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Effect of correlations on the thermal equilibrium and normal modes of a hon-neutral plasma
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Recent experiments have trapped small spheroidal clouds of like charges, and have cooled them to cryogenic
temperatures where strong correlation effects, such as transitions to crystalline states, have been observed. The
experiments have also excited normal modes of oscillation in the charge clouds. The normal modes have
previously been considered theoretically using a cold-fluid model that neglects correlations. This paper exam-
ines the effect of strong correlation on the equilibrium and on the modes. Two correlation effects are predicted
to cause frequency shifts in the modes: correlation pressure changes the shape and density of the equilibrium,
and bulk and shear moduli introduce restoring forces neglected in the fluid theory. A viscoelastic model of the
plasma incorporating these effects is solved perturbatively to obtain formulas for the frequency Shifé3-
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PACS numbgs): 52.25.Wz, 32.80.Pj, 52.35.Fp, 62.20.Dc

[. INTRODUCTION on the non-neutral plasma, a pressure tensor is introduced to
the equations of motion in order to account for the effect of
Non-neutral plasmas, which are composed only ofthermal pressure on the equilibrium and dynamics. The
charges of like sign, possess two intriguing properties: theyheory differs from previous studies of correlation effects on
can be confined using electromagnetic fields for long periodglasma waves in that the finite size of the trapped plasma is
of time (i.e., hours or even daysand they can be cooled explicitly taken into account. This is an important aspect for
without recombination to ultralow temperatui@s the order comparisons to actual experiments and simulations of low-
of mK or lesg, where states of condensed matter such asrder modes in small trapped plasmas, for which the mode
non-neutral liquids and crystals are observed. In thesgavelength is of order the size of the plasma.
strongly correlated non-neutral plasmas the interparticle Mode frequencies are found to shift compared to the cold-
spacings are typically microns or larger, so that densities arfluid theory of Ref.[6] (where pressure is neglecjedhe
over ten orders of magnitude less than conventional conshift can be traced to two effects of approximately equal
densed matter. magnitude: (i) the equilibrium shape and density of the
The collective electrostatic modes of oscillation of non-trapped plasma are changed by thermal pressure, causing a
neutral plasmas have recently received considerable attenti@hift in the mode frequencies; arfiil) extra restoring forces
for a number of reasons. Excitation and measurement of theue to bulk and shear moduli of the strongly correlated
collective modes can provide a useful nondestructive diagplasma also lead to frequency shifts. For several of the
nostic of such plasma properties as density and temperatunmodes explicit formulas are derived for the frequency shifts.
as well as the shape and overall size of the plafinal. The paper is structured in the following manner. In Sec.
Modes have also been implicated in transport processes leal; after a brief review of the thermal equilibrium properties
ing to loss of the plasma and limits on the dendity5]. of trapped non-neutral plasmas, an analytic theory is devel-
Furthermore, when the plasma is small compared to the sizeped in order to predict the effect of thermal and correlation
of the trapping electrodes, an analytic theory exists that propressure on the plasma equilibrium. Correlations are found to
vides a complete solution for all of the modés. affect polynomial moments of the equilibrium plasma den-
However, this analytic theory neglects the effect of corre-sity. The analytic predictions for these moments are com-
lations and treats the plasma as a cold fluid. In this paper wpared to computer simulations of equilibrium plasmas, and
consider how interparticle correlations can affect the normagjood agreement is found.
modes in a strongly correlated trapped plasma. Here we will In Sec. Il we briefly review the theory for the normal
consider a theoretical model that describes correlation effectmodes of a cold-fluid plasma, and then we go on to introduce
on the modes; in another paf&i, we will test the theory by and solve our viscoelastic model of the correlated plasma
comparing its predictions for the mode frequencies to themodes. It turns out that the perturbative solution of this
results of molecular-dynamic@vD) simulations. We have model requires the polynomial moments of the equilibrium
two related reasons for pursuing this analysis: we wish talensity which were derived in Sec. Il. Thus, analytic forms
understand to what extent the crystallization of the trappedor the correlation frequency shifts of the modes can be de-
plasma affects the normal modes, and, given that there aré/ed. Section 1V is devoted to a summary and discussion of
measurable effects, we will consider what information athe results. In Appendix A we derive an intermediate result
measurement of the modes can provide concerning correlaequired for the theory of pressure effects on the plasma
tion properties of the plasma. equilibrium. In Appendix B we perform several tests of the
The theory developed in this paper consists of a perturbgperturbation theory developed to solve the viscoelastic
tive solution of a viscoelastic model for the correlatedmodel. We first consider the perturbed potential eigenfunc-
plasma. In addition to the usual electromagnetic forces actingon in order to test the convergence of the theory. We then
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compare the perturbation solution to an exact solution of the N
viscoelastic model for a special case. 2 Mv +q¢PD(x,)+E Pij ¢ -
Il. EQUILIBRIUM PROPERTIES Here again when the plasma is small compared to the dis-

In this section we review the static thermal equilibrium t@nce to the electrodegpy is harmonic:
properties of a single species plasma confined in a Penning
or Paul trap. We then go on to derive some results for density dpp(X) = —(w 2+ w?p?),
moments of a thermal equilibrium plasma. We will need
these results for our treatment of normal modes of th

trapped plasma. (?Nherewl is the frequency of radial oscillations of a single

particle in the trap. Note that both, andw, must be small
) . _ compared to the rf drive frequency in order to use the pon-
A. Gibb’s distribution in a harmonic trap deromotive potential approximation. The angular momentum

It is possible to trap a collection of charges of like sign for is also conserved in cylindrically symmetric Paul traps:
long periods of time, so that the collection approaches a state N
of confined thermal equilibrium. The thermal equilibrium p=S
state is determined by the constants of the motion. In a Pen- =
ning trap[8] the uniform confining magnetic field and the
applied electric field are nominally static and cylindrically ~ For both the Penning and Paul traps the thermal equilib-
symmetric so the energy and the component of angular rium can then be described in a unified manner. The con-
momentum along the trap axiR, are conserved quantities. served energyd and angular momentui, imply the exist-
The angular momentum has both kinetic and magnetic comence of a confined thermal equilibrium state, described by
ponents the Gibb’s distribution

qupi .

N , f(Xg ... XNoV1 ...V =Z texd — (H—w,P,)/kT],
P,=M2, (vgpi+Qepf12), _ _ _
i=1 where w, is the rotation frequency of the plasma; ! is a
constant that normalizes the phase-space integrdl tf

A ) unity, andT is the temperature. In a Paul trap the rotation
charge M the massp the magnetic field strength, amdis o4 encyw, is usually taken to be zero, but in a Penning

the speed of light. Cylindrical coordinates=(p,6,z) are 45 plasma rotation is essential for confinement.
employed, measured with respect to the center of the trap, ko, poth types of trap the Gibb’s distribution can be re-
with z oriented along the axis of symmetry. The enekg¥s \yjitten as a product of a Maxwellian velocity distribution,

N shifted by the rotation frequency,, and a configurational
2 I\/lv +Q¢T(X.)+2 i, distribution:

f=ZleX[{ - ME (Vi_wrpibi)Z/ZKT:|
|

where Q.=gB/Mc is the cyclotron frequencyq is the

where ¢;; is the interaction potential energy between par-
ticlesi andj, and¢+(x) is the external trap potential due to
the voltages imposed on the electrodes. For plasmas which X exd — - X kTl 21
are small compared to the trap electrodes, image charges can Z Z’, iy + Ade(x) (213
be neglectedg;; = q?/|x;—X;|, and ¢+ is well approximated

by its Taylor expansion over the small central region wherevhere, for a harmonic trap,

the plasma is trapped: 2

w? ¢e(><)— (z 2+ Bp?) (2.1b
zqz (22— p?12),

pr(X)=

is the effective confinement potential that traps the plasma.

The parametep, referred to as the trap parameter, must be
reater than zero in order for the plasma to be confined. In a
enning trapB is

wherew, is the frequency of axial oscillatory motion when a
single charge is confined. Traps with such an external tra|
potential are referred to as “harmonic.” In order to avoid

unessential mathematical complications, this paper focuses 0 (Qetw) 1
on plasmas in harmonic traps. p=——51 - (2.29
In a Paul trag 9] there is no magnetic field, and confine- w; 2

ment is provided by a combination of electrostatic potentialsl_
and electric fields varying at radio frequencies. The latter
fields induce a fast rf jitter motion of the ions which, when
averaged, leads to a ponderomotive confining potential. |
the small amplitude fast jitter motion is neglected and only 2_ 2

. . . . W] —w,
the ponderomotive potentigipp(X) is kept, the resulting dy- B= — (2.2b
namics is conservative, with energy Wz

his shows that in a Penning trap rotation through the mag-
netic field (w,Q.<0) is required for particle confinement,
Put in a Paul trap rotation is not required. In the Paul trap
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but rotation is generally a negligible effect in Paul traps sofrom the relation between the spheroid volume and
one often takeg=w?/w?. N: 27LR2ny,=N, which can be rewritten in terms of the
Wigner-Seitz radiusys and the aspect ratia:
B. Cold-fluid equilibrium
R

aws

The thermal equilibrium properties of either harmonic
Penning or Paul trap plasmas are described by the same
Gibb’s distribution function, Eq(2.13, with the same effec-
tive confinement potentiale, Eq. (2.1b. This potential, (The Wigner-Seitz radius is the average interparticle spacing,
along with the total particle numbeéd and temperaturd, defined in terms o, by 4773\3/\/3”0/3: 1.) Equations(2.6)
uniquely determines the equilibrium density. For exampleand(2.7) have been verified experimentally in low tempera-
the Laplacian of¢¢(x) is constant, and can be related to ature Penning trap experimeritsl].
constant density, through Poisson’s equation

5 N
—.

2.7)

aws

w; C. Cold-fluid moments
_ 2, _
n°_47,-qV ¢e_477q7(2'8+1)' (2.3 In Sec. Il we will require moments of the cold-fluid

plasma density when we consider the normal modes. We will
One can think of¢, as being produced by a uniform neu- need moments of the form
tralizing background charge of density. At low tempera-
tures the plasma minimizes its energy by matching its den- 21 2m\ _ i 3 2l _2m
: : . e (2%p )= f d*xn¢(x)z%p

sity to ng. Thus, if one neglects density variations on the N
scale of an interparticle spacirtige., if one neglects correla-
tions), the low temperature plasma has uniform denagy  for integersl and m, where the subscript on the average
out to a surface of revolution where the supply of charge isndicates a moment taken with respect to the cold-fluid
exhausted. This approximation is referred to as the cold-fluiglasma, and(x) is the cold-fluid plasma density, equal to
equilibrium. ny within the plasma and zero outside of the plasma. The

Furthermore, Eq(2.1b) implies that the shape of this sur- integrals overn;(x) could in principle be determined nu-
face of revolution is determined solely by the trap parametemerically for a plasma of any shape, but for a spheroidal
B. For example, whe@=1 the plasma is a sphere, whereasplasma the moments can be determined analytically. The re-
for small 8 the fluid plasma flattens into a disc and for large quired integrals are over the interior of a spheroid whose
B the plasma approaches a line. In fact, it has been showsurface is defined by?/L?+ p?/R?=1, and the result is
that, for low temperature$—0, the fluid plasma in a har-

monic trap is a spheroicellipsoid of revolution. This fol- o o3 T'(m+1)T(1+1/2) Sl
lows because the electrostatic plasma potential within a uni- (z%p >f:Z T+ m+5/2) LR, (2.8
form spheroid is related to its shape and density 1]
1 Mo? whereI'(x) is a gamma function.
o= g LAU@P A @)Z ~2Ay(@)R?

D. Thermal equilibrium correlations

—As(a)L? 2.4 -
s(L7], @4 We now turn to the effects of finite temperature and cor-

relations on the equilibrium. Equatid2.3) implies that the
effective confinement potential can be thought of as being
produced by a uniform background dengity. A system of
charges confined in such a static background is termed a one-
component plasméOCP. Thus the Gibb’s distributiori of

where w,23=477q2n0/M is the plasma frequency. Here we
introduce the aspect ratio of the spheroid, which equals the
length 2 of the spheroid divided by the diameteR2The
functions of the aspect ratid;(«) andAz(«a) are

1-e2[ 1 1 [1+e a trapped non-neutral plasma is identical to that of a OCP,

Ala)= 2 |1-e? 26 n E) ) (2.59 except for the shift in velocities due to rotation. The OCP is
a paradigm of condensed matter with a long hisfd3j]. The

Ag()=2—2A(a), (25D correlation properties of a classical infinite homogeneous

OCP are entirely determined by the correlation parameter
I'=qg?%/awskT. At I'=2 the OCP begins to exhibit short-

wheree?=1—1/a?. In equilibrium at zero temperature the < i
range order characteristic of a liqujd3], and atl’'=172 a

plasma potentiap, must match the effective confining po- - A ;
tential ¢+ o= const within the plasma. This equation, to- first-order transition to a bcc lattice is predictek8,14.

gether with Egs(2.1b and (2.4), leads to the following re- However, in present experiments the trapped plasma typi-

lation between the trap parameter and the plasma aspe,%"f‘!ly consists of less than 100 OOQ charges, so it is neit'her
infinite nor homogeneous, and this affects the correlation

properties[15]. In Fig. 1 we plot the density(r;I") in a
B=A(a)lAz(a). (2.6) spherical plasma as a function of spherical radiufor vari-
ous values of'. This density is determined from Metropolis-
The size of a plasma of given aspect ratio is determined bjrosenbluth Monte Carl@MC) averages over the Gibb’s dis-
the total particle numbeX, and the densityg. This follows  tribution,
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FIG. 1. Equilibrium densityn(r;I') as a function of spherical FIG. 2. Mean-square lengtlz®) as a function of trap parameter

radiusr in a Spherica”y symmetricd:ﬁ:l) non-neutral p|asma B for N=1000 Charges. Dots: molecular dynamics simulations of

of N=400 charges trapped in the effective potential of Eq1b),  crystallized {"—) plasmas. Line: cold-fluid theorjEgs. (2.6)—

for various values of the correlation paramefefgenerated using a (2.8)]. Lengths are measured in units of the Wigner-Seitz radius

Monte Carlo simulation The density is normalized to the cold- aws-

fluid valuengy. Lengths are measured in units of the Wigner-Seitz

radiusays. The dotted line is the cold-fluid theory, with a sharp the cold-fluid theory result of Eq2.9), <22>f=|_2/5_ Here

edge atr/ays=N"* [see Eq.(2.7)]. T=1, 10, and 150 from | s a function of 8 and N through Egs.(2.7) and (2.9).

smoothest to most oscillatory profile. There is a slight difference between the simulation results
and the cold-fluid prediction, visible at smadl, which can

n(xg;I") be traced to an effect of correlations. The cold-fluid theory of
Egs.(2.39—(2.8) neglects the effect of pressure on the density
distribution. Here we are referring to the bulk thermal pres-

:NJ d%; ... dxnd%y ... d*oNf (X XN VI- V) sure of the infinite homogeneous OCP,

(2.9

1 U
p=nokT I+ 3 NKkT) (2.10

For relatively small values of the correlation paramétehe
density is approximately uniform within the plasma, falling
to zero at the plasma edge over a distance on the order of the . . o _
Debye lengtH16]. As the temperature decreases, the Deby: hereU is the correlation c_ontrlbu_tlon to_the internal energy
length decreases and the plasma edge steepens, approachih)- In the strong _correlatpn regime thIS. pressure is nega-
the Heaviside step function density(x) of cold-fluid tive becau;@J/Nles negatlve. This negative pressure leads
theory. However, a§" increases the density also begins to!0 & reduction in the size of the plasma.
exhibit spatially decaying oscillationsee Fig. 1L AsT in- Negative pressure, or a net attractive force, may seem
creases beyond aboiit~1(? the oscillations increase in counte;rmtwtwe in a syste.m of charges_lnteractmg via the
magnitude until the density approaches zero between thgPulSive Coulomb potential. However, it must be remem-
peaks, and the system forms concentric shells. This concer%ered that this negative pressure is an effacédditionto
tric shell structure has been observed in experimgrits At € long-range repulsion kept in the mean-field potential
large T’ values {'=300—1000 the charges in a given shell ¢p Of Ed. (2.4); the plasma charges still repel one another,
generally crystallize into a distorted two-dimensioaD) ~ Put the repulsion is less than in the fluid limit and(gd) is
hexagonal structure, although for extremely oblate or proIatéeSS than the cold-.flwq prediction. This correlation effect can
clouds other crystal structures are predicted to oft8}. also be observed in Fig. 1, where for laigehe edge of the
These qualitative correlation effects have been discussdf@Sma has shrunk inside the edge predicted by the cold-fluid
in several previous articles. However, in this paper we willtN€0ry, shown by the dotted line.
be concerned with the effect of correlations on the low-order Quantitative predictions for the effect of pressure on the
modes of the plasma. Since these modes have relatively lorf{f"Sity moments can be obtained provided that we make
wavelengths compared to an interparticle spacing, we wileveral approximations. We assume that the density is uni-
find that only average correlation properties are important, ifo'™M €xcept near the plasma edge, which is assumed to be

which case some quantitative results can be obtained. ~ 'elatively narrow compared to the plasma dimensions. This
is a good approximation for the loW profiles pictured in

Fig. 1, but for largel’ it is difficult to justify, since shells
form throughout the plasma. Nevertheless we will observe

Moments of the equilibrium density are affected by thethat our results for the density moments are in good agree-
correlations. In Fig. 2 we plot the mean-square lengthment with computer simulations even for larfe
(zz>=(1/N)Eizi2 for a crystallized plasma of 1000 particles  For any function of positiorF(x) we define a moment
[determined via molecular-dynami¢®ID) simulatior], as a  (F) as an average over the single-particle equilibrium den-
function of the trap parametgd. On this plot is also shown sity n(x;I'):

E. Density moments
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N
1 1
(Fy=y2 <F(xi)>=—f d*>F()n(xT). (2.11) 0 . \<§
N<1 N
We then break the moment into two parts:

&
g -05 :
1 1 Z
(F)= —f d3xF(x)n¢(x) + —J d3xF(x)An(x), )
N N o
v -1 U A<p® ®  A<>NP [~
whereAn=n(x;I") —n¢(x). The first term is the cold-fluid < ° At 4 APt
moment(F); discussed in Sec. Il C, and the second term is B Acpts/ND
the correction which we calh(F). 15 . . —
Now, by assumptiom(x;I") is equal ton¢(x) except near 0 1 2 3 4
the edge of the plasma, am(x) is a highly peaked function B

of distance from the edge. We therefore Taylor expand

F(x) in powers of the distance from the edge of the cold- FIG. 3. DifferenceA(z% p®™) between density moments as seen

fluid plasma. Definingt=X, at the fluid surface, in simulations and fluid theory predictions as a function of trap
parameters, for crystallized plasmas and for various valuesl of
1 * and m. Dots: simulation results. Lines: predictions of Eg.15.
= _ ——| g2 .
A(F)=(F) <F>f_Nf d™oF (%o) fﬁwduAn(u,I‘) Lengths are measured in units afs.
+ [ a2 VE(x) [ dunan(uD), (212 21 2my _ o521 om L m)_P

N 0 o L) . A<Z p >—2<Z p >f(2|+2m+3) F—}_E M—z,

0 wpno
(2.15

where U is a unit vector normal to the fluid surface, and

where we have assumed thiat(x;T") is homogeneous along Where the fluid momen{z?p®™); is given by Eq.(2.9).

the surface so that it is a function only wfather tharx (that ~ Equation(2.15 has a satisfying intuitive interpretation asso-
is, curvature variations in the surface are neglected, which i§iated with the effect of correlations on the density profiles
equivalent to neglecting surface tension effgcthie integral ~ shown in Fig. 1. For small' values the pressureis nearly
f” .duAn(u;T) vanishes by conservation of total particle that.of an ideal gas. This positive pressure causes Fhe de_nsny
number. The second integral oweis evaluated in Appendix Profile to expand and extend beyond the cold-fluid radius,
A using the equilibrium Bogoliubov-Born-Green-Kirkwood- @nd so the shift in the value of density moments is also
Yvon (BBGKY) hierarchy, again neglecting surface curva- Positive. However, for largd™ the density profile contracts

ture variations. The result from EGA5) is within the cold-fluid surface because the pressure becomes
negative, and this is also reflected in the shift to the moments
:x: p given by Eq.(2.15.
f duvAn(u;Tl") = —, (2.13 In Fig. 3 we test Eq(2.15 in the extreme case of a
— M(.l) . . .
p crystallized plasma af'—oo, comparing the prediction to

: numerical simulations for various plasma shapes. In the large
wherep is the bulk pressure of the one-component plasma

: ) . g . T" limit the internal energy is due entirely to the lattice Made-
given in terms of the correlation contribution to the mternalIung energy, and is well approximated for several stable lat-
energy by Eq(2.10. _ , tices byU oep/NKT=—0.898" [13,14) so from Eq.(2.10

Using Eq.(2.13 in Eq.(2.12, and using Gauss’s theorem p/(Mw2no)~ —0.0996,.. The fluid dimensionsR and L
for the surface integral, we obtain po ) ws-
are, as always, determined in terms of the trap parangeter
D and the particle numbé\ via Egs.(2.6) and(2.7). We would
A(F)= M_2_<V2F>f' (2.19 e>'<pect that higher—order moments wouzlld 2not agree as well
wyNo with Eqg. (2.15 since ad or m increasesz= p<™ varies more
) . rapidly through the edge region and the Taylor expansion at
Thus the correction to any density moment due to correlathe edge becomes less well justified. However, there is good
tions or thermal effects_ is proportional to the plasma pressurggreement for the moments tested, even though there is no
p. Equation(2.14 applies to a plasma in any trap geometry, well-defined narrow boundary region in the plasma density
not just a harmonic trap. For example, for plasma in any,t these largé values, and(r;T') is unequal tans(r) over
confinement geometry Eq2.14 predicts the following cor-  the entire plasma.
relation changes in the mean-square length and radius: In Fig. 4 we test thd” dependence of the density mo-

ments for finite temperature spherical plasma equilibria for a
4p range ofl" values. Here we determine the plasma pressure
Mwéno' p using the known results fo ocg(I')/NKT [13,14], and
again there is good agreement between @415 and the
For plasmas in a harmonic trap and for moments of thesimulations over a range &f values. In this case the simu-
form (z%p®™) the required integral over the fluid spheroid in lations are equilibrium Monte Carlo simulations, as in Fig. 2,
Eq. (2.14 can be performed analytically, and the result is some withN=512, others withN=256.

p
A@)= oz ApH=
p
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6 o %5n+V-(nfb\/)=O, (3.1a
\ L A<

4r . ié\/z—ivlpﬂ) SVXZ (3.1b
g at M v ’ '
Z
5 2t V2y=—4mqén, (3.10
! where én, év, and ¢ are perturbed density, velocity, and

oF potential, respectively. Under the assumption that modes

o vary in time in the rotating frame as exp{wt), standard
N manipulations of Eqs(3.1) then yield
0 2 4 6 8 10

r V.(s-Vi)=0, (3.29

FIG. 4. Difference between simulations and cold-fluid theory forWhere
density momentgr2), (r%), and(r®), wherer is spherical radius,
as a function of correlation paramet€r for a spherical plasma
(e=pB=1). Dots: Monte Carlo simulations. Lines: theoretical pre- e=| e, &4 0 (3.2b
dictions of Eq.(2.15. Lengths are measured in units &fs. 0 0 £q

g, —iey O

In summary, interparticle correlations and finite tempera4s the cold plasma dielectric tensor. Outside the spheroid,
ture give rise to effects not present in the fluid equilibrium of ¢ =1, whereas inside,
Sec. Il A, such as the formation of liquid and crystalline

states. Although the detailed microscopic correlations for w,zj wf,QU wf)
these states are quite complex, their effect on low-order mo- £1=1~ (02— Q%) 82:m7)' e3=1- w2
ments of the density can be understood using a model which Y v (3.29
accounts for correlations and temperature through the bulk

plasma pressure. Equation(3.29 is Maxwell's equationV - D=0 for a me-

dium with a frequency-dependent dielectric tensoFormu-

lation of the eigenmode problem is completed by the bound-

ary conditionyy— 0 at|x|—c (i.e., image charges in the trap
We now turn to the electrostatic normal modes of thesavalls are neglected, which is a good approximation for small

trapped plasmas. Both magnetized plasma and upper hybrlasmas and distant walls

oscillations have been excited in recent experiments. In some _

experimentg1, 2, 4] the measured frequencies agree with a Unmagnetized modes

cold-fluid theory[6] of the modes of a uniform density  We first consider the unmagnetized limit, which is par-
plasma spheroid in a harmonic trap, but in other experimentgcularly simple. In this limit the modes fall into two catego-
noticeable frequency shifts were induced by the effects ofies: bulk plasma oscillations which produce no potential
finite temperature and trap anharmonici8]. In addition,  variation outside the plasma, and surface plasma oscillations
computer simulations have observed frequency shifts fofvhich are incompressible distortions of the plasma shape,
modes excited in strongly correlated plasnids Here we  and which induce potential variations outside the plasma.

will derive general results for the frequency shifts of the  Qutside the plasma=1 andy satisfies Laplace’s equa-
normal modes due to correlations. In order to make contagion

with the experiments and with simulations, we will consider

the extreme limits of very strong applied magnetic field V2yoU=0, (3.39

where guiding center equations of motion apply, and zero

magnetic field. In a Penning trap the magnetic field can apwhereas inside the plasnea=0 ande;=¢3, and Eq.(3.2)

pear to be zero in a frame rotating with the plasma. Thd>ecomes

cyclotron frequency), is shifted by rotation to the vortex 9

frequencyQ,=Q.+2w,. The plasma becomes unmagne- (1_ ﬂ)vzwmzo (3.3b

tized in the rotating frame whefd, =0, which occurs at the w® ’ '

Brillouin limit w,=—Q /2. The unmagnetized limit also ap- ) s 2 n o ,

plies to modes excited in a Paul trap plasma. so eithero”= wy, or elsey™ also satisfies Laplace’s equa-
tion. In either case the inner and outer potentials must match
across the plasma surfa&e

Ill. NORMAL MODES

A. Fluid theory

We first review the cold-fluid theory of the normal modes. Pre0=y*(x)s, (3.43
In cold-fluid theory perturbations away from equilibrium are 5
described by the linearized continuity, momentum, and Pois- Bt ) R VAR IR T
son equations in a frame rotating with the plasma: (1 gz)u V=0V g, (3.4D



5274 DANIEL H. E. DUBIN 53

whered is a unit vector normal to the plasma surface. TABLE |. Spatial dependence of the potentigi" for the

If wzzwg, Egs. (3.339 and (3.4b imply that 4°"'=0, (I,m) fluid normal mode within a spheroidal plasma. Cylindrical
whereas Eq(3.3b implies 4™ is undefined. This solution coordinates ¢,¢.2) are used. Heré?=L%, /e3—R?, whereRis
corresponds to bulk plasma oscillations with an undefinedhe radiusL is the half-l_ength of the spheroid, and the dielectric
density dependencén inside the plasma. In fact, the density constants:; ande are given in Eq(3.20.

perturbation is not entirely undefined since E8.4) speci-

fies ¢, at the boundary; only density perturbations which (1,m) y"
produce no potential outside the plasma are allowed. For (1.0 z
example, in a spherical plasma, any perturbation that is a (LY pe'’ _
function only of radius causes no change in external poten- 2,0 3[22%(e1/e3) — p*1/4—d?/2
tial; such modes are “breathing oscillations” of the cloud, 29 pze?
and in fluid theory all such oscillations are at the plasma 22 p2e?'? -
frequency. More complicated perturbations of this sort can (3,0 Z[102°(1/£3) — 15p°— 6d°]
also be easily constructed. 3, p[202%(&4/e3) — 5p°—6d?]e'?

The other casey2y"=0, corresponds to surface plasma (3,2 p’zei?
oscillations. The solution is separable in spheroidal coordi- (3,3 p3edi¢
nates €,,&,,¢), where[19]

2= 8ik2, a5 w?= 0221 +1), 3.8

212 2
= —d9)(1-&5),
P (&1 A &) Normal modes for B0

and ¢ is the usual azimuthal angle. The coordingeis a We now turn to the magnetized plasma oscillations of a
generalized radial coordinate, agd is a generalized lati- flyijd spheroid. Unlike the unmagnetized case where, for
tude. Surfaces of constait are confocal spheroids, and given!| andm, there is a single pair ofpositive and nega-
surfaces of constanf, are confocal hyperboloids every- tive) surface mode frequencies satisfying [E817), there are
where normal to the constagt surfaces. The lengtll is a  now several modes for a givdnandm. Whenm=0 there
parameter of the coordinate system, chosed as/L?—R? are | pairs of modes; whenl—m is odd there are

in order that the plasma surface is a constantsurface, 2(I—|m|)+1 modes, and wheh—m is nonzero and even
given by&;=L. The coordinate; approaches the spherical there are 2(—|m|)+2 modes.

radiusr in the spherical limitL=R (i.e., d=0), and¢, ap- The theoretical treatment of the magnetized modes is
proaches cagin the spherical limit. In these coordinates the similar to that of the unmagnetized modes, and has been
solutions of Laplace’s equation inside and outside the plasmghoroughly discussed in previous wofk, 6]. We therefore

are skip directly to the relevant results. Outside the plasma Eq.
. " " ) (3.2 is Laplace’s equation, and so the outer solution is still
P=AP(£1/d)P(&2)expime), (3.6 Eq. (3.6D. Inside the plasma the solution is in terms of
scaled spheroidal coordinates
PU=BQ(&1/d)P(E)expime), (3.6b
i m m H
whereP[" and Q" are Legendre functions, and whdrand YOO =APT(E TP (&) expime), (3.9

m are integer mode numbeilsz |m|, determining the spatial — . . .
variation of the mode. Specifically, the number of zeros inwhere&; andé, are defined by the following transformation:
the potential encountered upon circling the equator of the

spheroid is|m|, whereas the number of zeros encountered ZZE(S?)/%)U{

upon traversing the spheroid from pole to pole along a great (3.10
circle equald —|m|. That these perturbations cause incom- > 5

pressible deformations follows from the fact tH@fy=0 p=V(£1—d)(1- &),

everywhere except at the plasma vacuum boundary. At the

boundary the jump in the gradient @f corresponds to a whered= L%, /e3— R The interior potential has a rela-
surface charge density that can be regarded as an infinitesively simple polynomial form in cylindrical coordinates. In

mal displacement of the surface. Table | the form fory™ in cylindrical coordinates is given
The frequencies of these surface plasma modes are foundr values ofl andm up to (I,m)=(3,3).
by substitution of Eqs(3.6) into Egs.(3.4): The eigenvalue equation equivalent to E8.7) is
w?= % (3.7 P [a?—esles| 2PQ"
QU PIQrY e
whereQ"=Q"(a/\Ja?—1), P"=P"(a/\Ja?—1), and the (3.11

prime denotes differentiation with respect to the entire argu-
ment. In the spherical limie=1 Eq. (3.7) approaches the where nowP"=P["a/(a?—¢e3/e,)Y?], and Q" has the
well-known result for surface oscillations of a plasma spheresame argument as in E3.7). It is easy to show that this
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eigenvalue equation approaches E8.7) in the unmagne-
tized limit, wheree,—0 ande;—e3.
In the guiding center limi€) > w,> o, and

e1=1, 82=—wr2)/a)ﬂc, 83=1—w§/w2. (3.12
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B. Correlation effects

We now consider the effect of correlations on the low-
order modes. Shifts in the mode frequencies can be ac-
counted for through two effects which were neglected in
cold-fluid theory. First, plasma pressure changes the plasma
equilibrium, as was discussed in Sec. Il. This change in the
equilibrium shifts the frequency of the normal modes. Sec-
ond, extra restoring forces appear due to pressure effects.

In this guiding center limit, the modes fall into three classesSince we are interested here in long-waveler{giv-orden
depending on their frequency: upper hybrid oscillations,modes we model these restoring forces using bulk and shear

magnetized plasma oscillations, aB& B drift oscillations.

In the rotating frame the frequency of the upper hybrid os-

cillations falls in the ranggQ,|<|w|<|Quyl, where the
upper hybrid frequency)y is Quy= \/w2p+ QUZ. The mag-
netized plasma oscillations are in the rangé<w,, while
the EXB drift modes consist of slow drift motions at low
frequencies, typically|w|~|w,2)/(2u|. For example, the
=1, m=1 magnetron mode is aBX B drift motion of the
center of mass about the trap axis.

moduli.

In addition to the frequency shift of the modes, damping
can also be accounted for by allowing the bulk and shear
moduli to have imaginary parts, which can be related to
high-frequency bulk and shear viscositiE®0]. This ap-
proach neglects thermal diffusion, anticipating that we will
mainly be interested in mode damping at low temperatures
(large I'), for which such dissipative effects are typically
small compared to the dissipation due to velocity shE2its

Since theEx B modes have not been considered in much  We employ a fluid model for the plasma which includes a
detail in previous publications on the spheroidal modes, ifinear viscoelastic response to perturbations. The momentum
may be useful to make a momentary diversion to discuséquation, in a frame rotating with frequenay, is taken to

their properties. Th&EX B modes exist only fom#0 and

| —|m| even, in which case there is one such mode. For ex-

ample, thel =3, m=1 EXB mode consists of an octopole
distortion of the plasma that involves sm@l{1/B) displace-
ments along as well asO(1) displacements acro&

The EXB modes may be distinguished from the magne-

tized plasma oscillations in that tliex B frequencies depend
inversely on magnetic field strength in the larBelimit,

whereas the plasma oscillations remain at finite frequency i
this limit. Furthermore, in this limit the plasma oscillations
involve fluid motions only along the magnetic field, whereas

the EX B modes involve cross-field X B drift motion. How-

be

ov
—+v-Vv

Mn p

=n(—qV¢+MQ, vX2)—V.,
(3.13

wheren is the densityy the fluid velocity, ¢ the electro-
static potential as seen in the rotating frame including plasma
nd external fields, ang the pressure tensor that accounts
or correlation effects.
We first consider equilibria of Eq3.13, described by an
equilibrium densityn®, potential ), and velocityv (®.
We will limit discussion to thermal equilibrium so(®=0

ever, the EXB modes can also be thought of as low- Kin th q f d the densi d ial
frequency long-wavelength extensions of the magnetizedVe Work in the rotating frameand the density and potentia

plasma oscillations in that they are the modes with the long@"€ then related by setting)/gt=0 in Eq. (3.13:
est axial wavelength for a given radial wavelength, much as

diocotron modes of a cylindrical plasma column can be ob-
tained from the long axial wavelength limit of the magne-

tized plasma dispersion relation.

In the large magnetic field limit an explicit solution for
the EX B mode frequency can be extracted from Ej11).
In the limit Q,—%, for the EXB modesw—0, g3—»,
g,—1, and 82—>(1),2)/va. Then the argument oP|" ap-
proaches zero, and a Taylor expansion of 811 yields
the result

o, 2 2 1 m;Am’
?—=m [“—m +|—a(—a2T)l/2Q| /Q| .
p

This formula generalizes a previous reg#6lt derived for the
case ofl =|m| magnetron modes to includ&x B modes for
which | #|m|. For the casé=|m|, it is not difficult to show
that wQ, /»? is the same function of: as isw? w? for the

p p
| =|m| unmagnetized surface plasma mofgg. (3.7)]. This

—gqnOvVe¢®—-vp=0. (3.14

Here we have also assumed that the equilibrium stress tensor
is isotropic, ()= &;p, wherep is the bulk pressure. This
approximation neglects surface tension effects on the equi-
librium.

In the weakly correlated limip=n(®kT, and if T is con-
stant, Eq.(3.14) leads to the Boltzmann distribution for the
density. However, when the plasma is strongly correlated Eq.
(3.14), together with the equation of state, E@.10, is
equivalent to the local density approximation of density
functional theory[22]. It must be remembered that in the
strongly correlated limit the equilibrium density® which
results from solution of Eq(3.14) is only an approximation
to the exact single-particle densityx;I") obtained from Eq.
(2.9); in fact, bounded solutions of E@3.14 do not exist
whenI'>1. Nevertheless, we will find that the equations we
obtain for the normal modes are well behaved, even though
the equilibrium equations may be ill posed. This is because
our theory for the low-order normal modes will only require
moments of the equilibrium density, so in effect only low-

is because the form of the perturbed potential is identical foorder polynomial moments of Ed3.14 will be required.

both EXB and unmagnetized limitsee Table)l

One can show that such moments can be extracted using an
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analogous approach to that used in Appendix A and Sec. Il . ..u, [23]. Taking the magnetic field to be in the
in fact, such an analysis yields a correlation correction to thalirection, the stress tensor takes the form
moments identical to the rigorous result of Eg.15. Thus
low-order moments of(®) are identical to moments of the Sy =&V - X+ kU, ,+ 2 (Uyy— 5V - X) + g (Uyy— Uyy)
exact single-particle density(x;I"), but the detailed func-
tional forms ofn(® andn(x;T") may differ on the scale of an
interparticle spacing. N
This point bears repeating: the fluid equations we employ Syy= &V - X+ k1Uzz+2u(Uyy= 3V - 6X) = w1 Uy = Uyy)
are not well posed in the strongly correlated limit, except in
the sense that low-order momentsrdf) can be extracted
from Eg. (3.14). Fortunately, we will see that our analysis
requires only these low-order moments.
Linear perturbations around the equilibrium are described
by subtracting Eq(3.14 from Eq. (3.13, Sxy = Syx= 2( o+ pa) Uxy = M3(Vxx = Vyy),

+27730xya

- 2773ny:
(3.19b
S, = (k+ K1)V - X+ KUy, +2u(U,,— 3V - 6X),

Joév . Sy7= S, =2(+ uo)Uy,+ 271,405,
Mn(o)7=n(o)[—qV5¢+Mva\/XZ] xz= Szx= 2( e+ o) Uxt 2740y,

Syz= Szy= 2(M+M2)uyz_2774vx21

-qonvV e 9-Vv. o7, (3.15

where v;; is the symmetrized velocity strain tensor,

vij=du;/dt, and in order to deal with strictly real coeffi-

cients in the nondissipative limit we have replageg and

M4 by shear viscositieg); and 7,. For an oscillating strain

at frequency w these coefficients are related by

4= —lwnzy. Itis important to note that the real parts

he viscositiesy; and 7, do not give rise to dissipation as

stress they create is perpendicular to the flow; these terms
arise through the Lorentz forcexXB. In fact, even in the

Smij=—x-Vps&;—s; (3.16 Iimit_of a collisionless magne_zti_zed plasma, where there is_ no
dissipation, these two coefficients are nonzero due to finite

where 8x is the change in position of a fluid element from Larmor radius effect§23].

where 7 is the change in the pressure tenség is the

perturbed potential, an@n and év are the perturbed density
and fluid velocity, respectively. We employ the notation
6¢ for the perturbed potential in order to distinguish it from
the cold-fluid theory limitys of Sec. lll A. The perturbed

pressure can be separated into pressure changes at a p
due to convection, and pressure changes due to strains in tlﬂ?e
plasma:

equilibrium, related tadv through dv=déx/dt. We employ In principle all seven moduli are required when the vortex
a viscoelastic approximation for the stress terspruseful ~ frequency(}, is nonzero, but some simplifications are pos-
for long-wavelength perturbatiod&0]: sible in certain limits. Fol'>1 the plasma is crystallized,
and dissipative contributions to the modd@he imaginary
Sij = ijki Ukl » (3.17  partg are small and may sometimes be neglected. Further-

) ~more the nondissipative contributions, which describe the re-
where;j depends on bulk and shear moduli, and the strairstoring forces in the crystal lattice due to applied strains,

tensoru;; is given in terms of the displaceme#it of a fluid  gepend only on static properties of the equilibrium. Since

element, static properties of the classical crystal are independent of
1/a6x  aox. the magnetic field, Fhe unr_nagnetized Iimit of the stress ten-
Ujj :_(_'+ _J> (3.18 sor, Eq.(3.193, again applies for crystallized plasmas.
2\ ax;  9x The linearized momentum equation, .15, together

) with linearized continuity and Poisson equations
For example, for an unmagnetized plasra@ Paul trap

plasma or a Penning trap plasma at the Brillouin lmit SN+V-n®sx=0, (3.20

Sij = KUy 8 +2u[ U — 5U 81, 3.19
i I 9ij ul ij— 34 |]] ( a V25¢=—4wq5n (3.21)
wherekx andu are the bulk and shear modulus, respectively.

This form of the perturbed pressure tensor assumes agre a closed set of five homogeneous partial differential
isotropic medium, which is certainly not true for a perfect equations for the five independent scalar functions given by
crystal in which bulk and shear moduli typically depend onén, 8¢, and 6x. These equations, together with the bound-
the direction of strain with respect to the crystal axes. How-ary condition §¢—0 as|x|—, constitute an eigenvalue
ever, in the systems considered here the crystalline symmetgroblem for the normal modes.
is imperfect[15], and an approach based on a model of the We do not attempt an exact solution of this complex prob-
plasma as an isotropic amorphous material is useful. lem, except for a special case discussed in Appendix B. In-

The addition of a magnetic field also affects the relation-stead, we employ an approach based on perturbation theory
ship between stress and strain in an amorphous materigdround the known solutions for an uncorrelated uniform
Symmetry considerations imply that the two moduli of Eq. plasma spheroid. This approach will be sufficient to obtain
(3.19@ must in general be replaced by seven moduli: twothe lowest-order corrections to the mode frequency due to
bulk moduli x and «,, and five shear moduli,u, strong correlation effects.
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We first construct an equation for the perturbed potential JL . N
similar to the cold-fluid equation, Eq3.23. With the help Awa—¢+ L(ws)Ayy=Cy. (3.28
of Eq. (3.14 we rewrite Eq.(3.15 as “f
SNVp V.om The frequency shifiw can then be extracted by taking the
= aan Vép— th —or |, (322 inner product of this equation witlt. SincelL is Hermitian,
AN n an (&,LAY)=(Ay,Lp)* =0, and so the frequency shift satis-
: o . fies
where o is a scaled conductivity tensor. Its components in
Cartesian coordinates are (,Co)
_ Aw=+———. (3.29
o, 1oy, O (1// izﬁ)
g= - | (0] (o] O y , awf
0 0 o3 In order for this perturbation approach to be valixiy
h must be small compared 6 [24]. This constrains the sorts
where of perturbations one can consider. For example, in(E®Q7)
_ 21 202 _ 2 2 2 let us arbitrarily neglect all terms except for the first,
o1=0p/(0° =), o= wpll, fo(w™— () V.oAn-V&¢. One might imagine a perturbation of a given
and Uszwg/w? (3.23 cold-fluid equilibrium which consists of a slight change in

shape of the spheroid to another cold-fluid equilibrium; then

Substitution of Eq(3.22 into Egs.(3.20 and(3.21) then  only this term would be nonzero. Furthermore, the frequency
leads to the following equation for the perturbed potential: shift could then be determined exactly by using the exact

eigenmode equation, E¢.11), for the two spheroidal equi-

) n® ) Vp V.-om| libria. However, one can easily check that the result from
v 5¢_V"Tn_o' Vép+v 5¢4 + qn© =0. perturbation theory, Eq(3.29 doesnot provide the right
(3.24  answer in this case. This is because the functionis of

O(1) at the plasma edge, and varies rapidly. Such perturba-
In perturbation theory we break E(B.24) into a zeroth tions are not small, even though the width of the region over

2
qun(o)

order part and a correction which An is large may be small. Since the changeiin is
R R both large and abrupt in this exampley turns out to be the
L(w)6¢p=Cdo, (3.25 same order of magnitude as

. It is not obvious that the more physical case of perturba-
whereL (w) is a frequency dependent linear operator corretions to the modes due to pressure shifts in the density profile

sponding to the cold-fluid eigenmode equation will not also lead to a breakdown of the perturbation theory.
. However, in Appendix B we show that for such pressure
L(w)6¢p=V-(e-Vi¢), (3.26  shifts the perturbed eigenfunctiany is in fact small com-
o ) o pared toy.

and the cold-fluid dielectric tenseris given by Eq.(3.2b). As an example, we evaluatkey for the case of 42,0

The equatiorl =0, ¢—0 at|x|—= leads to the disper- mode in an unmagnetized spherical plasma. As discussed in
sion relation of Eq(3.11). The correctiorCd¢ to this equa-  Appendix B,A ¢ for this mode has the form
tion causes frequency shifts. It can be written as
ox-Vp  u+2p/5 R 0)F (3.30
qno Mnowst 170( ’ ) (r)y .

V25¢Vp V.ém Ay=

Co¢p=V-o-{ ANV 5p+ Mn<°>w§+ o |

(3.27  where spherical coordinates, §, ¢) are usedi(R, 6) is the
— 0 ) ) (2,0 cold-fluid mode potential evaluated at the surface of the
where An=[n*"(x) —n;(x)]/no is the difference between ,asma(see Table | for the form of this potential in cylindri-
the correlated equilibrium densitg® and the cold-fluid  ca| coordinates and f(r) is a dimensionless function dis-
densityn;, scaled by the background density. This dif-  pjayed in Fig. 5. The discontinuity if(r) at the edge of the
ference is negligible by assumption except near the surfacigqasma is due to a boundary layer that forms when damped
of the plasma. bulk plasma oscillations are coupled to tk@0) surface
The operatorL is Hermitian with respect to the norm mode by correlation effects.
(f.g)=/d*f*g, and so a standard first-order perturbation e also compare our expressions for the frequency shift
approach can be employed. One writes the solution to Ecand eigenfunctions to a known exact solution of Hgsl5),
(3.295 as d¢p=y+ Ay, where is a solution to the cold- (3,20, and(3.21) for an unmagnetized spherical plasma. Our
fluid eigenvalue problenk(w;)¥=0 for some fluid mode perturbation results match the exact results in this case. The
frequency ws. The solution is given explicitly by Egs. interested reader is referred to Appendix B for the details.
(3.6b), (3.9, and(3.11). The inner products in Eq3.29 may be written in terms
The eigenmode frequencw also shifts slightly, to of polynomial moments of the thermal equilibrium density,
ow=w;+Aw. By keeping corrections only to first order in determined by Eqs.2.8) and (2.15. This is a great simpli-
the perturbed quantities in E¢3.25, one obtains fication since all inner products of E@3.29 can then be
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FIG. 5. Normalized perturbed potential eigenfunctim) for
the (2,00 mode in a spherical unmagnetized plasma of raRilisee

Eq. (3.30, or Egs.(B9) and (B10)]. The upper figure shows the
plasma and vacuum contributionsftarising from the perturbation
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mial in p andz (see Table), anda; . .. a3 are constants,
the integral in Eq(3.31) can be evaluated in terms of fluid
moments given by Eq2.9).

The numerator of E((3.29 can also be written in terms
of fluid density moments as well as the correlation correc-
tions to these moments, as given by E(s8 and (2.14).
Using EQq.(3.27), integration by parts yields

C 3 "V /% 2 5X’fkvp
(lﬂ,Ctﬁ):—f d*| AnVy* -0 Vi+V (pw
+4mX; -V - om|, (3.33
where
= 3.3
=7 amqn, (3.34

is the fluid-theory change in position of a fluid eleméthiis
follows by neglecting pressure corrections in E8.22) or,
alternatively, from Eq(3.1b].

In order to make further progress we must now make
several approximations to E¢3.33 based on the strongly
correlated limit. In this limitAn, p, and 87 are nonzero
only within the region bounded by the surface of the fluid
spheroid, since the plasma contracts within this surface; see
Fig. 1. We may therefore replaag by " in Eg. (3.33.
Furthermore, in the second term of H§.33 we note that

analysis of Appendix B, keeping the first 62 plasma eigenfunctionsV P is already a correlation correction, so we replace the
and the first 57 vacuum eigenfunctions. The lower figure comparegorrelated densityn(®) by the fluid densityn; . This approxi-

f from perturbation theorysolid) to the exact solution in the limit

R/ays>1, Eq.(B25) (dotted.

determined analytically. Since the numerator of E2329 is

mation cannot be rigorously justified unlesa<1 wherever

Vp is nonzero. We therefore assume this ordering, although
it does not appear to hold for the actual equilibrium profiles
(see Fig. L

small by assumption, the denominator need be evaluated Although takingAn<1 appears to be a poor assumption,
only to lowest order, which implies that the fluid density there are several indications that it is actually a good ap-

n{(x) may be used when evaluati@/aw. Integration by
parts then leads to the expression

( (?I: >_ d3V ink dao v in
lﬂ,ﬁl/f —fm XV iy e 1

in| 2
:—findBX al( 5{;/:” +p_22| lllin|2>
where
=200y (0~0;)*,
0= 0,08(307 00?057
and - az=2wlw?, (3.32

proximation. First and foremost, we will find that the results
generated by this approximation match the known exact re-
sults for the effects of correlations on the modes. In a fol-
lowing paper{7], we will also show that the results for cor-
relation frequency shifts match numerical simulations of the
modes in strongly correlated plasmas. Furthermore there is
some theoretical justification for this approximation: we have
already observed in Sec. Il that the exact equilibrium density
n(x;T’) is nearly the same as the cold-fluid densitfx) in

the sense that low-order moments of the two densities are
nearly identical. We also observed in connection with Eq.
(3.14 that in the strongly correlated limit our fluid equations
for n(®(x) cannot reproduce the exact functional form of
n(x;T"); only low-order moments oh(®> match those of
n(x;I'). One might, therefore, interpret® as a coarse-
grained version ofn(x;I'), with identical low-order mo-
ments but with a different functional form that nearly
matchesn¢(x), so that An<1 is satisfied. The coarse-
grained densityn(®) does not have the correct form on the
scale of an interparticle spacing, but we do not expect an
approach based on fluid equations to work on such a scale. In
fact, we will find that when we assunden<1 our results for

and the integral is over the interior of the fluid spheroid.the frequency shifts depend ar® only through low-order
Since the cold-fluid potential™ can be written as a polyno- moments, so the interpretation of® as a smooth coarse-
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grained version of(r;T") is consistent in the sense that our Vyrin

results do not depend on the detailed variations®fon the Aw=— [ 4mp < Vz( Amqng’ 5Xf) >

scale of an interparticle spacing. Nevertheless, while these 0 f

arguments are somewhat persuasive, they are certainly not

rigorous. A rigorous justification of the assumptiam<1, —2(R4V-(5XfV- &f)])f}

or a better approach in which this assumption need not be

made, remains an outstanding problem. Jo
In any case, we then integrate by parts once on the second + 47 i (U ukl)f] /< vy 22 Vl//in> _
term of Eq.(3.33 and twice on the third, substituting Eq. Jw
(3.16 for 7, and we neglect the surface integrals since by (3.36
assumptionp and s;; are zero at the surface of the fluid )
spheroid(the strongly correlated plasma has shrunk withinHere we have employed Eg®.14 and(3.17), and the no-
this boundary surfageThe result is tation ( ); refers to an average over the cold-fluid density.
The strain tensou;; is determined by the cold-fluid displace-
- . _ ment 6x; through Eq.(3.18, and 8x; is determined by the
(4,Cyp)= —f d*x{AnVy ™. o V" cold-fluid potentialy™ through Eq.(3.34). Since™™(x) can
be written as a polynomial ip and z (see Table ), the
_47.,p[v.(&?uii)+V.(5xfui’;)]+4q-rui’}sij}, ?ngages in Eq(3.36 can be explicitly evaluated using Eq.
(3.39 The general expression can be simplified in the unmagne-
tized limit. In this case the surface plasma modes are incom-
where the Einstein summation convention is employed.  pressible so u;;=V:8x;=0. Furthermore a,=0,=0,
According to Eq.(3.29, division of Eq.(3.395 by Eq. o;=03, a;=a3=203/w, and the isotropic form for the
(3.3)) yields a general result for the frequency shift due tostress tensor, Eq3.199, can be employed. Equatid8.36)

correlations: then reduces to
p . 2u .
M—2<V2|V¢'"|2>f+ M—zz (| %™ ax; %] )¢
A © Mo Mo® T (unmagnetized (3.39
w= <~ .
2 IV "™2)

wherew is the frequency of the cold-fluid surface mode given by 4.

The term in Eq(3.37 involving the equilibrium pressurg describes the effect on the mode frequencies of the change in
the plasma equilibrium caused by pressure. The bulk moduldses not appear in E43.37) because the surface plasma
modes are incompressible. The positive shear modulircreases the frequency of all modes, as one would expect since the
shear modulus adds an extra restoring force.

The expression for the frequency shift also simplifies in the limit of large magnetic fi@|ds,c. We limit consideration
to magnetized plasma oscillations, for which the perturbed fluid displacefixeist parallel toz due to the strong magnetic
field, and mode frequencies are on the order of the plasma frequgncin this caser;, o,, @1, anda, all are negligible
[see Eqs(3.23 and(3.32], the magnetized form of the stress tensor, 8190, must be used, and the frequency shift for
magnetized plasma oscillations is

2 4in| 2
WL >
ayaz| f

B ® p ) alllin‘z p 52
Aw_E[ Mn0w§<v 0z | ¢ Mn0w2 (9_22-
2
: (3.39
f

2,’74 azl/,in* azl/,in awin
+Mnow IxXdz dyoz f ‘ dz

Each low-order mode can also be considered on a case-by-case basis. For example(1{0y &mel (1,1) modes,y" is
linear inp andz which implies thatéx; is constant andi; is zero, so (,,C+) =0 and there is no frequency shift for t(&0)
or (1,1) modes, as expected for these center of mass modes. This is an important check on the validity of our results.
A nontrivial frequency shift first appears for tk2,00 mode. Using the result fop™ from Table | in Eq.(3.36), we find that
the (2,0) frequency is shifted by

&2 ,r//in‘ 2
Ixdz|

2.7in| 2
c9</f\>+(u+ﬂz)<

9z | Mnyw?

oz | Mnow?

at/fi”2> | (et 2kt 1) <
f

p(alsg-i- 20’38%) +(k—2p)(oq1— 03)2— 2k18103(01—03)+ u(ezo+ 2810'3)2/3
Mwgno[al(ng)2+2a3(le)Z] '

(3.39

AwZO:
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where g;, o;, and «; (i=1, 2, and 3 are given by Eqgs. 5 w 2p+(u+ ot wng)os
(3.209, (3.23, and (3.32, respectively. As was previously szfg@ Ma2ng : (3.43
p

discussed, there are tw@,0) modes, an upper hybrid mode
and a plasma mode. Equati¢8.39 provides the shift for

- . In th i limj Eq3.4
both modes. In the guiding center limit —0, a;—0, and n the unmagnetized limik., and 4 are zero, and Eq3.42

; ; impli
g,—1, so the shift for thé2,0) plasma mode is Implies
Awyy= 10—y DT 12 (3.44
50w 2pes+(k+2k,+4ul3)c W= =Y 7 .
Mog=>s Poat(kt2atAudos 5 4 L2+’ Mw2n,

M wgno

the correction to the surface plasma mode frequency. For the
a result which also follows from Eq3.38. A measurement (2,2 mode, the general expression for the frequency shift is
of the (2,0) frequency shift therefore provides information on

the modulus of compressibility alor8, «+2x;+4u/3. Awoe 107172 p+(o1— "2)(:“+:“1+‘*”73)
In Refs.[3] and[25] a similar(but not identical form for 2o —a, M w;NnoR?
the frequency shift of the magnetizé®,0) mode is derived (3.45

using a different method. The difference arises because ther-
mal equilibrium was assumed to occur only along a field line  The guiding center limit for this mode is only slightly less
in Refs.[3] and[25], whereas true thermal equilibrium is straightforward than for the previous modes. This is a dio-
assumed in Eq.3.40. The results of our method and that of cotron(or EX B drift) mode for which the mode frequency
Refs.[3] and[25] can be shown to agree if a true thermal approaches zero in the linfit,— . While we may still take
equilibrium is assumed in Refg3] and[25]. This provides o;—0 anda;—0, howo, and a, approach finite values in
another consistency check on the results. the limit, and the frequency shift becomes

In the unmagnetized limitr;=03 and ;= a3=203/w

[see Eqgs(3.23 and(3.32], so Eq.(3.39 implies a shift to 100 p—(p+ gyt ©75)0

the (2,0) surface plasma mode given b Awor= —o ) 3.4
p 15w g . y (1)22 R2 M nowé ( @
pPtupos
A(UZOZ 2 2 2 , (34])
R™+2L Mwpno Note thatw is of orderwilﬂv, and 800'2—>—a)§/wﬂv, and

is finite in the limit as(),— .

a result which could also be obtained directly from Eq. In the unmagnetized limit the frequency shift is

(3.37).

For the(2,1) mode, a similar analysis yields
Ale AwZZZEZ_ M—z‘ (347)

_E2(01_02+U3)P+(¢T1_02+03)2(M+M2+w7l4)
i M winol azR?+ (o — a)/L?] " Finally, for the (3,00 mode, multipole moments such as
(3.42 (p?z%); are required in Eq(3.36. After substitution for
these moments using Eg&.8) and (2.15, the frequency
In the strongly magnetized guiding center limit tf#1) fre-  shift is found to be a somewhat complicated function of the
guency correction becomes plasma properties:

Awzg=T0{2p[L2((e3/e1)?01+203—2[ (03— 01)/e1]%) + (Regle1)?(o1+ 03) + 2K L 203(03— 1) &4
+2(k+ 43 L7 (03— 01)l 81+ p(e3le1)[ 2L 240105~ (s3/81)07) + R¥(e3/81)[(01+ 03)+ 03]
+u(Regler)?[ (014 03)%2+ 03] — 2n40(Regleq)?0p( o1+ 03) M nowg{a3[8L4+4(83/81)R2L2
+3(e3/e1)?R+10a,(e3/81)?L2R?}. (3.48
This equation provides the frequency shift for the th{@® modes, one of which is an upper hybrid mode. The other two

modes are magnetized plasma oscillations. In the guiding center limit, the frequency shift for #%0wmasma oscillations
reduces to

2L2[2p83+(;<+ 2K1+4,L,L/3)0'3]+(R83)2[2p+(/_l,+/.l,2)0'3]

Aws=350
30 MnowZ[8L*+4R?L%s 5+ 3R% 2]

(3.49



53 EFFECT OF CORRELATIONS ON THE THERMAL . .. 5281

Equation(3.49 provides the frequency shift for bott3,0) I .
plasma modes, depending on which of the two fluid mode 2 Aw——C)amwmlww =0.
frequencies one uses in the equation. m Jo P
In the unmagnetized limit, th_ere is only o(@;O)_ syrface Taking the inner product of this equation withy,, one
plasma mode, and the correlation frequency shift is finds that the vectofa,,} must be in the nullspace of a ma-

700(3L2+2R?)  (p+ pos) trix which depends o\ w:

030~ (3124 3R (AL2+R?) Mnga?

(3.50

> (Un [Awdlldw—Cliym)am=0. (3.52

The frequency shifts of Eq$3.36—(3.50 have several "

common features. In each case a term involving the pressufhe inner product in Eq(3.52 can be evaluated using the
p determines the effect on the mode frequency of a change imoment technigue in a manner analogous to the method used
the equilibrium plasma when pressure is taken into accounto evaluate Eqs(3.31) and(3.35. An equation forAw can
Also appearing are terms involving the bulk and sheatthen be obtained by setting the determinant of the matrix in
moduli which describe frequency shifts due to the elasticEq. (3.52 equal to zero. For each solution of this equation
properties of the correlated plasma. Furthermore, in all casefer A w there is a corresponding vectfa,,} which satisfies
the frequency shift scales as(dlasma dimensioR. This is  Eq. (3.5, and which provides us with the perturbed eigen-
because the low-order modes have an effective wave numbginction ¢ via Eq. (3.51).
k on the order of théplasma dimension !, and we expect We will consider only one example of this procedure in
from dimensional considerations that pressure correctionany detail. For the case of an unmagnetized spherical plasma,
will enter the dispersion relation at ordet, as in the Bohm-  there are degenerate bulk plasma modes with arbitrary de-
Gross dispersion relation for warm plasma wavespendences onr(6,¢) (in spherical coordinatesWe will
w?= w§+ k?yp/Mng, wherey is the ratio of specific heats consider a subset of these modes which are entirely radial,

[26]. without @ or ¢ dependence. One such mode, a radial breath-
ing oscillation for whichs¢™"=A(r?—R?), has been set up
Bulk plasma modes in recent computer simulatior3]. As we discussed in Sec.
The perturbation theory used in deriving E8.36 as- !l A, cold-fluid theory predicts tha¢™ can also have ra-

sumed that the fluid eigenmodes are not degenerate. Hovial dependenc@¢™=f(r) for any functionf(r), and all
ever, as discussed in Sec. Il A, in the unmagnetized coldSuch disturbances oscillate at frequensgy. The addition of
fluid limit there is a set of bulk plasma modes which arecorrelations(or pressure termsbreaks this degeneracy and

degenerate, with frequenay=w,. In order to determine Picks out a countable set of eigenfunctions &af(r). _
the effect of finite pressure on these modes the formalism of In order to determine the frequencies and eigenfunctions
degenerate perturbation theory must be employed in th@€ choose an appropriate complete set of radial functions,
analysis. Let)y, be a set of normalized functions which sat- Ym=r", m=123,. ... (We will have need only of the in-

isfy L(wp)#m="0, whereL () is the cold-fluid mode opera- ternal form for in our analysis, since3¢°f“=0.for these
tor of Eq. (3.26. We construct the solution to E¢3.24) in !”nodes) Then the first matrix element required in E§.52)

terms of this set, which is assumed to span the set of degef*
erate solutions: ~
JL
‘//n ) % l//m -
Sp= Em‘, At - (3.51) w=wp
whereV=47R%3 is the plasma volume. Here we have used

Writing o= w,+Aw, we expand Eq(3.24 to first order in  Egs.(3.26), (3.2b), and(3.29. The matrix element involving
Aw: C is given by

6mn Rn+m72
= — V,
n+m+l o,

k(Mm+1)(n+1)+3u(m—2)(n—2)
—12p+3

~ —_ n+m-—4
(wnlcwm)|w=wp_ m+n—1 R V.

2
Mnoﬁ)p

In this expression we have used E¢8.27), together with  specific relations between the presspreand the modulix

Egs. (2.8 and(2.14), for moments of the equilibrium den- andu. In the strongly correlated zero-temperature limit, the

sity. following relations hold for an amorphous solid OCP at zero
By substituting these matrix elements in E§.52 an  temperaturg7]:

approximate set of eigenfunctions can be constructed by

truncating the infinite sum, taking the determinant of the fi-

nite matrix, and solving the resulting polynomial equation 3K 3_K (3.53

for Aw. This numerical evaluation requires that we choose ‘
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wbreathing: E (3k—4p)
wp 2 M nowlszz'

A (3.59

This equation can also be obtained directly from E339.
The breathing mode is the unmagnetized limit of tBeD)
upper hybrid mode in a spherical plasma. For this bulk
plasma modeg;—0, £,—0, o1—1, 03—1, g,/e3——3,
and (o,— 03)/e3=3 [the last two relations follow by care-
fully evaluating the limitQ2,—0 in Eq. (3.11 for the (2,0
upper hybrid modg When these limits are substituted into
Eqg. (3.39, one recovers Eq(3.55. As expected, the fre-
quency shift vanishes &= 0, where Egs(3.53 hold. Also
note that the shear modulus does not appear in(E§5
because the breathing mode is purely compressional.

We have compared E¢B.55 to the numerical solution of
the degenerate perturbation theory at finite temperature using
Eq. (2.10 for p, and using a model for the finite temperature

forms of x and u discussed in Ref.7]. Agreement between
0 012 04 06 08 ' 1 Eqg. (3.595 and the degengrate pertgrbation theo.ry'is good for
+IR I'>1. The results are discussed in more detail in Ref.
However, for arbitrary choices @, x, andu the agreement

FIG. 6. First four potential eigenfunctions for spherically sym- between the degenerate theQW and (Bcﬁ@ IS pOQr- This is
metric bulk plasma oscillations in an unmagnetized sphericapng‘use2 the perturbed eigenfunction remains close to
plasma, for the two choices of the pressprand modulix and  A(r“—R) only for physically relevant choices @f, «, and
w shown in(a) and(b). Eigenfunctions follow from Eqg3.5) and ~ #. For other choices op, «, and u, Eq. (3.59 does not
(3.52. Corresponding frequencies are given by E@s54 [(a)],  apply, and a numerical solution of degenerate perturbation
and(3.56) [(b)]. Successively higher frequency shifts correspond totheory must be used.
more oscillatory eigenfunctions. The lowest frequency eigenfunc- In Appendix B an exact solution for the bulk plasma
tion in (a) is of the form&¢=A(r>— R?). The eigenfunctions ifb) modes was found for the special case of a spherical unmag-
match the exact solution for the special cpse0, Eq.(B17). netized plasma witip=0, but for whichu and « are finite.

In order to compare the degenerate perturbation theory for
so we use these relations in E§.52 as an example. One the bulk plasma modes to the exact results of Appendix B,
then finds that the first few numerical solutions & are we have also evaluated the perturbation theory frequency
shifts and eigenfunctions from perturbation theory for the

p=0 ]
H=-3x/10

Aw Mnyw?R? casep=0. For the numerical evaluation of E¢3.52 we
— —FP -0,9098,24.8,455,... (3.54 must still choose a relation betwe&nand x, so we choose
©p K the same relation as E6B.53, = —3«/10. Numerical so-

lution of Eq. (3.52 for the first four modes then yields
and the corresponding eigenfunctions are displayed in Fig.

6(a). As the frequency shift increases, the eigenfunctions be- Ao M nowst
come more oscillatory. The first mode, withw=0, has a P
perturbed potential of the form¢=A(r2—R?). This result
is gratifying since it matches the known exact solution forThe corresponding potential eigenfunctions are shown in
the breathing mode of a crystallized plasma splisee Ap-  Fig. 6b). The exact dispersion relation for these radial
pendix B and Sec. Il A7 of Ref{7]). If we had chosen modes, Eq.(B22), can also be solved numerically when

relations other than Eq¢3.53, the result forAw and d¢ 4= —3x/10, and the results for the frequency shifts are
would have been differersee Fig. &) and below for ex-

=3.87,12.9,27.8,48.5,... (3.59

(J)p K

ampleg, so this result provides another test of the perturba- Aw Mnosz2

tion theory. ° Tp=3.868,12.935,27.794,48.542,. ,
The breathing mode has been excited in recent computer P

simulations of unmagnetized spherical plasmi@s These which matches our degenerate perturbation theory. The exact
simulated plasmas are not necessz_irlly held at zero tempergotential eigenfunctions are given by E&17). The eigen-
ture, so Eqs(3.53 do not necessarily apply. While the de- functions also match the numerical solution of the degener-
generate perturbation theory can be employed to determinge perturbation theorfsee Fig. 6b)]. This provides another

the frequency shift numerically as a function®f it is also independent check on the validity of our results in the
useful to obtain an approximate analytic form for the shift.strongly correlated regime.

Since we know that the perturbed potential B&0 is

y=A(r>—R?), we use this as an approximate form for the IV. DISCUSSION

potential at finite temperature and employ it to evaluate the '

inner products in Eq(3.29, since nondegenerate perturba- In Sec. Il we found that the moments of the density of a
tion theory now applies. The result is trapped non-neutral plasma in thermal equilibrium are
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shifted slightly with respect to the values pertaining to theequilibrium and dynamics are well posed, and can be solved
cold-fluid limit. The shifts arise from the change in the equi- without approximations, at least in principle. However, ex-
librium density profile that occurs when correlation pressurdraction of the frequency shift from the warm-fluid equations
is accounted for in the equilibrium. A general expression forin the weakly correlated regime turns out to be a surprisingly
the pressure shift in any density moment was deripeg.  difficult theoretical problem. It appears that perturbation
(2.14]. In Sec. Ill we found that the shift in the equilibrium techniques of the type employed in this paper do not apply,
density plays a crucial role in determining the effect of cor-2nd & more powerful boundary layer calculation may be re-
relations on the normal modes. The correlation shift of thefuired. Nevertheless, the results of our perturbation theory,
equilibrium density shifts the mode frequencies by anSUch as the form of the perturbed eigenfunctisee Figs. 5
amount proportional to the plasma pressure. and 6, for examplemay provide useful intuition in any fu-

Elastic moduli of the strongly correlated plasma also af-luré analysis.
fect the mode frequencies. Equati36) provides a gen-
eral expression for the frequency shift. Since the mode fre- ACKNOWLEDGMENTS
guencies depend on these moduli, one could perform
experimentgeither real or simulatedhat measure the mode
frequencies in order to extract the moduli. Numerical experi
ments of this type will be reported in a separate pdFer
Although the frequency shifts are small, scaling\ag”’®, for
plasmas consisting of 1000 ions this scaling implies shifts o
the order of 1% which, as we will see in R§T], are easily
observable in the simulations, and may be observable in ac-APPENDIX A: MOMENTS OF EQUILIBRIUM DENSITY
tual experiments. FROM THE BBGKY HIERARCHY

Although several approximations based on the strongly In this appendix we evaluate the integral appearing in Eq.

?rzrrﬁgid s“r?iqfltts\,\'lnﬁreerénsi(ljtz \:\?ertgioﬂﬁg\{[?)“r?wgtga tkhneovr\?nogigz.li-}). We do so by considering the first equation of the
q y ’ equilibrium BBGKY hierarchy for the case of a spherical
act results. For example, for the=1 center of mass modes

we found no frequency shift, and for the unmagnetizeoplasma("e"ﬁzl)' The derivation is similar to that of Tot-

breathing mode we also found that the frequency shift Van§uji for the contact density of an electrolyte at the wall of a
ished in theT=0 limit. In addition, the results matched an container [28]. For a harmonically trapped non-neutral

t solution for th d f tized | lasma, the first equation of the equilibrium BBGKY hierar-
exact solution for the modes of ah unmagnetized pressureleag,, can pe derived by differentiating the Gibb’s distribution
elastic sphere, discussed in Appendix B.

In addition to the plasma oscillations considered in the]c of Eq. (2.1) with respect ta ;, multiplying by N, and then

) . o integrating over all other variables. The result is

main body of the paper, a set of torsional oscillations was
also found in the derivation of modes of an unmagnetized
pressureless elastic sphere, described in Appendix B. These J
modes consist of twisting motions that do not change the kTF(fl;FF—qn(rlir)?[%(MH%(FD]
shape or density. Thus the restoring force for these modes 1 1
arises only from the shear modulus of the correlated plasma.
The modes therefore have zero frequency in the cold-fluid - K .
limit, and cannot be derived using the perturbation analysis -q f d XZQ(XlaXZ;F)Wb(l_XZl ,
discussed in Sec. Ill. We leave a general discussion of the !
torsional modes of an unmagnetized spheroid to a separate
paper. Simulation results for some of the torsional modes are
presented in Ref.7].

It is tempting to apply our results for the frequency shifts
to the weakly correlated regime. However, while Egs.
(3.36—(3.50 provide predictions for the shifts in this re-
gime, i.e.,Aw=Tf(a)/N?3 for some functionf which dif-
fers for different modes, our derivation is no longer valid.
This is because for weak correlation the equilibrium density
profile now extends beyond the cold-fluid profiee Fig. 1,
so none of the approximations discussed in the derivation of g(Xy, %)= sz d3xs . .. d3x\d%, .. .d%y
Eq. (3.35 apply. Our derivation can be justified only in the

The author gratefully acknowledges stimulating discus-
sions with Professor R. L. Spencer. This work was supported
by National Science Foundation Grant Nos. PHY91-20240
and PHY94-21318, and an Office of Naval Research Grant
No. N00014-89-J-1714.

(A1)

where ¢, is defined in Eq(2.1b), ¢, is the plasma potential
defined byV2¢>p= —4agn(r;T"), and whereg(xq,%,;T") is
the two-particle correlation function, related to the Gibb’s
distribution through

strongly correlated limit where the equilibrium density has XF(Xgs + e XpgsVes e V)
shrunk inside the cold-fluid profile. o
However, it appears both from experimefi$ and simu- —n(xy;T)n(xy;T).

lations [3, 27| that finite pressure corrections to the mode

frequencies in the weakly correlated limit do have the ap- We integrate Eq.Al) in radius from a pointr,=r,
proximate form of the equations derived hgaeleast for the  within the plasma where the single-particle density is uni-
(2,0 modd. Of course, in the weakly correlated limit the form, n(ri,;I")=ng, to a pointr,=r,,, where the density
warm-fluid equations describing the non-neutral plasméas fallen to zero:
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3
r nor-
f r2drn+ ——|.

Tin 3

Tout J _ : : ; ; i
_qu drlf d3%0(Xq ,Xo ;1) —| X —Xo| L. We substitute this relatlorllnto E¢A3), then change in
Tin ary tegration variables from to u=r —r;,. The variablau is the
(A2) distance from the fluid plasma edge. We then expand in pow-

Tout ) J Jd 47Tq
_anOI—qfrin drln(rl,l“)m(¢p+¢e) a_rp:_r_Z

ers ofu/r;,, yielding, after some algebra,

We first consider the second term involving the correlation © 2
function. Assuming that the radius of the plasma is large  p=2mq? J dUﬂ(U;F)) }
compared to the correlation length, we approximate the 0

plasma surface by a planar interface, in which case +O(1/r ), (A4)
9(Xq,X2;T)=0(ry,r2,|x 1—%,2[;T), wherex, is a 2D po-

sition parallel to the plane of the interface. This approxima-yhere n(u;I')=n(r,,+u;I') is the density at the plasma
tion neglects the effects of surface tension due to curvaturgqge.

2nof duun(u;I')—
0

of the surface, and assumes tlga isotropic in the parallel If we define a differencé\n(u;T’)=n(u;I') —n¢(r;,+u)
plane, as in the fluid or glass phases. We then split the intgsetween the equilibrium density and the cold-fluid profile,
gral overr, in Eq. (A2) into two pieces: Eq. (A4) simplifies to
quromdrlf d3x2g%|xl—x2|*1 p=47rq2noﬁmduuAn(u;F), (A5)
lin 1

o routd find 42 _ where we can now extend the lower limit to since
=4 o ! 0 r2 X129(F1i 20X 1= X1 2]) An(u;T") is zero at largdul. In the derivation of(A5) we
have used the relatiofi” ,duAn=0.

J 1 o [ Fout Tout
X —X,—Xo| T+ dr, dr,
ar, Fin Fin APPENDIX B: TESTS OF THE PERTURBATION THEORY

5 1 In this appendix we test the validity of our perturbation
Xf d xng(rl,r2,|xL1—xL2|)m|x1—x2| - theory results in two ways. First, we evaluate a general ex-
pression for the perturbed potential eigenfunctiog of Eq.
. . o . (3.28), and show that it is indeed small compared/tan a
However, the second integral vanishes, sigae SYymmetric  gyqngly correlated plasma. Second, we compare our results
undzer mterchan_gle_ ofry and rp, but the force i, 5 exact solution of Eqs(3.19, (3.20, and (3.21),
—Q°dlr1|x1—X,| " is antisymmetric. Furthermore, in the adapted from the original derivation of Love, for the case of
first integralr;, is chosen m_the bulk,_so we may replagby 5 yniform unmagnetized elastic sph¢2s)].
g(|x;—x,|;T"), the correlation function for a homogeneous
one-component plasma. It is then not difficult to show that

the first integral equals-ngU/3N, whereU is the correla- 1. Perturbed eigenfunction

tion energy of a one-component plasma, defined28} In order to calculate the perturbed eigenfunctideg in
the most straightforward manner, we return for a moment to
U 3T [=rdr g(r;) the momentum equation, E(8.22. Equation(3.16 implies

that a term of the fornV (6x- Vp) appears on the right-hand
side of Eq.(3.22, arising fromV - §7r. Within the plasma,
wheren(® is constant, we can combineqn(®V §¢ with
Using this result in Eq(A2) yields this term, yielding— qn(®V (84— 6x- Vp/qny). We there-
fore expect a first-order pressure correctionAg of the
: P form 6x;- Vp/qngy, where 8x; is the fluid displacement de-
_ out . fined in Eq.(3.34. It will be easiest to subtract out this
= drin(r ;T —(dp+ de), A3 L .
P qfrin in(ry )&r1(¢p de) (A3) correction initially. Therefore we define

N D=2 a2,

. Ay=Ay— - Vplan,
wherep=nykT(1+ U/3NKT) is the bulk thermal pressure of

the OCP, including the ideal gas contributijeee Eq. ; - T
(2.10]. Thus the bulk pressure is related to a difference thaiand we replacey with Ayrin Eq. (3.28, yielding

develops between the plasma potentgland the effective ~

confining potential¢, near the plasma edge. Recall that [AIJrAwﬁwzéd,_f_ 5Xf'Vp_ (B1)
¢p+ o= const within a cold-fluid plasma when pressure is Jo ano
neglected.

Now, since the plasma is assumed to be spherically syme then expana ¢ in the orthonormal eigenfunctiong, of
metric, dé,/r is given by L:
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Ay=2." anxn, (B2) f d*XANV X0V xn =172 (VA(V X7 - 0 Vxn)s
wpno
where they,'s satisfy Application of Gauss’s law then yields
IA—Xn:7\n)(n (B3) _
f d3XANVyr-o-Vy

for a set of eigenvalues,. One eigenvalue i&,=0, corre-
sponding tox,=, and the prime on the sum in EB2) p 5 N
means the sum does not include this eigenfunction. The co- = —47-rq2n2f dxu-V(Vxy -0 Vi),
efficientsa,, are obtained by taking the inner product of Eq. 0
(B1) with xy: where the integral ovei®x runs over the surface of the fluid

B 2 ~ spheroid, andi is a unit vector normal to the surface. The

an=[(xn.C¥) = (xn,L X Vp)/ang second, third, and fourth terms of E@B5) can also be re-
—Aw(xn,dLIdw ) NS . (4) lated to surface integrals since in thermal equilibripnis

uniform within the plasma and zero outside of it, ¥@ is

Writing the first two inner products in EqB4) as integrals, sharply peaked at the surface. Furthermore, in the fourth

. : term we use Eq. (B3) to write V-(o-Vy,)*
and using Eqgs(3.26 and(3.27), yields . AN

9 Eqsi3.26 (3:20.y =—\'XE+V2x%, so after a cancellation the first four

X ,élﬂ)—(){n ,I:6xf~Vp)/qno terms of Eq.(B5) become
— X5 -Vp p o .
- _ 3 * 2 n _ 2, " Ina. * . in
fd x[AnVXn o-Vi+Vey qn® Jd ano(u V(V)(n A7qn, Vi )
S%;-Vp U-o* - Vs V2"

+NrXh +4mwSXy -V - Sy, ppr —G-5XfV2X;‘].

where 6x,= o V xp/4mqng is the fluid displacement due to The second term, involving* - V x5 , has only a single
the eigenfunctiory,,, and_ where we have used the Hermitian gradient ofy,,, so this term is of ordek/\ ,x, in the large
property ofL together with Eq(B3). n limit. Thus, when divided by\* in order to obtaira, in

Then, after integrating by parts on the last term, we obtairgq. (B4), it provides a convergent term in the largdimit.
However, the first and third terms involve two derivatives of

B R ey SXy - VpV2yh Xn» Which can produce a term of order,, in the largen
Xn 0V ano limit. Since " varies slowly along the surface of the
plasma, the surface integral picks out only thggewith an
N 5Xf'VD+ &f'VDV'(G‘V * equally slow variation along the surface. Thus the largest
nXn "4, ano Xn term in V2x* is d?x%/ds®. Similarly, the largest term in

U-V(VxE - (olamgng) - V'™ is (d?x¥/ds?)(0- 6x;), and
+477U7}n5ij}, (B5) this term cancels the third term, leaving only convergent
contributions to Eq(B4).
The hat only remaining contribution toa,,
whereu;;, equalsu;; given by Eq.(3.18 with 6x= 0%y, and 54 (y,,dL/dwi)/N}, is also easily shown to yield a conver-
where we have employed the same approximations as in thgaem sum in the large limit through a similar argument to

derivation of Eq.(3.35), dropping surface terms in the inte- hat used for the other terms. Using E&.26 for L, inte-
grals and keeping terms only to linear order in gradients Oération by parts yields ’

the pressure and density.
Let us consider the size of various terms in E8j5). The
stress tensos;; varies in space within the plasma on a rela- (Xn ,alﬁ/aoup):f d3xV x* - doldwV ",
tively slow spatial scale given by(x), so fd3xui’jnsij will in
approach zero likev, Y2 for large n becausey, becomes
rapidly varying. Thus this contribution to the sum in Eq. and, sincedo/dw is slowly varying within the plasma, the
(B2) is convergent for larga. (We will see examples of this integral phase mixes away for largedue to the relatively
behavior in Appendix B 2.However, sinceVp varies rap-  Slow variation ofy" compared toy,.__
idly near the plasma edge, it is not obvious that the other We have shown that E¢B2) for Ay is a convergent sum
terms in Eq(B5), involving bulk pressure gradients, provide with coefficients proportional to the pressure corrections.
a convergent sum foA ¢, so we will consider these terms Our perturbation theory therefore should provide sensible re-
more carefully. sults for the frequency shifts, provided that the approxima-
The first term in Eq(B5) can be related to the thermal tions leading to Eq(B5) are valid. We will next consider the
pressure using Eq2.14): functional form forA ¢ for a specific case.
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Unmagnetized (2.0) mode in a spherical plasma itk
Let us consider the perturbed eigenfunctions for the case —leal E: Ky '
of an unmagnetized spherical plasma. It is evident from Eqgs. =R
(B2), (B4), (B5), (3.199, and(3.37) that Ay breaks into a where the prime denotes differentiation with respect to the
part proportional to pressuie and one proportional to bulk entire argument. It is not difficult to show that a solution
and shear moduli. We first consider the part proportional taexists for\ =0, corresponding to the fluid eigenfunction

bulk and shear moduli, dropping the pressure terms. In thi%’;_ We are to neglect this solution since we keep O,ﬂlSS

(B8)

case Eq(B4) becomes which are orthogonal te in the sum in Eq(B2).
Aw? The vacuum solutions to EqEB7) are of a similar form,
ww
— 3 ¥ o _o_ P * in * ) )
an Jind X(A'WU'JnS'J 2 ®° Vxn- Vi } /)\“ ’ xm=Aiy(N— Nyl |es|r)PS(cosh)e's?,
(B6)
wheres;; is determined bw/" via Egs.(3.19, (3.193, and XM=B| yu(V—Ayir)

(3.34), where we have used the unmagnetized limit for
doldw [see Eq(3.23], and where the part o » indepen-

dent of pressur@ can be obtained from E¢3.37). _ YoV = A uRw) NES s is
N . : . . Ju( )\ukr) PU(COS9)e ’
ow, for a spherical plasma the eigenfunctignsobey a Ju(v=NukRw)
scalar Helmholtz equation with a separable solution in
spherical coordinates: wherei (x) is a modified spherical Bessel function of the
5 in 0 second kind, and wheng,(x) is a spherical Bessel function
g3V Xn =NnXn » (B78  of the second kind. An eigenvalue equation similar to Eq.
5 out out (B8) can be obtained fok/—\ . Just as for the plasma
Voxn =Nnxn (B7b) modes a solution exists far,, =0, equal to the fluid eigen-

function ¢; we neglect this solution as we keep only those

with continuity conditions at the plasma edge R given by eigenfunctions orthogonal t¢ in Eq. (B2)

Xir?: xou Using these eigenfunction_s we have e\_/a_luatechy‘ﬂ?for
the case of thé2,0) mode. Using Eq(B6), it is not difficult
and to show that the only eigenfunctions which yield nonvanish-
, ing a,'s are those for whichu=2 ands=0, so the depen-
e3dxnldr=axlor. dence of Ay on 6 and ¢ is the same as that of the fluid

mode. Furthermor®&?y"=0, so only shear stress contribu-
tions proportional tou appear ins;; [see Eqs(3.193 and
(3.39)], and therefore Eq(B6) implies thatA is propor-
tional to u and independent ok. Then after numerically
solving for the eigenvalues,, we have summed the series

Note that Eq(3.8) implies thate is a fixed negative number
for the surface plasma modesg=—(I+1)/l for given
mode numbersl(m). Thus we must find the set gf,’s and
\,'s which solve Eqs(B7) subject to boundary conditions

that y,=0 atr=R,,, whereR,, is the radius of a spherical . k .
conquncting wall plva;ced outsiéve the plasma. P in Eg. (B2) to obtain the radial dependence®f, keeping a
large but finite number of eigenfunctio®2 plasma eigen-

We chooseR,, to be a large but finite distance from the functions and 57 v m eigenfunctionghus th it of
plasma since there are two types of eigenfunctions: plasmét'—C ons a acuum eigeniunc us the part 0

modes whose potential falls off rapidly outside the plasmaZ ¥ Proportional tou has the form
and vacuum modes which exist mainly between the wall and
the plasma. The set of eigenvalugsfor the vacuum modes AJ:LZZ(II(RI 0)E(r), (B9)
becomes a continuum in the limit th&f,— o, so it is easier Mnow R
to takeR,, large but finite. _ _ _ .
The plasma mode solutions fall off rapidly outside theWherey(r,6) is the(2,0) fluid mode potential andi(r) is the

plasma, so we may neglect image charge effects. The plasnsé#mensionless function that results from summing the plasma

solutions of Eq(B7) are then and vacuum eigenfunctions. The result f@r) is shown in
. Fig. 5. In the upper figure the plasma and vacuum eigenfunc-
XM= Aj, (VN ]e3]r) PS(cos)e’s?, tion contributions tof(r) are shown separately; they are
added together to provide the ful{r) shown in the lower
XE]OUU: Bk,(\/— )\ukr)Pﬁ(cosG)eis¢, figure. Note that a discontinuity if(r) appears at the plasma

edge. The physical reason for the discontinuity is discussed

wherej,(x) is a spherical Bessel function of the first kind, in Appendix B 2. The small oscillations in the potential are a
k,(x) is a modified spherical Bessel function of the third consequence of truncation of the sum in E8R2); by keep-
kind, and P} is the usual Legendre function. The indax ing more terms the oscillations can be suppressed further.
must obeyu=|s|. For givenu there is a countable set of Next, we return to Eq(B4) and evaluate the part &y
solutions for\, and the index determines which solution proportional to thermal pressupe This involves an evalua-
for A is used. Thus, the indaxon y,, really consists of the tion of the surface integrals in EGB5). The integrals pick
three integersy,k,s). The eigenvalue equation far,, fol-  out only those eigenfunctiong, for which u=2 ands=0,
lows from Eqgs.(B7h), just as before. After adding in the contributionagfrom the



53 EFFECT OF CORRELATIONS ON THE THERMAL . .. 5287

pressure term id o [see Eq(3.41], we find that the part of scalar so we are free to choo¥ h=0. The result is a
Ay proportional to pressurp has the same functional form vector Helmholtz equation iV 2h:

as the part proportional tp that is displayed in Fig. 5. The

only difference between these two parts is a numerical factor. 0*MnyV2h=—pnV?V?2h,

The part ofA ¢ proportional top has the form ] ] ] ]
The solution forh is a sum of a solution to this wave equa-

— 2 p tion and to the vector Laplace equati®th=0. We keep
A= oRe now?R? P(R,0)F(r), (B10)  only the solutions which obey -h=0,
where f(r) is the same dimensionless function as in Eq.h:_CrXV[Jl(sz)P{neim¢]

(B9), displayed in Fig. 5. +DV[rV(j(kr)P"e™)]+Erx V(r'Pem?), (B15)

2. An exact solution where P"=P"(cos) and k,=Jw?’Mng/u. Furthermore,
As a final test of the perturbation theory, we will now the continuity equation, E¢3.20), and the Poisson equation,
compare the approximate perturbation results to an exact s&d. (3.21, can be combined with EqB13) to yield
lution for a special case. We return to E8.15 and take 5 i )
Q,=p=0 but retain the bulk and shear moduli. We will V2o¢"=4mqnyV-g,
further assume the equilibrium is a uniform density sphere, .
which is consistent with the assumptipr=0. Then within ~ Which has the solution

the sphere Eq3.15 becomes ) )
P 43.19 Sd"=4mqng(g+ Fr'P"e'm?). (B16)

— w?Mnydx=—qnyV 8¢+ uV2x+ (k+ ) V(V - 8x).
(B11) EquationgB13)—(B16) must also obey the original equa-

o tion for 6x, Eq. (B11). This implies relations between the
Furthermore, the boundary conditioném=0 must be met coefficientsA .. .F, as we will see. Substitution of Egs.

at the surface of the sphere. In spherical coordinates thigg13)—(B16) into Eq. (B11) yields
condition becomes the three equations

[(cog—wz)B-i- wéF]V(r'P{neim"s)

) J 8%,
(k—5p)V-x+2u——=0, (B12g P
ar IpMmaime v IpMaimey | —
+E[2V(r'Pe™?)+r =V (r'P,e™?)|=0.
ar
90X, dOXg
90 +R ar —%y=0, (B12D  This equation can only be satisfied foE=0 and
F=(0’—w})B/w5. When these results, together with Eq.
1 9%, ISX (B14), are used in Eq:B16), we find the following form for
S 95 FR— =~ o%4=0 (B129 the interior potential:
2
for the components obx in ther, 6, and ¢ directions at 5¢i”=4ﬂqn0<Aj|(k1r)+ w—zBr') PMem¢ (B17)
r=R. In addition to these equations we have the boundary w,

condition thaté¢—0 atr— .

Equations(B11) and (B12), together with the continuity This solution for the perturbed potential must be matched
and Poisson equations, E48.20 and(3.21), can be solved across the plasma vacuum boundary to a solution to
exactly, as was first shown by Love in 19149]. Writing ~ V28¢°"'=0. The matching conditions are
6x as a sum of a curl free and divergence free field,

S¢""= 564", _r (B1839
Sx=Vg+Vxh, (B13)
and
we first take the divergence of E(B11), .
2 2 4 2¢g2 212¢72 a6¢0m (95(#”
— 0?MnoV2g=(k+ 5u)V2V2g—47q°n3V2g. o ar =—4mqnedx |-,  (B18b

. . 5
This is a scalar Helmholtz equation f8°g, sog may be  \yhich follows because movement of the plasma surface by

decomposed into a solution to this wave equation and a So&xr is equivalent to a surface charge. The outer solution for

: 2n4—(N-
lution to V<g=0: 56 is

— P Iypm ime¢ )
g=[Aj(kyr)+Br)P"(coss)]e'™m?, (B14) 8¢*=47qnyGr~(*DpMeimé (B19

where k;=(0’—w5)Mny/(k+4/3u), and j(x) is a
spherical Bessel function.

Returning to Eq(B11), we now take the curl of the equa-  We therefore need to solve for five independent constants
tion, noting thath is determined only up to the gradient of a A, B, C, D, andG, via the five equatione812) and(B18).

Torsional modes
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We can reduce the number of equations and unknowns fur-

ther by evaluatingdx in spherical coordinates using Egs. A > +BII-1)R'2

h— R

(B13)-(B15):
, - : : I1+1)—1 k3R
X ={Aji+IBr' 1+ C[I(I1+1)j,]}P"e'™, +Cl —j4+ %—27)14:0, (B219
5XH=|AJ—1+ Bri-t+ C[j§+j2/r]} eim‘biplm where primes denote derivatives with respecRtcand here
r 90 i1=hi(kiR) and j,=j;(k,R). Solution of these three
K2] coupled equations must be carried out numerically, except
—Dsiz—m;P{"ime‘W, (B20) for a few special cases. Fb=0, Eq.(B21b) implies that
m i+ 222 K] (kR =0
- P i JoT 513~ 7 |KilolKiR)=U,
X 4= AJTz+Br'—1+C[j§+ler]]ﬁime”w 213w
m which is the dispersion relation for a set of spherically sym-
+ DK2j,em? 9P metric modes. These modes correspond to the bulk plasma
2)2 Y

a6’ oscillations discussed in Sec. Ill. In fluid theory, these bulk
modes are degenerate with frequencies equal to the plasma

where we have introduced the shorthang=j(kir),  frequency. Addition of bulk and shear moduli breaks the
j2=]i(kzr), and primes refer to differentiation with respect degeneracy. The dispersion relation can also be written in
to r. Two sets of solutions now separate out. For one seferms of elementary functions:
D=0, and for the other ssi=B=C=G=0. The latter are
referred to as torsional, or toroidal modes. They have not K+3

. . . R L2p2
appeared in our previous discussions because they cannot be 1-kiR 2
obtained from perturbation theory. This is because their cold- K
fluid analogs have zero frequency. These modes are torsionghich has a countably infinite set of solutions igR. Now,
oscillations of th_e sphere w_hich do not give ris_e to shapgne can show that for a strongly correlated plasma
changes or density perturbations. The only restoring _force fo(K+4/3M)/an,2)~O(a\2NS)' Thus, asR/ays— (the fluid
these modes comes from the shear modulus, and it is for th|ﬁnit), Eq. (B22) implies that all the mode frequencies ap-

reason that the modes do not exist in the fluid limit. proacha, like azwisz’ as expected from the results of fluid

For the torsional modes Eq$B20) imply 6x,=0 and ; . L
V.6x=0. Furthermore, Eqs.(B17) and (B18) imply theory for the bulk plasma modes in the unmagnetized limit.

8¢=0. Then the two boundary conditions E¢B12b) and
(B129 are identical and provide the dispersion relation

M

Surface plasma modes

The other case for which Eq&821) simplify is the fluid
) ) limit, R/aws—<. In this casek,R—o, andk;R also ap-
Ra_Rll(sz):ll(sz)- proaches infinity provided thab is unequal tow, in the

limit. As k;R andk,R become large, Eqé$B21h) and(B21¢

We will see in a following pap€]7] that these modes can be imply thatA andC approach zero, leaving onB finite, and
observed in simulations of unmagnetized strongly correlatethen Eq.(B210 implies w?= wﬁl/(ZI +1), the cold-fluid

non-neutral plasmas. limit for the surface modefEq. (3.81)].
In order to compare our perturbation results for the mode
Bulk plasma modes frequencies to the exact solution for the frequencies of the

Now we turn to the other sets of modes for which surface modes, we have solved E@21) in an expansion in
D=0. For these modes the position chariyecauses a per- aws/R. A general solution is not possible, but we have con-
turbed potentiald¢. There are four unknownsA(B,C,G)  Sidered several modes on a case by case basis. In each case
and four equations, Eq$B18), (B123, and (B12b), since there are terms which oscillate rapidly, arising from the be-
the boundary conditions EqéB12h) and (B120) are identi-  havior of ji(x) for largex; however, these oscillatory terms
cal in this case. The resulting dispersion relation is quiteturn out to be of higher order iays/R than the lowest-order
complex: we leave it in the form of three coupled homoge-correction to the fluid frequency.

neous equations fm, B, andC: For the (1,0), (2,0), and (3,0) mOdes, we find that the
lowest-order correlation corrections to the cold-fluid fre-
i - w? I(1+1) quencies are
A(I+1)§+BR 21+1)—-I|-C R j»=0,
w
p = =
(B213) Aw;,=0, m=0,1, (B233
10,

1(2 k) ~ 2 \_ K —
AJHE(g_;)kiJl +BI(I-1)R' 2 A(wom) MR M 01,2, (B23b)

[(+1)(., Iz 2 . 28u _
R Jz_ﬁ =0, (BZlb) A(a)3m)—W, m=0,1,2,3. (BZ3C)
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These frequency shifts agree with the predictions of perremoved by adding small but finite negative imaginary parts
turbation theory, Eq93.41), (3.44), (3.47), and(3.50, when  to x andu. Now A/B andC/B become exponentially smalll
the spherical limitR=L is taken and whep is set equal to in the fluid limit R/ays— .
zero. We can compare the exact result #&) from Eqgs.(B24),

The spatial dependence of the potential can also be contB23b), (B17), (3.8), and (B19) to that obtained using per-
pared to the results of perturbation theory. For examplefurbation theory by projecting out that portion 6§ which
when lowest-order correlation corrections to the constantés orthogonal to the cold-fluid eigenfunctiah given by Eq.
A/B, C/B, andG/B are kept for th€2,0) mode, one obtains (3.6) for =2, m=0, andd—0:

A 2 kR pu Ag=0¢—h(h,6) (¢, 9h).
B 3 sinkR Mnow,zj’ Carrying out the required inner products yields the following
exact result for the correlation correction to &0 poten-
___° , (B24) tial in the limit R/ayg—~
B k,sinksR u
and Azﬂ(r,ﬁ):WWR,&)f(r),
G 2 . 10 pu 3 where (R, 0) is the cold-fluid potential evaluated at the
B gR t3 Mnong : surface of the plasma, and
2
When employed in Eq$B17) and(B19), these constants, %’(L) . r<R
together with Eq.B23b), yield the perturbed potential¢ f(r)= 31\R (B25)
for the (2,0) mode. (r)= R\3
Note that if eitherk,R or k,R equalsn for any integer -5 ?) , I'™>R

n, then A/B and/or C/B are not small. Physically, these

resonances occur because (Be)) surface mode couples to Just as in Eq(B9), we are able to writé s as a product of
very short-wavelength bulk plasma and transverse soung(R,8) and a dimensionless functidifr). Figure 5 shows
(torsiona) oscillations. Wherk;R=nm compressional bulk excellent agreement between the exicd from Eq. (B25)
plasma oscillations are driven to large amplitude by the surand the perturbation theory result of E&9).

face mode because the plasma oscillations become resonantThe exact result forf(r) from Eq. (B25) exhibits a

in the spherical plasma d;R=nm [see Eq.(B22) in the  boundary layer at the plasma edge. Physically, this boundary
large k4R limit]. Whenk,R=nm transverse sound oscilla- layer forms when compressional bulk plasma oscillations are
tions, also coupled to the surface mode by correlation effectg;oupled into the surfac€,0) plasma oscillations by correla-
are resonant and are driven to large amplitude. Howevetjons. Since bulk plasma modes are of short wavelength they
these driven bulk plasma modes and sound modes are afe strongly damped in a distance®1/Imk;) by the small
very short wavelength since th@,0 frequency is on the but finite imaginary contributions ta and u. In the fluid
order of w,, so bothk; and k, are of O(l/ayg) (in a limit R/ays—=, |k;R|—, and a boundary layer appears in
strongly correlated plasmax and w are of order Ay thatis of negligible width compared ®. The potential
nog?/aws). Such short-wavelength modes would be dampedcigenfunction then exhibits the discontinuity displayed in the
in a real plasma, so this unphysical ringing behavior can bdigure.
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