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the Development of Correlation
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In recent experiments, ultracold plasmas were produced by photoionizing small clouds of laser-cooled
atoms. It has been suggested that the low initial temperature of these novel plasmas leads directly
to strong correlation and order. In contrast, we argue that rapid intrinsic heating raises the electron
temperature to the point where strong correlation cannot develop. The argument is corroborated by a
molecular-dynamics simulation of the early-time plasma evolution.
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In recent experiments, ultracold neutral plasmas were
produced by rapidly photoionizing small laser cooled
clouds of atoms [1-3]. The energy (or frequency) of
the ionizing photons was adjusted to barely exceed the
ionization energy of the atoms.

These novel plasmas present interesting challenges to
theory. For example, it has been suggested that the low
initial temperature leads to strong correlation and order [1].
In contrast, we argue that rapid intrinsic heating raises the
electron temperature to the point where strong correlation
cannot develop.

The basic idea is easy to understand physically. For a
plasma in thermal equilibrium, the strength of correlation
is determined by the coupling parameter I' = e%/akT,
where a is the Wigner-Seitz radius (i.e., 4ma’n/3 = 1)
[4]. For the maximum density and lowest electron
and ion temperatures reported in the experiments [i.e.,
n=2x100cm>3, T,=0.1K, and T; =10 uK],
the electron coupling parameter has the value I', = 30,
and the ion coupling parameter is much larger. Thus,
one might expect the low temperatures to lead to strong
correlation.

However, the plasma is not created in a state of thermal
equilibrium. Before photoionization, the neutral atoms are
uncorrelated, so immediately after photoionization ion-ion
and electron-electron correlations are negligible. There
may be some electron-ion correlation that remains as an
artifact of the ionization process, but this is not a ther-
mal equilibrium correlation. For example, there is no
long range order. The temperatures reported are mea-
sures of particle kinetic energy, but do not imply the de-
gree of correlation that would exist for a true thermal
equilibrium.

Thermal equilibrium correlations can develop only
through the action of Coulomb interactions as the plasma
evolves. However, as the correlations begin to develop,
the correlation energy is released to the electron plasma
as heat, and this limits the strength of correlation reached.
To reach a correlation strength corresponding to I', = 1,
each electron picks up thermal energy kT, = e?/a. At
this point the coupling parameter has the value
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I, = ez/akTe = (62/[1)/(62/61) =1,

so further development of correlation ceases. Even if the
initial electron temperature were zero, corresponding for-
mally to infinite I',, strong correlation would not develop.

Heating associated with the liberation of correlation en-
ergy also was considered by Murillo [5]. However, he
treats the electrons only as a dielectric fluid that Debye
shields the interaction between the ions. His analysis fo-
cuses on the liberation of correlation energy for a system of
Debye shielded ions. Unfortunately, this approach misses
the electron heating that dominates the early stages of evo-
lution, and the electron temperature determines the degree
of shielding.

Another way to understand the electron heating is to note
that electrons are born in a spatially varying potential, and
immediately begin to move downhill. A typical electron
picks up kinetic energy e?/a while moving an interpar-
ticle spacing, a. The time scale for this initial heating
is approximately a/+/e?/am, ~ w,', where w, is the
plasma frequency.

This heating is the beginning of the collisional process
by which the plasma approaches a state of thermal equi-
librium. For the low temperatures of these plasmas the
thermal equilibrium state is a recombined neutral gas. The
collisional cascade of electrons to deeper and deeper bind-
ing in the Coulomb wells of ions is called three-body
recombination [6]. In this process, the recombination en-
ergy is carried off by a second electron (rather than a pho-
ton) and enters the plasma as heat. For these plasmas,
three-body recombination is very rapid —much faster than
radiative recombination. Although three-body recombina-
tion is not the focus of this paper, our simulation must
include this physics since the heating is a byproduct of the
recombination. The initial recombination is into weakly
bound (high n Rydberg states), so a classical molecular
dynamics simulation captures the essential physics.

The simulation is challenging because the time scale for
an electron bound in one of these Rydberg states is much
shorter than the time scale for a typical electron. In plasma
simulations of this kind some authors have used two time
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scales: one for particles with near neighbors and another
for the remaining particles [7]. Another variant is to use
piecewise analytic solutions for Kepler orbits. We prefer
a treatment that doesn’t make special assumptions about
particles with near neighbors, but seamlessly encompasses
the continuum of time scales required.

Fortunately, such a treatment was developed previously
in computational studies of binary star formation in globu-
lar clusters. The binary stars are the analog of the high n
Rydberg atoms, and the cluster is the analog of the plasma
cloud. We have adapted a code developed originally by
Aarseth [8] for the study of binary star formation.

The code is a molecular dynamics simulation in the
sense that the force on a given particle from each of the
other particles is calculated directly. Time integration is
effected with a predictor-corrector scheme using a fourth-
order polynomial fit to the orbit. The crucial feature is that
the time step for each particle is adjusted independently
depending on such factors as the rate of change of the
acceleration. Thus, a bound electron can have a much
shorter time step than a typical electron without slowing
down the whole simulation. To keep all of the particles
moving in near synchrony, the code advances next the time
step for the particle that is furthest behind in absolute time.
To evaluate the force on this particle, the other particle
positions are extrapolated back in time to exact synchrony
using the polynomial fit to the orbits.

As one would expect, there are interesting parallels be-
tween the dynamics of these plasmas and the dynamics
of globular clusters. Indeed, the heating that occurs as
a byproduct of three-body recombination is similar to the
heating of clusters that accompanies the “hardening” of bi-
nary stars. Through collisional interactions the binary stars
become more deeply bound, and the liberated gravitational
energy enters the cluster as heat. This heating mechanism
is thought to be crucial in the support of clusters against
gravothermal contraction and core collapse [9].

Simulation Results.—By using properly scaled length
and time, the number of parameters that define a simula-
tion is reduced to a minimum. Here length is scaled by
the Wigner-Seitz radius a and time by the inverse of the
plasma frequency w;l. With these scalings, the equations
of motion and initial conditions are specified by four pa-
rameters: the mass ratio m;/m,, the number of electrons
(which is equal to the number of ions) N, the initial value
of the coupling parameter I',, and a rounding parameter &
for the Coulomb potential.

To avoid singularities, the Coulomb potential is rounded
to the form

IyIn = raP/a + 82,

where ¢ < 1. For this simulation & is chosen to have the
value 1/31, and this value is small enough that the rounded
potential is a good approximation to the Coulomb potential
for the vast majority of particles. For a few deeply bound
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pairs, the approximation is marginal (e.g., 1/e = 31 and
max[ Epinding / (e?/a)] = 25), but these deeply bound pairs
are not the focus of this investigation.

To give correlations the maximum opportunity to de-
velop, the initial electron and ion temperatures (or more
precisely, kinetic energies) are taken to be zero, corre-
sponding formally to I',( = 0) = c and I';(r = 0) = .

The mass ratio is chosen to have the value m;/m, =
100. This relatively low value insures that the ions have
time to participate in the correlation dynamics during the
course of the simulation. The electron-electron correlation
function relaxes to a steady-state form in a few scaled
time units, and the ion-ion correlation function in a time
that is longer by /m;/m, = 10. The simulation runs for
Imax @, = 70.9 scaled time units and energy is conserved
to an accuracy of 0.1%.

So that the correlation function takes the simple form
G(ry,r2) = G(Ir; — ra]), we arrange the initial and
boundary conditions to insure uniform plasma density.
Specifically, 4096 electrons and 4096 ions are distributed
randomly inside a spherical volume bounded by a re-
flecting wall. The correlation measurements are made
well away from the wall. In scaled units, the radius of
the sphere is determined by the number of electrons,
(ry/a)’ = N.

The initial density profiles for the experimentally pro-
duced plasma clouds were Gaussian [1-3]. One should
think of the uniform density spherical plasmas as a small
central section of a larger Gaussian cloud.

Figure 1 shows a plot of the scaled electron tempera-
ture [i.e., 1/T.(t) = kT,(t)/(e?/a)] versus the scaled time
tw,. To obtain this plot, histograms of electron kinetic en-
ergies are made (excluding tightly bound electrons) and
matched to Maxwellians. Rapid heating to I', = 1 is
clearly visible. The longer-term slower heating is asso-
ciated with three-body recombination.

Figure 2 shows the electron-electron correlation func-
tion averaged over the time interval tw, = 3.5to 7.1. The
correlation function starts out flat, corresponding to ran-
domly distributed electrons, but quickly relaxes to the form
shown in Fig. 2 and retains this form. The only change
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FIG. 1. Scaled temperature versus scaled time.
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FIG. 2. Electron-electron correlation function, averaged from
tw, =35t tw, = 7.1

with increasing time is in the width of the region near
Ir; — ry] = 0 where G, = —1. This value for G, re-
flects the fact that it is energetically unfavorable for two
electrons to be at the same location, and the width of the
region is of the order of |r; — ry| = ¢2/kT,. In measure-
ments of G at later times the width is observed to de-
crease as the plasma temperature slowly increases.

For comparison, Fig. 3 shows the correlation function
for a one component plasma in thermal equilibrium at cor-
relation strengths I' = 1, 10, 20, and 40 [10]. As expected,
the correlation curve in Fig. 2 corresponds in shape to the
I' = 1 curve in Fig. 3. The curves in Fig. 3 for I' = 10,
20, and 40 exhibit oscillations indicating the presence of
local order, that is, of a local lattice. The lack of these os-
cillations in Fig. 2 shows that such order is missing in the
electron distribution for the ultracold plasma.

Figure 4 shows the ion-ion correlation function aver-
aged over the time interval tw, = 67.4 to 70.9. Again
the correlation function starts out flat and relaxes to the
form shown, although the relaxation time is longer than
for the electrons. The absence of oscillations shows that
local order is missing, and comparison to Fig. 3 indicates
a correlation strength of order I'; ~ 1.

(75D

FIG. 3. Correlation function for one component plasma.
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Figure 5 shows the electron-ion correlation function
averaged over the time interval tw, = 3.5 to 7.1. In this
case, G is positive near [r; — ry| = 0, since it is ener-
getically favorable for an electron to be near an ion.
However, this positive electron-ion correlation is not an
indication of the local order characteristic of strong corre-
lation; rather it reflects the beginning of recombination.

From the simulation results, we see that intrinsic rapid
heating prevents the development of strong correlation (or-
der) even though the initial electron and ion temperatures
are zero [i.e., I'.(0) = I';(0) = «]. However, one might
worry that the result is a consequence of the low mass
ratio or of the reflecting wall boundary conditions. Af-
ter all, electron evaporation from an unbounded cloud is
a cooling mechanism. Consequently, we carried out an
extensive simulation for 4096 electrons and 4096 ions in
an unbounded cloud with a Gaussian initial density dis-
tribution and a realistic mass ratio (for Xe ions). Again,
we observed the rapid initial heating to I', = 1 followed
by slower heating due to three-body recombination. The
evaporative cooling could not compete with the heating.

One important caveat is that the simulations follow only
the early time evolution of the plasma. Later, the plasma
undergoes expansion, and this can be a strong cooling
mechanism that reduces the temperature. Our studies im-
ply only that the initial low temperatures do not directly
lead to strong correlation and order during early times.

Also, in accord with the experiments, we assumed that
the atoms were uncorrelated before photoionization. If as
suggested by Murillo [5] correlations were imposed on
the atoms before photoionization, that correlation struc-
ture would be inherited by the ions. This assumes that the
ionization process is nearly complete. Further, if the cor-
relation structure closely mimicked that of the Coulomb
system, the ion-ion correlation energy would not be re-
leased to heat the ions and the correlations would persist
for some time. The time would be limited by three-body
recombination and by electron collisional heating of the
cold ions.
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FIG. 4. Ion-ion correlation function averaged over the time
interval tw, = 67.4 to tw, = 70.9.
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FIG. 5. Electron-ion correlation function averaged over the

time interval tw, = 3.5 to 7.1.

Finally, we note that the experiments themselves pro-
vide some evidence against early strong correlation. The
plasma expansion is driven by the electron pressure, but
the effective pressure becomes negative for a strongly
correlated plasma. This effect is well known from the
theory of one component plasmas [11], and is easy to
understand physically. Because of correlations, the elec-
trostatic forces of interaction bind the plasma together
giving rise to an effective pressure that is negative. If
there were no intrinsic heating and the cloud were strongly
correlated, the pressure would be negative and the cloud
would not expand. Alternatively, one can rule out ex-
pansion on energetic grounds. The correlation energy is
negative [i.e., Uy ~ —N(e?/a)], so plasma expansion
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can occur only by supplying positive kinetic energy [i.e.,
(3/2)NkT.]. However, in the limit of strong correlation,
I, = e?/akT, > 1, there isn’t enough kinetic energy to
drive the expansion.
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