must wait be
fore the relative parallel velocity is reversed. Provided
that some other effect does not decorrelate the particl
first, they will always suffer multiple collisions. Note that
one normally expects that when perturbations to orbits a
sufficiently weak, IUO will provide the right answer; here
we have an example of a system for which this intuition
fails. It fails because arbitrarily weak perturbations build
up over time and eventually cause a large effect (multipl
collisions between the same pair of particles) which is ne
glected in IUO.

The failure of IUO occurs because the collisions be
tween particles are one dimensional: the particle guidin
centers are constrained to follow the magnetic field, an
therefore can encounter one another several times wh
their parallel velocities diffuse. However, if the particles
could move freely in two or three dimensions, they would
have negligible probability of colliding more than once,
even if some velocity diffusion were added to their orbits

Taking the magnetic field to be in thez direction, the
basic stepdx of the transport process occurs when the
© 1997 The American Physical Society
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test particleE 3 B drifts across the magnetic field due t
a Coulomb interaction with another particle:

dx ­
Z `

2`
dt

c
B

Eystd , (2)

whereEystd ­ 2≠feyjDrstdjgy≠y and Drstd is the rela-
tive displacement between the colliding particles. Und
IUO, one neglects the effect of collisions on the rel
tive displacement and takesDrstd ­ Dx x̂ 1 Dy ŷ 1

yrelt ẑ, where yrel is the (constant) relativêz velocity
between the colliding particles, andsDx, Dyd is the
(constant) transverse displacement between the partic
Performing the time integral in Eq. (2), one obtain
the step dxIUO ­ s2ecyBjyreljdDyyr2, where r ­p

Dx2 1 Dy2. The test particle diffusion coefficient can
then be obtained by integratingsdxIUOd2 over a flux of
incident particles:

D IUO ­
Z `

ymin
dyrel

Z lD

rc

r dr

3
Z 2p

0
du nyrelfsyreld sdxIUOd2, (3)

where fsyreld is a Maxwellian distribution of relative
velocities.

The allowed range of impact parametersr in Eq. (3) is
determined by the fact that whenr , rc, the guiding-
center approximation used to evaluatedx is no longer
valid, while for r . lD Debye shielding cuts off the
interaction [3]. In the velocity integral,ymin is the
minimum average relativez velocity during the collision.
This cannot be set equal to zero, otherwisedxIUO would
be infinite, because particles could then interact f
an infinite time [3]. Rather, velocity diffusion cause
particles to move apart and setsymin , sDyrd1y3, where
Dy is the relative velocity diffusion coefficient, due
to velocity-scattering collisions with other particles [4
Note that this implies that IUO does not entirely negle
velocity diffusion, since velocity diffusion is invoked here
in order to limit the interaction time between particle
However, as we discussed in the introduction, IUO do
ignore the multiple collisions caused by velocity diffusion
We will determine the effect of multiple collisions onD
presently, but first we must finish the calculation of te
particle diffusion using IUO.

Evaluation of the integrals in Eq. (3) can be easi
carried out to logarithmic accuracy, observing thatymin ø

ȳ andrc ø lD:

D IUO ­ 2
p

p nȳb2r2
c ln

µ
lD

rc

∂
lnfȳysDy

p
lDrc d1y3g .

(4)

This result is compared to the experimental measureme
in Fig. 1 (the dashed line) [5]. Here we have takenDy ­
niiȳ

2, and we have subtracted out of the experimen
data the relatively small extra diffusion due to the classic
process given by Eq. (1), so that we can directly compa
the theory to measured diffusion due only to long-ran
collisions. Even with the classical diffusion remove
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FIG. 1. Dots are the measured test particle diffusion co
efficient D in cm2ysec, from which the classical result
for small-impact parameter collisions,D class, has been
subtracted. Data are plotted versus plasma temperatureT.
Diffusion is normalized by the dimensionless factorg ;
fBy1 Tg22fny106 cm23g lnflDyrcg lnfȳysDy

p
lDrc d1y3g in or-

der to display data taken at several different magnetic fiel
strengths and densities. Dashed line is the theoretical result f
D using IUO; solid line is the improved theory accounting for
velocity diffusion. There are no adjustable parameters.

from the experimental measurement, one can see that t
theory still falls well below the scatter of the data.

However, if one properly accounts for velocity diffu-
sion, one obtains a different (larger) answer fordx and
D . The relativez position of the guiding centers is more
correctly described by

Dzstd ­ yrelt 1
e
m

Z t

0
dt0

Z t0

0
dt00 fdE1st00d 1 dE2st00dg ,

(5)

where dE1 and dE2 are thez components of electric
fields felt by the two colliding particles. These electric
fields describe the effect of many uncorrelated smal
impact parameter collisions, so we treatdE1 anddE2 as
uncorrelated fluctuating fields with zero mean and white
noise statistics. The test particle transport step can then
determined by Fourier transforming Eq. (2) and averagin
over the fluctuating electric fields:

dx ­ 2
4pec

B

Z d3k
s2pd3

iky

k2 eikxDx1ikyDy

3
Z `

2`
dt keikz Dzstdl . (6)

This type of average is well understood from the theor
of stochastic processes [6], and yields

dx ­ 2
4pec

B

Z d3k
s2pd3

iky

k2 eikxDx1iky Dy

3
Z `

2`
dt eikzyrelt2k2

z Dy jtj3y3 (7)

; 2
4pec

B

Z dkxdky

s2pd2
ikyeikxDx1ikyDyI ,
2679



VOLUME 79, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 6 OCTOBER1997

s

n

,

h

f

whereI is discussed below and

Dy ­

µ
e
m

∂2 Z `

0
dt fkdE1stddE1s0dl 1 kdE2stddE2s0dlg

is the relative velocity diffusion coefficient. Thek2Dyt3

term in the exponent appearing in Eq. (7) is the usual w
in which velocity diffusion enters in resonance broadeni
theory [7].

Surprisingly, the evaluation of Eq. (7) differs depen
ing on whetherDy equals zero orDy approaches zero
Consider the time andkz integrals that appear in Eq. (7):

I ­
1

2p

Z `

2`

dkz

k2
' 1 k2

z

Z `

2`

dt eikzyrel2k2
z Dy jtj3y3

­ 1yjyreljk
2
' for Dy ­ 0 . (8)

The second line follows because the time integral yie
2pdskzyreld when Dy ­ 0. Using Eq. (8) in Eq. (7)
then leads back todxIUO, as expected. However, if we
take Dy small but nonzero and perform the coordina
transformationŝt ­ sk2

z Dyd1y3t, u ­ skzyDyd1y3yrel, we
obtain

I ­
3

2p

Z `

2`

du
jyrelj

1

k2
' 1 sDyu3yy

3
reld2

Z `

2`

dt̂ eiut̂2jt̂j3y3

­ 3yjyreljk
2
' for Dy small. (9)

The second line follows because we can replacefk2
' 1

sDyu3yy
3
reld2g21 by k22

' when Dy is sufficiently small,
in which case interchanging theu and t̂ integrals yields
I ­ 3yjyreljk

2
'. Note that the factor of 3 that now appea

in I does not appear whenDy ­ 0. We therefore obtain

lim
Dy!0

dx ­ 3dxIUO ­
6ec

Bjyrelj

Dy
r2

. (10)

Thus, the limit ofdx as Dy approaches zero is unequ
to the caseDy ­ 0, which corresponds to IUO. The
evaluation of the basic transport stepdx joins a small
class of singular perturbation theory problems that
both analytically tractable and physically relevant.

Some physical insight into this surprising resu
can be obtained by considering the time behavior
expsikzyrelt 2 k2

z Dyjtj3y3dysk2
z 1 k2

'd, integrated over
kz . Rescalingkz to k̄z ­ kzyk', the integral can be
written as

Jst̄, D̄yd ;
Z `

2`
dk̄z expfik̄z t̄ 2 D̄y k̄2

z jt̄j3gysk̄2
z 1 1d ,

where D̄y ­ Dyys3k'y
3
reld and t̄ ­ k'yrelt. This inte-

gral can be expressed in terms of error functions, a
the result is displayed in Fig. 2 for several values ofD̄y .
Since I ­

R
`

2` dt̄ Jst̄, D̄ydys2pk2
'jyreljd, we are chiefly

interested in the area under the curves. WhenD̄y ­ 0,
Jst̄, 0d ­ p exps2jt̄jd; this corresponds to IUO and i
shown by the dots in the figure. However, forD̄y suf-
ficiently small but finite, there is a second peak att̄ fi

0. As D̄y approaches zero, the peak att̄ fi 0 becomes
broader and moves to largert̄, but the area under it doe
not vanish. The extra area provides the factor of 3
hancement todx.
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FIG. 2. Behavior with scaled timēt ­ k'yrelt of the integral
Jst̄, D̄yd as the scaled velocity diffusion coefficient̄Dy ;
Dyy3k'y

3
rel decreases toward zero. Dots correspond to IUO

sD̄y ­ 0d. Logarithmic axes are employed to display the broad
peak at̄t ­ t̄p , D̄21

y .

One can see from Fig. 2 that the second peak occur
at a scaled timētp ø 1yD̄y, or in unscaled units at a
time tp ø y

2
relyDy. In order to obtain the full factor of 3

enhancement, one must therefore integrate the interactio
over a time of ordertp. This is the time required for
yrel to be changed through velocity diffusion. Particles
may reverse their relative velocity and return to suffer
a second collision with the test particle in a timetp .
The enhancement arises from particles which collide once
then through velocity diffusion return to collide again.

If one now naively attempts to evaluate the test particle
diffusion coefficientD by employing the new expression
for dx in Eq. (3), one obtainsD ­ 9D IUO, because
dx ­ 3dxIUO. However, this is also incorrect. In order
to properly evaluateD one needs to know the rate
at which stepsdx occur. Since each stepdx is now
determined by multiple collisions, the rate at which these
multiple collisions occur determines the diffusion.

Fortunately, the rate of the multiple collisions can
be easily evaluated. Sincedx is 3 times the result
obtained from a single collision, one may conclude that
on average there are 3 single collisions making up eac
multiple collision, so the rate of these multiple collisions
is decreased by a factor of 3 compared to the rate o
the single collisions. When combined with the fact that
dx ­ 3dxIUO, this implies that

D ­ 3D IUO. (11)

This result can also be derived from a more rigorous
approach that uses the general expression forD as a
time integral over the correlation function of theE 3

B velocity fluctuations:D ­ scyBd2
R`

0 dt kEystdEys0dl.
This approach will be presented in a separate more
detailed paper [8].
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The new value ofD given by Eq. (11) is shown by
the solid curve in Fig. 1. The theory now matches th
experiment to within the scatter of the data.

In conclusion, we have shown that integration alon
unperturbed orbits fails to capture a significant ne
effect in plasma kinetic theory: velocity diffusion of
particle trajectories causes multiple collisions between t
same pair of particles. The velocity diffusion is due
to collisions with surrounding particles. One normally
thinks that collisions with surrounding particles caus
spatial decorrelation of a particle pair. Here we observ
that the collisions have the opposite effect, “caging” th
two particles, making them interact more strongly tha
they would otherwise. This is an effect that is usuall
associated with the liquid or solid state, not with weakl
correlated plasmas.

We have seen that this effect leads to an increase b
factor of 3 in the test particle diffusion coefficientD (as
well as in the basic transport stepdx) caused by long-
range guiding-center collisions in a magnetized singl
species plasma. Our analysis can be extended to co
diffusion caused by collisions between multiple specie
in a neutral plasma with no change in the factor of
enhancement, provided that each species is in the guidin
center regimerc ø lD [8]. The factor of 3 resolves a
discrepancy between an experimental measurement of
diffusion [1] and a previous theory [1,3] based on IUO
The factor of 3 does not vanish, even when the veloci
diffusion coefficientDy approaches zero, provided tha
some other effect does not first decorrelate the collidin
particles before multiple collisions can occur. Thus, w
have a system for which the limit asDy approaches zero
is unequal to the caseDy ­ 0.

Since IUO has been applied to many problems throug
out physics, it is important to consider whether simila
enhancements may occur when the effect of multiple co
lisions is taken into account. First, as we have already d
cussed, the collisional dynamics must be one dimension
so that velocity diffusion leads to a reversal of the trajec
tories and multiple collisions. In the problem considere
here, the one-dimensional nature of the motion is assur
by the application of a strong magnetic field. The stron
confining fields encountered in some other problems su
as 1D quantum wires might also lead to a similar effect.

Second, we note that any process that decorrela
the particles before they can reverse their trajectori
and collide again will nullify the effect considered here
and IUO will again provide the correct answer. As
we observed in connection with Fig. 2, the time fo
the multiple collisions is of ordertp , y

2
relyDy . The

decorrelation time must be shorter thantp in order for
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IUO to be correct. Note that collisions with surrounding
particles do not cause this decorrelation: over a time
Ostpd these collisions cage the particles andincrease
their spatial correlation. However, decorrelation can b
caused by significant rotational shear in the backgrou
plasma, causing particles to move apart in the transve
sx, yd directions in a time of orderjr≠vy≠r j21, where
vsrd is the E 3 B rotation frequency. Comparing this
time to tp implies that j≠vy≠rj . Dyyry

2
rel must be

satisfied in order for IUO to be correct for any given
collision. [In the present experiments this inequality is no
satisfied for the collisions of interestsr , lD, yrel , ȳd
because the plasma is nearly in a state of confined therm
equilibrium, with shears minimized by plasma viscosity.]

One previously published result which will be affected
by this enhancement is the evaluation of the collision
viscosity h of a magnetized single species plasma [9
Preliminary analysis indicates that the same factor of
enhancement that we encountered here will also occur
h. These issues will be considered in more detail in
future publication [8].
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