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Measurements of Viscosity in Pure-Electron Plasmas
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Measurements of the viscosity in quiescent magnetized pure-electron plasmas are up to 10® times larger
than predicted by classical collisional theory. This strong viscosity is due to long-range “E X B drift
collisions” between electrons separated by up to a Debye length. Recent theories of long-range collisions
show order-of-magnitude agreement with the measurements, but do not give the observed dependence on
the plasma column length. A simple empirical scaling law fits the length and magnetic field dependence

surprisingly well.
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Single-species plasmas such as pure-electron or pure-ion
plasmas can be confined in a state of global thermal equi-
librium using static magnetic and electric fields. The
thermal equilibrium state of these non-neutral plasmas is
characterized by uniform temperature, near-uniform den-
sity, and uniform rotation about the magnetic field. If
the rotation has some shear, interparticle collisions cause
cross-magnetic-field particle transport, which reduces the
shear and brings the plasma closer to thermal equilibrium.

Measurements of the viscosity associated with this
shear-driven transport test collisional transport theories
[1] and also provide basic knowledge for applications
which utilize non-neutral plasmas [2]. Two examples of
such applications are studies of two-dimensional vortex
dynamics using electron columns [3,4] and studies of
Coulomb crystals using laser-cooled ion clouds [5]. For
these and many other applications, an understanding of
the viscosity over the wide range of gaseous, liquid, and
crystal regimes [6] would be particularly beneficial.

Previous experiments [7] with pure-electron plasmas
measured a global rate of relaxation toward equilibrium,
7;11 = Veq, Which was found to be up to 10* times larger
than predicted by “classical” Boltzmann collision theory
[8,9]. In addition, veq scaled roughly with magnetic field
as Veq & B!, rather than as the predicted B~*. These
previous measurements prompted new theories of colli-
sional transport based on long-range “E X B drift colli-
sions” [10—12], but did not adequately test the theories.

In this paper, we report the first measurements of the lo-
cal coefficient of kinematic viscosity « in a pure-electron
plasma. These new measurements allow for an accurate
comparison to collisional transport theory over a wide pa-
rameter range in the gaseous regime. Here, we vary B
by a factor of 200 and the plasma length L by a factor of
10, and find that the data fit an empirical formula which
scales approximately as k « B/L, giving veq « B~1L™1.
This measured viscosity is as much as 10% times larger than
predicted by classical theory. In contrast, recent theories
of long-range collisions are in order-of-magnitude agree-
ment with the data, but the observed length dependence is
still not understood.
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The experiments [13] were conducted using two simi-
lar Penning-Malmberg traps, “EV”” and “CamV” (Fig. 1).
Both traps consist of a series of hollow conducting cylin-
ders with wall radius R,, = 4 cm, in ultrahigh vacuum
(P < 1079 Torr). Axial confinement of electrons is en-
ergetically assured by applying negative voltages (V. =
—100 V) to two end cylinders, and radial confinement is
provided by a uniform axial magnetic field (0.047 = B =
0.47 kG on EV and 0.5 = B = 10 kG on CamV). The
trapped electron density is typically n = 107 cm ™3, and
the thermal energy per electron is 7 = 1 eV. The plasma
column has rounded ends, with a length (4 = L < 44 cm)
somewhat smaller than the length between confinement
cylinders, as shown in Fig. 1.

Experiments are conducted with an inject/hold/dump-
and-measure cycle. A #-symmetric electron plasma with
relatively large rotational shear is created by adjusting the
bias and heating voltages on a hot tungsten source [14].
The plasma is trapped and held for a time 7 and then
dumped axially onto a Faraday cup (EV) or phosphor
screen (CamV), giving the z-integrated density,

o(r,t) =fdz n(r,z,t). (1)

The shot-to-shot reproducibility is better than 1%, i.e.,
80Q/0 = 0.01, so the density evolution can be obtained
by holding nearly identical plasmas for different periods
of time.

C

FIG. 1. Schematic of the cylindrical Penning-Malmberg trap
(not all confinement cylinders are shown).
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We also measure the plasma temperature 7 with a modi-
fied dump. The EV apparatus has a “magnetic Beach”
analyzer [15], giving T, (r,t); whereas, in CamV a
ramped-dump “‘evaporation” measurement [16] gives
Ty(r) at r =0 only. For these experiments, the tem-
perature does not vary significantly with radius [13], and
T.(r)=Ty(r)=T.

We obtain the z dependence of the density n(r,z)
and potential ¢(r,z) from a numerical solution of the
2D Poisson equation [17]. This uses the measured Q(r)
and 7 and the applied trapping voltages, and presumes
local Boltzmann equilibrium along each field line, i.e.,
n(r,z) « Q(r)exp[—ed(r,z)/T]. We then calculate the
total fluid rotation as

wio(r,z) = we(r,z) + wp(r,z)

=Br[ ¢(r.z) —

L2,

en(r,z) or
(2

The resulting w((r, z) is observed to be essentially con-
stant in z even in the end sheaths [as follows analyti-
cally from local Boltzmann equilibrium if 7(r) = const],
so we consider only w(r) = w(r,0). We also use the
Poisson solution to define an effective plasma length as
L(r) = Q(r)/n(r,0).

Figures 2a and 2b show the measured density and calcu-
lated rotation profiles at three different times for one set of
initial conditions in EV. Initially, at + = 0.1 s, the plasma
has large radial variations in density, and, consequently,
substantial shear in the rotation w (). As time increases,
some electrons move radially inward while others move
outward, smoothing the density profile and decreasing the
shear. The total angular momentum is conserved to within
1%, verifying that the transport is predominantly due to
electron-electron interactions, as opposed to electrons in-
teracting with an external asymmetry [18] or with neutral
gas [19].

Comparisons between measurements and theories are
based on a standard model of viscous transport in a cylin-
drically symmetric magnetized fluid [20]. In this model,
viscosity acts on shears in the rotation to produce 8 forces,
which in turn lead to radial particle drifts. These 8 forces
are described by the (r,0) component of the symmetric
pressure-stress tensor P, given by

awtot(r)
—[mn(r)x(¥)]r 0,

Pro(r) = 3
The 6 component of the overall force balance equation,
VP = —en(E + v/c X B), gives the radial drift v, (r)
and radial particle flux T',(r) as

Fr) = e () = S 2 py). @

<
eB
Experimentally, we calculate the z-integrated radial flux

from two density profiles at #; and #, as
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FIG. 2. (a) Measured z-integrated electron density Q(r) at 3

times. (b) Total fluid rotation w(r, 0) at these times. (c) Stress
tensor P,,(r) compared to shear profiles Sy (r) and Sg(r), for
the data at + = 0.1 and 0.3 s. (d) Kinematic viscosity «(r)
calculated from stress P, (r) and total shear S, (r).

r ! _ !
Tr(r) = _l[ dr/ r/ Q(l" ’tZ) Q(l" atl) ) (5)
r Jo Hh —
The z-integrated stress follows from Eq. (4) as
- B 1
Prlr) = = [ dr' F2T, (). ©)

The measured kinematic viscosity is then obtained as the
ratio of the z-integrated stress P4 to the density-weighted
total shear Sior as
K(r) = Prﬁ(r) = Prﬁ(r) ) (7)
—Stot(r) —mQ(r)rdweet/dr
Figure 2c shows P,¢(r) and (—3)S,,(r) calculated from
the profiles of Figs. 2a and 2b at + = 0.1 and 0.3. The
radial dependence of the stress qualitatively matches that
of the total shear, with k = 3.
Figure 2d shows the viscosity «(r) calculated from the
ratio of F,(, and Sy in Fig. 2c. The error bars for « are de-
termined by propagating the shot noise in Q(r) and 7. The
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measured viscosity is relatively constant in regions where
P,y and Sy are large, but has large uncertainty near the
zeros of P,y and Stor. Even small offsets in the zero cross-
ings (e.g., from positional inaccuracies) can cause spurious
“trends” in the data, as seen for r = 1.0—-1.3 cm. More
problematically, stresses from external asymmetries cause
errors at large radii [13] for long plasmas with small B/L.

We therefore use averages of x(r) over the first “bump”
of P,y to obtain parameter scalings; that is, from r =
0.1-0.6 cm for EV data (the large symbols in Fig. 2d)
and from r = 0.2-0.4 cm for CamV data. Measurements
of this average viscosity in relatively short plasmas (e.g.,
Fig. 2) are shown in Fig. 3 as a function of B. The viscos-
ity observed on both apparatuses increases with magnetic
field roughly as « o B!

In contrast, the classical theory of transport predicts a
much smaller viscosity, scaling as k « B~2 as shown in
Fig. 3. This theory [8,9] treats only short-range velocity-
scattering collisions with impact parameters p < r., and
gives

Kelas = Zf ver2n(r./b) « B2L°. (8)
Here v. = nvb? ~9s ! is a “bare” collision fre-
quency, v = /T/m =~ 40 cm/us is the thermal velocity,
re = v/(eB/mc) = 24 um [B/(kG)]"! is the thermal
cyclotron radius, and b = ¢?/T = 0.14 um is the clas-
sical distance of closest approach. [In Egs. (8)—(12),
we display the basic scaling with B and L, ignoring
logarithmic factors.]

The observed viscosity is apparently due to long-range
E X B drift collisions with impact parameters r, =
p = Ap, where Ap =/T/4me?n =~ 023 cm is the
Debye shielding length [21]. This transport was first
analyzed for the 3D (or “infinite-length”) regime where
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FIG. 3. Measured kinematic viscosity « vs confining magnetic

field B. The dashed line indicates a scaling of B!: the solid lines
are theory predictions for the experimental parameters.
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each pair of electrons interacts only once as they stream
axially past one another, giving [10,11]

ﬁ
3

Here, v, is the minimum relative axial velocity between
two interacting particles (representing the maximum time
for the interaction), as determined by either shears or
velocity-scattering collisions. This viscosity coefficient
agrees with the measurements at the lowest magnetic field,
but is about 200 times smaller than the measurements at
the highest field.

For short plasmas, where a thermal electron bounces
many times axially before it moves substantially in (r, 8),
each pair of electrons may have many correlated collisions,
leading to enhanced viscosity. Two separate 2D theories
have analyzed this enhancement by treating electrons as
magnetic-field-aligned “rods” of charge moving in (r, ).
The first 2D analysis [12] predicted that enhanced viscosity
is driven by shears in just the E X B rotation wg(r), and
that the enhancement occurs only in nonmonotonic rotation
profiles.

However, the present experiments show that there is
no substantial difference between the measured viscos-
ity for a hollow (nonmonotonic) density profile and that
for a peaked profile [13]. For example, Figure 3 shows
the close agreement between recent data from peaked pro-
files (e.g., Fig. 2) and the few points from a previous data
set [7] labeled “Hollow-1988” which were of sufficient
completeness to yield a viscosity coefficient. Addition-
ally, for both peaked and hollow profiles [13], the viscous
stress correlates much more closely with shears in w o (r)
than with shears in wg(r). For example, the measured
Sg(r) = mQ(r)rowg/dr in Fig. 2¢ does not change sign
nor does it vary as strongly as do P,4(r) and Sy (7).

In contrast, a more recent 2D “bounce-averaged” theory
[22] includes an approximation to the drifts due to thermal
electron penetration into the end sheaths, and predicts en-
hanced transport driven by shears in the total fluid rotation
w0t (r) for both monotonic and hollow profiles. The pre-
dicted viscosity is

Kpa = 1672 v.d*Nyg(2d/r) « B'L™3, (10)

Ki] = veAS In(T/vmin) o« BLO. 9)

where

v/2L B
N, = o = B2L B (1
rog rog L

is the effective number of axial bounces a thermal par-
ticle executes before being sheared away from neighbor-
ing particles, d = Tr.|L'/L||rowg|™' = 2r.L'N, is the
predicted radial interaction distance, g(2d/r) = 0.1 is an
integral that is calculated numerically, and primes denote
(8/dr). This theory is shown as two separate lines in
Fig. 3, since the detailed dependence on w and L' differs
for the EV and CamV initial conditions. The predicted
viscosity for these short plasmas is 3—10 times larger than
observed.
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FIG. 4. Measured viscosity « vs the effective number of
bounces N;. The solid curve shows the simple empirical for-
mula of Eq. (12).

The most counterintuitive aspect of the present results is
that the viscosity depends on the plasma length in addition
to the magnetic field. The measured viscosity decreases
approximately as k « L~ ! as the length is increased from
4 to 44 cm. Empirically, we find that the parameter N,
alone characterizes both the B and L dependence rather
accurately: All of the data on both machines is well de-
scribed by the simple empirical formula,

Kemp = (1 + Np)veAf « B'L™!. (12)

The accuracy of this empirical formula is shown in Fig. 4,
which displays the scaled viscosity « /v, A} versus Nj.

For long plasmas and/or low magnetic fields, with
Njp =< 1, the measured data show factor of 2 agreement
with the 3D infinite-length theory of long-range collisions.
In this regime, the radial shears apparently separate the
interacting particles and prevent multiple correlated colli-
sions. For short plasmas and/or high fields, with N > 1,
the measured viscosity is enhanced by an amount that
scales as N;, apparently due to multiple correlated col-
lisions. However, the theory analysis is still inadequate:
While the parameter N, does appear in the 2D bounce-
averaged prediction of Eq. (10), the other shear and length
dependencies in the d? term are not supported by the data.
(This theory is not displayed in Fig. 4 due to the choice of
axes and wide variation in d>.) As a caveat, we note that
further experiments may establish dependencies (such as
density or temperature) not included in Kemp.

Other experiments with pure ion plasmas have mea-
sured transport coefficients for test particle diffusion [23]
and heat conduction [24], but only in the N, < 1 regime
where multiple collisions and finite-length effects are pre-
sumably negligible. Both of these measurements agree
quantitatively with the 3D infinite-length theory of long-
range collisions. Recently, a 2D bounce-averaged analysis
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of test particle diffusion [25] has been developed for the
regime N, >> 1, and ion experiments may soon be able
to access this 2D regime using extremely short plasmas.
It remains to be seen whether understanding finite-length
effects in the somewhat simpler case of diffusion will con-
tribute to a deeper understanding of the viscosity results
presented here.
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