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Temperature Equilibration of a 1D Coulomb Chain and a Many-Particle Adiabatic Invariant
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Several recent experiments have produced an ordered chain of ions which are confined along a one-
dimensional axis. Here we examine the rate of irreversible energy transfer between degrees of freedom
describing motions transverse and parallel to this axis. Because of the strong transverse confinement, the
transverse motions are much higher frequency than the parallel motion, and so a many-particle adiabatic
invariant exists which greatly reduces the rate of thermal equilibration.

PACS numbers: 52.25.Wz, 52.25.Kn

The one-dimensional Coulomb chain is a simple form
of condensed matter consisting of charges of a single
species trapped in a linear configuration through the ap-
plication of strong external magnetic and/or electric
fields. Recently, such chains have been realized in two
experiments [1,2], in which the charges have been cooled
into the regime of strong correlation where the correla-
tion parameter I'=qg?%/aT is much larger than unity.
(Here q is the ion charge, T is the temperature, and a is
the average intercharge spacing.) The 1D chain has been
suggested as an advantageous configuration for a novel
type of atomic clock based on trapped ions [2,3]. It has
also been predicted that such chains may form in heavy
ion storage rings provided that sufficiently strong electron
or laser cooling is applied [4]. Such cold 1D chains
would provide an attractive low emittance ion source.

Although the charges are strongly bound to the axis of
the trap or the storage ring by the applied forces, high
frequency transverse motions still occur and the tempera-
ture 7, associated with these motions need not be the
same as that associated with the motions parallel to the
axis, 7). For example, when laser cooling or electron
cooling is applied along the chain axis, the transverse os-
cillations are not directly cooled and come to equilibrium
with the parallel motion only indirectly through Coulomb
collisions [5]. In this case the overall cooling rate de-
pends on the rate at which collisions cause T, and T to
equilibrate. This equilibration rate has been examined

N

via numerical simulations [6]. However, the regime in
which both parallel and transverse motions are of small
amplitude (near harmonic) has not yet been explored,
and it is often in this regime that the experiments
operate.

In this paper we calculate the rate v at which an aniso-
tropic temperature distribution relaxes to thermal equilib-
rium in a strongly correlated (I'>>1) 1D chain in the
strongly focusing limit, where the motions transverse to
the axis are of high frequency compared to the parallel
motions. Because of this time-scale separation we find
that a many-particle adiabatic invariant exists equal to
the total action associated with the transverse motions. If
this approximate invariant were exactly conserved, equili-
bration could not occur. However, we find that N-body
collisions cause small changes in the invariant, leading to
a slow rate of equilibration, exponentially small in the ra-
tio of transverse to parallel frequencies.

Our model for the trap consists of a harmonic radial
confining potential of the form mw?(x%+y2)/2 where
r=(x,y,z) are Cartesian coordinates with z oriented
along the beam axis. In the strong focusing limit of in-
terest here, the parameter e=wo/w, is small, where wg

=+/q%/ma? is a plasma frequency associated with paral-
lel oscillations. This radial potential is an excellent ap-
proximation for the linear [2] and circular [1] Paul trap
experiments, and is a useful first approximation for the
comoving frame of ions in a storage ring [4]. The Hamil-
tonian for the /V-ion system is then written as

H(ey,py,...tn,pn) = X (2 2m+mollxt+y21/2)+ X qY~IxR+yR+zm+all—n)1?,
I>n

n=1

where r;,=r; —r,, and for each ion r, is measured from
its equilibrium position in the linear chain. For simplicity
we assume here that in equilibrium the ions are equally
spaced, as in the ring trap, and image charges and curva-
ture effects, if any, are neglected.

When the ions are strongly correlated, the dynamics is
dominated by N-body processes rather than two-body col-
lisions. Here we assume that both I'y=g¢%/aT, and
=g %aT) are sufficiently large so that we may describe
the ion-ion interaction as emission and absorption of pho-
nons. The ideal phonon limit is then attained by expan-
sion of the Coulomb potential in |r,|/a to second order in
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this small quantity. The resulting harmonic Hamiltonian
Hy then describes /V eigenmodes with polarizations paral-
lel to z and 2N transverse modes. The parallel and trans-
verse mode frequencies are given by

w, (k) =wol8 i sin2(nk/2)/n31"2
n=1|

and w, (k) =~/w?—w?2(k)/2, respectively, where k
=2an/N (n=0,1,...,N—1) is the parallel wave vector
of the eigenmodes normalized to a [6].

Even at low temperatures, anharmonic terms neglected
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in Ho but present in H couple the parallel (or transverse)
phonons to one another, e.g., through three phonon col-
lisions. This low-order phonon-phonon coupling is expect-
ed to cause the distribution of parallel (or transverse) en-
ergy to relax to a Maxwellian described by a temperature
T, (T.). However, when £< 1 energy conservation does
not allow these low-order processes to create or destroy
transverse phonons, because annihilation of a single
transverse phonon requires creation of many parallel pho-
nons.

The total number of quanta (i.e., the total action) asso-
ciated with the high frequency transverse motions is then
an adiabatic invariant. In order for the transverse and
parallel temperatures to equilibrate this invariant must be
broken: Transverse phonons must be created or annihi-
lated. In fact, the symmetry of H in x and y implies that
transverse phonons must be created or destroyed in pairs.
The rate v for parallel to transverse equilibration can
then be estimated using an order of magnitude estimate
based on Fermi’s golden rule: v—~wo{(AH/H()?) where
AH is the interaction energy for a process which annihi-
lates two transverse phonons, and () denote a statistical
average. Recognizing that about M parallel phonons
must be created in this process, where M =2w,/w,, and
om =+7¢(3)wg is the maximum parallel phonon frequen-
cy, we crudely approximate AH as a Taylor expansion of
H: AH/Ho~zM(x?+y?)/a™*2 We perform the aver-
age using a harmonic Einstein approximation for the dis-
tribution of displacements, proportional to exp(— [z 2
+T,(x2+y?)/e?1/a?). Neglecting an unimportant mul-
tiplicative constant, the average yields
v~ (woe*/T)exp(—2{1 +In[V7EB) el/213/V7E(3)€),

n
which is exponentially small, as expected. Note, however,

that €'y must be greater than unity in order for the result
to be sensible, because the average is dominated by z dis-

placements with a peak at z/a~1//el,. That is, large
displacements in z would make a large contribution to the
rate, but such displacements are improbable. When
e’y > 1 small displacements make the main contribution
to v, consistent with the assumption of harmonic fluctua-
tions.

To calculate the equipartition rate more rigorously, we
perform a series of three canonical transformations in or-
der to isolate the total transverse action variable Jo3. We
first transform to phonon coordinates (f4,px), through
the Fourier relations

N—1
Fr,pr) =N —12 IZO (rje —ikl,p1eik1) .

In these coordinates Ho has the form of 3NV uncoupled
harmonic oscillators of frequencies w;, where j refers to
both wave number k and polarization direction (X, §, or
2): Ho=X,lp?/2m+mw}r}/2]. We next transform the
2N transverse phonon variables to 2N action angle pairs
(y;,I;) via the transformation (7,,5;) =~/2I;/mo;
x (siny;,mw cosy;). The angle variables y; evolve on a
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time scale of order w,”!. Finally, we apply the canonical

transformation [7] 8o =y, 6, =y, —wo (j=0), Jo=2,1,,
Jj=I; (j=0). Now only 8 varies at w,” '; all other vari-
ables are slowly varying. The total transverse action Jy is
therefore an adiabatic invariant.

We are interested in the time rate of change of Jg aver-
aged over a suitably chosen statistical distribution D of
systems, d{Jo)/dt=fdADIJo,H]A, where A is a point in
the 6 N-dimensional phase space, and [-,- 14 is a Poisson
bracket. At some time in the past, long compared to the
relaxation time to a two-temperature Maxwellian but
short compared to the 7, — T relaxation time, we as-
sume that D was a two-temperature Maxwellian, written
as Do=Z “'expl—w,Jo/TL— (H—w,Jo)/Ti}. Howev-
er, since Jo is not an exact constant of the motion, a fluc-
tuation D; develops which may be obtained through solu-
tion of Liouville’s equation with D¢ as the initial condi-
tion, D{(A,1) = — [Lwdt'[Do,H] ¢, where the Poisson
bracket is evaluated along the phase-space trajectory
A(t') for which A(z) =A, and where the slow time depen-
dence of T, and T has been neglected. Substitution of
D, into d{Jo)/dt then yields

d(]o)/dt=fdAD0[J0,H]/\
+r—umee ! [ Tac@, @

where we introduce the correlation function C(z)
=(Jo(t)J0(0)), T1=wot, Jo=—08H/d6p, and where ()
represents an average over Do. The first term of Eq. (2)
vanishes because Do depends on A only through Jo and
H; and the time integral in the second term has been ex-
tended to 1 = + oo using the symmetry C(z) =C(—1).
However, the time integral in Eq. (2) cannot be evalu-
ated because it involves the exact trajectory A(z). We
follow standard practice [8] by substituting approximate
trajectories A@(p), in this case determined by the har-
monic Hamiltonian Hg, and we also replace Do(H,Jo) by
Do(Ho,Jo). That is, we approximate the dynamics by
that of an ideal phonon gas, so the system must be strong-
ly correlated, i.e., I;>1. We also assume here that the
parallel force due to transverse displacements, of order
g’ri/a®, can be treated as a small perturbation of the

parallel motion, which requires I'; > &2/T). The substi-
tution of A(t) by A@ () is a major assumption of our
calculation. Despite the fact that this type of assumption
works well for a weakly correlated plasma [7], its validity
needs to be tested for a strongly correlated plasma.
Furthermore, we expect that processes involving creation
and annihilation of only two transverse phonons will dom-
inate the equilibration rate so we Taylor expand dH /96,
in x2 and y2 keeping only lowest order nonzero terms,
Jo=(q¥2)Xi>nZin 0rft/060, where ri=xf+yh and
Zimw=(—n)a+z, is the z distance between ions / and .
With these assumptions we find that the averages over
transverse and parallel phonons appearing in C(r) decou-
ple: C(r)=T3iXnCi(z,e)Ch(z,I}), where m=(,n,
1,77), and the sum runs over all / > n, I > 7. The (dimen-
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sionless) parallel and transverse parts of C(7) are Cp(z,[)=4a%Z;,;3(z)Z;;3(0)) and Ca(r,e)=T3[dri(z)/
86019r2(0)/860)/16a*, respectively. Employing harmonic phonon orbits A (¢) to determine r2(z), the average in Cp

can be performed explicitly:

Ca(z,8) =26*ULSF (e7)12— [Sm (e1)13cos(21/e) + 254 (61)S 1 (er)sin(27/e))

where the functions S, and S, are defined as

S.(.,+)(1)Ej;”%[cosk(l —I)+cosk(n—n) — (I<>n)lcoslof(k)t/40d] ,

S.(,,_)(T)Ej;n%[cosk (—1)+cosk(n—n) — (I«~>n)lsinlotk)r/40d] .

Similarly, the use of harmonic phonons in the parallel average implies Clh = f8dx dx,gm(x1,x2)hm(7,2x1x2/T1) where

the functions g, and hp, are given by

g.n(xl,xz) =(x1x2)2exp{—x|(l-—n) —xz(l_—ﬁ)+2[x|2 1-,,(0)+x22f,—_,;(0)]/l"u} s

hm(t,0) =expi—alf,_;(z)+f,_;(z)—U-n]},

and where the time dependence enters only through the
function f;—,(t)=T(z},(7)2,,(0))/4a?® which can be
written in terms of the parallel phonon spectrum:

1 —coskn

Jnle) =‘£) dk 2roitk)/wé

In deriving this expression for Cl we have replaced Z;; 3
by a smoothed function dependent on a parameter S:
Zp 3= ffdx\xtexp(—x,Z,/a)/2a>. This is exact for
B—= oo, but for finite B it avoids the singularity in Z;, 3
which occurs for close collisions, i.e., when Z;,— 0. This
singularity is disallowed under exact dynamics, but is al-
lowed in the harmonic dynamics which we employ, and it
would lead to a singular result for C [this can be ob-
served in gm(xy,x7), which blows up as x; or x, ap-
proaches co]. However, we will find that a range of large
but finite B values exist for which CJ is independent of B,
provided that el[;>> 1. Only then is C{ dominated by
small z displacements, just as in Eq. (1).

To evaluate Eq. (2) we first perform the time integral
Im(g,a)=f*2dt C& (1,6)hm(z,a). The function Ay, as-
sociated with parallel fluctuations, is slowly varying com-
pared to the rapid oscillations of Cgq; this leads to an ex-
ponentially small result for Iy, It is also important to
note that Cit — 0 on a time scale of order (ewg) ~! due
to phase mixing of the transverse phonons; that is, S+
and S~ — 0 on this time scale, so the integral is conver-
gent. We evaluate Iy using the saddle-point method in
the complex 7 plane. Since the integrand is an entire
function of 7, we can deform the contour through the
saddle points. Their positions depend on m but we have
found that the integral obtained from nearest neighbor
interactions, m*(=/,/ —1,/,/ —1), dominates the final
result for v so we keep only this term. The saddle-point
positions are then solutions of the saddle-point equation
f1(z)=—i/ea. Because f(Relz]) is oscillatory, there
are an infinite number of solutions distributed symmetri-
cally on each side of the imaginary t axis, as well as one

coslawy (k) t/wol .

3)

pure imaginary solution. However, for small ¢ only a few
saddle points nearest Rel[r]=0 need to be kept, and in
fact the pure imaginary saddle point gives the main trend
of the integral. A comparison of the saddle-point method
and direct numerical integration is shown in Fig. 1.

An important feature of Fig. 1 is the abrupt steps in
I+ at integer ratios between frequencies 2w, and the
maximum parallel phonon frequency ,, =+7¢(3)wo.
These steps are a consequence of the fact that the fre-
quency spectrum of the harmonic parallel dynamics [de-
scribed by f(z)] exhibits a sharp cutoff at w,,. This im-
plies that a phonon-phonon interaction which creates or
annihilates two transverse phonons and M parallel pho-
nons can only occur if Mw,, > 2w,, or e l< MA~N7¢@3)/2.
When £~ ! exceeds this value the process no longer con-
tributes and the rate decreases abruptly. For very large

FIG. 1.
values. Solid lines: saddle-point calculation keeping eleven sad-
dle points on each side of the imaginary t axis and the pure
imaginary saddle point. Dashed lines: saddle-point calculation
keeping only the pure imaginary saddle point. Symbols: direct
numerical integration; O: a=2.5, ¢: ¢=0.5, and O: a=0.25.

Plot of the time integral Im:(a,a) for different a
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FIG. 2. Plot of v(eI'y) =v/{w,(1 —=TL/Ty)} for different
values of F||Eq2/aT||. Here v is the equilibration rate, and
e=wo/w,. The dashed lines represent Eq. (5). Equation (5) be-
comes a better approximation for larger 1/¢ and smaller T'y.

£ ! these steps are smoothed out and finally disappear
because the rate is then determined by many high-order
processes, each of which has a small effect when taken in-
dividually.

To complete the rate calculation we evaluate the in-
tegral

I

(e, 1) =~/n"e/8n2(aoly) 2[S 1 (ie70) + S v (ie70) 1 2expl — 270/e+ 2a0f 1 (ito) —/2Tao ] ,

7o) =e) " [ dxidxogge (r1,x2)
X1 o+ (£,2x1x2/T0) . 4)

The integral is performed by direct numerical integration.
The equilibration rate v=T7,/T, can be written as
v=w,(1 —T,/T,)v(eI'y) where the approximation {Jq)
=2NkT /o, has been employed. The integrand in Eq.
(4) is sharply peaked near x;,x,~1/g, but begins to
diverge at large x; and x, due to the aforementioned un-
physical singularity in Z;; 3. However, we find that the
integral is independent of B provided that we choose
1/e< B STy, which implies el’y>> 1. Only under this con-
dition will the harmonic phonon approximation be valid.

The scaled equilibration rate v(gI'y) is shown in Fig. 2.
The rate is strongly reduced as & decreases. As we have
discussed, the rather striking steps in the rate stem from
the existence of a maximum frequency in the parallel dy-
namics, and are a qualitative signature of the strongly
correlated regime. Such steps do not occur in weakly
correlated plasma where binary interactions dominate
and no sharp frequency cutoff exists in the relative paral-
lel dynamics, Indeed, Fig. 2 shows that the steps de-
crease in magnitude as I'y decreases.

The dashed line in Fig. 2 is the result for v(g,Iy) when
only the single pure imaginary saddle point is kept in 7 ,«.
In this case a saddle-point evaluation of the integrals in
Eq. (4) yields

(5)

where ao=(7/8+1/ng)*/Ty, itq is the pure imaginary |
solution of the saddle-point equation evaluated at a =ay,
and n=+/7¢(@3). When el}> 1, 19=y+(Iny)/2n, where
y=Inlvnnin2/eapl/n. As either & or I'j decreases, Eq.
(5) becomes a better approximation to v(e,I'y) (see Fig.
2). To lowest order in & and (e}) ~! the exponential
dependence in Eq. (5), expl—21In(el'y)/nel, is the same
as the crude estimate of Eq.(1).

In order for our calculation to be valid, the aforemen-
tioned conditions ¢ 1, e['y>> 1, and ', > ¢%/T must be
satisfied. In fact, these conditions are not fully satisfied
in the previous molecular dynamics calculation [6] (the
last condition in particular) and therefore a detailed com-
parison between that calculation and the present analysis
is not possible. However, Ref. [6] does document a de-
crease in the equilibration rate as ¢ decreases. New simu-
lations are underway in order to test our results. We also
note that other mechanisms, such as scattering with gas
molecules or heating due to the rf micromotion in the
trap, may contribute to the equilibration process in a real
Paul trap or storage ring.

Finally, it is worth noting that there is a strong similar-
ity between the present problem and the perpendicular to
parallel temperature equilibration of a crystallized single
species plasma in the strong magnetization limit, where
the cyclotron frequency is large compared with the plas-
ma frequency; now the cyclotron frequency assumes the
role of w,. This equilibration process has been examined
2724

by O’Neil and Hjorth for a weakly correlated plasma
where the equilibration is driven by binary collisions [7].
However, a calculation analogous to that described here
should also make it possible to extend our understanding
of the equilibration process of a magnetized plasma into
the strongly correlated regime.
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