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Polymorphic phase transition for inverse-power-potential crystals
keeping the first-order anharmonic correction to the free energy
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An improved phase diagram for the polymorphic fcc-bee phase transition of inverse-power-potential
crystals is obtained through an exact analytic calculation of the crystalline free energy including the
first-order [O(T?), where T is the temperature] anharmonic term in the internal energy. The anharmon-
ic correction reduces the region of bce stability relative to the harmonic result, in qualitative agreement
with recent Monte Carlo results for the 1/r® potential.

Many simple metals display a polymorphic transition
from a close-packed solid to a body-centered-cubic (bcc)
solid.! A theoretical model which exhibits this behavior
is the system of particles interacting via an inverse-power
potential,

o(r)=elo/r)", (1

where for n <3 a uniform neutralizing background is also
added in order to balance the collective long-range repul-
sive force. This model has been used to explain a possible
bee phase of iron in the center of the earth.?

An important simplifying feature of this family of po-
tentials is that the classical excess free energy (the
Helmbholtz free energy relative to that of an ideal gas) is,
when divided by NkT, a function only of a single scaled
density parameter y ,:
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where T is the temperature and n, is the density. Hence,
the classical phase diagram can be collapsed to one di-
mension, with phase boundaries determined by the par-
ticular values of v, at which the free energies of different
phases cross. For n=1, Eq. (1) is the long-range
Coulomb potential of a one-component plasma, while for
larger values of n, the potential becomes shorter range,
approaching that of hard spheres. The inverse powers
thus conveniently offer a wide spectrum of monotonic
repulsive potentials with which to study the theoretical
systematics of solid phase diagrams.

Hoover, Young, and Grover® showed that for n=4
and 6, an fcc-bee transition can occur in this system. For
these n values they argued that while the minimum ener-
gy state is face-centered-cubic, the looser packing of the
bee solid makes the entropy of this phase higher and
hence at finite temperature, the bee phase is favored. For
n % 7.66, the bcc phase becomes linearly unstable to an
infinite wavelength shear mode between the (1, 1, 0)
planes of the lattice.> The polarization of the unstable
shear mode is in the (1, —1, 0) direction. Furthermore,
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for n $1.51, the bec crystal has lower Madelung energy,
so the polymorphic transition is limited to some range of
n between these two values.

However, the original argument in Ref. 3 employed
harmonic lattice theory, in which the free energy of the
bee and fec crystal phases is approximated by that of a
harmonic lattice. While this is a useful first approxima-
tion, according to this method the y, values for which
the fcc-bcc phase transition occurs lie uncomfortably
close to the fcc melting transition determined by Monte
Carlo simulation in Ref. 4, and so a theory based on the
harmonic lattice approximation is quantitatively suspect.
Indeed, recent molecular-dynamics simulations® for the
case n =6 have found that the region of the stable bcc
phase is considerably smaller than predicted by harmonic
lattice theory. The authors conjectured that anharmonic
terms in the free energy reduce the stability of the bcc
phase relative to that of the fcc phase.

In this paper we present the results of a first-principles
evaluation of the lowest-order anharmonic correction to
the free energy for fcc and bee crystals for 1<n <12. We
find that the anharmonic term reduces the thermodynam-
ic stability of the bcc phase relative to the fcc phase, in
qualitative agreement with the simulation results® for
n==6.

Anharmonic terms in the excess Helmholtz free energy
F, arise mathematically through an expansion of F, in
the temperature:®’
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where I', is the scaled inverse temperature (also referred
to as the correlation parameter):
n/3
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and where a is the Wigner-Seitz radius given by
4mnga’/3=1. The first term in Eq. (2) is the potential
energy of the lattice; M is the Madelung constant. The
next three terms represent the contribution of the phonon
ideal gas to the excess free energy. The entropy constant
Sy contributes to the excess harmonic entropy, and is
determined by the 3N —3 nonzero harmonic lattice fre-
quencies o;:

1 3IN—3 a)p
Sy=— In|— |, 4)
N E, ; (
where o, =1"4nea"n{" 7273 /m is a frequency scale as-

sociated with the phonons, and m is the mass of the parti-
J
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cles. The factor of 47 is added in order that w, equal the
plasma frequency when n =1.

The terms in Eq. (2) involving the A4,’s are anharmonic
corrections to the free energy due to phonon-phonon in-
teractions. Like Eq. (4), they can be represented by (suc-
cessively more complicated) sums involving the harmonic
lattice frequencies as well as the interaction potential. By
performing these lattice sums using powerful Ewald sum
techniques, the first-order anharmonic term 4, was re-
cently calculated for the bec”® and fec lattices in a one-
component plasma (n =1). Here we present the results of
the same calculation for other values of n, the only
difference being that we replace the Coulomb Ewald sum
S(f,x) of Eq. (C2) in Ref. 7 by the inverse-power-
potential generalization:

_ if- " L(n/2,(lp+x/>)/4R?) ;.
S, (f,x)=3 "¢(|p+x|)eifr=—2I ifp
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where the prime on the sums indicate that the p=0 and k=0 terms are excluded, p and g are lattice and inverse lattice
vectors, respectively, A(f )=258f1 where 6 is the Kronecker delta function, and I'(n), I'(n,x), and y(n,x) are gamma

functions.

We evaluate A4, using the exact expression obtained from perturbation theory:

s (ud) (U
VU m 72N (KT)?  24NKT |
Here U, =3, ; V.V, - ®-uu;- -

, where the V and u terms are repeated n times each, ® is the N-particle interac-

tion potential evaluated at the equilibrium lattice positions, u; is the displacement from equilibrium of the ith particle,
and the average () is over a distribution of displacements given by an ideal gas of phonons at temperature 7. These
averages can be written exactly in terms of sums over the phonon spectrum. For example,

(Ug) _ 3kT

C(fl’ fz)'v(fl, sl)v(—fl, SI)V(fZ, sZ)V(—fz, SZ)

NkT m?iN? f,f,

S152

[o(f, s))o(f,, 5,)]°

’

where (f,, s,) denotes the wave vector and polarization index (s =1, 2, or 3) for a given phonon, v(f}, s,) is the polar-
ization unit vector, w(f,, s,) is the phonon frequency, the sums run over the first Brillouin zone, and C is a fourth-rank

symmetric tensor defined by

C(f,, £)=2{x(0)—x(f)—x(£,)+Li[x(f;+f,)+x(f;—£,)]},
where x(f)=93/0x9/3x3/0xd/3x S(f,x)|,—o. A similar expression exists for { U3 ):

(U3) _ ekT

IB(f,, f,, f3)-v(f,, s,)V(f,, s,)v(fy, s3)|?

N(kT)z m3N2 f1f2f3

515253
where B is a third-rank symmetric tensor given by

B=[B(f,)+B(f,)+B(f)Af,+£,+ 1),

and B(f)=0/0x0/9x3/3x S(f,x)|;—o. The double sums
over the first Brillouin zone are evaluated numerically us-

[o(f,, s))o(f,, 55)0(fs, 53)]?

’

f

ing an efficient third-order midpoint rule technique de-
scribed in Ref. 7, which involves storing the values of
v(f, s), o(f, s), x(f), and B(f) on a PXPXP lattice
within the Brillouin zone, chosen so that any two vectors
f in the lattice add to another vector on the lattice, after
suitable translation by an inverse lattice vector. The dou-
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ble sums over the Brillouin zone are then replaced by 2 3
sums over this lattice, which converge to the proper re- i =~ Ot O~ 10~ N <
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FIG.. 1. (a) Mad.elung constants M,.. and M, for bcc and ;& = coToeSInaxany
fce lattices, respectively, vs n for 1/7" potentials. The constants QAT o B & <8r FRR3IFTRER
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FIG. 2. Harmonic entropy constants Sy, and Sy for bec
and fcc lattices, respectively. These constants were evaluated at
values of n given by n=0.5m, with m a positive integer. The
curves are an interpolation.

must be applied for n <3 in order to hold the lattice to-
gether and the lattice is, therefore, incompressible for
n <3. However, note that AM =M, —M;_ varies
smoothly through the transition from an incompressible
to a compressible lattice at n =3 [see Fig. 1(b)]. The en-
tropy constants Sy . and Sy are also smooth functions
through this transition (Fig. 2). However, when
n—7.66, the bcc lattice becomes unstable and
A pc— — o (see Fig. 3). That is, near instability, long-
wavelength finite-amplitude shearing fluctuations reduce
the finite-temperature thermodynamic stability of the bcc
lattice. However, these shearing fluctuations do not
affect the entropy constant Sy, .. since the logarithmic
divergence in Eq. (4) is insufficiently singular to cause the
sum to diverge as n —7.66 (see Fig. 2).

The effect of the first-order anharmonic correction on
the polymorphic transition can now be determined by
comparing Helmholtz free energies via Eq. (2). Dropping
the higher-order anharmonic terms, the difference be-
tween the bee and fcc free energies is

AFe — Fbcc'-chc
NkT NkT

AA,
r

= A;” T, —ASy— (6)

n

Setting AF, =0 implies a transition occurs at

10

FIG. 3. First-order anharmonic constants 4 ,.. and 4 g for
bee and fcc lattices, respectively. These constants were evalu-
ated at integer values of n given in Table 1. The curves are an
interpolation.
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= — Eq.(7) fcc-bee
---- Eq.(8) fcc-bee
— - Eq.(12) bee-liquid]
Eq.(12) fcc-liquid
a  Ref. 4 fcc-liquid
O Ref. 5 bee-liquid
0 Ref. 5 fcc-bee
|
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FIG. 4. Phase-equilibrium curves in the I, vs n plane. The
fcc-bee curve based on Eq. (7) is dashed; the fcc-bee curve based
on Eq. (8) is dotted. The liquid-solid curves based on the har-
monic Lindemann criterion, Eq. (12), are dot-dashed and solid
for the bce-liquid and fec-liquid transitions, respectively. The
fce-liquid Monte Carlo data of Ref. 4 are shown as triangles; the
bee-liquid and bee-fec data of Ref. 5 are the circle and square,
respectively. The crosshatched region is thermodynamically in-
consistent (see text).

AS, TV ASE+2AMAA,
chc:—bcc= AM

(7

The results of Hoover et al.?> for this transition are
recovered by ignoring the anharmonic term:

ASy

Only the positive root of Eq. (7) provides a physically
relevant root which matches onto Eq. (8) in the small
A A, limit. Both of these transition values are tabulated
in Table I, and are plotted in Fig. 4.

The effect of the anharmonic term on the fcc-bee tran-
sition is to lower the value of I',, at the transition relative
to the harmonic estimate of Eq. (8)—that is, the region of
stability of the bcc phase is reduced. This coincides with
the intuitive notion that the existence of an instability in
the lattice reduces the number of states available for the
lattice vibrations, i.e., soft modes are unbound if they
exceed a certain vibrational amplitude which decreases
toward zero as instability is approached, so the entropy
of the lattice is reduced. Evidently, by keeping the first-
order finite-amplitude correction to the free energy we re-
tain this effect, which is naturally neglected in the har-
monic approximation. Qur result is also in qualitative
agreement with the results of Laird and Haymet,” who
through Monte Carlo calculations also found that for
n =6, the region over which the bcc lattice is stable is re-
duced compared to Eq. (8). However, Eq. (7) predicts no
stable bce region for n =6, whereas Ref. 5 predicts a very
small bcc region. Presumably this discrepancy follows
from the neglect of higher-order anharmonic corrections
in Eq. (7) which become important near the melting tran-
sition.
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The use of Helmholtz free energies in the analysis lead-
ing to Eq. (7) is rigorously correct only in the incompres-
sible region n <3. For n >3, a comparison of Gibbs free
energies is appropriate, leading to a slight volume change
at transition. The volume change AV is approximately

AV _ Ptcc T Pocc
T(F" )= Tyl 9
where the pressure p for each phase is given by
E
Y _ i n e 10
NkT ! 3 NkT’ 19

where E, /NKT =T ,d(F,/NkT)/dT, is the excess inter-
nal energy, and X ! is the inverse isothermal compressi-
bility:

3 E

e

xXv_ L
"dr, NkT |-

NkT

n n
1+ 3 E,+ 3 r (11

Using Eq. (2) and keeping terms up to A4, the volume
change at the transition may be found for n >3 via Egs.
(99-(11). The compressibility X is dominated by the
Madelung energy, which is nearly identical for both lat-
tices, so either Xy, or X, . may be used in Eq. (9). Re-
sults for AV /V, keeping the anharmonic correction 4,
are tabulated in Table I. This small volume change leads
to an inaccessible region in the I',-n diagram shown in
Fig. 4. However, since AV /V is very small, this inacces-
sible region cannot be seen on the scale of this diagram,
and Eq. (7) is an excellent first approximation for the lo-
cation of the fcc-bee transition.

The entropy change AS at the transition for n > 3 also
follows from Eq. (9) if we apply the Clausius-Clapeyron
equation dp /dT=AS /AV,’ since the left-hand side of
this equation can be evaluated using Eq. (10). Alterna-
tively, one can employ the general relation
AS/Nk =(AE,—AF,—AF;4.,)/NKT together with Eq.
(2) to obtain

1

AS 1
F2

Nk

2A 4
AV | Asy+—2L

n
T+1
V

+
2 (0]

chc —bcc

Values of AS at the fcc-bee transition, keeping the first-
order anharmonic correction, are tabulated in Table 1.

Figure 4 also includes estimates of fcc-liquid and bcc-
liquid transitions in order to provide an overall picture of
the inverse-power-potential phase diagram. The small
volume changes which are predicted to occur for n >3
are neglected. The Monte Carlo data of Hoover, Gray,
and Johnson and Laird and Haymet5 are included, to-
gether with data based on the harmonic Lindemann melt-
ing criterion,

(n—1)/3 <(1),2, /CL)2>

L2

A

(8x?)
rmelt = —
" 3

P , (12)

where (@} /0?) =(3N) 7' 3 o /o]

1
The Lindemann parameter L is chosen to be constant
as a function of n, and its value is chosen separately for
the fcc and bece lattices in order to match the known re-
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sults for fcc and bce melting at n=1.7 For the bec lat-
tice, L =0.27 and for the fcc lattice, L =0.26. It should
be noted that our Lindemann parameter is defined in
terms of the Wigner-Seitz radius a rather than the
nearest-neighbor spacing since the latter distance is
different for different lattices. Values of the lattice sum
are given in Table I for fcc and bee lattices at different
values of n. Although our values for (w2 /w?) agree well
with those of Ref. 3 at n =4, our bcc value at n==6 is
roughly 4% smaller than that of Ref. 3. We believe this
discrepancy stems from the higher numerical accuracy of
our results; Ref. 3 used a maximum of N =8192 terms in
the sum in order to extrapolate to the infinite limit,
whereas we employ an efficient technique'® to effectively
keep over 10° terms in the sums for both Sy and
(@} /w*) before extrapolating to N = co.

Figure 4 indicates that the Lindemann criterion for the
fcc-liquid transition (the solid curve) compares reason-
ably well to the Monte Carlo results of Ref. 4 (the
triangles) —this was pointed out in Ref. 4. However, the
Lindemann criterion for the bcc-liquid transition (the
dot-dashed line) does not match the Monte Carlo data
known for n =6 (the circle).’ Either the harmonic value
of (8x?) used in Eq. (12) overestimates the actual bee po-
sition fluctuation near the instability at n =7.66, or the
Lindemann parameter L has changed significantly from
the n =1 value. On the other hand, the bcc-liquid curve
should approach large ', as n—7.66 since the nearly
unstable lattice should melt easily, so the qualitative
behavior of the dot-dashed curve must be correct. This
implies that the bcc-liquid and fcc-liquid curves must
cross (as shown in Fig. 4 at n~2, T, ~100) since the
bce-liquid transition occurs at a lower I',, than the fcc-
liquid transition for n =1.

However, the curves as drawn in Fig. 4 are not thermo-
dynamically consistent in the crosshatched region. In
this region the fcc-liquid and bece-liquid curves imply
Fye. > Fiiquia > Frc, Whereas the fcc-bee curve implies
that Fy > F, ., a contradiction. This paradox is due to
the approximate natures of the phase-equilibrium curves.
The resolution provides us with useful new information:
the three phase-equilibrium curves must cross at a single
point. This is analogous to the familiar triple point
which occurs in the p-T plane at the intersection of three

500
]
fcc
[-‘E
bee
1001 ]
liquid
0 2 4 6 8 10 12
n

FIG. 5. Best estimate for the phase diagram for the inverse
power potentials in the I', vs n plane, using the data in Fig. 4.
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free energy surfaces. While it is well known that for
inverse-power potentials, there is no such intersection of
the free-energy surfaces in the p-T plane, apparently an
intersection does occur in the I',-n plane, so we refer to
this intersection as a I',,-n triple point.

The approximate location of the I',,-n triple point may
be inferred from our approximate phase-equilibrium
curves. The fcc-liquid curve is reasonably well known,
and Fig. 4 indicates that the fcc-bce equilibrium curve
crosses the fcc-liquid curve at n ~5; the n =6 datum of
Ref. 5 argues for a slight shift of the crossing to around
n=6. On the other hand, in Fig. 4 the two melting
curves appear to cross at n ~2, I', ~100; but this is based
on the quantitatively suspect bcc-liquid equilibrium
curve. We, therefore, assume that it is this melting curve
which is incorrect and draw the I',-n triple point at
n=~6. Thus, the inverse-power-potential phase diagram
should be close to Fig. 5, which displays our best estimate
for this phase diagram based on the data summarized in
Table I and Fig. 4. Of course, there could theoretically
be several T',-n triple points separating small regions of
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bce stability, but in Fig. 5 we display only the simplest
possibility of a single I',-n triple point. Other less sym-
metric crystal phases such as hexagonal-close-packed
could conceivably also make an appearance (although
this seems unlikely). The most important difference be-
tween Figs. 4 and 5 is the shift of the bcc-liquid equilibri-
um curve from the Lindemann result. In order to test
this estimate for the bcc melting curve, more accurate
Monte Carlo data for the bec free energy is required for
1<n<6.
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