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Recent experiments have trapped small spheroidal clouds of like charges, and have cooled them to cryogenic
temperatures where strong correlation effects, such as transitions to crystalline states, have been observed. The
experiments have also excited normal modes of oscillation in the charge clouds. The normal modes have
previously been considered theoretically using a cold-fluid model that neglects correlations. This paper exam-
ines the effect of strong correlation on the equilibrium and on the modes. Two correlation effects are predicted
to cause frequency shifts in the modes: correlation pressure changes the shape and density of the equilibrium,
and bulk and shear moduli introduce restoring forces neglected in the fluid theory. A viscoelastic model of the
plasma incorporating these effects is solved perturbatively to obtain formulas for the frequency shifts.@S1063-
651X~96!03905-0#

PACS number~s!: 52.25.Wz, 32.80.Pj, 52.35.Fp, 62.20.Dc

I. INTRODUCTION

Non-neutral plasmas, which are composed only of
charges of like sign, possess two intriguing properties: they
can be confined using electromagnetic fields for long periods
of time ~i.e., hours or even days!; and they can be cooled
without recombination to ultralow temperatures~on the order
of mK or less!, where states of condensed matter such as
non-neutral liquids and crystals are observed. In these
strongly correlated non-neutral plasmas the interparticle
spacings are typically microns or larger, so that densities are
over ten orders of magnitude less than conventional con-
densed matter.

The collective electrostatic modes of oscillation of non-
neutral plasmas have recently received considerable attention
for a number of reasons. Excitation and measurement of the
collective modes can provide a useful nondestructive diag-
nostic of such plasma properties as density and temperature,
as well as the shape and overall size of the plasma@1–4#.
Modes have also been implicated in transport processes lead-
ing to loss of the plasma and limits on the density@1,5#.
Furthermore, when the plasma is small compared to the size
of the trapping electrodes, an analytic theory exists that pro-
vides a complete solution for all of the modes@6#.

However, this analytic theory neglects the effect of corre-
lations and treats the plasma as a cold fluid. In this paper we
consider how interparticle correlations can affect the normal
modes in a strongly correlated trapped plasma. Here we will
consider a theoretical model that describes correlation effects
on the modes; in another paper@7#, we will test the theory by
comparing its predictions for the mode frequencies to the
results of molecular-dynamics~MD! simulations. We have
two related reasons for pursuing this analysis: we wish to
understand to what extent the crystallization of the trapped
plasma affects the normal modes, and, given that there are
measurable effects, we will consider what information a
measurement of the modes can provide concerning correla-
tion properties of the plasma.

The theory developed in this paper consists of a perturba-
tive solution of a viscoelastic model for the correlated
plasma. In addition to the usual electromagnetic forces acting

on the non-neutral plasma, a pressure tensor is introduced to
the equations of motion in order to account for the effect of
thermal pressure on the equilibrium and dynamics. The
theory differs from previous studies of correlation effects on
plasma waves in that the finite size of the trapped plasma is
explicitly taken into account. This is an important aspect for
comparisons to actual experiments and simulations of low-
order modes in small trapped plasmas, for which the mode
wavelength is of order the size of the plasma.

Mode frequencies are found to shift compared to the cold-
fluid theory of Ref.@6# ~where pressure is neglected!. The
shift can be traced to two effects of approximately equal
magnitude: ~i! the equilibrium shape and density of the
trapped plasma are changed by thermal pressure, causing a
shift in the mode frequencies; and~ii ! extra restoring forces
due to bulk and shear moduli of the strongly correlated
plasma also lead to frequency shifts. For several of the
modes explicit formulas are derived for the frequency shifts.

The paper is structured in the following manner. In Sec.
II, after a brief review of the thermal equilibrium properties
of trapped non-neutral plasmas, an analytic theory is devel-
oped in order to predict the effect of thermal and correlation
pressure on the plasma equilibrium. Correlations are found to
affect polynomial moments of the equilibrium plasma den-
sity. The analytic predictions for these moments are com-
pared to computer simulations of equilibrium plasmas, and
good agreement is found.

In Sec. III we briefly review the theory for the normal
modes of a cold-fluid plasma, and then we go on to introduce
and solve our viscoelastic model of the correlated plasma
modes. It turns out that the perturbative solution of this
model requires the polynomial moments of the equilibrium
density which were derived in Sec. II. Thus, analytic forms
for the correlation frequency shifts of the modes can be de-
rived. Section IV is devoted to a summary and discussion of
the results. In Appendix A we derive an intermediate result
required for the theory of pressure effects on the plasma
equilibrium. In Appendix B we perform several tests of the
perturbation theory developed to solve the viscoelastic
model. We first consider the perturbed potential eigenfunc-
tion in order to test the convergence of the theory. We then
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compare the perturbation solution to an exact solution of the
viscoelastic model for a special case.

II. EQUILIBRIUM PROPERTIES

In this section we review the static thermal equilibrium
properties of a single species plasma confined in a Penning
or Paul trap. We then go on to derive some results for density
moments of a thermal equilibrium plasma. We will need
these results for our treatment of normal modes of the
trapped plasma.

A. Gibb’s distribution in a harmonic trap

It is possible to trap a collection of charges of like sign for
long periods of time, so that the collection approaches a state
of confined thermal equilibrium. The thermal equilibrium
state is determined by the constants of the motion. In a Pen-
ning trap @8# the uniform confining magnetic field and the
applied electric field are nominally static and cylindrically
symmetric so the energyH and the component of angular
momentum along the trap axisPz are conserved quantities.
The angular momentum has both kinetic and magnetic com-
ponents

Pz5M(
i51

N

~vu i
r i1Vcr i

2/2!,

where Vc5qB/Mc is the cyclotron frequency,q is the
charge,M the mass,B the magnetic field strength, andc is
the speed of light. Cylindrical coordinatesx5(r,u,z) are
employed, measured with respect to the center of the trap,
with z oriented along the axis of symmetry. The energyH is

H5(
i51

N H 12Mv i
21qfT~xi !1(

j. i
f i j J ,

wheref i j is the interaction potential energy between par-
ticles i and j , andfT(x) is the external trap potential due to
the voltages imposed on the electrodes. For plasmas which
are small compared to the trap electrodes, image charges can
be neglected,f i j5q2/uxi2xj u, andfT is well approximated
by its Taylor expansion over the small central region where
the plasma is trapped:

fT~x!5
Mvz

2

2q
~z22r2/2!,

wherevz is the frequency of axial oscillatory motion when a
single charge is confined. Traps with such an external trap
potential are referred to as ‘‘harmonic.’’ In order to avoid
unessential mathematical complications, this paper focuses
on plasmas in harmonic traps.

In a Paul trap@9# there is no magnetic field, and confine-
ment is provided by a combination of electrostatic potentials
and electric fields varying at radio frequencies. The latter
fields induce a fast rf jitter motion of the ions which, when
averaged, leads to a ponderomotive confining potential. If
the small amplitude fast jitter motion is neglected and only
the ponderomotive potentialfPD(x) is kept, the resulting dy-
namics is conservative, with energy

H5(
i51

N H 12Mv i
21qfPD~xi !1(

j. i
f i j J .

Here again when the plasma is small compared to the dis-
tance to the electrodes,fPD is harmonic:

fPD~x!5
M

2q
~vz

2z21v'
2r2!,

wherev' is the frequency of radial oscillations of a single
particle in the trap. Note that bothvz andv' must be small
compared to the rf drive frequency in order to use the pon-
deromotive potential approximation. The angular momentum
is also conserved in cylindrically symmetric Paul traps:

Pz5(
i51

N

Mvui
r i .

For both the Penning and Paul traps the thermal equilib-
rium can then be described in a unified manner. The con-
served energyH and angular momentumPz imply the exist-
ence of a confined thermal equilibrium state, described by
the Gibb’s distribution

f ~x1 . . . xN ,v1 . . . vN!5Z21exp@2~H2v rPz!/kT#,

wherev r is the rotation frequency of the plasma,Z21 is a
constant that normalizes the phase-space integral off to
unity, andT is the temperature. In a Paul trap the rotation
frequencyv r is usually taken to be zero, but in a Penning
trap plasma rotation is essential for confinement.

For both types of trap the Gibb’s distribution can be re-
written as a product of a Maxwellian velocity distribution,
shifted by the rotation frequencyv r , and a configurational
distribution:

f5Z21expF2M(
i

~vi2v rr i û i !
2/2kTG

3expF2(
i

H(
i, j

f i j1qfe~xi !J YkTG , ~2.1a!

where, for a harmonic trap,

fe~x!5
Mvz

2

2q
~z21br2! ~2.1b!

is the effective confinement potential that traps the plasma.
The parameterb, referred to as the trap parameter, must be
greater than zero in order for the plasma to be confined. In a
Penning trapb is

b52
v r~Vc1v r !

vz
2 2

1

2
. ~2.2a!

This shows that in a Penning trap rotation through the mag-
netic field (v rVc,0) is required for particle confinement,
but in a Paul trap rotation is not required. In the Paul trap

b5
v'
22v r

2

vz
2 , ~2.2b!
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but rotation is generally a negligible effect in Paul traps so
one often takesb5v'

2 /vz
2 .

B. Cold-fluid equilibrium

The thermal equilibrium properties of either harmonic
Penning or Paul trap plasmas are described by the same
Gibb’s distribution function, Eq.~2.1a!, with the same effec-
tive confinement potentialfe , Eq. ~2.1b!. This potential,
along with the total particle numberN and temperatureT,
uniquely determines the equilibrium density. For example,
the Laplacian offe(x) is constant, and can be related to a
constant densityn0 through Poisson’s equation

n05
1

4pq
“

2fe5
Mvz

2

4pq2
~2b11!. ~2.3!

One can think offe as being produced by a uniform neu-
tralizing background charge of densityn0 . At low tempera-
tures the plasma minimizes its energy by matching its den-
sity to n0 . Thus, if one neglects density variations on the
scale of an interparticle spacing~i.e., if one neglects correla-
tions!, the low temperature plasma has uniform densityn0 ,
out to a surface of revolution where the supply of charge is
exhausted. This approximation is referred to as the cold-fluid
equilibrium.

Furthermore, Eq.~2.1b! implies that the shape of this sur-
face of revolution is determined solely by the trap parameter
b. For example, whenb51 the plasma is a sphere, whereas
for smallb the fluid plasma flattens into a disc and for large
b the plasma approaches a line. In fact, it has been shown
that, for low temperaturesT→0, the fluid plasma in a har-
monic trap is a spheroid~ellipsoid of revolution!. This fol-
lows because the electrostatic plasma potential within a uni-
form spheroid is related to its shape and density by@10#

fp52
1

4

Mvp
2

q
@A1~a!r21A3~a!z222A1~a!R2

2A3~a!L2#, ~2.4!

wherevp
254pq2n0 /M is the plasma frequency. Here we

introduce the aspect ratioa of the spheroid, which equals the
length 2L of the spheroid divided by the diameter 2R. The
functions of the aspect ratioA1(a) andA3(a) are

A1~a!5
12e2

e2 F 1

12e2
2

1

2e
lnS 11e

12eD G , ~2.5a!

A3~a!5222A1~a!, ~2.5b!

wheree25121/a2. In equilibrium at zero temperature the
plasma potentialfp must match the effective confining po-
tentialfp1fe5 const within the plasma. This equation, to-
gether with Eqs.~2.1b! and ~2.4!, leads to the following re-
lation between the trap parameter and the plasma aspect
ratio:

b5A1~a!/A3~a!. ~2.6!

The size of a plasma of given aspect ratio is determined by
the total particle numberN, and the densityn0 . This follows

from the relation between the spheroid volume and

N: 4
3pLR2n05N, which can be rewritten in terms of the

Wigner-Seitz radiusaWS and the aspect ratioa:

S L

aWS
D 35Na2, S R

aWS
D 35N

a
. ~2.7!

~The Wigner-Seitz radius is the average interparticle spacing,
defined in terms ofn0 by 4paWS

3 n0/351.) Equations~2.6!
and~2.7! have been verified experimentally in low tempera-
ture Penning trap experiments@11#.

C. Cold-fluid moments

In Sec. III we will require moments of the cold-fluid
plasma density when we consider the normal modes. We will
need moments of the form

^z2lr2m& f[
1

NE d3xnf~x!z2lr2m

for integersl andm, where the subscriptf on the average
indicates a moment taken with respect to the cold-fluid
plasma, andnf(x) is the cold-fluid plasma density, equal to
n0 within the plasma and zero outside of the plasma. The
integrals overnf(x) could in principle be determined nu-
merically for a plasma of any shape, but for a spheroidal
plasma the moments can be determined analytically. The re-
quired integrals are over the interior of a spheroid whose
surface is defined byz2/L21r2/R251, and the result is

^z2lr2m& f5
3

4

G~m11!G~ l11/2!

G~ l1m15/2!
L2lR2m, ~2.8!

whereG(x) is a gamma function.

D. Thermal equilibrium correlations

We now turn to the effects of finite temperature and cor-
relations on the equilibrium. Equation~2.3! implies that the
effective confinement potential can be thought of as being
produced by a uniform background densityn0 . A system of
charges confined in such a static background is termed a one-
component plasma~OCP!. Thus the Gibb’s distributionf of
a trapped non-neutral plasma is identical to that of a OCP,
except for the shift in velocities due to rotation. The OCP is
a paradigm of condensed matter with a long history@12#. The
correlation properties of a classical infinite homogeneous
OCP are entirely determined by the correlation parameter
G5q2/a WSkT. At G>2 the OCP begins to exhibit short-
range order characteristic of a liquid@13#, and atG5172 a
first-order transition to a bcc lattice is predicted@13,14#.

However, in present experiments the trapped plasma typi-
cally consists of less than 100 000 charges, so it is neither
infinite nor homogeneous, and this affects the correlation
properties@15#. In Fig. 1 we plot the densityn(r ;G) in a
spherical plasma as a function of spherical radiusr , for vari-
ous values ofG. This density is determined from Metropolis-
Rosenbluth Monte Carlo~MC! averages over the Gibb’s dis-
tribution,
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n~x1 ;G!

5NE d3x2 . . .d
3xNd

3v1 . . .d
3vNf ~x1 . . . xN ,v1 . . . vN!.

~2.9!

For relatively small values of the correlation parameterG the
density is approximately uniform within the plasma, falling
to zero at the plasma edge over a distance on the order of the
Debye length@16#. As the temperature decreases, the Debye
length decreases and the plasma edge steepens, approaching
the Heaviside step function densitynf(x) of cold-fluid
theory. However, asG increases the density also begins to
exhibit spatially decaying oscillations~see Fig. 1!. As G in-
creases beyond aboutG;102 the oscillations increase in
magnitude until the density approaches zero between the
peaks, and the system forms concentric shells. This concen-
tric shell structure has been observed in experiments@17#. At
largeG values (G*300–1000! the charges in a given shell
generally crystallize into a distorted two-dimensional~2D!
hexagonal structure, although for extremely oblate or prolate
clouds other crystal structures are predicted to occur@18#.

These qualitative correlation effects have been discussed
in several previous articles. However, in this paper we will
be concerned with the effect of correlations on the low-order
modes of the plasma. Since these modes have relatively long
wavelengths compared to an interparticle spacing, we will
find that only average correlation properties are important, in
which case some quantitative results can be obtained.

E. Density moments

Moments of the equilibrium density are affected by the
correlations. In Fig. 2 we plot the mean-square length
^z2&5(1/N)( izi

2 for a crystallized plasma of 1000 particles
@determined via molecular-dynamics~MD! simulation#, as a
function of the trap parameterb. On this plot is also shown

the cold-fluid theory result of Eq.~2.8!, ^z2& f5L2/5. Here
L is a function ofb and N through Eqs.~2.7! and ~2.8!.
There is a slight difference between the simulation results
and the cold-fluid prediction, visible at smallb, which can
be traced to an effect of correlations. The cold-fluid theory of
Eqs.~2.3!–~2.8! neglects the effect of pressure on the density
distribution. Here we are referring to the bulk thermal pres-
sure of the infinite homogeneous OCP,

p5n0kTS 11
1

3

U

NkTD , ~2.10!

whereU is the correlation contribution to the internal energy
@13#. In the strong correlation regime this pressure is nega-
tive becauseU/NkT is negative. This negative pressure leads
to a reduction in the size of the plasma.

Negative pressure, or a net attractive force, may seem
counterintuitive in a system of charges interacting via the
repulsive Coulomb potential. However, it must be remem-
bered that this negative pressure is an effectin addition to
the long-range repulsion kept in the mean-field potential
fp of Eq. ~2.4!; the plasma charges still repel one another,
but the repulsion is less than in the fluid limit and so^z2& is
less than the cold-fluid prediction. This correlation effect can
also be observed in Fig. 1, where for largeG the edge of the
plasma has shrunk inside the edge predicted by the cold-fluid
theory, shown by the dotted line.

Quantitative predictions for the effect of pressure on the
density moments can be obtained provided that we make
several approximations. We assume that the density is uni-
form except near the plasma edge, which is assumed to be
relatively narrow compared to the plasma dimensions. This
is a good approximation for the lowG profiles pictured in
Fig. 1, but for largeG it is difficult to justify, since shells
form throughout the plasma. Nevertheless we will observe
that our results for the density moments are in good agree-
ment with computer simulations even for largeG.

For any function of positionF(x) we define a moment
^F& as an average over the single-particle equilibrium den-
sity n(x;G):

FIG. 1. Equilibrium densityn(r ;G) as a function of spherical
radiusr in a spherically symmetric (a5b51) non-neutral plasma
of N5400 charges trapped in the effective potential of Eq.~2.1b!,
for various values of the correlation parameterG ~generated using a
Monte Carlo simulation!. The density is normalized to the cold-
fluid valuen0 . Lengths are measured in units of the Wigner-Seitz
radiusaWS. The dotted line is the cold-fluid theory, with a sharp
edge at r /aWS5N1/3 @see Eq. ~2.7!#. G51, 10, and 150 from
smoothest to most oscillatory profile.

FIG. 2. Mean-square lengtĥz2& as a function of trap parameter
b for N51000 charges. Dots: molecular dynamics simulations of
crystallized (G→`) plasmas. Line: cold-fluid theory@Eqs. ~2.6!–
~2.8!#. Lengths are measured in units of the Wigner-Seitz radius
aWS.
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^F&5
1

N(
i51

N

^F~xi !&5
1

NE d3xF~x!n~x;G!. ~2.11!

We then break the moment into two parts:

^F&5
1

NE d3xF~x!nf~x!1
1

NE d3xF~x!Dn~x!,

whereDn5n(x;G)2nf(x). The first term is the cold-fluid
moment^F& f discussed in Sec. II C, and the second term is
the correction which we callD^F&.

Now, by assumption,n(x;G) is equal tonf(x) except near
the edge of the plasma, soDn(x) is a highly peaked function
of distance from the edge. We therefore Taylor expand
F(x) in powers of the distanceu from the edge of the cold-
fluid plasma. Definingx5x0 at the fluid surface,

D^F&[^F&2^F& f5
1

NE d2x0F~x0!E
2`

`

duDn~u;G!

1
1

NE d2x0û•“F~x0!E
2`

`

duuDn~u;G!, ~2.12!

where û is a unit vector normal to the fluid surface, and
where we have assumed thatDn(x;G) is homogeneous along
the surface so that it is a function only ofu rather thanx ~that
is, curvature variations in the surface are neglected, which is
equivalent to neglecting surface tension effects!. The integral
*2`

` duDn(u;G) vanishes by conservation of total particle
number. The second integral overu is evaluated in Appendix
A using the equilibrium Bogoliubov-Born-Green-Kirkwood-
Yvon ~BBGKY! hierarchy, again neglecting surface curva-
ture variations. The result from Eq.~A5! is

E
2`

`

duuDn~u;G!5
p

Mvp
2 , ~2.13!

wherep is the bulk pressure of the one-component plasma,
given in terms of the correlation contribution to the internal
energy by Eq.~2.10!.

Using Eq.~2.13! in Eq. ~2.12!, and using Gauss’s theorem
for the surface integral, we obtain

D^F&5
p

Mvp
2n0

^¹2F& f . ~2.14!

Thus the correction to any density moment due to correla-
tions or thermal effects is proportional to the plasma pressure
p. Equation~2.14! applies to a plasma in any trap geometry,
not just a harmonic trap. For example, for plasma in any
confinement geometry Eq.~2.14! predicts the following cor-
relation changes in the mean-square length and radius:

D^z2&5
2p

Mvp
2n0

, D^r2&5
4p

Mvp
2n0

.

For plasmas in a harmonic trap and for moments of the
form ^z2lr2m& the required integral over the fluid spheroid in
Eq. ~2.14! can be performed analytically, and the result is

D^z2lr2m&52^z2lr2m& f~2l12m13!S l

L2
1

m

R2D p

Mvp
2n0

,

~2.15!

where the fluid moment̂z2lr2m& f is given by Eq.~2.8!.
Equation~2.15! has a satisfying intuitive interpretation asso-
ciated with the effect of correlations on the density profiles
shown in Fig. 1. For smallG values the pressurep is nearly
that of an ideal gas. This positive pressure causes the density
profile to expand and extend beyond the cold-fluid radius,
and so the shift in the value of density moments is also
positive. However, for largeG the density profile contracts
within the cold-fluid surface because the pressure becomes
negative, and this is also reflected in the shift to the moments
given by Eq.~2.15!.

In Fig. 3 we test Eq.~2.15! in the extreme case of a
crystallized plasma atG→`, comparing the prediction to
numerical simulations for various plasma shapes. In the large
G limit the internal energy is due entirely to the lattice Made-
lung energy, and is well approximated for several stable lat-
tices byUOCP/NkT.20.896G @13,14#, so from Eq.~2.10!
p/(Mvp

2n0).20.0996aWS
2 . The fluid dimensionsR andL

are, as always, determined in terms of the trap parameterb
and the particle numberN via Eqs.~2.6! and~2.7!. We would
expect that higher-order moments would not agree as well
with Eq. ~2.15! since asl orm increases,z2lr2m varies more
rapidly through the edge region and the Taylor expansion at
the edge becomes less well justified. However, there is good
agreement for the moments tested, even though there is no
well-defined narrow boundary region in the plasma density
at these largeG values, andn(r ;G) is unequal tonf(r ) over
the entire plasma.

In Fig. 4 we test theG dependence of the density mo-
ments for finite temperature spherical plasma equilibria for a
range ofG values. Here we determine the plasma pressure
p using the known results forUOCP(G)/NkT @13,14#, and
again there is good agreement between Eq.~2.15! and the
simulations over a range ofG values. In this case the simu-
lations are equilibrium Monte Carlo simulations, as in Fig. 2,
some withN5512, others withN5256.

FIG. 3. DifferenceD^z2lr2m& between density moments as seen
in simulations and fluid theory predictions as a function of trap
parameterb, for crystallized plasmas and for various values ofl
andm. Dots: simulation results. Lines: predictions of Eq.~2.15!.
Lengths are measured in units ofaWS.
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In summary, interparticle correlations and finite tempera-
ture give rise to effects not present in the fluid equilibrium of
Sec. II A, such as the formation of liquid and crystalline
states. Although the detailed microscopic correlations for
these states are quite complex, their effect on low-order mo-
ments of the density can be understood using a model which
accounts for correlations and temperature through the bulk
plasma pressure.

III. NORMAL MODES

We now turn to the electrostatic normal modes of these
trapped plasmas. Both magnetized plasma and upper hybrid
oscillations have been excited in recent experiments. In some
experiments@1, 2, 4# the measured frequencies agree with a
cold-fluid theory @6# of the modes of a uniform density
plasma spheroid in a harmonic trap, but in other experiments
noticeable frequency shifts were induced by the effects of
finite temperature and trap anharmonicity@3#. In addition,
computer simulations have observed frequency shifts for
modes excited in strongly correlated plasmas@7#. Here we
will derive general results for the frequency shifts of the
normal modes due to correlations. In order to make contact
with the experiments and with simulations, we will consider
the extreme limits of very strong applied magnetic field
where guiding center equations of motion apply, and zero
magnetic field. In a Penning trap the magnetic field can ap-
pear to be zero in a frame rotating with the plasma. The
cyclotron frequencyVc is shifted by rotation to the vortex
frequencyVv5Vc12v r . The plasma becomes unmagne-
tized in the rotating frame whenVv50, which occurs at the
Brillouin limit v r52Vc/2. The unmagnetized limit also ap-
plies to modes excited in a Paul trap plasma.

A. Fluid theory

We first review the cold-fluid theory of the normal modes.
In cold-fluid theory perturbations away from equilibrium are
described by the linearized continuity, momentum, and Pois-
son equations in a frame rotating with the plasma:

]

]t
dn1“•~nfdv!50, ~3.1a!

]

]t
dv52

q

M
“c1Vvdv3 ẑ, ~3.1b!

“

2c524pqdn, ~3.1c!

where dn, dv, and c are perturbed density, velocity, and
potential, respectively. Under the assumption that modes
vary in time in the rotating frame as exp(2 ivt), standard
manipulations of Eqs.~3.1! then yield

“•~«•“c!50, ~3.2a!

where

«5S «1 2 i«2 0

i«2 «1 0

0 0 «3
D ~3.2b!

is the cold plasma dielectric tensor. Outside the spheroid,
«51, whereas inside,

«1512
vp
2

~v22Vv
2!
, «25

vp
2Vv

v~v22Vv
2!
, «3512

vp
2

v2 .

~3.2c!

Equation~3.2a! is Maxwell’s equation“•D50 for a me-
dium with a frequency-dependent dielectric tensor«. Formu-
lation of the eigenmode problem is completed by the bound-
ary conditionc→0 at uxu→` ~i.e., image charges in the trap
walls are neglected, which is a good approximation for small
plasmas and distant walls!.

Unmagnetized modes

We first consider the unmagnetized limit, which is par-
ticularly simple. In this limit the modes fall into two catego-
ries: bulk plasma oscillations which produce no potential
variation outside the plasma, and surface plasma oscillations
which are incompressible distortions of the plasma shape,
and which induce potential variations outside the plasma.

Outside the plasma«51 andc satisfies Laplace’s equa-
tion

¹2cout50, ~3.3a!

whereas inside the plasma«250 and«15«3 , and Eq.~3.2!
becomes

S 12
vp
2

v2D¹2c in50, ~3.3b!

so eitherv25vp
2 , or elsec in also satisfies Laplace’s equa-

tion. In either case the inner and outer potentials must match
across the plasma surfaceS:

c in~x!5cout~x!us , ~3.4a!

S 12
vp
2

v2D û•“c in5û•“coutus , ~3.4b!

FIG. 4. Difference between simulations and cold-fluid theory for
density momentŝr 2&, ^r 4&, and^r 6&, wherer is spherical radius,
as a function of correlation parameterG for a spherical plasma
(a5b51). Dots: Monte Carlo simulations. Lines: theoretical pre-
dictions of Eq.~2.15!. Lengths are measured in units ofaWS.
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whereû is a unit vector normal to the plasma surface.
If v25vp

2 , Eqs. ~3.3a! and ~3.4b! imply that cout50,
whereas Eq.~3.3b! implies c in is undefined. This solution
corresponds to bulk plasma oscillations with an undefined
density dependencedn inside the plasma. In fact, the density
perturbation is not entirely undefined since Eq.~3.4! speci-
fies c in at the boundary; only density perturbations which
produce no potential outside the plasma are allowed. For
example, in a spherical plasma, any perturbation that is a
function only of radiusr causes no change in external poten-
tial; such modes are ‘‘breathing oscillations’’ of the cloud,
and in fluid theory all such oscillations are at the plasma
frequency. More complicated perturbations of this sort can
also be easily constructed.

The other case,“2c in50, corresponds to surface plasma
oscillations. The solution is separable in spheroidal coordi-
nates (j1 ,j2 ,f), where@19#

z5j1j2 ,
~3.5!

r5A~j1
22d2!~12j2

2!,

andf is the usual azimuthal angle. The coordinatej1 is a
generalized radial coordinate, andj2 is a generalized lati-
tude. Surfaces of constantj1 are confocal spheroids, and
surfaces of constantj2 are confocal hyperboloids every-
where normal to the constantj1 surfaces. The lengthd is a
parameter of the coordinate system, chosen asd5AL22R2

in order that the plasma surface is a constantj1 surface,
given byj15L. The coordinatej1 approaches the spherical
radiusr in the spherical limitL5R ~i.e., d50), andj2 ap-
proaches cosu in the spherical limit. In these coordinates the
solutions of Laplace’s equation inside and outside the plasma
are

c in5APl
m~j1 /d!Pl

m~j2!exp~ imf!, ~3.6a!

cout5BQl
m~j1 /d!Pl

m~j2!exp~ imf!, ~3.6b!

wherePl
m andQl

m are Legendre functions, and wherel and
m are integer mode numbers,l>umu, determining the spatial
variation of the mode. Specifically, the number of zeros in
the potential encountered upon circling the equator of the
spheroid isumu, whereas the number of zeros encountered
upon traversing the spheroid from pole to pole along a great
circle equalsl2umu. That these perturbations cause incom-
pressible deformations follows from the fact that“2c50
everywhere except at the plasma vacuum boundary. At the
boundary the jump in the gradient ofc corresponds to a
surface charge density that can be regarded as an infinitesi-
mal displacement of the surface.

The frequencies of these surface plasma modes are found
by substitution of Eqs.~3.6! into Eqs.~3.4!:

v25
vp
2

12Ql
m8Pl

m/Ql
mPl

m8
, ~3.7!

whereQl
m5Ql

m(a/Aa221), Pl
m5Pl

m(a/Aa221), and the
prime denotes differentiation with respect to the entire argu-
ment. In the spherical limita51 Eq. ~3.7! approaches the
well-known result for surface oscillations of a plasma sphere,

v25vp
2l /~2l11!. ~3.8!

Normal modes for BÞ0

We now turn to the magnetized plasma oscillations of a
fluid spheroid. Unlike the unmagnetized case where, for
given l andm, there is a single pair of~positive and nega-
tive! surface mode frequencies satisfying Eq.~3.7!, there are
now several modes for a givenl andm. Whenm50 there
are l pairs of modes; whenl2m is odd there are
2(l2umu)11 modes, and whenl2m is nonzero and even
there are 2(l2umu)12 modes.

The theoretical treatment of the magnetized modes is
similar to that of the unmagnetized modes, and has been
thoroughly discussed in previous work@1, 6#. We therefore
skip directly to the relevant results. Outside the plasma Eq.
~3.2! is Laplace’s equation, and so the outer solution is still
Eq. ~3.6b!. Inside the plasma the solution is in terms of
scaled spheroidal coordinates

c in~x!5APl
m~ j̄1 /d̄!Pl

m~ j̄2!exp~ imf!, ~3.9!

wherej̄1 andj̄2 are defined by the following transformation:

z5 j̄1j̄2~«3 /«1!
1/2,

~3.10!

r5A~ j̄1
22d̄2!~12 j̄2

2!,

whered̄5AL2«1 /«32R2. The interior potential has a rela-
tively simple polynomial form in cylindrical coordinates. In
Table I the form forc in in cylindrical coordinates is given
for values ofl andm up to (l ,m)5(3,3).

The eigenvalue equation equivalent to Eq.~3.7! is

«31ma~a22«3 /«1!
1/2

Pl
m

Pl
m8

«25S a22«3 /«1
a221 D 1/2Pl

mQl
m8

Pl
m8Ql

m
,

~3.11!

where nowPl
m5Pl

m@a/(a22«3 /«1)
1/2#, and Ql

m has the
same argument as in Eq.~3.7!. It is easy to show that this

TABLE I. Spatial dependence of the potentialc in for the
( l ,m) fluid normal mode within a spheroidal plasma. Cylindrical
coordinates (r,f,z) are used. Hered̄25L2«1 /«32R2, whereR is
the radius,L is the half-length of the spheroid, and the dielectric
constants«1 and«3 are given in Eq.~3.2c!.

( l ,m) c in

~1,0! z
~1,1! reif

~2,0! 3@2z2(«1 /«3)2r2#/42d̄2/2
~2,1! rzeif

~2,2! r2e2if

~3,0! z@10z2(«1 /«3)215r226d̄2#
~3,1! r@20z2(«1 /«3)25r226d̄2#eif

~3,2! r2ze2if

~3,3! r3e3if
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eigenvalue equation approaches Eq.~3.7! in the unmagne-
tized limit, where«2→0 and«1→«3 .

In the guiding center limitVc@vp@v r , and

«151, «252vp
2/vVc , «3512vp

2/v2. ~3.12!

In this guiding center limit, the modes fall into three classes
depending on their frequency: upper hybrid oscillations,
magnetized plasma oscillations, andE3B drift oscillations.
In the rotating frame the frequency of the upper hybrid os-
cillations falls in the rangeuVvu,uvu,uVUHu, where the
upper hybrid frequencyVUH is VUH5Avp

21Vv
2. The mag-

netized plasma oscillations are in the rangeuvu,vp , while
the E3B drift modes consist of slow drift motions at low
frequencies, typically uvu;uvp

2/Vvu. For example, the
l51,m51 magnetron mode is anE3B drift motion of the
center of mass about the trap axis.

Since theE3B modes have not been considered in much
detail in previous publications on the spheroidal modes, it
may be useful to make a momentary diversion to discuss
their properties. TheE3B modes exist only formÞ0 and
l2umu even, in which case there is one such mode. For ex-
ample, thel53, m51 E3B mode consists of an octopole
distortion of the plasma that involves smallO(1/B) displace-
ments alongz as well asO(1) displacements acrossB.

TheE3B modes may be distinguished from the magne-
tized plasma oscillations in that theE3B frequencies depend
inversely on magnetic field strength in the largeB limit,
whereas the plasma oscillations remain at finite frequency in
this limit. Furthermore, in this limit the plasma oscillations
involve fluid motions only along the magnetic field, whereas
theE3B modes involve cross-fieldE3B drift motion. How-
ever, theE3B modes can also be thought of as low-
frequency long-wavelength extensions of the magnetized
plasma oscillations in that they are the modes with the long-
est axial wavelength for a given radial wavelength, much as
diocotron modes of a cylindrical plasma column can be ob-
tained from the long axial wavelength limit of the magne-
tized plasma dispersion relation.

In the large magnetic field limit an explicit solution for
theE3B mode frequency can be extracted from Eq.~3.11!.
In the limit Vv→`, for the E3B modesv→0, «3→`,
«1→1, and «2→vp

2/vVv . Then the argument ofPl
m ap-

proaches zero, and a Taylor expansion of Eq.~3.11! yields
the result

vVv

vp
2 5m YF l 22m21 l2

1

a~a221!1/2
Ql
m/Ql

m8G .
This formula generalizes a previous result@6# derived for the
case ofl5umu magnetron modes to includeE3B modes for
which lÞumu. For the casel5umu, it is not difficult to show
thatvVv /vp

2 is the same function ofa as isv2/vp
2 for the

l5umu unmagnetized surface plasma modes@Eq. ~3.7!#. This
is because the form of the perturbed potential is identical for
bothE3B and unmagnetized limits~see Table I!.

B. Correlation effects

We now consider the effect of correlations on the low-
order modes. Shifts in the mode frequencies can be ac-
counted for through two effects which were neglected in
cold-fluid theory. First, plasma pressure changes the plasma
equilibrium, as was discussed in Sec. II. This change in the
equilibrium shifts the frequency of the normal modes. Sec-
ond, extra restoring forces appear due to pressure effects.
Since we are interested here in long-wavelength~low-order!
modes we model these restoring forces using bulk and shear
moduli.

In addition to the frequency shift of the modes, damping
can also be accounted for by allowing the bulk and shear
moduli to have imaginary parts, which can be related to
high-frequency bulk and shear viscosities@20#. This ap-
proach neglects thermal diffusion, anticipating that we will
mainly be interested in mode damping at low temperatures
~large G), for which such dissipative effects are typically
small compared to the dissipation due to velocity shears@21#.

We employ a fluid model for the plasma which includes a
linear viscoelastic response to perturbations. The momentum
equation, in a frame rotating with frequencyv r , is taken to
be

MnF]v]t 1v•“vG5n~2q“f1MVvv3 ẑ!2“•p,

~3.13!

wheren is the density,v the fluid velocity,f the electro-
static potential as seen in the rotating frame including plasma
and external fields, andp the pressure tensor that accounts
for correlation effects.

We first consider equilibria of Eq.~3.13!, described by an
equilibrium densityn(0), potentialf (0), and velocityv (0).
We will limit discussion to thermal equilibrium sov (0)50
~we work in the rotating frame! and the density and potential
are then related by setting]v/]t50 in Eq. ~3.13!:

2qn~0!
“f~0!2“p50. ~3.14!

Here we have also assumed that the equilibrium stress tensor
is isotropic,p i j

(0)5d i j p, wherep is the bulk pressure. This
approximation neglects surface tension effects on the equi-
librium.

In the weakly correlated limitp5n(0)kT, and ifT is con-
stant, Eq.~3.14! leads to the Boltzmann distribution for the
density. However, when the plasma is strongly correlated Eq.
~3.14!, together with the equation of state, Eq.~2.10!, is
equivalent to the local density approximation of density
functional theory@22#. It must be remembered that in the
strongly correlated limit the equilibrium densityn(0) which
results from solution of Eq.~3.14! is only an approximation
to the exact single-particle densityn(x;G) obtained from Eq.
~2.9!; in fact, bounded solutions of Eq.~3.14! do not exist
whenG@1. Nevertheless, we will find that the equations we
obtain for the normal modes are well behaved, even though
the equilibrium equations may be ill posed. This is because
our theory for the low-order normal modes will only require
moments of the equilibrium density, so in effect only low-
order polynomial moments of Eq.~3.14! will be required.
One can show that such moments can be extracted using an
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analogous approach to that used in Appendix A and Sec. II;
in fact, such an analysis yields a correlation correction to the
moments identical to the rigorous result of Eq.~2.15!. Thus
low-order moments ofn(0) are identical to moments of the
exact single-particle densityn(x;G), but the detailed func-
tional forms ofn(0) andn(x;G) may differ on the scale of an
interparticle spacing.

This point bears repeating: the fluid equations we employ
are not well posed in the strongly correlated limit, except in
the sense that low-order moments ofn(0) can be extracted
from Eq. ~3.14!. Fortunately, we will see that our analysis
requires only these low-order moments.

Linear perturbations around the equilibrium are described
by subtracting Eq.~3.14! from Eq. ~3.13!,

Mn~0!
]dv

]t
5n~0!@2q“df1MVvdv3 ẑ#

2qdn“f~0!2“•dp, ~3.15!

where dp is the change in the pressure tensor,df is the
perturbed potential, anddn anddv are the perturbed density
and fluid velocity, respectively. We employ the notation
df for the perturbed potential in order to distinguish it from
the cold-fluid theory limitc of Sec. III A. The perturbed
pressure can be separated into pressure changes at a point
due to convection, and pressure changes due to strains in the
plasma:

dp i j52dx•“pd i j2si j , ~3.16!

wheredx is the change in position of a fluid element from
equilibrium, related todv throughdv5ddx/dt. We employ
a viscoelastic approximation for the stress tensorsi j useful
for long-wavelength perturbations@20#:

si j5h i jkl ukl , ~3.17!

whereh i jkl depends on bulk and shear moduli, and the strain
tensorui j is given in terms of the displacementdx of a fluid
element,

ui j5
1

2 S ]dxi
]xj

1
]dxj
]xi

D . ~3.18!

For example, for an unmagnetized plasma~a Paul trap
plasma or a Penning trap plasma at the Brillouin limit!,

si j5kulld i j12m@ui j2
1
3ulld i j #, ~3.19a!

wherek andm are the bulk and shear modulus, respectively.
This form of the perturbed pressure tensor assumes an

isotropic medium, which is certainly not true for a perfect
crystal in which bulk and shear moduli typically depend on
the direction of strain with respect to the crystal axes. How-
ever, in the systems considered here the crystalline symmetry
is imperfect@15#, and an approach based on a model of the
plasma as an isotropic amorphous material is useful.

The addition of a magnetic field also affects the relation-
ship between stress and strain in an amorphous material.
Symmetry considerations imply that the two moduli of Eq.
~3.19a! must in general be replaced by seven moduli: two
bulk moduli k and k1 , and five shear moduli,m,

m1 . . .m4 @23#. Taking the magnetic field to be in thez
direction, the stress tensor takes the form

sxx5k“•dx1k1uzz12m~uxx2
1
3“•dx!1m1~uxx2uyy!

12h3vxy ,

syy5k“•dx1k1uzz12m~uyy2
1
3“•dx!2m1~uxx2uyy!

22h3vxy ,
~3.19b!

szz5~k1k1!“•dx1k1uzz12m~uzz2
1
3“•dx!,

sxy5syx52~m1m1!uxy2h3~vxx2vyy!,

sxz5szx52~m1m2!uxz12h4vyz ,

syz5szy52~m1m2!uyz22h4vxz ,

where v i j is the symmetrized velocity strain tensor,
v i j5dui j /dt, and in order to deal with strictly real coeffi-
cients in the nondissipative limit we have replacedm3 and
m4 by shear viscositiesh3 andh4 . For an oscillating strain
at frequency v these coefficients are related by
m3(4)52 ivh3(4) . It is important to note that the real parts
of the viscositiesh3 andh4 do not give rise to dissipation as
the stress they create is perpendicular to the flow; these terms
arise through the Lorentz forcev3B. In fact, even in the
limit of a collisionless magnetized plasma, where there is no
dissipation, these two coefficients are nonzero due to finite
Larmor radius effects@23#.

In principle all seven moduli are required when the vortex
frequencyVv is nonzero, but some simplifications are pos-
sible in certain limits. ForG@1 the plasma is crystallized,
and dissipative contributions to the moduli~the imaginary
parts! are small and may sometimes be neglected. Further-
more the nondissipative contributions, which describe the re-
storing forces in the crystal lattice due to applied strains,
depend only on static properties of the equilibrium. Since
static properties of the classical crystal are independent of
the magnetic field, the unmagnetized limit of the stress ten-
sor, Eq.~3.19a!, again applies for crystallized plasmas.

The linearized momentum equation, Eq.~3.15!, together
with linearized continuity and Poisson equations

dn1“•n~0!dx50, ~3.20!

“

2df524pqdn ~3.21!

are a closed set of five homogeneous partial differential
equations for the five independent scalar functions given by
dn, df, anddx. These equations, together with the bound-
ary conditiondf→0 as uxu→`, constitute an eigenvalue
problem for the normal modes.

We do not attempt an exact solution of this complex prob-
lem, except for a special case discussed in Appendix B. In-
stead, we employ an approach based on perturbation theory
around the known solutions for an uncorrelated uniform
plasma spheroid. This approach will be sufficient to obtain
the lowest-order corrections to the mode frequency due to
strong correlation effects.
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We first construct an equation for the perturbed potential
similar to the cold-fluid equation, Eq.~3.2a!. With the help
of Eq. ~3.14! we rewrite Eq.~3.15! as

dx5
s

4pqn0
•F“df2

dn“p

qn~0!2
1
“•dp

qn~0! G , ~3.22!

wheres is a scaled conductivity tensor. Its components in
Cartesian coordinates are

s5S s1 is2 0

2 is2 s1 0

0 0 s3

D ,
where

s15vp
2/~v22Vv

2!, s25vp
2Vv /v~v22Vv

2!

and s35vp
2/v2. ~3.23!

Substitution of Eq.~3.22! into Eqs.~3.20! and~3.21! then
leads to the following equation for the perturbed potential:

¹2df2“•s
n~0!

n0
•F“df1“

2df
“p

4pq2n~0!2
1
“•dp

qn~0! G50.

~3.24!

In perturbation theory we break Eq.~3.24! into a zeroth
order part and a correction

L̂~v!df5Ĉdf, ~3.25!

whereL̂(v) is a frequency dependent linear operator corre-
sponding to the cold-fluid eigenmode equation

L̂~v!df[“•~«•“df!, ~3.26!

and the cold-fluid dielectric tensor« is given by Eq.~3.2b!.
The equationL̂df50, df→0 at uxu→` leads to the disper-
sion relation of Eq.~3.11!. The correctionĈdf to this equa-
tion causes frequency shifts. It can be written as

Ĉdf5“•s•H Dn̄“df1
“

2df“p

Mn~0!vp
2 1

“•dp

qn0
J ,

~3.27!

where Dn̄[@n(0)(x)2nf(x)#/n0 is the difference between
the correlated equilibrium densityn(0) and the cold-fluid
densitynf , scaled by the background densityn0 . This dif-
ference is negligible by assumption except near the surface
of the plasma.

The operatorL̂ is Hermitian with respect to the norm
( f ,g)5*d3x f* g, and so a standard first-order perturbation
approach can be employed. One writes the solution to Eq.
~3.25! as df5c1Dc, wherec is a solution to the cold-
fluid eigenvalue problemL̂(v f)c50 for some fluid mode
frequency v f . The solution is given explicitly by Eqs.
~3.6b!, ~3.9!, and~3.11!.

The eigenmode frequencyv also shifts slightly, to
v5v f1Dv. By keeping corrections only to first order in
the perturbed quantities in Eq.~3.25!, one obtains

Dv
]L̂

]v f
c1L̂~v f !Dc5Ĉc. ~3.28!

The frequency shiftDv can then be extracted by taking the
inner product of this equation withc. SinceL̂ is Hermitian,
(c,L̂Dc)5(Dc,L̂c)*50, and so the frequency shift satis-
fies

Dv5
~c,Ĉc!

S c,
]L̂

]v f
c D . ~3.29!

In order for this perturbation approach to be valid,Dc
must be small compared toc @24#. This constrains the sorts
of perturbations one can consider. For example, in Eq.~3.27!
let us arbitrarily neglect all terms except for the first,
“•sDn̄•¹df. One might imagine a perturbation of a given
cold-fluid equilibrium which consists of a slight change in
shape of the spheroid to another cold-fluid equilibrium; then
only this term would be nonzero. Furthermore, the frequency
shift could then be determined exactly by using the exact
eigenmode equation, Eq.~3.11!, for the two spheroidal equi-
libria. However, one can easily check that the result from
perturbation theory, Eq.~3.29! doesnot provide the right
answer in this case. This is because the functionDn̄ is of
O(1) at the plasma edge, and varies rapidly. Such perturba-
tions are not small, even though the width of the region over
which Dn̄ is large may be small. Since the change inDn̄ is
both large and abrupt in this example,Dc turns out to be the
same order of magnitude asc.

It is not obvious that the more physical case of perturba-
tions to the modes due to pressure shifts in the density profile
will not also lead to a breakdown of the perturbation theory.
However, in Appendix B we show that for such pressure
shifts the perturbed eigenfunctionDc is in fact small com-
pared toc.

As an example, we evaluateDc for the case of a~2,0!
mode in an unmagnetized spherical plasma. As discussed in
Appendix B,Dc for this mode has the form

Dc5
dx•“p

qn0
1

m12p/5

Mn0vp
2R2c~R,u! f ~r !, ~3.30!

where spherical coordinates (r ,u,f) are used,c(R,u) is the
~2,0! cold-fluid mode potential evaluated at the surface of the
plasma~see Table I for the form of this potential in cylindri-
cal coordinates!, and f (r ) is a dimensionless function dis-
played in Fig. 5. The discontinuity inf (r ) at the edge of the
plasma is due to a boundary layer that forms when damped
bulk plasma oscillations are coupled to the~2,0! surface
mode by correlation effects.

We also compare our expressions for the frequency shift
and eigenfunctions to a known exact solution of Eqs.~3.15!,
~3.20!, and~3.21! for an unmagnetized spherical plasma. Our
perturbation results match the exact results in this case. The
interested reader is referred to Appendix B for the details.

The inner products in Eq.~3.29! may be written in terms
of polynomial moments of the thermal equilibrium density,
determined by Eqs.~2.8! and ~2.15!. This is a great simpli-
fication since all inner products of Eq.~3.29! can then be
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determined analytically. Since the numerator of Eq.~3.29! is
small by assumption, the denominator need be evaluated
only to lowest order, which implies that the fluid density
nf(x) may be used when evaluating]L̂/]v. Integration by
parts then leads to the expression

S c,
]L̂

]v
c D 5E

in
d3x“c in* •

]s

]v
•“c in

52E
in
d3xFa1S U]c in

]r U21 m2

r2
uc inu2D

2
2ma2c

in

r

]c in*

]r
1a3U]c in

]z U2G , ~3.31!

where

a152vvp
2/~v22Vv

2!2,

a25Vvvp
2~3v22Vv

2!/v2~v22Vv
2!2

and a352vp
2/v3, ~3.32!

and the integral is over the interior of the fluid spheroid.
Since the cold-fluid potentialc in can be written as a polyno-

mial in r and z ~see Table I!, anda1 . . .a3 are constants,
the integral in Eq.~3.31! can be evaluated in terms of fluid
moments given by Eq.~2.8!.

The numerator of Eq.~3.29! can also be written in terms
of fluid density moments as well as the correlation correc-
tions to these moments, as given by Eqs.~2.8! and ~2.14!.
Using Eq.~3.27!, integration by parts yields

~c,Ĉc!52E d3xFDn̄“c* •s•“c1“

2c
dxf* •“p

qn~0!

14pdxf* •“•dpG , ~3.33!

where

dxf[s•
“c

4pqn0
~3.34!

is the fluid-theory change in position of a fluid element@this
follows by neglecting pressure corrections in Eq.~3.22! or,
alternatively, from Eq.~3.1b!#.

In order to make further progress we must now make
several approximations to Eq.~3.33! based on the strongly
correlated limit. In this limitDn̄, p, and dp are nonzero
only within the region bounded by the surface of the fluid
spheroid, since the plasma contracts within this surface; see
Fig. 1. We may therefore replacec by c in in Eq. ~3.33!.
Furthermore, in the second term of Eq.~3.33! we note that
“p is already a correlation correction, so we replace the
correlated densityn(0) by the fluid densitynf . This approxi-
mation cannot be rigorously justified unlessDn̄!1 wherever
“p is nonzero. We therefore assume this ordering, although
it does not appear to hold for the actual equilibrium profiles
~see Fig. 1!.

Although takingDn̄!1 appears to be a poor assumption,
there are several indications that it is actually a good ap-
proximation. First and foremost, we will find that the results
generated by this approximation match the known exact re-
sults for the effects of correlations on the modes. In a fol-
lowing paper@7#, we will also show that the results for cor-
relation frequency shifts match numerical simulations of the
modes in strongly correlated plasmas. Furthermore there is
some theoretical justification for this approximation: we have
already observed in Sec. II that the exact equilibrium density
n(x;G) is nearly the same as the cold-fluid densitynf(x) in
the sense that low-order moments of the two densities are
nearly identical. We also observed in connection with Eq.
~3.14! that in the strongly correlated limit our fluid equations
for n(0)(x) cannot reproduce the exact functional form of
n(x;G); only low-order moments ofn(0) match those of
n(x;G). One might, therefore, interpretn(0) as a coarse-
grained version ofn(x;G), with identical low-order mo-
ments but with a different functional form that nearly
matchesnf(x), so that Dn̄!1 is satisfied. The coarse-
grained densityn(0) does not have the correct form on the
scale of an interparticle spacing, but we do not expect an
approach based on fluid equations to work on such a scale. In
fact, we will find that when we assumeDn̄!1 our results for
the frequency shifts depend onn(0) only through low-order
moments, so the interpretation ofn(0) as a smooth coarse-

FIG. 5. Normalized perturbed potential eigenfunctionf (r ) for
the ~2,0! mode in a spherical unmagnetized plasma of radiusR @see
Eq. ~3.30!, or Eqs.~B9! and ~B10!#. The upper figure shows the
plasma and vacuum contributions tof arising from the perturbation
analysis of Appendix B, keeping the first 62 plasma eigenfunctions
and the first 57 vacuum eigenfunctions. The lower figure compares
f from perturbation theory~solid! to the exact solution in the limit
R/aWS@1, Eq. ~B25! ~dotted!.
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grained version ofn(r ;G) is consistent in the sense that our
results do not depend on the detailed variations ofn(0) on the
scale of an interparticle spacing. Nevertheless, while these
arguments are somewhat persuasive, they are certainly not
rigorous. A rigorous justification of the assumptionDn̄!1,
or a better approach in which this assumption need not be
made, remains an outstanding problem.

In any case, we then integrate by parts once on the second
term of Eq. ~3.33! and twice on the third, substituting Eq.
~3.16! for dp, and we neglect the surface integrals since by
assumptionp and si j are zero at the surface of the fluid
spheroid~the strongly correlated plasma has shrunk within
this boundary surface!. The result is

~c,Ĉc!52E d3x$Dn̄¹c in* •s•“c in

24pp@¹•~dxf* uii !1¹•~dxfuii* !#14pui j* si j %,

~3.35!

where the Einstein summation convention is employed.
According to Eq.~3.29!, division of Eq. ~3.35! by Eq.

~3.31! yields a general result for the frequency shift due to
correlations:

Dv52H 4ppF K“2S “c* in

4pqn0
•dxf D L

f

22^Re@“•~dxf*“•dxf !#& f G
14ph i jkl ^ui j* ukl& fJ YK ¹c* in•

]s

]v
•“c inL

f

.

~3.36!

Here we have employed Eqs.~2.14! and ~3.17!, and the no-
tation ^ & f refers to an average over the cold-fluid density.
The strain tensorui j is determined by the cold-fluid displace-
ment dxf through Eq.~3.18!, anddxf is determined by the
cold-fluid potentialc in through Eq.~3.34!. Sincec in(x) can
be written as a polynomial inr and z ~see Table I!, the
averages in Eq.~3.36! can be explicitly evaluated using Eq.
~2.8!.

The general expression can be simplified in the unmagne-
tized limit. In this case the surface plasma modes are incom-
pressible so uii5“•dxf50. Furthermore a25s250,
s15s3 , a15a352s3 /v, and the isotropic form for the
stress tensor, Eq.~3.19a!, can be employed. Equation~3.36!
then reduces to

Dv5
v

2

p

Mn0vp
2 ^¹2u¹c inu2& f1

2m

Mn0v
2(
i j

^u]2c in/]xi]xj u2& f

^u“c inu2& f
~unmagnetized!, ~3.37!

wherev is the frequency of the cold-fluid surface mode given by Eq.~3.7!.
The term in Eq.~3.37! involving the equilibrium pressurep describes the effect on the mode frequencies of the change in

the plasma equilibrium caused by pressure. The bulk modulusk does not appear in Eq.~3.37! because the surface plasma
modes are incompressible. The positive shear modulusm increases the frequency of all modes, as one would expect since the
shear modulus adds an extra restoring force.

The expression for the frequency shift also simplifies in the limit of large magnetic fields,Vv→`. We limit consideration
to magnetized plasma oscillations, for which the perturbed fluid displacementdx is parallel toẑ due to the strong magnetic
field, and mode frequencies are on the order of the plasma frequencyvp . In this cases1 , s2 , a1 , anda2 all are negligible
@see Eqs.~3.23! and ~3.32!#, the magnetized form of the stress tensor, Eq.~3.19b!, must be used, and the frequency shift for
magnetized plasma oscillations is

Dv5
v

2 H p

Mn0vp
2 K ¹2U]c in

]z U2L
f

2
p

Mn0v
2 K ]2

]z2U]c in

]z U2L
f

1
~k12k11

4
3m!

Mn0v
2 K U]2c in

]z2 U2L
f

1
~m1m2!

Mn0v
2 K U]2c in

]x]zU
2

1U]2c in

]y]zU
2L

f

1
2h4

Mn0v
K ]2c in*

]x]z

]2c in

]y]z L
f

J YK U]c in

]z U2L
f

. ~3.38!

Each low-order mode can also be considered on a case-by-case basis. For example, for the~1,0! and ~1,1! modes,c in is
linear inr andz which implies thatdxf is constant andui j is zero, so (c,Ĉc)50 and there is no frequency shift for the~1,0!
or ~1,1! modes, as expected for these center of mass modes. This is an important check on the validity of our results.

A nontrivial frequency shift first appears for the~2,0! mode. Using the result forc in from Table I in Eq.~3.36!, we find that
the ~2,0! frequency is shifted by

Dv20510
p~s1«3

212s3«1
2!1~k22p!~s12s3!

222k1«1s3~s12s3!1m~«3s112«1s3!
2/3

Mvp
2n0@a1~«3R!212a3~«1L !2#

, ~3.39!
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where « i , s i , and a i ~i51, 2, and 3! are given by Eqs.
~3.2c!, ~3.23!, and ~3.32!, respectively. As was previously
discussed, there are two~2,0! modes, an upper hybrid mode
and a plasma mode. Equation~3.39! provides the shift for
both modes. In the guiding center limits1→0, a1→0, and
«1→1, so the shift for the~2,0! plasma mode is

Dv205
5v

2L2
2p«31~k12k114m/3!s3

Mvp
2n0

, ~3.40!

a result which also follows from Eq.~3.38!. A measurement
of the~2,0! frequency shift therefore provides information on
the modulus of compressibility alongB, k12k114m/3.

In Refs.@3# and@25# a similar~but not identical! form for
the frequency shift of the magnetized~2,0! mode is derived
using a different method. The difference arises because ther-
mal equilibrium was assumed to occur only along a field line
in Refs. @3# and @25#, whereas true thermal equilibrium is
assumed in Eq.~3.40!. The results of our method and that of
Refs. @3# and @25# can be shown to agree if a true thermal
equilibrium is assumed in Refs.@3# and @25#. This provides
another consistency check on the results.

In the unmagnetized limits15s3 anda15a352s3 /v
@see Eqs.~3.23! and ~3.32!#, so Eq.~3.39! implies a shift to
the ~2,0! surface plasma mode given by

Dv205
15v

R212L2
p1ms3

Mvp
2n0

, ~3.41!

a result which could also be obtained directly from Eq.
~3.37!.

For the~2,1! mode, a similar analysis yields

Dv21

55
2~s12s21s3!p1~s12s21s3!

2~m1m21vh4!

Mvp
2n0@a3R

21~a12a2!/L
2#

.

~3.42!

In the strongly magnetized guiding center limit the~2,1! fre-
quency correction becomes

Dv215
5

2

v

R2

2p1~m1m21vh4!s3

Mvp
2n0

. ~3.43!

In the unmagnetized limitm2 andh4 are zero, and Eq.~3.42!
implies

Dv21510
v

L21R2

p1ms3

Mvp
2n0

, ~3.44!

the correction to the surface plasma mode frequency. For the
~2,2! mode, the general expression for the frequency shift is

Dv22510
s12s2

a12a2

p1~s12s2!~m1m11vh3!

Mvp
2n0R

2 .

~3.45!

The guiding center limit for this mode is only slightly less
straightforward than for the previous modes. This is a dio-
cotron ~or E3B drift! mode for which the mode frequency
approaches zero in the limitVv→`. While we may still take
s1→0 anda1→0, nows2 anda2 approach finite values in
the limit, and the frequency shift becomes

Dv225
10v

R2

p2~m1m11vh3!s2

Mn0vp
2 . ~3.46!

Note thatv is of ordervz
2/Vv , and sos2→2vp

2/vVv , and
is finite in the limit asVv→`.

In the unmagnetized limit the frequency shift is

Dv225
5v

R2

p1ms3

Mn0vp
2 . ~3.47!

Finally, for the ~3,0! mode, multipole moments such as
^r2z2& f are required in Eq.~3.36!. After substitution for
these moments using Eqs.~2.8! and ~2.15!, the frequency
shift is found to be a somewhat complicated function of the
plasma properties:

Dv30570$2p†L2~~«3 /«1!
2s112s322@~s32s1!/«1#

2!1~R«3/«1!
2~s11s3!12k1L

2s3~s32s1!/«1

12~k14/3m!L2@~s32s1!/«1#
21m~«3 /«1!@2L

2~4s1s32~«3 /«1!s1
2!1R2~«3 /«1!@~s11s3!

21s2
2#‡

1m2~R«3 /«1!
2@~s11s3!

21s2
2#22h4v~R«3 /«1!

2s2~s11s3!%/Mn0vp
2$a3@8L

414~«3 /«1!R
2L2

13~«3 /«1!
2R4#110a1~«3 /«1!

2L2R2%. ~3.48!

This equation provides the frequency shift for the three~3,0! modes, one of which is an upper hybrid mode. The other two
modes are magnetized plasma oscillations. In the guiding center limit, the frequency shift for the two~3,0! plasma oscillations
reduces to

Dv30535v
2L2@2p«31~k12k114m/3!s3#1~R«3!

2@2p1~m1m2!s3#

Mn0vp
2@8L414R2L2«313R4«3

2#
. ~3.49!
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Equation~3.49! provides the frequency shift for both~3,0!
plasma modes, depending on which of the two fluid mode
frequencies one uses in the equation.

In the unmagnetized limit, there is only one~3,0! surface
plasma mode, and the correlation frequency shift is

Dv305
70v~3L212R2!

~2L213R2!~4L21R2!

~p1ms3!

Mn0vp
2 . ~3.50!

The frequency shifts of Eqs.~3.36!–~3.50! have several
common features. In each case a term involving the pressure
p determines the effect on the mode frequency of a change in
the equilibrium plasma when pressure is taken into account.
Also appearing are terms involving the bulk and shear
moduli which describe frequency shifts due to the elastic
properties of the correlated plasma. Furthermore, in all cases
the frequency shift scales as 1/~plasma dimension!2. This is
because the low-order modes have an effective wave number
k on the order of the~plasma dimension! 21, and we expect
from dimensional considerations that pressure corrections
will enter the dispersion relation at orderk2, as in the Bohm-
Gross dispersion relation for warm plasma waves,
v25vp

21k2gp/Mn0 , whereg is the ratio of specific heats
@26#.

Bulk plasma modes

The perturbation theory used in deriving Eq.~3.36! as-
sumed that the fluid eigenmodes are not degenerate. How-
ever, as discussed in Sec. III A, in the unmagnetized cold-
fluid limit there is a set of bulk plasma modes which are
degenerate, with frequencyv5vp . In order to determine
the effect of finite pressure on these modes the formalism of
degenerate perturbation theory must be employed in the
analysis. Letcm be a set of normalized functions which sat-
isfy L̂(vp)cm50, whereL̂(v) is the cold-fluid mode opera-
tor of Eq. ~3.26!. We construct the solution to Eq.~3.24! in
terms of this set, which is assumed to span the set of degen-
erate solutions:

df5(
m

amcm . ~3.51!

Writing v5vp1Dv, we expand Eq.~3.24! to first order in
Dv:

(
m

S Dv
]L̂

]v
2ĈD amcmuv5vp

50.

Taking the inner product of this equation withcn , one
finds that the vector$am% must be in the nullspace of a ma-
trix which depends onDv:

(
m

~cn ,@Dv]L̂/]v2Ĉ#cm!am50. ~3.52!

The inner product in Eq.~3.52! can be evaluated using the
moment technique in a manner analogous to the method used
to evaluate Eqs.~3.31! and ~3.35!. An equation forDv can
then be obtained by setting the determinant of the matrix in
Eq. ~3.52! equal to zero. For each solution of this equation
for Dv there is a corresponding vector$am% which satisfies
Eq. ~3.52!, and which provides us with the perturbed eigen-
function df via Eq. ~3.51!.

We will consider only one example of this procedure in
any detail. For the case of an unmagnetized spherical plasma,
there are degenerate bulk plasma modes with arbitrary de-
pendences on (r ,u,f) ~in spherical coordinates!. We will
consider a subset of these modes which are entirely radial,
without u or f dependence. One such mode, a radial breath-
ing oscillation for whichdf in5A(r 22R2), has been set up
in recent computer simulations@7#. As we discussed in Sec.
III A, cold-fluid theory predicts thatdf in can also have ra-
dial dependencedf in5 f (r ) for any function f (r ), and all
such disturbances oscillate at frequencyvp . The addition of
correlations~or pressure terms! breaks this degeneracy and
picks out a countable set of eigenfunctions fordf(r ).

In order to determine the frequencies and eigenfunctions
we choose an appropriate complete set of radial functions,
cm
in5rm, m51,2,3,. . . . ~We will have need only of the in-

ternal form forc in our analysis, sincedfout50 for these
modes.! Then the first matrix element required in Eq.~3.52!
is

S cn ,
]L̂

]v
cmD U

v5vp

52
6mn

n1m11

Rn1m22

vp
V,

whereV54pR3/3 is the plasma volume. Here we have used
Eqs.~3.26!, ~3.2b!, and~3.2c!. The matrix element involving
Ĉ is given by

~cn ,Ĉcm!uv5vp
52

nm

Mn0vp
2 F212p13

k~m11!~n11!1 4
3m~m22!~n22!

m1n21
GRn1m24V.

In this expression we have used Eqs.~3.27!, together with
Eqs. ~2.8! and ~2.14!, for moments of the equilibrium den-
sity.

By substituting these matrix elements in Eq.~3.52! an
approximate set of eigenfunctions can be constructed by
truncating the infinite sum, taking the determinant of the fi-
nite matrix, and solving the resulting polynomial equation
for Dv. This numerical evaluation requires that we choose

specific relations between the pressurep, and the modulik
andm. In the strongly correlated zero-temperature limit, the
following relations hold for an amorphous solid OCP at zero
temperature@7#:

p5
3k

4
, m52

3k

10
, ~3.53!
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so we use these relations in Eq.~3.52! as an example. One
then finds that the first few numerical solutions forDv are

Dv

vp

Mn0vp
2R2

k
50,9.98,24.8,45.5, . . . ~3.54!

and the corresponding eigenfunctions are displayed in Fig.
6~a!. As the frequency shift increases, the eigenfunctions be-
come more oscillatory. The first mode, withDv50, has a
perturbed potential of the formdf5A(r 22R2). This result
is gratifying since it matches the known exact solution for
the breathing mode of a crystallized plasma sphere~see Ap-
pendix B and Sec. III A 7 of Ref.@7#!. If we had chosen
relations other than Eqs.~3.53!, the result forDv and df
would have been different@see Fig. 6~b! and below for ex-
amples#, so this result provides another test of the perturba-
tion theory.

The breathing mode has been excited in recent computer
simulations of unmagnetized spherical plasmas@7#. These
simulated plasmas are not necessarily held at zero tempera-
ture, so Eqs.~3.53! do not necessarily apply. While the de-
generate perturbation theory can be employed to determine
the frequency shift numerically as a function ofT, it is also
useful to obtain an approximate analytic form for the shift.
Since we know that the perturbed potential atT50 is
c5A(r 22R2), we use this as an approximate form for the
potential at finite temperature and employ it to evaluate the
inner products in Eq.~3.29!, since nondegenerate perturba-
tion theory now applies. The result is

D
vbreathing

vp
5
5

2

~3k24p!

Mn0vp
2R2 . ~3.55!

This equation can also be obtained directly from Eq.~3.39!.
The breathing mode is the unmagnetized limit of the~2,0!
upper hybrid mode in a spherical plasma. For this bulk
plasma mode,«3→0, «1→0, s1→1, s3→1, «1 /«3→2 1

2,
and (s12s3)/«35

3
2 @the last two relations follow by care-

fully evaluating the limitVv→0 in Eq. ~3.11! for the ~2,0!
upper hybrid mode#. When these limits are substituted into
Eq. ~3.39!, one recovers Eq.~3.55!. As expected, the fre-
quency shift vanishes atT50, where Eqs.~3.53! hold. Also
note that the shear modulus does not appear in Eq.~3.55!
because the breathing mode is purely compressional.

We have compared Eq.~3.55! to the numerical solution of
the degenerate perturbation theory at finite temperature using
Eq. ~2.10! for p, and using a model for the finite temperature
forms ofk andm discussed in Ref.@7#. Agreement between
Eq. ~3.55! and the degenerate perturbation theory is good for
G.1. The results are discussed in more detail in Ref.@7#.
However, for arbitrary choices ofp, k, andm the agreement
between the degenerate theory and Eq.~3.55! is poor. This is
because the perturbed eigenfunction remains close to
A(r 22R2) only for physically relevant choices ofp, k, and
m. For other choices ofp, k, andm, Eq. ~3.55! does not
apply, and a numerical solution of degenerate perturbation
theory must be used.

In Appendix B an exact solution for the bulk plasma
modes was found for the special case of a spherical unmag-
netized plasma withp50, but for whichm andk are finite.
In order to compare the degenerate perturbation theory for
the bulk plasma modes to the exact results of Appendix B,
we have also evaluated the perturbation theory frequency
shifts and eigenfunctions from perturbation theory for the
casep50. For the numerical evaluation of Eq.~3.52! we
must still choose a relation betweenk andm, so we choose
the same relation as Eq.~3.53!, m523k/10. Numerical so-
lution of Eq. ~3.52! for the first four modes then yields

Dv

vp

Mn0vp
2R2

k
53.87,12.9,27.8,48.5,. . . . ~3.56!

The corresponding potential eigenfunctions are shown in
Fig. 6~b!. The exact dispersion relation for these radial
modes, Eq.~B22!, can also be solved numerically when
m523k/10, and the results for the frequency shifts are

Dv

vp

Mn0vp
2R2

k
53.868,12.935,27.794,48.542,. . . ,

which matches our degenerate perturbation theory. The exact
potential eigenfunctions are given by Eq.~B17!. The eigen-
functions also match the numerical solution of the degener-
ate perturbation theory@see Fig. 6~b!#. This provides another
independent check on the validity of our results in the
strongly correlated regime.

IV. DISCUSSION

In Sec. II we found that the moments of the density of a
trapped non-neutral plasma in thermal equilibrium are

FIG. 6. First four potential eigenfunctions for spherically sym-
metric bulk plasma oscillations in an unmagnetized spherical
plasma, for the two choices of the pressurep and modulik and
m shown in~a! and~b!. Eigenfunctions follow from Eqs.~3.51! and
~3.52!. Corresponding frequencies are given by Eqs.~3.54! @~a!#,
and~3.56! @~b!#. Successively higher frequency shifts correspond to
more oscillatory eigenfunctions. The lowest frequency eigenfunc-
tion in ~a! is of the formdf5A(r 22R2). The eigenfunctions in~b!
match the exact solution for the special casep50, Eq. ~B17!.
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shifted slightly with respect to the values pertaining to the
cold-fluid limit. The shifts arise from the change in the equi-
librium density profile that occurs when correlation pressure
is accounted for in the equilibrium. A general expression for
the pressure shift in any density moment was derived@Eq.
~2.14!#. In Sec. III we found that the shift in the equilibrium
density plays a crucial role in determining the effect of cor-
relations on the normal modes. The correlation shift of the
equilibrium density shifts the mode frequencies by an
amount proportional to the plasma pressure.

Elastic moduli of the strongly correlated plasma also af-
fect the mode frequencies. Equation~3.36! provides a gen-
eral expression for the frequency shift. Since the mode fre-
quencies depend on these moduli, one could perform
experiments~either real or simulated! that measure the mode
frequencies in order to extract the moduli. Numerical experi-
ments of this type will be reported in a separate paper@7#.
Although the frequency shifts are small, scaling asN22/3, for
plasmas consisting of 1000 ions this scaling implies shifts on
the order of 1% which, as we will see in Ref.@7#, are easily
observable in the simulations, and may be observable in ac-
tual experiments.

Although several approximations based on the strongly
correlated limit were made in the derivation of the mode
frequency shifts, the results were found to match known ex-
act results. For example, for thel51 center of mass modes
we found no frequency shift, and for the unmagnetized
breathing mode we also found that the frequency shift van-
ished in theT50 limit. In addition, the results matched an
exact solution for the modes of an unmagnetized pressureless
elastic sphere, discussed in Appendix B.

In addition to the plasma oscillations considered in the
main body of the paper, a set of torsional oscillations was
also found in the derivation of modes of an unmagnetized
pressureless elastic sphere, described in Appendix B. These
modes consist of twisting motions that do not change the
shape or density. Thus the restoring force for these modes
arises only from the shear modulus of the correlated plasma.
The modes therefore have zero frequency in the cold-fluid
limit, and cannot be derived using the perturbation analysis
discussed in Sec. III. We leave a general discussion of the
torsional modes of an unmagnetized spheroid to a separate
paper. Simulation results for some of the torsional modes are
presented in Ref.@7#.

It is tempting to apply our results for the frequency shifts
to the weakly correlated regime. However, while Eqs.
~3.36!–~3.50! provide predictions for the shifts in this re-
gime, i.e.,Dv5T f(a)/N2/3 for some functionf which dif-
fers for different modes, our derivation is no longer valid.
This is because for weak correlation the equilibrium density
profile now extends beyond the cold-fluid profile~see Fig. 1!,
so none of the approximations discussed in the derivation of
Eq. ~3.35! apply. Our derivation can be justified only in the
strongly correlated limit where the equilibrium density has
shrunk inside the cold-fluid profile.

However, it appears both from experiments@3# and simu-
lations @3, 27# that finite pressure corrections to the mode
frequencies in the weakly correlated limit do have the ap-
proximate form of the equations derived here@at least for the
~2,0! mode#. Of course, in the weakly correlated limit the
warm-fluid equations describing the non-neutral plasma

equilibrium and dynamics are well posed, and can be solved
without approximations, at least in principle. However, ex-
traction of the frequency shift from the warm-fluid equations
in the weakly correlated regime turns out to be a surprisingly
difficult theoretical problem. It appears that perturbation
techniques of the type employed in this paper do not apply,
and a more powerful boundary layer calculation may be re-
quired. Nevertheless, the results of our perturbation theory,
such as the form of the perturbed eigenfunctions~see Figs. 5
and 6, for example! may provide useful intuition in any fu-
ture analysis.
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APPENDIX A: MOMENTS OF EQUILIBRIUM DENSITY
FROM THE BBGKY HIERARCHY

In this appendix we evaluate the integral appearing in Eq.
~2.13!. We do so by considering the first equation of the
equilibrium BBGKY hierarchy for the case of a spherical
plasma~i.e.,b51). The derivation is similar to that of Tot-
suji for the contact density of an electrolyte at the wall of a
container @28#. For a harmonically trapped non-neutral
plasma, the first equation of the equilibrium BBGKY hierar-
chy can be derived by differentiating the Gibb’s distribution
f of Eq. ~2.1! with respect tor 1 , multiplying byN, and then
integrating over all other variables. The result is

kT
]n

]r 1
~r 1 ;G!52qn~r 1 ;G!

]

]r 1
@fp~r 1!1fe~r 1!#

2q2E d3x2g~x1 ,x2 ;G!
]

]r 1
ux12x2u21,

~A1!

wherefe is defined in Eq.~2.1b!, fp is the plasma potential
defined by¹2fp524pqn(r ;G), and whereg(x1 ,x2 ;G) is
the two-particle correlation function, related to the Gibb’s
distribution through

g~x1 ,x2 ;G!5N2E d3x3 . . .d
3xNd

3v1 . . .d
3vN

3 f ~x1 , . . . ,xN ,v1 , . . . ,vN!

2n~x1 ;G!n~x2 ;G!.

We integrate Eq.~A1! in radius from a pointr 15r in
within the plasma where the single-particle density is uni-
form, n(r in ;G)5n0 , to a pointr 15r out, where the density
has fallen to zero:
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2kTn052qE
r in

rout
dr1n~r 1 ;G!

]

]r 1
~fp1fe!

2q2E
r in

rout
dr1E d3x2g~x1 ,x2 ;G!

]

]r 1
ux12x2u21.

~A2!

We first consider the second term involving the correlation
function. Assuming that the radius of the plasma is large
compared to the correlation length, we approximate the
plasma surface by a planar interface, in which case
g(x1 ,x2 ;G)5g(r 1 ,r 2 ,ux'12x'2u;G), wherex' is a 2D po-
sition parallel to the plane of the interface. This approxima-
tion neglects the effects of surface tension due to curvature
of the surface, and assumes thatg is isotropic in the parallel
plane, as in the fluid or glass phases. We then split the inte-
gral overr 2 in Eq. ~A2! into two pieces:

q2E
r in

rout
dr1E d3x2g

]

]r 1
ux12x2u21

5q2E
r in

rout
dr1E

0

r in
dr2E d2x'2g~r 1 ,r 2 ,ux'12x'2u!

3
]

]r 1
ux12x2u211q2E

r in

rout
dr1E

r in

rout
dr2

3E d2x'2g~r 1 ,r 2 ,ux'12x'2u!
]

]r 1
ux12x2u21.

However, the second integral vanishes, sinceg is symmetric
under interchange of r 1 and r 2 , but the force
2q2]/]r 1ux12x2u21 is antisymmetric. Furthermore, in the
first integralr in is chosen in the bulk, so we may replaceg by
g(ux12x2u;G), the correlation function for a homogeneous
one-component plasma. It is then not difficult to show that
the first integral equals2n0U/3N, whereU is the correla-
tion energy of a one-component plasma, defined by@28#

U

NkT
~G!5

3G

2 E
0

` rdr

aWS
2

g~r ;G!

n0
2 .

Using this result in Eq.~A2! yields

p5qE
r in

rout
dr1n~r 1 ;G!

]

]r 1
~fp1fe!, ~A3!

wherep[n0kT(11U/3NkT) is the bulk thermal pressure of
the OCP, including the ideal gas contribution@see Eq.
~2.10!#. Thus the bulk pressure is related to a difference that
develops between the plasma potentialfp and the effective
confining potentialfe near the plasma edge. Recall that
fp1fe5 const within a cold-fluid plasma when pressure is
neglected.

Now, since the plasma is assumed to be spherically sym-
metric, ]fp /]r is given by

]fp

]r
52

4pq

r 2 F E
r in

r

r 2drn1
n0r in

3

3 G .
We substitute this relation into Eq.~A3!, then change in-

tegration variables fromr to u[r2r in . The variableu is the
distance from the fluid plasma edge. We then expand in pow-
ers ofu/r in , yielding, after some algebra,

p52pq2F2n0E
0

`

duun̄~u;G!2S E
0

`

dun̄~u;G! D 2G
1O~1/r in!, ~A4!

where n̄(u;G)[n(r in1u;G) is the density at the plasma
edge.

If we define a differenceDn(u;G)5n̄(u;G)2nf(r in1u)
between the equilibrium density and the cold-fluid profile,
Eq. ~A4! simplifies to

p54pq2n0E
2`

`

duuDn~u;G!, ~A5!

where we can now extend the lower limit to2` since
Dn(u;G) is zero at largeuuu. In the derivation of~A5! we
have used the relation*2`

` duDn50.

APPENDIX B: TESTS OF THE PERTURBATION THEORY

In this appendix we test the validity of our perturbation
theory results in two ways. First, we evaluate a general ex-
pression for the perturbed potential eigenfunctionDc of Eq.
~3.28!, and show that it is indeed small compared toc in a
strongly correlated plasma. Second, we compare our results
to an exact solution of Eqs.~3.15!, ~3.20!, and ~3.21!,
adapted from the original derivation of Love, for the case of
a uniform unmagnetized elastic sphere@29#.

1. Perturbed eigenfunction

In order to calculate the perturbed eigenfunctionDc in
the most straightforward manner, we return for a moment to
the momentum equation, Eq.~3.22!. Equation~3.16! implies
that a term of the form“(dx•“p) appears on the right-hand
side of Eq.~3.22!, arising from“•dp. Within the plasma,
wheren(0) is constant, we can combine2qn(0)“df with
this term, yielding2qn(0)“(df2dx•“p/qn0). We there-
fore expect a first-order pressure correction inDc of the
form dxf•“p/qn0 , wheredxf is the fluid displacement de-
fined in Eq. ~3.34!. It will be easiest to subtract out this
correction initially. Therefore we define

Dc̄5Dc2dxf•“p/qn0 ,

and we replaceDc with Dc̄ in Eq. ~3.28!, yielding

L̂Dc̄1Dv
]L̂

]v
c5Ĉc2L̂

dxf•“p

qn0
. ~B1!

We then expandDc̄ in the orthonormal eigenfunctionsxn of
L̂:
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Dc̄5( 8
n

anxn , ~B2!

where thexn’s satisfy

L̂xn5lnxn ~B3!

for a set of eigenvaluesln . One eigenvalue isln50, corre-
sponding toxn5c, and the prime on the sum in Eq.~B2!
means the sum does not include this eigenfunction. The co-
efficientsan are obtained by taking the inner product of Eq.
~B1! with xn :

an5@~xn ,Ĉc!2~xn ,L̂dxf•“p!/qn0

2Dv~xn ,]L̂/]vc!#/ln* . ~B4!

Writing the first two inner products in Eq.~B4! as integrals,
and using Eqs.~3.26! and ~3.27!, yields

~xn ,Ĉc!2~xn ,L̂dxf•“p!/qn0

52E d3xH Dn̄“xn* •s•“c1¹2c
dxn* •“p

qn~0!

1ln* xn*
dxf•“p

qn0
14pdxn* •“•dpJ ,

wheredxn5s•“xn/4pqn0 is the fluid displacement due to
the eigenfunctionxn , and where we have used the Hermitian
property ofL̂ together with Eq.~B3!.

Then, after integrating by parts on the last term, we obtain

2E d3xH Dn̄•“xn* •s•“c in1
dxn* •“p“

2c in

qn0

1ln* xn*
dxf•¹p

qn0
1

dxf•“p

qn0
“•~s•“xn!*

14pui jn* si j J , ~B5!

whereui jn equalsui j given by Eq.~3.18! with dx5dxn , and
where we have employed the same approximations as in the
derivation of Eq.~3.35!, dropping surface terms in the inte-
grals and keeping terms only to linear order in gradients of
the pressure and density.

Let us consider the size of various terms in Eq.~B5!. The
stress tensorsi j varies in space within the plasma on a rela-
tively slow spatial scale given byc(x), so *d3xui jn* si j will
approach zero likeln

21/2 for large n becausexn becomes
rapidly varying. Thus this contribution to the sum in Eq.
~B2! is convergent for largen. ~We will see examples of this
behavior in Appendix B 2.! However, since“p varies rap-
idly near the plasma edge, it is not obvious that the other
terms in Eq.~B5!, involving bulk pressure gradients, provide
a convergent sum forDc̄, so we will consider these terms
more carefully.

The first term in Eq.~B5! can be related to the thermal
pressure using Eq.~2.14!:

E d3xDn̄“xn* •s•“xn5
pN

Mvp
2n0

2 ^“2~“xn* •s•“xn!& f .

Application of Gauss’s law then yields

E d3xDn̄“xn* •s•“c

5
p

4pq2n0
2E d2xû•“~“xn* •s•“c!,

where the integral overd2x runs over the surface of the fluid
spheroid, andû is a unit vector normal to the surface. The
second, third, and fourth terms of Eq.~B5! can also be re-
lated to surface integrals since in thermal equilibriump is
uniform within the plasma and zero outside of it, so“p is
sharply peaked at the surface. Furthermore, in the fourth
term we use Eq. ~B3! to write “•(s•“xn)*
52ln* xn*1“

2xn* , so after a cancellation the first four
terms of Eq.~B5! become

2E d2x
p

qn0
H û•“S“xn* •

s

4pqn0
•“c inD

2
û•s* •“xn*“

2c in

4pqn0
2û•dxf“

2xn* J .
The second term, involvings* •“xn* , has only a single

gradient ofxn , so this term is of orderAlnxn in the large
n limit. Thus, when divided byln* in order to obtainan in
Eq. ~B4!, it provides a convergent term in the largen limit.
However, the first and third terms involve two derivatives of
xn , which can produce a term of orderlnxn in the largen
limit. Since c in varies slowly along the surface of the
plasma, the surface integral picks out only thosexn with an
equally slow variation along the surface. Thus the largest
term in ¹2xn* is d2xn* /ds

2. Similarly, the largest term in
û•“(“xn* •(s/4pqn0)•“c in) is (d2xn* /ds

2)(û•dxf), and
this term cancels the third term, leaving only convergent
contributions to Eq.~B4!.

The hat only remaining contribution to an,
dv(xn,]L̂/]vc)/ln* , is also easily shown to yield a conver-
gent sum in the largen limit through a similar argument to
that used for the other terms. Using Eq.~3.26! for L̂, inte-
gration by parts yields

~xn ,]L̂/]vc!5E
in
d3x“xn* •]s/]v“c in,

and, since]s/]v is slowly varying within the plasma, the
integral phase mixes away for largen due to the relatively
slow variation ofc in compared toxn .

We have shown that Eq.~B2! for Dc̄ is a convergent sum
with coefficients proportional to the pressure corrections.
Our perturbation theory therefore should provide sensible re-
sults for the frequency shifts, provided that the approxima-
tions leading to Eq.~B5! are valid. We will next consider the
functional form forDc̄ for a specific case.
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Unmagnetized (2.0) mode in a spherical plasma

Let us consider the perturbed eigenfunctions for the case
of an unmagnetized spherical plasma. It is evident from Eqs.
~B2!, ~B4!, ~B5!, ~3.19a!, and ~3.37! that Dc̄ breaks into a
part proportional to pressurep and one proportional to bulk
and shear moduli. We first consider the part proportional to
bulk and shear moduli, dropping the pressure terms. In this
case Eq.~B4! becomes

an5E
in
d3xH 4pui j n

* si j22
Dvvp

2

v3 “xn* •“c inJ Yln* ,

~B6!

wheresi j is determined byc in via Eqs.~3.18!, ~3.19a!, and
~3.34!, where we have used the unmagnetized limit for
]s/]v @see Eq.~3.23!#, and where the part ofDv indepen-
dent of pressurep can be obtained from Eq.~3.37!.

Now, for a spherical plasma the eigenfunctionsxn obey a
scalar Helmholtz equation with a separable solution in
spherical coordinates:

«3“
2xn

in5lnxn
in , ~B7a!

“

2xn
out5lnxn

out, ~B7b!

with continuity conditions at the plasma edger5R given by

xn
in5xn

out

and

«3]xn
in/]r5]xn

out/]r .

Note that Eq.~3.8! implies that«3 is a fixed negative number
for the surface plasma modes,«352( l11)/l for given
mode numbers (l ,m). Thus we must find the set ofxn’s and
ln’s which solve Eqs.~B7! subject to boundary conditions
that xn50 at r5Rw , whereRw is the radius of a spherical
conducting wall placed outside the plasma.

We chooseRw to be a large but finite distance from the
plasma since there are two types of eigenfunctions: plasma
modes whose potential falls off rapidly outside the plasma,
and vacuum modes which exist mainly between the wall and
the plasma. The set of eigenvaluesln for the vacuum modes
becomes a continuum in the limit thatRw→`, so it is easier
to takeRw large but finite.

The plasma mode solutions fall off rapidly outside the
plasma, so we may neglect image charge effects. The plasma
solutions of Eq.~B7! are then

xn
~ in!5A ju~Aluk /u«3ur !Pu

s~cosu!eisf,

xn
~out!5Bku~A2lukr !Pu

s~cosu!eisf,

where j u(x) is a spherical Bessel function of the first kind,
ku(x) is a modified spherical Bessel function of the third
kind, andPu

s is the usual Legendre function. The indexu
must obeyu>usu. For givenu there is a countable set of
solutions forl, and the indexk determines which solution
for luk is used. Thus, the indexn onxn really consists of the
three integers (u,k,s). The eigenvalue equation forluk fol-
lows from Eqs.~B7b!,

2Au«3u
j u8

j u
5
ku8

ku
U
r5R

, ~B8!

where the prime denotes differentiation with respect to the
entire argument. It is not difficult to show that a solution
exists forluk50, corresponding to the fluid eigenfunction
c. We are to neglect this solution since we keep onlyxn’s
which are orthogonal toc in the sum in Eq.~B2!.

The vacuum solutions to Eqs.~B7! are of a similar form,

xn
in5Aiu~A2luk /u«3ur !Pu

s~cosu!eisf,

xn
out5BF yu~A2lukr !

2
yu~A2lukRw!

j u~A2lukRw!
j u~A2lukr !GPu

s~cosu!eisf,

where i u(x) is a modified spherical Bessel function of the
second kind, and whereyu(x) is a spherical Bessel function
of the second kind. An eigenvalue equation similar to Eq.
~B8! can be obtained forA2luk. Just as for the plasma
modes a solution exists forluk50, equal to the fluid eigen-
function c; we neglect this solution as we keep only those
eigenfunctions orthogonal toc in Eq. ~B2!.

Using these eigenfunctions we have evaluated thean’s for
the case of the~2,0! mode. Using Eq.~B6!, it is not difficult
to show that the only eigenfunctions which yield nonvanish-
ing an’s are those for whichu52 ands50, so the depen-
dence ofDc̄ on u and f is the same as that of the fluid
mode. Furthermore“2c in50, so only shear stress contribu-
tions proportional tom appear insi j @see Eqs.~3.19a! and
~3.34!#, and therefore Eq.~B6! implies thatDc̄ is propor-
tional to m and independent ofk. Then after numerically
solving for the eigenvaluesl2k we have summed the series
in Eq. ~B2! to obtain the radial dependence ofDc̄, keeping a
large but finite number of eigenfunctions~62 plasma eigen-
functions and 57 vacuum eigenfunctions!. Thus the part of
Dc̄ proportional tom has the form

Dc̄5
m

Mn0vp
2R2c~R,u! f ~r !, ~B9!

wherec(r ,u) is the~2,0! fluid mode potential andf (r ) is the
dimensionless function that results from summing the plasma
and vacuum eigenfunctions. The result forf (r ) is shown in
Fig. 5. In the upper figure the plasma and vacuum eigenfunc-
tion contributions tof (r ) are shown separately; they are
added together to provide the fullf (r ) shown in the lower
figure. Note that a discontinuity inf (r ) appears at the plasma
edge. The physical reason for the discontinuity is discussed
in Appendix B 2. The small oscillations in the potential are a
consequence of truncation of the sum in Eq.~B2!; by keep-
ing more terms the oscillations can be suppressed further.

Next, we return to Eq.~B4! and evaluate the part ofDc̄
proportional to thermal pressurep. This involves an evalua-
tion of the surface integrals in Eq.~B5!. The integrals pick
out only those eigenfunctionsxn for which u52 ands50,
just as before. After adding in the contribution toan from the
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pressure term inDv @see Eq.~3.41!#, we find that the part of
Dc̄ proportional to pressurep has the same functional form
as the part proportional tom that is displayed in Fig. 5. The
only difference between these two parts is a numerical factor.
The part ofDc̄ proportional top has the form

Dc̄5
2

5

p

Mn0vp
2R2c~R,u! f ~r !, ~B10!

where f (r ) is the same dimensionless function as in Eq.
~B9!, displayed in Fig. 5.

2. An exact solution

As a final test of the perturbation theory, we will now
compare the approximate perturbation results to an exact so-
lution for a special case. We return to Eq.~3.15! and take
Vv5p50 but retain the bulk and shear moduli. We will
further assume the equilibrium is a uniform density sphere,
which is consistent with the assumptionp50. Then within
the sphere Eq.~3.15! becomes

2v2Mn0dx52qn0“df1m¹2dx1~k1 1
3m!“~“•dx!.

~B11!

Furthermore, the boundary conditionr̂•dp50 must be met
at the surface of the sphere. In spherical coordinates this
condition becomes the three equations

~k2 2
3m!“•dx12m

]dxr
]r

50, ~B12a!

]dxr
]u

1R
]dxu

]r
2dxu50, ~B12b!

1

sinu

]dxr
]f

1R
]dxf

]r
2dxf50 ~B12c!

for the components ofdx in the r , u, andf directions at
r5R. In addition to these equations we have the boundary
condition thatdf→0 at r→`.

Equations~B11! and ~B12!, together with the continuity
and Poisson equations, Eqs.~3.20! and~3.21!, can be solved
exactly, as was first shown by Love in 1911@29#. Writing
dx as a sum of a curl free and divergence free field,

dx5“g1“3h, ~B13!

we first take the divergence of Eq.~B11!,

2v2Mn0“
2g5~k1 4

3m!“2
“

2g24pq2n0
2
“

2g.

This is a scalar Helmholtz equation for“2g, so g may be
decomposed into a solution to this wave equation and a so-
lution to“2g50:

g5@A jl~k1r !1Brl !Pl
m~cosu!]eimf, ~B14!

where k15A(v22vp
2)Mn0 /(k14/3m), and j l(x) is a

spherical Bessel function.
Returning to Eq.~B11!, we now take the curl of the equa-

tion, noting thath is determined only up to the gradient of a

scalar so we are free to choose“•h50. The result is a
vector Helmholtz equation in“2h:

v2Mn0“
2h52m“2

“

2h.

The solution forh is a sum of a solution to this wave equa-
tion and to the vector Laplace equation“2h50. We keep
only the solutions which obey“•h50,

h52Cr3“@ j l~k2r !Pl
meimf#

1D¹@r“„j 1~k2r !Pl
meimf

…#1Er3“~r lPl
meimf!, ~B15!

where Pl
m5Pl

m(cosu) and k25Av2Mn0 /m. Furthermore,
the continuity equation, Eq.~3.20!, and the Poisson equation,
Eq. ~3.21!, can be combined with Eq.~B13! to yield

“

2df in54pqn0“
2g,

which has the solution

df in54pqn0~g1Fr lPl
meimf!. ~B16!

Equations~B13!–~B16! must also obey the original equa-
tion for dx, Eq. ~B11!. This implies relations between the
coefficientsA . . .F, as we will see. Substitution of Eqs.
~B13!–~B16! into Eq. ~B11! yields

@~vp
22v2!B1vp

2F#“~r lPl
meimf!

1EF2¹~r lPl
meimf!1r

]

]r
“~r lPl

meimf!G50.

This equation can only be satisfied forE50 and
F5(v22vp

2)B/vp
2 . When these results, together with Eq.

~B14!, are used in Eq.~B16!, we find the following form for
the interior potential:

df in54pqn0SA jl~k1r !1
v2

vp
2Br

l DPl
meimf. ~B17!

This solution for the perturbed potential must be matched
across the plasma vacuum boundary to a solution to
“

2dfout50. The matching conditions are

df in5dfoutur5R ~B18a!

and

]dfout

]r
2

]df in

]r
524pqn0dxr ur5R , ~B18b!

which follows because movement of the plasma surface by
dxr is equivalent to a surface charge. The outer solution for
df is

dfout54pqn0Gr
2~ l11!Pl

meimf. ~B19!

Torsional modes

We therefore need to solve for five independent constants
A, B, C, D, andG, via the five equations~B12! and~B18!.
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We can reduce the number of equations and unknowns fur-
ther by evaluatingdx in spherical coordinates using Eqs.
~B13!–~B15!:

dxr5$A j181 lBr l211C@ l ~ l11! j 2#%Pl
meimf,

dxu5HA j 1
r

1Brl211C@ j 281 j 2 /r #J eimf
]

]u
Pl
m

2D
k2
2 j 2
sinu

Pl
mimeimf, ~B20!

dxf5HA j 2
r

1Brl211C@ j 281 j 2 /r #J Pl
m

sinu
imeimf

1Dk2
2 j 2e

imf
]Pl

m

]u
,

where we have introduced the shorthandj 1[ j l(k1r ),
j 2[ j l(k2r ), and primes refer to differentiation with respect
to r . Two sets of solutions now separate out. For one set
D50, and for the other setA5B5C5G50. The latter are
referred to as torsional, or toroidal modes. They have not
appeared in our previous discussions because they cannot be
obtained from perturbation theory. This is because their cold-
fluid analogs have zero frequency. These modes are torsional
oscillations of the sphere which do not give rise to shape
changes or density perturbations. The only restoring force for
these modes comes from the shear modulus, and it is for this
reason that the modes do not exist in the fluid limit.

For the torsional modes Eqs.~B20! imply dxr50 and
“•dx50. Furthermore, Eqs.~B17! and ~B18! imply
df50. Then the two boundary conditions Eqs.~B12b! and
~B12c! are identical and provide the dispersion relation

R
]

]R
j l~k2R!5 j l~k2R!.

We will see in a following paper@7# that these modes can be
observed in simulations of unmagnetized strongly correlated
non-neutral plasmas.

Bulk plasma modes

Now we turn to the other sets of modes for which
D50. For these modes the position changedx causes a per-
turbed potentialdf. There are four unknowns (A,B,C,G)
and four equations, Eqs.~B18!, ~B12a!, and ~B12b!, since
the boundary conditions Eqs.~B12b! and ~B12c! are identi-
cal in this case. The resulting dispersion relation is quite
complex: we leave it in the form of three coupled homoge-
neous equations forA, B, andC:

A~ l11!
j 1
R

1BRl21F ~2l11!
v2

vp
2 2 l G2C

l ~ l11!

R
j 250,

~B21a!

AF j 191
1

2 S 232
k

m D k12 j 1G1Bl~ l21!Rl22

1C
l ~ l11!

R S j 282
j 2
RD50, ~B21b!

AF j 182
j 1
RG1Bl~ l21!Rl22

1CF2 j 281S l ~ l11!21

R
2
k2
2R

2 D j 2G50, ~B21c!

where primes denote derivatives with respect toR, and here
j 1[ j l(k1R) and j 2[ j l(k2R). Solution of these three
coupled equations must be carried out numerically, except
for a few special cases. Forl50, Eq. ~B21b! implies that

j 091
1

2 S 232
k

m D k12 j 0~k1R!50,

which is the dispersion relation for a set of spherically sym-
metric modes. These modes correspond to the bulk plasma
oscillations discussed in Sec. III. In fluid theory, these bulk
modes are degenerate with frequencies equal to the plasma
frequency. Addition of bulk and shear moduli breaks the
degeneracy. The dispersion relation can also be written in
terms of elementary functions:

12k1
2R2

k1 4
3m

4m
5k1Rcotk1R, ~B22!

which has a countably infinite set of solutions fork1R. Now,
one can show that for a strongly correlated plasma
(k14/3m)/Mnvp

2;O(aWS
2 ). Thus, asR/aWS→` ~the fluid

limit !, Eq. ~B22! implies that all the mode frequencies ap-
proachvp like a WS

2 /R2, as expected from the results of fluid
theory for the bulk plasma modes in the unmagnetized limit.

Surface plasma modes

The other case for which Eqs.~B21! simplify is the fluid
limit, R/aWS→`. In this casek2R→`, and k1R also ap-
proaches infinity provided thatv is unequal tovp in the
limit. As k1R andk2R become large, Eqs.~B21b! and~B21c!
imply thatA andC approach zero, leaving onlyB finite, and
then Eq. ~B21c! implies v25vp

2l /(2l11), the cold-fluid
limit for the surface modes@Eq. ~3.81!#.

In order to compare our perturbation results for the mode
frequencies to the exact solution for the frequencies of the
surface modes, we have solved Eqs.~B21! in an expansion in
aWS/R. A general solution is not possible, but we have con-
sidered several modes on a case by case basis. In each case
there are terms which oscillate rapidly, arising from the be-
havior of j l(x) for largex; however, these oscillatory terms
turn out to be of higher order inaWS/R than the lowest-order
correction to the fluid frequency.

For the ~1,0!, ~2,0!, and ~3,0! modes, we find that the
lowest-order correlation corrections to the cold-fluid fre-
quencies are

Dv1m50, m50,1, ~B23a!

D~v2m
2 !5

10m

Mn0R
2 , m50,1,2, ~B23b!

D~v3m
2 !5

28m

Mn0R
2 , m50,1,2,3. ~B23c!
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These frequency shifts agree with the predictions of per-
turbation theory, Eqs.~3.41!, ~3.44!, ~3.47!, and~3.50!, when
the spherical limitR5L is taken and whenp is set equal to
zero.

The spatial dependence of the potential can also be com-
pared to the results of perturbation theory. For example,
when lowest-order correlation corrections to the constants
A/B, C/B, andG/B are kept for the~2,0! mode, one obtains

A

B
52

20

3

k1R

sink1R

m

Mn0vp
2 ,

C

B
52

2R

k2sink2R
, ~B24!

and

G

B
5
2

5
R51

10

3

m

Mn0vp
2R

3.

When employed in Eqs.~B17! and~B19!, these constants,
together with Eq.~B23b!, yield the perturbed potentialdf
for the ~2,0! mode.

Note that if eitherk1R or k2R equalsnp for any integer
n, then A/B and/or C/B are not small. Physically, these
resonances occur because the~2,0! surface mode couples to
very short-wavelength bulk plasma and transverse sound
~torsional! oscillations. Whenk1R5np compressional bulk
plasma oscillations are driven to large amplitude by the sur-
face mode because the plasma oscillations become resonant
in the spherical plasma atk1R5np @see Eq.~B22! in the
large k1R limit #. When k2R5np transverse sound oscilla-
tions, also coupled to the surface mode by correlation effects,
are resonant and are driven to large amplitude. However,
these driven bulk plasma modes and sound modes are of
very short wavelength since the~2,0! frequency is on the
order of vp , so both k1 and k2 are of O(1/aWS) ~in a
strongly correlated plasmak and m are of order
n0q

2/aWS). Such short-wavelength modes would be damped
in a real plasma, so this unphysical ringing behavior can be

removed by adding small but finite negative imaginary parts
to k andm. Now A/B andC/B become exponentially small
in the fluid limit R/aWS→`.

We can compare the exact result fordf from Eqs.~B24!,
~B23b!, ~B17!, ~3.8!, and ~B19! to that obtained using per-
turbation theory by projecting out that portion ofdf which
is orthogonal to the cold-fluid eigenfunctionc, given by Eq.
~3.6! for l52,m50, andd→0:

Dc5df2c~c,df!/~c,c!.

Carrying out the required inner products yields the following
exact result for the correlation correction to the~2,0! poten-
tial in the limit R/aWS→`:

Dc~r ,u!5
m

Mn0vp
2R2c~R,u! f ~r !,

where c(R,u) is the cold-fluid potential evaluated at the
surface of the plasma, and

f ~r !5H 35

3 S rRD 2, r,R

25SRr D
3

, r.R.

~B25!

Just as in Eq.~B9!, we are able to writeDc as a product of
c(R,u) and a dimensionless functionf (r ). Figure 5 shows
excellent agreement between the exactf (r ) from Eq. ~B25!
and the perturbation theory result of Eq.~B9!.

The exact result forf (r ) from Eq. ~B25! exhibits a
boundary layer at the plasma edge. Physically, this boundary
layer forms when compressional bulk plasma oscillations are
coupled into the surface~2,0! plasma oscillations by correla-
tions. Since bulk plasma modes are of short wavelength they
are strongly damped in a distance ofO(1/Imk1) by the small
but finite imaginary contributions tok andm. In the fluid
limit R/aWS→`, uk1Ru→`, and a boundary layer appears in
Dc that is of negligible width compared toR. The potential
eigenfunction then exhibits the discontinuity displayed in the
figure.
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