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Damping of the Trapped-Particle Diocotron Mode
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The damping mechanism of a recently discovered trapped-particle mode is identified as collisional
velocity scattering of marginally trapped particles. The mode exists on non-neutral plasma columns
that are partially divided by an electrostatic potential. This damping mechanism is similar to that
responsible for damping of the dissipative trapped-ion mode. The damping rate is calculated using a
Fokker-Planck analysis and agrees with measurement to within 50%. Also, an experimental signature
confirms a causal relation between scattering of marginally trapped particles and damping.
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particles. an rf electric field that oscillates in resonance
Electric and magnetic field inhomogeneities in plasma
containment devices cause a fraction of the particles to
remain localized in certain regions. This condition gives
rise to a class of low frequency electrostatic oscillations
known as trapped-particle modes [1]. In these modes,
trapped particles remain isolated from the global mode
structure and experience E�B drift oscillations, while
passing particles stream along the field lines Debye
shielding the trapped-particle charge density perturba-
tions. In this sense, trapped-particle modes resemble drift
waves wherein the trapped particles play the role of
ions and passing particles the role of electrons. Trapped-
particle modes were originally investigated for toroidal
geometry, but have been predicted for and observed
in other geometries, such as the Columbia Linear
Machine [2].

Trapped-particle modes can be stabilized or destabi-
lized by collisions [3]. In the case of the dissipative
trapped-ion mode, collisional scattering of the electrons
is destabilizing and collisional scattering of the ions is
stabilizing. Rosenbluth, Ross, and Kostomarov pointed
out that small angle velocity scattering near the phase-
space separatrix contributes dominantly to the damping,
and that a careful boundary layer analysis is required [4].
Their boundary layer analysis showed that the relative
damping rate due to ion collisions scales approximately
as

�����������
�i=!

p
rather than as �i=!. The square root provides a

significant enhancement since �i=! is small.
In this Letter, we identify the damping of the recently

discovered trapped-particle diocotron mode [5] as being
due to velocity scattering in the separatrix boundary
layer, and derive a damping rate that also scales as����������
�=!

p
. This mode exists on single-species plasma col-

umns in which classes of trapped and passing particles
have been created by an electrostatic potential barrier.
Particles trapped on one side of the barrier experience
E�B drift oscillations that are 180� out of phase with
those experienced by particles trapped on the other
side. Simultaneously, passing particles stream axially
Debye shielding the charge perturbations of the trapped
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Because the trapped particles and the passing particles
experience different dynamics, the mode perturbation
in the velocity distribution would be discontinuous were
it not for collisions. Small angle scattering provides an
essential correction, smoothing the distribution in a
boundary layer near the separatrix. Significantly, this cor-
rection contains a component that is in phase with the
mode electric field, so the mode can exchange energy
with the scattered particles and damp as a consequence.
We will show that the velocity scattering and damping are
intrinsically associated with a kind of neoclassical radial
transport.

The mode potential acts nonlinearly to raise and lower
the separatrix velocity each cycle, causing transitions
from trapped to passing and vice versa. Thus, nonlinearly
driven transitions across the separatrix compete with the
collisional scattering across the separatrix. However, the
collisional scattering dominates — is faster and acts over
a wider band in velocity — provided that
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�=!

p
�

e��=T, where �� is the mode potential and T is the
plasma temperature [6]. This inequality is the criterion
for validity of the linear mode analysis presented here,
and the inequality is well satisfied in the experiments
reported here. In our linear analysis, the classification of a
particle as trapped or passing refers to the equilibrium
potential in the absence of the mode.

Experimentally, the mode is excited externally and
then damps exponentially in time. The calculated
damping rates agree with the measured rates to within
50%, and predict the observed scalings under varia-
tion in barrier strength and magnetic field strength.
The 50% level of agreement is reasonable considering
the coarseness of the theory and the experimental
uncertainty in the plasma state. More compelling than
this numerical agreement is an experimental signature
that shows a causal relation between velocity scat-
tering of marginally trapped particles and damping:
the damping is observed to increase dramatically co-
incident with the artificial enhancement of the scat-
tering. The enhancement is produced by applying
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with the bounce motion of the marginally trapped
particles.

The experiments employ a pure electron plasma col-
umn that is confined in a Malmberg-Penning trap con-
figuration [5]. The confinement region is bounded radially
by a series of conducting cylinders with radius Rw. The
end cylinders are held at negative potential to provide
axial confinement of the electron plasma, while radial
confinement is provided by a large axial magnetic field
Bẑz. Here, �r; �; z� is a cylindrical coordinate system with
the z axis coincident with the axis of the trap. Because the
column is unneutralized, there is a radial space charge
electric field and consequent E� B drift rotation of the
column at rate !E�r�.

A static, �-symmetric barrier is created by applying a
negative ‘‘squeeze’’ voltage to a short cylindrical section
of the bounding wall at the axial midpoint of the column.
The resulting barrier potential is an increasing function
of radius, with more particles trapped near the radial
edge of the plasma than near the trap axis. At any given
radius, the potential presents an insurmountable barrier
to low axial velocity particles, trapping them in the end
regions. Particles with high axial velocity pass over the
potential and sample the entire length of the column
during their bounce motion.

The plasma has time to come into thermal equilibrium
along each field line before the mode is launched. Thus,
the equilibrium distribution function is given by

f0�r; z; v� �
N�r� expf� 1

T 	mv
2=2� e�0�r; z�
gR

dz
R
dv expf� 1

T 	mv
2=2� e�0�r; z�
g

;

(1)

where the z integrated density N�r� and the temperature
on axis are known from measurement. The equilibrium
potential �0�r; z� is obtained self-consistently by a solu-
tion of the Poisson-Boltzmann equation. From the solu-
tion, one can see that Debye shielding forces the
equilibrium potential to be z-independent except in the
barrier region and near the ends. The separatrix velocity,
vs�r�, is determined from the potential difference be-
tween the main column interior and the center of the
barrier region (z � 0 cm),

vs�r� �
�
�

2e
m

	�0�r; 0� ��0�r; L=2�

�
1=2
: (2)

In the experiments, frequencies are ordered as �c �
!b � �!;!E� � �, where �c is the cyclotron frequency,
!b � 2� �vv=2L the axial bounce frequency in each half,
and � the collision frequency. Also, length scales are
ordered as rc 
 ��D;
; R� 
 L, where rc is the cyclotron
radius, �D the Debye length, 
 the length of the barrier
region, R the plasma radius, and 2L the length of the
column. Thus, the motion transverse to the magnetic field
can be described by bounce-average E�B drift dynam-
ics, and the streaming motion parallel to the magnetic
field causes Debye shielding of the mode potential.
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Because the system has cylindrical symmetry, the
modes are taken to be of the form ���r; z; �; t� �
��‘�r; z� exp�i‘�� i!t�. The column admits modes
that have even parity in z (the usual diocotron modes)
and odd parity in z (the trapped-particle modes). In both
cases, Debye shielding forces ��‘�r; z� to be z indepen-
dent except in the barrier region and near the extreme
ends of the column. For the trapped-particle mode,
��‘�r; z� changes sign in the barrier region. As a simple
model, we use a step function potential

��‘�r; z� �
�
���‘�r� z < 0;
���‘�r� z > 0;

(3)

relying on the length scale ordering mentioned above.
Without collisions, the perturbed guiding center drift

distribution �f‘�r; z; v� would develop a discontinuity
in v. Since the mode potential has odd parity in z, the
bounce-average mode potential is zero for passing par-
ticles. These particles experience no bounce-average
E� B drift perturbation and develop only the streaming
response �f�p�‘ � �e��‘=T�f0. In contrast, each group of
trapped particles experiences E�B drift orbits in a
nearly z-independent potential ��‘�r�, and develops the
response

�f�t�‘ �r; v� �
c‘
Br
��‘�r�
!0�r�

@f0�r; v�
@r

; (4)

where !0�r� � ‘!E�r� �!, and the sign corresponds
to the z > 0 trapped-particle region. In general, �f�p�‘
and �f�t�‘ differ in value and slope at the separatrix. The
Fokker-Planck collision operator contains velocity de-
rivatives that become arbitrarily large at such a disconti-
nuity, so the effect of collisions on �f cannot be ignored
even if � is small.

Including the effect of collisions, the trapped-particle
perturbation satisfies the equation�

i!0 �Dv�vs�
@2

@v2

�
�f�t�‘ �

ic‘
Br
��‘

@f0
@r
; (5)

where only the second derivative term in the Fokker-
Planck collision operator has been retained. In the sepa-
ratrix boundary layer region, where derivatives are large,
the second velocity derivative term suffices. Here, Dv�vs�
is the coefficient of parallel velocity diffusion evaluated
at the separatrix velocity vs � vs�r�, and is of order � �vv2.

For ‘ > 0, the solution to Eq. (5) is given by

�f�t�‘ �
c‘
Br
��‘
!0

@f0
@r

� a exp

2
41� i���

2
p

���������������
!0

Dv�vs�

s
�v� vs�

3
5;
(6)

where a is an arbitrary constant and we have chosen the
sign so that the exponential decays as �v� vs� becomes
large and negative. The new term represents a collisional
correction in a boundary layer of width �v�t�s ������������������������
Dv�vs�=!

0
p

. To understand this width, note that the
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sign of the perturbation seen by the trapped particles
changes on the time scale 1=!0, and velocity diffusion
can extend to the width �v�t�s during this time [i.e.,
	�v�t�s 
2 �Dv�vs�=!0]. A similar correction is obtained
for the passing particles. However, in this case the cor-
rection is of width �v�p�s �

������������������������
Dv�vs�=!b

p
, since the pass-

ing particles see a sign change on the bounce time
scale 1=!b.

There is a disparity between the width of the boundary
layer for trapped and passing particles: �v�p�s 
 �v�t�s
since !b � !0. The consequence of this disparity is
that only the trapped-particle correction contributes sig-
nificantly to the damping. Matching the value and slope
of the distribution at v � vs yields a � ��‘	ef0=T �
�c‘=Br!0��@f0=@r�
v�vs . Substituting into Poisson’s
equation then yields an eigenvalue equation for the
mode potential
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which is subject to the boundary conditions ��‘�0� �
��‘�Rw� � 0. Multiplying both sides of Eq. (7) by ���

‘,
integrating over rdr, setting! � !r � i&, and taking the
imaginary part of both sides yields an expression for the
growth or damping rate

&�
B
‘

RRw
0 rdrj��‘j

2
��������������
2Dv�vs�
‘!E�!r

q
	ef0T � c‘

Br
@f0
@r

1
‘!E�!r


v�vsRRw
0 dr
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�‘!E�!r�2
@nt
@r

: (8)

To understand the energy budget for the damping, we
rewrite Eq. (8) as
0� 2&W�
Z Rw

0
rdr

Z 2�

0
d� 2e���r;�; t�

d
dt

	L�nc�r;�; t�
�
Z Rw

0
rdr

Z 2�

0
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�
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; (9)
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FIG. 1. Potential energy contours in the frame of an ‘ � 1
wave (solid z > 0, dashed z < 0). A particle initially at A is
transported to E through drift orbits and detrapping/retrapping
collisions at B, C, and D.
where
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B
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is the mode energy, which turns out to be negative. The
first term in Eq. (9) is the rate of change of mode energy,
which is positive for damping since both W and & are
negative. In the second term, the quantity �nc�r; �; t� is
the collisional correction to the trapped electron pertur-
bation, and the convective derivative d�L�nc�=dt �
�@=@t�!E@=@����ncL� is the flux of scattered electrons
to the side where the mode potential is ����r; �; t�. As
these electrons transit the squeeze region, the mode does
work 2e�� on each electron. The second term is the rate
of such work, which turns out to be positive. In the third
term, the quantity �vr�r; �; t� � ��c=Br��@��=@�� is the
radial drift velocity imparted by the mode potential, so
the third term is the rate at which the mode does work in
moving the scattered particles through the potential gra-
dient @�0=@r. There is a net outward radial flux of
scattered particles, so the third term is negative, balanc-
ing the other two terms. In summary, the mode potential
increases the kinetic energy of the scattered particles by
acceleration along the magnetic field and decreases the
electrostatic energy of the particles by radial transport
outward, the latter effect being dominant. When the li-
berated energy is added to the negative energy mode, the
mode damps.

To understand the sign of the second term, first recall
that in the absence of collisions, �fp�vs� > 0 and
�ft�vs�< 0 on the side where �� > 0. On this side, the
smoothing action of collisions must produce a velocity-
space flux from passing to trapped. The situation is re-
versed on the other side where ��< 0. Thus, the net
effect is a spatial flux of trapped particles from the side
where ��< 0 to the side where �� > 0. Physically, this
is reasonable, since we expect collisions to produce a flux
of trapped particles from high to low potential energy.
Equivalently, we expect collisions to produce heating, and
the second term is the heating rate.

The �-average radial flux can be written as

1

2�

Z 2�

0
d� �vr �nc �Dr�r�



�
@n0
@r

�
e
T
@�0

0

@r
n0

�
; (11)

where Dr�r� � (�
r�2!0 is a neoclassical-like diffusion
coefficient. To understand this coefficient, note first that
( � 2

�������������������������
2Dv�vs�=!0

p
exp	�v2s=2 �vv2
=

������������
2� �vv2

p
is the fraction

of particles in the boundary layer at radius r. In the
presence of the mode, the E� B drift orbits for the
trapped particles are distorted from circularity by an
amount 
r � c‘j��‘j=Br!0, and the distortions on the
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FIG. 2. Mode damping rate vs applied squeeze voltage from
theory [Eq. (8)] and experiments.

FIG. 3. Mode damping rate vs magnetic field. The theory
correctly predicts the B�1=2 scaling at high magnetic fields.

P H Y S I C A L R E V I E W L E T T E R S week ending
20 JUNE 2003VOLUME 90, NUMBER 24
two ends are 180� out of phase.When a trapped particle is
scattered and changes trapped-particle class (and drift
orbit), the particle effectively makes a radial step 
r. For
the particles in the boundary layer, the class changes at
the rate!0, soDr�r� � (�
r�2!0 is the expected diffusion
coefficient.

Equation (11) is the usual form for the transport flux in
the presence of a density gradient and an external force
with the diffusion and mobility coefficients related by an
Einstein relation [i.e., + � �e=T�D] [7]. The radial elec-
tric field �@�0

0=@r � �@�0=@r� �r!‘=‘��B=c� is the
effective field in the rotating frame of the wave. This is
the frame where the mode perturbation is static and the
Einstein relation is valid. One can easily understand that
diffusion in a negative density gradient (@n0=@r < 0)
produces an outward radial flux. However, the origin of
the mobility term is more subtle being intimately con-
nected with the net axial flux of scattered particles from
the high potential energy side to the low side.

The preference for outward radial transport is illus-
trated in Fig. 1. The solid curves represent potential
energy contours [i.e., �e�0

0�r� � e���r; �� � const] on
one side of the barrier, and the dashed curves the contours
on the other side. The difference between the two arises
from the fact that �� has opposite signs in the two ends.
The pattern is stationary in the rotating frame of the
wave, except for the slow damping. A particle that is
initially trapped in one end at A will E� B drift along
the contours until it comes to B where the contour is
farthest from the center, that is, where �e���r; �� takes
its maximum value. Statistically, this is where the particle
is most likely to be detrapped and move rapidly to the
other end, where this particle or an equivalent particle is
scattered and trapped. The particle will then E� B drift
along the dashed contour, continuing its motion outward
to C. Repeating the process then takes the particle to D
and E.

Figures 2 and 3 show damping rates predicted by Eq. (8)
compared to measured rates as squeeze voltage and mag-
netic field strength are varied. The agreement is to within
245002-4
50% over the expected range of validity for the theory.
The damping rate is expected to be a decreasing function
of the squeeze voltage, since the denominator in (8)
increases with the number of trapped particles. Since !r
and !E are proportional to 1=B, Eq. (8) implies that &
scales as 1=

����
B

p
. This scaling is observed for large field

strength (B ’ 2–10 kG), where the theory assumption
!b � !E;!r is well satisfied. At lower field strength & /
1=B is observed, but not understood theoretically. The
magnetic field dependence was missed in early experi-
ments [5] because it was counterbalanced by transport-
induced temperature changes.

We have direct experimental evidence that velocity
scattering of marginally trapped particles is responsible
for the mode damping. We artificially enhance the scat-
tering by adding a small oscillating potential VRF � 2�
10�4Vsq to the dc squeeze voltage, choosing the fre-
quency to match the bounce motion of marginally trapped
particles. This causes an immediate strong increase
(� 10� ) in the damping rate, which returns to its ori-
ginal level after the rf component is switched off.
The enhancement in the damping depends sharply on
the rf-component frequency, with the peak and width
consistent with the bounce frequencies of the marginally
trapped particles responsible for the damping.

This work was supported by NSF Grant No. PHY-
9876999 and ONR Grant No. N00014-96-1-0239.
[1] W. M. Tang, Nucl. Fusion 18, 1089 (1978).
[2] G. A. Navratil, A. K. Sen, and J. Slough, Phys. Fluids

(1958–1988) 26, 1044 (1983).
[3] B. B. Kadomtsev and O. P. Pogutse, Sov. Phys. JETP 24,

1172 (1967).
[4] M. N. Rosenbluth, D.W. Ross, and D. P. Kostomarov,

Nucl. Fusion 12, 3 (1972).
[5] A. A. Kabantsev et al., Phys. Rev. Lett. 87, 225002 (2001).
[6] A.V. Gurevich, Sov. Phys. JETP 26, 575 (1968).
[7] L. D. Landau and E. M. Lifshitz, Fluid Mechanics

(Pergamon Press, Oxford, 1979).
245002-4




