Sawtooth oscillations in a damped/driven cryogenic electron plasma:
Experiment and theory
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Measurements have been made of nonlinear sawtooth oscillations of the displacement of a
magnetized electron column in a cryogenic, cylindrical trap. First reported 7 years ago, these
oscillations occur when the displacement is destabilized by a resistive wall and damped by a
temperature-dependent collisional viscosity. A typical evolution can last for thousands of seconds.
Measurements show that oscillations of the plasma displacement are accompanied by oscillations in
the plasma temperature. A simple predator-and-prey model of the temperature and displacement
gives rise to a limit cycle solution due to the nonmonotonic dependence of the viscosity on
temperature. These limit cycles are in good quantitative agreement with the measured sawtooth
oscillations. © 1997 American Institute of Physids$$1070-664X97)01305-(

I. INTRODUCTION plasma displacement, increases the plasma radius, and Joule-
heats the plasma.

Nonlinear relaxation oscillations are a common phenom-  |n the limit where the plasma radius changes relatively
enon in plasma physics. Examples include the sawtootBlowly, the evolution of the displacement and temperature is
instability ! fishbone oscillationé and edge localized modes described by a pair of predator-and-prey equations, in which
(ELM’s) in confined fusion plasmas, and the potential relaxthe plasma radius is a control parameter. In this limit, equi-
ation instability in Q-machinésand discharge3 These 0s- Jibrium points can be found where the resistive growth of the
cillations are often modeled by predator-and-prey equationsgisplacement is balanced by rotational pumping damping,
where one parameter “preys” on another, resulting in a nonand the cooling of the plasma through cyclotron radiation is
linear coupling between the rates of change of the two quarpalanced by Joule-heating. The locations of the equilibrium
tities. points depend on the plasma radius, while the stability of

In this paper, we present measurements of a compleXpese equilibria is determined by the dependence of rota-
nonlinear evolution of the displacement and temperature of ggng| pumping transport on temperature.
magnetized electron column in a cylindrical trap. First re-  The complex behavior of the plasma arises because the
ported 7 years agbthis behavior occurs when the displace- rotational pumping transport rate has a nonmonotonic de-
ment is destabilized by a resistive wall and damped by &endence on temperatufe As shown in Fig. 1, the mea-
tgmperature—dependent collisional viscosity. A.t.ypical eVO'_U'suredy(T) is peaked at about 0.1 eV. The solid curve is the
tion can last for thousands of seconds. In addition to nonlinyheqretical prediction of the transport rate. The Joule-heating

ear sawtooth oscillations, we observe linear oscillations, quiz,e is proportional toy and to the square of the displace-

escent periods where the displacement is nearly constant, ajtb i | while the cyclotron radiation cooling rate is propor-
bifurcation between these phenomena. Measurements shqW o o T. The equilibrium temperature is stable above

that oscillations of the plasma displacement are accompani out 0.02 eV, where the slope of the cooling rate with re-

by pscillations in the plasma tfamperature. Furthermore, _thgpect toT is steeper than that of the heating rate. Any in-
radius of the plasma column increases much more rap'dIXrease(decreas)ein T increasesdecreasasthe cooling rate

than when the plasma is centered in the trap. more than the heating rate, restoring the equilibrium tem-
We find that a simple model quantitatively reproduces rature

the nonlmegr behav!or of the d|splacement, temperature, arP Sawtooth oscillations occur when the equilibrium tem-
plasma radius. In this model, the coupling between the three

. ) . erature is in the unstable region below about 0.02 eV,
variables is due to the relatively well-understood transpor .
: . : : where the heating rate has the steeper slope. Any small de-
and heating process called “rotational pumpirfy.Rota-

. 2 - o ; crease inT then decreases the heating rate more than the
tional pumping is the collisional dissipation of the axial com- ) : . . )
. ) . cooling rate, causing a rapid cooling of the plasma until the
pressions which are caused BB rotation of the column - .
temperature reaches a minimum set by Joule-heating from

through asymmetric confinement potentials; here, the con- K dt tH th ding d
finement potentials appear asymmetric only because of thy ackground transport. HOWEVer, IN€ corresponcing decrease
n the damping ratey subsequently allow® to grow until

displacement of the column away from the symmetry axis of

the trap. Rotational pumping simultaneously decreases thttg]e heating rate exceeds the cooling rate even at the mint-
mum temperature. The temperature then unstably grows until

5 it reaches a new, quasi-stable equilibrium near the peak in
Present address: Los Alamos National Laboratory, Group P-24, MS-E52q;i 1. Now is relativelv large. causin® to slowlyv di-

Los Alamos, New Mexico 87545. g ’ W, ¥ . y large, o . y

binstitute for Plasma Research, Bhat Gandhinagar 382428, India. minish until the cooling rate exceeds the heating rate at all
®EVI, Inc., 7138 Columbia Gateway Drive, Columbia, Maryland 21046. temperatures. The temperature then unstably decreases back
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FIG. 3. Schematic of a cross sectional view of the apparatus, with the

FIG. 1. Dependence of the rotational pumping transport and damping rateolasma d”.ﬁmg around the trap axis at a displacentrin an m=1 dlo.'
Cotron orbit. The plasma simultaneously rotates around its own axis at a

7, On plasma temperatufe The data points are measured values. The SOIIdfrequencny. The wall sectors are electrically isolated from the grounded

curve is the prediction of the rotational pumping theory when the three-Wall
dimensional plasma shape is numerically calculated from the measured den-"""

sity profile. The Joule-heating rate is proportionahid?.

When the plasma is centered in the trap, the
I}—integrated density or temperature of the plasma can be
measured by dumping the electrons onto the end collectors,
by grounding cylinder 4. A rough histogram of the
z-integrated density is obtained from the charge on the 5

We confine the electron plasmas in a Penning—collectors. We smooth out this histogram by fitting it to a
Malmberg trap,*° shown schematically in Fig. 2. Electrons z-integrated density profile of the for@(r) « exp(—(r/a)P),
emitted from a tungsten filament are confined in a series ofvherea andp are free parameters. While there isapriori
conducting cylinders of radiuR,=1.27 cm, enclosed in a reason for the density profile to have this form, more careful
vacuum can at 4.2 K. The electrons are confined axially byneasurements of the density profile have shown it to be a
negative voltage¥ .= —200 V on cylinders 1 and 4; radial reasonable approximation. Also, for the purposes of this pa-
confinement is provided by a uniform axial magnetic field, per, we are only interested in the mean plasma radius, which
with 40<B< 60 kG. The trapped plasma typically has initial is insensitive to the detailed form of the profile. We define
density 18<n<10" cm 3, radius R,~0.06 cm, length the plasma radius by
L,~3 cm, with a characteristic radial expansion time [Rr2dr fnd
10°<7,<10°® s. The apparatus is operated in an inject/ _3 /o rrarjndz
manipulate/dump cycle, and has a shot-to-shot reproducibil- P2 fgwrdrfndz '
ity of on/n~1%.

The self electric field of the electrons causesExB
drift rotation around an axis through the center of charge, aﬁp
a rate 0.3xfg=3 MHz. This rotation rate tends to be less
than the axial bounce frequency for a thermal electron, witl
0.4<f,<40 MHz for 0.00KT<10 eV.

to the minimum temperature, from whence the next sawtoot
oscillation begins.

Il. EXPERIMENTAL APPARATUS

@

For a plasma with uniform density out t8,, this gives
=R0.

The parallel plasma temperaturg;, is measured by
hslowly ramping the voltage on cylinder 4 to ground, and
measuring the number of electrons which escape as a func-
tion of the confining voltage. We can reproducibly create
plasmas with 0.00¢T <20 eV, which givesT to T, col-
lisional equilibration rates f8<v, | <10° s™*.

B We calculate the-dependent plasma densityr,z) and
Ea—— space charge potential$(r,z) from the measured
1 2 ] | 3 4 Collectors z-integrated charg®(r) and T, by numerically solving

Poisson’s equation, assuming that the electrons are in local
thermal equilibrium along each field line. That is, we assume

é n(r,2)=no(r)exp{ed(r,2)/kTy}, (2)
where ngy(r) is obtained by requiring that/n(r,z)dz
=Q(r).

The electrons cool by cyclotron radiation. B&= 40 kG,
the measured radiative cooling time 4s,4=0.29 s° Be-
71 .
FIG. 2. Schematic of the cylindrical apparatus and electron plasma. ThgauseTrad> Vi » the perpendicular and parallel tempera

curvature of the confining equipotentials causes the distortion of the shap@'res'are presumed to be nearly.equal,.il'g.,m T~T. '
of the plasma ends, resulting in rotational pumping transport and damping.  Figure 3 shows a cross-sectional view of the trap, with
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the magnetic field out of the page. A plasma column which is L B I
displaced from the axis of the trap wilix B drift around the '
trap axis due to the electric field of its image charge. This
center of mass orbit is called tie=1 diocotron mode, and 0.100
has linear mode frequendy,= N,_edrrBRﬁ,, whereD is the

0.200

displacement of the plasma column from the axis of the trap, 0.090

and N, is the number of electrons per unit length of the 0.020

column. Also, there are small nonlinear and finite length cor-

rections tof, depending orD/Ry, R,/R,, andL,/R,." 0.010 ¢

In our experiments, 5 fp <20 kHz, so the orbit frequency is 0.005

always small compared to the plasma rotation frequency, i.e., I

fo<fe. ooz —m——— At L L)
The diocotron mode is detected by using one of 2 elec- ° so 100 150 200

trically isolated wall sectors. The amplitude of the image time (sec)

charge current induced in the wall sector by the diocotron

mode is proportional t® andN, . SinceN, is nearly Con__ FIG. 4. Typical measured evolution of the plasma radysand displace-

stant as the plasma evolves, we can measure the evolution ﬂgntD (scaled by the wall radiuR,,), when a 30 K resistor destabilizes

D nondestructively. the m=1 diocotron mode. The evolution d is measured in one shot,
The diocotron mode is manipulated using the other wallwhile the evolution ofR;, is built up over many shots.

sector. The mode is initially induced by pulsing the sector to

a negative voltage for one-half a mode period, which causea in el . b di diall .
the column toExB drift away from the trap axis. Later, ecrease In electrostatic energy by expanding radially as its

negative feedbackfrom the detecting sector to the transmit- thermal energy increases. Likewise, conservation of angular

ting sector is used to move the plasma back to the trap axigiomentum requires the plasma to move back to the trap axis

before dumping, in order to measure the density or tempera{’%S It expand_s. _ )
ture. For a uniform density and temperature plasma, an esti-

In the experiments presented in this paper, the diocotrofnate of the rotational pumping damping rate of the diocotron

mode is continually destabilized by a resistaiRzewhich is mode, yes:, IS given by

attached to the wall sector. The flow of the image charge ,  [Np)? (Ry/Ry)?
current through the resistor dissipates the mode energy. This Yest= 2K VL||(L_) m
causes the displacement to increase since the diocotron mode . P

is a negative energy mode; the mode energy decreases as fAg'€:Ao= (kT/4me®n)*?is the Debye length and charac-
plasma approaches its image charge. In the absence of danigfizes the geometry of the axial compressions. For
ing, the displacemenb grows exponentially at a ratg, Mp<Rp, numerical calculations of realistic end shapes give

which we call the resistive growth ratFor a long plasma, _KZ“N“Z-ZERWIRD-IO The estimate of Eq(4) can be further
B is given by improved by calculating the three-dimensional shape of the

plasmat® and by numerically integrating the rotational
pumping theory* over the measured plasma profitgr).
This gives the solid curve of Fig. 1, which is close to the

: . . . measured rates.
wherel ¢ and 6 are the axial and azimuthal dimensions of

the wall sector, an&s—i/27f 5 Cq is the impedance between
the sector probe and the grounded wall. In our experimenté}/' EXPERIMENTAL OBSERVATIONS
Rs~50 k), and C4~400 pF, giving typical growth rates Figure 4 shows a typical evolution of the plasma dis-
B~0.1 s *. Note that sincé, depends only weakly on the placement and radiusR, whenD is resistively destabi-
shape of the density profil@ remains nearly constant as the lized. Here,R;=30 k), B=50 kG, and the initial density is
plasma evolves. n=8.6x10° cm 3. The displacement is given a small, non-
zero value immediately after injection in order to “seed” the
resistive growth instability. InitiallyD increases exponen-
tially with time. However, after about 20 s, the resistive
The plasmas in our experiments are subject to continuajrowth appears to saturate. A quiescent period follows, dur-
rotational pumping transpottl® which damps the diocotron ing whichD changes only slowly. At 110 s, there is a bifur-
mode, increases the plasma radius, and heats the plasneation into sawtooth oscillations, which have a period of
This transport occurs because the confining equipotentisdbout 20 s. These sawtooth oscillations can last for thou-
surfaces are curved, as shown in Fig. 2. This causes axighnds of seconds. Concurrent with this evolution of the dis-
compressions in a plasma which is displaced from the traplacement is a continual increase in the plasma radius, at a
axis, due to the rotation of the plasma around its own axistate much larger than is observed for a plasma which remains
The plasma heats due to the dissipation of these compresn axis. However, no temperature measurements were made
sions by the collisional, compressional viscosity of thefor this evolution because such measurements are exceed-
plasma. Conservation of energy then requires the plasma fagly time consuming for long confinement times.

4

p

_ LZsir(642) (2mfpRC)?
~ wPL,RC? 1+ (2wfpRCy)?’

3

IIl. ROTATIONAL PUMPING
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FIG. 5. Typical measured evolution B, R, , and the temperatufeduring ~ FIG. 6. Typical measured small oscillationsfandT accompanied by a
one sawtooth oscillation. The left ordinate correspond®tandR,, the  constant slow increase iR, . The left ordinate corresponds B andR,,
right to T. Typical error bars fofT are shown. The sawtooth “crash” in the right toT. Typical error bars foll are shown. Note th&, /R,, has been
Dis preceded by a Sharp rise Th S|m||ar|y‘ the sawtooth “rise” inD is scaled down by a factor of 10 to fit in the pIOt The oscillationDirand
preceded by a sharp drop T The plasma radius grows only during the T are dampedT lags behindD by a phase ofr/2.

sawtooth crashes.

V. MODEL EQUATIONS

Figures 5 and 6 show that the oscillations in displace-
Measurements of shorter evolutions show that the sawhent are coupled to oscillations in temperature. Using a

tooth oscillations irD are coupled to oscillations in the tem- Simple model, we show that this coupling arises through ro-

peratureT, and that each sawtooth crash is accompanied b{ftional pumping transport. We model the plasma using three

arameters: the temperatufe the displacemend, and the

an increase in the plasma radii. Figure 5 shows the p : s - )
lasma radiuRR,. We assume that the plasma is uniform in

evolution of the plasma displacement, temperature, and rd
dius during a single sawtooth oscillation. The left ordinate
corresponds toD and R, and the right toT. Here,
Rs=47 k1, B=60 kG, and the initial density is d 2 5
6.0x10® cm3. The plasma temperature T&=~1 eV at in- gt 3Ne
jection, but it rapidly cools down ta'~0.003 eV at the
beginning of the sawtooth oscillation &t 3.5 s. During the
rising period of the sawtootH) grows exponentially with
time, but T and R, remain nearly constant. However, at q D2
t=18.4 s,T rapidly increases by a factor of 60 in 0.1 s. The —-R =[27—2+ €
displacement and temperature then decrease for 5 s, during de P Ry
which time the plasma radius increases by 25%. At ZB'S, where is given by Eq.(3), ¥(T,R,) is given by Eq.(4),
drops from 0.03 eV to 0.003 eV in about 0.1 s, and the cycler =3 7x 107 eV (4.2 K) is the wall temperature, angis
begins again.

In other parameter regimes, we observe small, sinusoidal
oscillations of the displacement and temperature. A typical
evolution is shown in Fig. 6. Here,R,=30 kQ, 0.06 T T ' '
B=40 kG, and the initial density is 6:310° cm™ 3. Again,
the plasma is fairly hot upon injectioii~1 eV, but it rap-
idly cools untilt=6 s, whereuporT increases with increas-
ing D. By t=10 s,D and T have settled into sinusoidal
oscillations with a frequency of about 8.5 s. The phase of the
temperature oscillation lags behind the displacement by
/2. These oscillations are damped, i.e., the oscillation am-
plitude of the second cycle is smaller than the first for both
D and T. In contrast with Fig. 5, here the plasma radius
increases slowly and continually over the 25 s evolution. At 0.0z 20 20 50 80 100
later times in this evolution, the oscillations grow. Figure 7 time (sec)
shows the evolution of the displacement out to 100 s. The
damping of the sinusoidal oscillations continues until the
third oscillation. Thereafter, the oscillations grow and thenthe data shown in Fig. 6. The small oscillations damp for 3 cycles, then
bifurcate into sawtooth oscillations. grow for 3 cycles before changing into growing sawtooth oscillations.

equations for the three parameters are then

D? R, \? (T-Ty)
Zyﬁg(l‘(a—w) Jre| -t @

Trad

d
Gi0=(B-7D, ®)

Rp. (7

0.04

D/R,

0.03
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density and temperature and is of fixed length. The evolution

FIG. 7. Long time evolution oD measured under the same conditions as



T T T VI. PREDATOR-AND-PREY MODEL
& 0290 The good agreement between the simulatigig. 8 and
~ 0.100 the data(Fig. 4) indicates that Eq95)—(7) are sufficient to
= 0.050 describe the plasma. These equations can be further simpli-
& fied if we note thaR, changes much more slowly th@nor
S 0.020 T in Figs. 4-6. In this section, we s&,=const in Egs.
. (5—(7). We find that most of the observed plasma behavior
0.010 . . . . L .
o5 can be derived analytically in this limit. The magnitude of
N 0005 R, is found to determine the stability @ andT.
e SinceR, is a constant, we set the=1 diocotron mode
0-002 5 50 100 150 200 frequencyfp to be constant, and hence the resistive growth
time (sec) rate 8 to be constant as wesee Eq.(3)]. Since the simu-

lated evolution shown in Fig. 8 reproduces most of the fea-
) ) ) ) tures of the measured evolution, we keep the approximation

FIG. 8. Model evolution oD, T, andR,, obtained by numerically integrat- o h defi . _p PP
ing Egs.(5)—(7), starting from the same initial conditions as the measurede_conSt' We can then define a minimum temperature,

evolution shown in Fig. 4. The evolutions & and R, are similar to the Tmins given by
measured evolutions, and the coupling betwBeand T is similar to that
shown in the data in Figs. 5—6.

2
Tmin= 3 NLeszrad+ Tw- (8
Tmin IS the minimum temperature to which the plasma can
cool through cyclotron radiation.

the “anomalous” transport ratéAnomalous transport is the Defining new temperature and displacement variables by
slow expansion of the plasma due to small construction 3
asymmetries in the tra) In Egs. (5)—(7), the evolution of T= E(T_Tm‘”)'

D is governed by a competition between resistive gro@th
and rotational pumping damping Similarly, T evolves due 2\ p2
to the competing effects of Joule-heating from rotational EZEZNLeZ(l—R—S) rZ
pumping and anomalous transport and cooling by cyclotron R
radiation towardd',,. The displacement and temperature arewe can rewrite Eqs(5) and(6) as
coupled because the damping ratelepends ol and the
rotational pumping Joule-heating rate is proportionaDto —T=y G-, (9)
The plasma radius increases monotonically due to rotational d
pumping and anomalous transport. d
Figure 8 shows a simulated evolution Bf T, andR,, g Z=2AB—71, (10
obtained by numerically integrating Eg&)—(7), starting
from the same initial conditions as the data in Fig. 4. Sincevhere y=y(.7). We note that ify were proportional to7,
anomalous transport is weak and poorly understood, we sinfds. (9) and (10) would be the same as the Lotka—Volterra
ply sete equal to a constant valug=0.0023 s'. (This Predator-and-prey equatiohsyith .7~ and & being the popu-
value was obtained from measurements of the transport ratgtions of predators and prey, respectively. Here, Ejsand

of a plasma identical to that measured for Fig. 4, but with(10) are the rates of change of the thermal and electrostatic
D=0 andR,=0.) energies per electron.

The simulation reproduces the same qualitative evoluA. Fixed points
tion of D as shown in Fig. 4, with factor-of-2 quantitative
agreement. Both Fig. 4 and Fig. 8 show initial linear grovvth,i ~0,1,2, wherad Z/dt=d.77dt=0. Thei =0 fixed point is

which saturates and is followed by a quiescent period Wher?zozf():O. The other two are determined by balancing the

D is slowly increasing. The simulation also reproduces thecbmpeting terms in Eq€9) and (10). Setting the resistive

bifurcation into sawtoqth oscil!ation;. Examination of the growth rate equal to the rotational pumping damping rate in
temperature evolution in the simulation shows strong coqu_ (10) defines two equilibrium temperatureg; and.7>
pling betweerD andT. During the quiescent period between j o

32 and 77 s in Fig. 8, the temperature slowly decreases as )

D slowly increases, while the bifurcation into sawtooth os- 8= ¥(71), =12

cillations of D is accompanied by a steep dropTinin ad-  Figure 9 shows typical values @ and y as functions of
dition, the simulation shows that each sawtooth cradh & 7. Here we have use=0.09 s® and T,,,=0.002 eV.
accompanied by a temperature “spike.” These temperaturéhe damping ratey(.7), is obtained from the theory curve
oscillations are similar to the observed oscillations shown irin Fig. 1. There is one7; on each side of the peak in.
Fig. 5. Finally,R, increases with each sawtooth crash in theObviously, if 8 is larger than the peak iry, there is no
simulation, just as in the observed evolution in Fig. 5. equilibrium andZ increases without bound. However, when

Equations (9) and (10) have fixed points .¢;,%),
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T — : _— : and assume thad7; and 67 vary like expit). To first

] order in87; and 8%;, Egs.(9) and(10) are
n ] I B
S ot L B ] NoTi=\ v — 0T i+ y(T7) 6%,
7] 3 ] rad
~ 7 T2
~ ; Ni8Zi=—(2v{ %) 67+ 2(B— (1)) 8%, 11
-~ 10-2 L _ - where
Q.
' ﬂ
10-3 ! el 1 ol v o7 ,Ti.
10-% 10-1 100 10!
7 (eV) Inserting.7 o= %,=0 and solving for\, gives
Ao=2(B~¥(0)). (12)
FIG. 9. Calculation of the equilibrium temperaturgg and.7, by setting . ) . ) .
the resistive growth rat@ (dashed ling equal to the damping ratg(.7) Inserting (7;,%;) and solving forn;, i=1,2, gives
(solid curve. ,
)\_1('(/ L +\/ ! & 1 8v' BY
S\ AT =N T Y B |.
D>R,, the assumption thaR, is slowly varying does not (13

hold. The case wher®,, is rapidly increasing is discussed in A fixed point is unstable if;>0. Thus, the low temperature

Section VIII. To= =0 fixed point is always unstable for any nontrivial

~ Setting the Joule-heating rate equal to the cyclotron rayalues of resistive destabilization from EG=2), i.e. for all
diation cooling rate in Eq(9) with.7=.7; yields 2 equilib- g~ y(7=0). Equation(13) shows that the other 2 fixed

rium displacementsy/; and 75! points are stable only if two conditions are mef:>0 and
BZi =Tl Trad, i=1,2. Vi < Urrag.

The conditiony; >0 must be satisfied for the fixed point
to be stable to fluctuations ifr. Physically, this means that
the slope of the damping rate with respect ta7” must be
greater than the slope of the resistive growth rateFrom
- Fig. 9 we see that theA,,%,) fixed point never satisfies
B. Stability this condition and is always unstable. A small decrease in

The stability of the 3 equilibria is determined by linear- ¢ below &, decreases the heating raj¢”/ and thus de-
izing Egs.(9) and(10) around the 3 fixed points. We define, Creases”. Decreasing/” increasesy, thus causing a further
fori=0,1,2, unstable decrease iw. Similarly, a small increase i will
cause it to unstably grow.

Since (74,%,) and (7,,%,) are both unstable, a
SVi=TD— T, plasma with an initial displacement in the range

0<Y(t=0)<Z, will have its long term behavior deter-
mined by the middle fixed pointf{;,%,). (This condition is
satisfied in most of the experiment¥he middle fixed point
S e | is always stable to fluctuations ify, but not necessarily
T3/ Trag e stable to fluctuations irv".
10.0 ¢ The condition for.7” stability is y{ 7, <1/7,,q. Physi-
50 . - ] cally, this means that the slope of the Joule-heating rate
' .7 y< with respect to7 must be less than the slope of the
.7 cyclotron radiation cooling rate’/ 7,,q. Figure 11a) shows
gD, " the heating and cooling rates plotted versusfor a case
10 | e A where (77,%,) is stable. The cooling rate increases faster
T /7 with .7 than the heating rate, so a small increédecrease
0.5 - 1/ rad in .7 causes increased coolitigeating, which returns7 to
e 71. We define7;; as the “critical” temperature at which
R 1'0 p '-1'(;0 the heating and cooling rates have the same rslope. Figure
D (eV) 11(b) shows a case wherg;<.7;; and the (";,%}) fixed
point is unstable to temperature fluctuations. Note that the
) o ) ) characteristic growth rate for this instability +$’aé. This is
::hIG. 10. Calcu!atlon ofthe equnlbm{m displacements and &, by set'tm.g usually much faster than the characteristic growth rate
e Joule-heating rate” (dashed ling equal to the cyclotron radiation i . . . .
cooling rates at the two equilibrium temperatures, /.4 and.7, /7, ~ around the ¢,%,) fixed point (which is unstable to”
(solid lines. fluctuations but not” fluctuations.

Figure 10 shows8%, .71/ 1aq, @and.7 5/ 1,54 plotted versus
2, with 7,,4=0.1 s. TheZ; are proportional to the; .

ST =TT,

T/Trad ’ ﬁD (eV/S)

Phys. Plasmas, Vol. 4, No. 6, June 1997 Cluggish et al. 2067



C. Small oscillations

100

Equation (12) shows that \; is complex if
(¥ Z— Ur,.9?<8vy! B, . This condition is satisfied only
if />0, i.e.only atthe.¢’;,%,) fixed point, and only if the
real part of\; is small compared to the imaginary part, which
occurs whens;~.7.:. If these conditions are satisfied,
671 and 677, will execute small oscillations. The oscilla-
tions grow or damp at the rate/{Z; — 1/7,,9)/2. At marginal
stability, y{ #,=1/7,,q and N1 is purely imaginary. In this
case, the oscillation frequency is

IM(N1) = V2B Trag

and 677, and 6.7, are related by

10~1

T/Trea » YD (eV/5)
2

1071

10-2_/ _12 6 —ll S 5}(/1 ) le
10-3 10 ; (10V) 10 7/1:(3.(,,/2) 2,87-rad71. (19
. .

The measured sinusoidal oscillationsfand T shown

- o in Fig. 6 are in good quantitative agreement with the small
FIG. 11. Stability of the equilibrium temperaturg; to temperature fluc-

tuations. (a) Stable:.7;>.7 ;. The slope of the cooling rate7 7,4 is OSCIIIatIOnS around the_'Tl_’Jl) fixed point predicted by th_e
steeper than that of the heating rag¢7)~ at .7=.7,. (b) Unstable: ~Model. Since the oscillations are weakly damped, the fixed

T1<T i - point must be near marginal stability, with~.7;;. The
measured oscillation period, 8.5 s, is within 5% of the pre-
dicted frequency at marginal stability,23/ 7,4 The mea-
sured relative amplitudes of th& and D oscillations,

P N s o7 7, and8.71.77, and the phase difference between them,
The (71,7)) fixed point is unstable £, <7¢q) only /2, are within 15% of the prediction of E¢15). Further-

for large enougtR, . Exam|n|£g Eq.(4) showsjha?cm IS more, the measured values of the averagadD are within

ﬂle temperature wherv, | /d.7=0 (for Trin<7ci); hence  5q04 of the predicted values @f, D,. The quantitative dis-

7 it depends only on t_he magneztlc f|eld._l—!owe\_1grl de- crepancies between the model and the measurements are
pends orRB_throughy, sincey = RP' Examining F'g.' 9, we smaller than the experimental uncertainty. Due to the poor
Sef ;hat ‘./1 de_creases aRy mceases, making  the resolution of the radial density profile measurements, the
(71,24) fixed point unstable at large,, . long confinement times, and the complexity of the evolutions

The behq\;:orhofg ?nd_T f(r;/m OdtorGS N md Fig. 8b||s of D and T, we estimate a 20% uncertainty in measuring
consistent with the behavior o’ and.7” around a stable ., 4 o+ |east 10% v

(71, &) fixed point.D andT diverge away from thé€0,0
fixed point after the initial cooling. By 20 £ and T have
overshot ;,D;) and start to diverge fromT;,D,). Fi-
nally, by 35 sD andT reach the stableT{;,D,) fixed point. Even if the (7;,%),) fixed point is unstabley” and &
ThatD andT are stable from 35 to 65 s is evident from do not diverge from it without bound. Instead, they execute
the fact that they change at rates slow compared to jgoth limit cycle around the unstable fixed point. These limit
and 1f,4. The slow increase in the ratid/T arises from cycles correspond to the sawtooth oscillationsDofand T
the slow increase iR, due to rotational pumping and shown in Figs. 4, 5, 7, and 8.
anomalous transport. The predator-and-prey model predicts Most of the time, the plasma temperature is determined
that &, 1.7,=1/B1.,4. Converting to the physical variables by a balance between heating and cooling. This occurs be-
shows thath/T1 should grow nearly linearly Witlﬁqg; causeBr,,q<1. That is, the temperature is able to respond
quickly to changes in the displacement. In this limit, the
evolution of.7” can be described by setting the heating term
(14)  equal to the cooling term in Eq9), i.e..7=.7, , where

D. Limit cycles

(D1/Ryw)? (Rp/Ry)?
(T1— Trin) %NLez(l—(Rp/Rw)z)ﬁTrad.

PRI CAOEZ (16)
Equation(14) is in close agreement with the model evolution rad
of Fig. 8. The unstable drop ifi at 65 s, accompanied by a We determine the stability of this quasi-equilibrium tempera-
Hopf bifurcatiorf into sawtooth oscillations, is also consis- ture by setting, =, .7;=.7, , and 67;=0 in Eq. (11).

tent with the model’s prediction that the temperature shouldrhe quasi-equilibrium is stable to temperature fluctuations as
go unstable wherR, becomes large enough tha@g falls  long as @y/d.7)| 7, <1/7q, Which is the same criterion
belowT,,; . Finally, since the model evolution of Fig. 8 is in as was determined in Sec. V B for the fixed points. Note that
qualitative agreement with the measured evolution of Fig. 4in Eq. (16), as.7, approaches Oy(.7, ) doesnotgo to zero
which it was meant to simulate, we believe the model agree§or nonzeroT ;). HenceZ must go to zero av", =0, and
with the data in Fig. 4 as well. the stability condition holds at small enough
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A—B portion of the limit cycle, whereas the factor of 60
rapid increase inm at the maximumD corresponds to the
jump fromB to C. The decrease ifi andD over the next 4
S (> 149 IS consistent with th&€ —D portion of the cycle.
Finally, the rapid drop ifT from 0.025 eV to 0.004 eV at the
minimum D is consistent with the jump fror® to A.

In the limits B7,¢<1 and.71>T,, simple relation-
ships can be derived between the rise time, crash time, and
amplitude of the sawteeth. We assume thancreasegde-
creases exponentially during each sawtooth rigerash.
During the sawtooth rise3> vy, so the rise time is given by

T/Tud g 7D (eV/s)

-,
,

1074 Lo 13 43 L3 =} 0
10 10 10 10 10~ 10

7 (eV) 1
trise™ E

In

Dmax)
|:)min .
FIG. 12. Changes i¥ and.7 during a limit cycle. The cooling rat@lashed

line) depends only otv. The heating rate depends on bothand &; the During the sawtooth crashy>,8 To estimatey we
solid lines show the heating rate at the maximum and minimum values of ' !

< during the limit cycle. note that during most of the sawtooth crash shown in Fig. 5,
the temperature remains near the temperature corresponding
to the peak of the plot of in Fig. 1. Since the dependence of

When.7 is unstable, it rapidly diverges fronr, , at a 7y on temperature is weak near the peak, we can approximate
characteristic rate of /4. However,.7, is multi-valued 7 during the sawtooth crash by~ ypea, Whereypeqis the

for & nearZ; due to the nonmonotonic dependenceyain  value of y at the peak. Then the crash time is given by

7 and due toT,;, being greater than zero. Thus, any un-

stable.”7, is bounded below by the stable region near N 1 D max
7=0 and above by the stable region wherg'd.7<0; this crasfi Ypeak— B | Dmin/’

limits the magnitude of unstable excursions. The range of
Zis likewise bounded, as can be seen by differentiating EqUsing Egs.(3) and (4) to calculate and yeq from the
(16) with respect to7, , i.e. experimental parameters for the data in Fig. 5, we calculate a

dov 1/ 1 dy rise time about 40% shorter than the measured time of 15.2 s,

— = —(— — and a crash time about 20% shorter than the measured time

A7 Y\ Taa A7 of 4.6 s. The source of the error is most likely the shortcom-
The maximum and minimum values 6f occur at margin- ings of Egs.(3) and(4). The equation fop3 assumes a long
ally stable values of7, , i.e. where (y/d.7,) Z=1/1,4. plasma {,>R,), and the equation foy assumes a uniform
These stability boundaries give rise to limit cycles@fand  radial density profile. Neither of these assumptions holds in
7. the experiment.

Figure 12 shows the heating raj¢z and cooling rate
J174q plotted versus temperature. The dashed line
17,4, While the two solid curves are the heating rates at  The model predicts that the’(;,&;) fixed point is
Dmax @A Zin, the maximum and minimum values of  stable only for small enougR,. In the experimentsR,
during the limit cycle. The limit cycle evolves through,  slowly increases due to rotational pumping and anomalous
B, C, D in Fig. 12; the equivalent points are also shown agfransport. As shown in Fig. &, decreases &g, increases.

A, B, C, D in Fig. 5. The limit cycle starts at poidt, where ~ WhenT, falls belowT;, the fixed point becomes unstable
both  .7=7, and <& are minimum. Since and the system undergoes a Hopf bifurcation into limit
(dy/d.7) Z<1l7,q4 at this point,7, is stable. Howeveryy  cycles(sawtooth oscillations The limit cycles may be pre-
increases slowly becaugg> y for .7<.77; this causes7, ceded by small oscillations. For example, in Fig. 7, the small
and yZ to increase as well. Eventuallyy~ becomes so oOscillations grow for 3 cycles before turning into limit
large that heating overwhelms cooling. This occurs at poin€ycles. In Fig. 4, on the other hand, no precursor oscillations
B; .7, becomes unstable and and y< rapidly grow(at a  are observed. This indicates tHR{ is increasing so rapidly
rate much faster thap) until the stable7, at pointC is  thath; is complex for less than one oscillation period.
reached. Nowg is less thany, and D slowly decreases,

causing7, andyZ to decrease as well. At poifit, cyclo-

tron COOIing b-ecomes domlnant, maklﬁr@ unstable.?anq VII. TIME-DEPENDENT ANOMALOUS TRANSPORT

v then rapidly drop to poinfA, where the cycle begins

again. In the model evolution depicted in Fig. 8, we assumed a

The measured sawtooth oscillations@fand T shown  constant value for the anomalous transport katélthough
in Fig. 5 are in good structural agreement with the limitthe agreement between the model and the data in Fig. 4 is
cycles predicted by the model. Compared to Fig. 12, we sefairly good, there are some discrepancies. In this section we
that the exponential increase h during the sawtooth rise, show that these discrepancies can probably be resolved by
where T is small and nearly constant, corresponds to thausing a more accurate model fer

. E. Bifurcation
is
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- increased,e and T, slowly decreased, causing(D) to
<L 0200 monotonically decreas@ncreasg as shown in Fig. 13.

& 0100 A second feature of the evolution which depends on

A anomalous transport is the time at which the bifurcation into

s 0050 sawtooth oscillations occurs. In the simulation of Fig. 8, this
& bifurcation occurs 30 s earlier than measured bifurcation
= 0020 time in Fig. 4; in the simulation of Fig. 13, it occurs 30 s

. 0010 later. This discrepancy arises becaldsg increases a3,
& 5005 decreases. Thus, the smaller the anomalous transport rate, the
o earlier the bifurcation occurs.

0.002 A third feature of the evolution which is sensitive to
anomalous transport is the amplitude of the sawtooth oscil-
lations. In the simulation of Fig. & andT,,, are defined to

be constant, and the amplitude of the sawteeth changes only

0 50 100 150 200
time (sec)

FIG. 13. Model evolution oD, T, andR, obtained using a temperature and slightly. In Fia. 13.€ and T.... decrease with time. causin
density dependent anomalous transport &g (17)] in the numerical in- gntly. 9. =2, min ' 9

tegration of Egs(5)—(7). Initial conditions are the same as the measured the oscillation amplitude to grow. The measured evolution of
evolution shown in Fig. 4 and the simulated evolution shown in Fig. 8. TheFig. 4 is somewhere in between the 2 simulations, indicating
measured evolution shown in Fig. 4 shares features of both simulations. that a more accurate model for the anomalous transport rate
would probably give better agreement between simulation
and experiment.

The strong increase in sawtooth amplitude with decreas-
ing Tnin in Fig. 13 illustrates an important role which anoma-
éous transport plays in the nonlinear interaction betwBen
andT. That is, a nonzer@ ., limits the maximum value to
which D can grow. In fact, without anomalous transpdt,

In Fig. 13 we show the evolution d, T, andR;, ob-
tained by numerically integrating Eq&)—(7) starting from
the same initial conditions as Figs. 4 and 8, but using th
following model fore:

fr|? P would simply grow until the plasma hit the wall; for
€=0.0 fa *Rp T 17 1,,=T,=3.7X10"* eV (4.2 K), the maximunD is greater
thanR,, .

This is an empirical estimate far which approximates the

measured scalings witR, andT, and correctly predicts the
plasma lifetime within an order of magnitudfe. VIll. FURTHER PREDICTIONS OF THE MODEL

Comparison of Figs. 8 and 13 shows that the basic fea- |, yhis section we discuss two further predictions of the

tures of the observed evolution are independent of the mOd?Jredator-and-prey model. One is unstable growttT cdind
for e. Both simulations show initial linear growth to a stable  \\hen >, this does not usually occur becau

equilibrium, and then a bifurcation into limit cycles, with . eases rapidly, violating the assumption of the model. The
quantitative agreement with the measured evolutioDdd e prediction is stabilization of ther, , ;) fixed point at

v_vithin a factor of 2. Th?s similarity bgtween the two simula- very low temperatures and larg, ; this has not been ob-
tions occurs because, in both modelss small and does not served.

increase yviFhT_. T_h_is means that heating_from anoma_lous The predator-and-prey model predicts thaand < will
transport is insignificant compared to heating from rotatlonatnCrease without bound foZ> &,, because the.{y,7,)
pumping except at the onvest temperatures. It also meang, oy point is always unstable to fluctuationsin (The in-
tha_t both models fore defln(_a a minimum temperature to stability arises becausiy/d.7<0 at.75, as shown in Fig.
which the plasma can cool, i.e. 9.) This unphysical behavior does not occur in the experi-
ments becauséR,/dt increases ab increases. Increasing
§NLeZe(Rp,Tmm)7—rad+ Tw. R, increases”, and &,. EventuallyR, becomes so large
that.7, and &, overtake.7 and . Then & is less than
This equation is the same as H8), except for the depen- &5, and .7 and & decrease away from the unstable
dence ofe onR, andT. T, decreases &, increases with  (.75,%5) fixed point.
time, since the empirical model fer decreases witlR,, . Figure 14 shows a measured example of this behavior.
The differences between the simulations of Figs. 8 and'he plasma is hotT>1 eV) upon injection, but rapidly
13 indicate that anomalous transport is responsible for someools. At 3.7 s, we move the plasma off-axis to
of the discrepancies between the simulations and the data B/R,=0.055. The subsequent heating causes the tempera-
Fig. 4. First, both Fig. 4 and Fig. 13 show a monotonicture to jump up a factor of 5 in 0.1 s, unfil reaches a
increase irD for the first 100 s, whereas Fig. 8 shows a peakquasi-equilibriumT, given by Eq.(16). For about 0.8 s
at 20 s. This indicates that the actual plasma temperature dittereafter, the temperature continues to grow, but at a rate
not undergo a large oscillation as shown in Fig. 8. Ratherabout 50 times slower, (TJ(dT/dt)~0.3 s '<1/7,,4. The
the initial value of the actual anomalous transport rate was ssimultaneous growth db during this time indicates that™
large that the initiall ;;,~0.06eV was larger tham.,;, sta- andZ are diverging away from.{,,%,). This unstable be-
bilizing the temperature against rapid cooling. Rsslowly  havior is short lived, however. The plasma radrysrapidly

Thin=
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0.14 v — " , ) 0.50 lindrical trap. The evolution occurs when the displacement is
\ P PR destabilized by a resistive wall and damped by temperature-

;°-‘2 - '% $ %\}“m L 0.20 dependent rotational pumping. Our measurements show that
ok § -;’f‘s-\ki\ ’ oscillations of the displacemer}, are coupled to oscilla-
=) i i ' “ot0 = tions of the temperaturd,, and are accompanied by a mono-

. \ E .,~'° 2 tonic increase in the plasma radil,. Quantitative agree-
FO0B Tl s Re/Re 0.05 & ment of the data with numerical integration of model
> 8‘:;" evolution equations indicates that the coupling betwBen
e 0.06 _'"’ D/Ry 0.02 T, andR,, arises through rotational pumping transport.

'/' In the limit whereR, changes only slowly, the model
g En’ 1Io 1|5 2r0 0.01 equations reduce to a pair of predator-and-prey type equa-

time (sec)

tions forD and T, whereR,, is a control parameter. Fixed

points for this system exist where resistive growth is bal-
anced by rotational pumping damping, and Joule-heating
from the transport is balanced by cyclotron radiation cooling.
The location of the fixed points depends Bp. Nonlinear
behavior arises because the stability of the fixed points is
determined by the dependence of the transport rate on tem-
perature, and that dependence is nonmonotonic. Thus, at
. . large enougiR,, a stable equilibrium can become unstable.
increases; by 4.5 § starts to decrease, and by 1MDsis  Thjs leads to bifurcation into limit cycles around the unstable

decreasing as well towards the’{, ;) fixed point. fixed point, corresponding to the observed sawtooth oscilla-
The fact thafl andD are not maximum at the same time tjons.

is a consequence of the rapid change Rp. Since
B1aa<1, the relationship betweeh and D is set by Eq.
(16). Differentiating Eq.(16) with respect to time and con-
verting to the physical variables gives

FIG. 14. Instability of (V5,%,). From 3.7 to 4.5 s, botf andD grow at a
rate slow compared to 1Ly, indicating that they are unstably diverging
from (7,,%,). The rapid growth ofR, moves the fixed point.{;,%%)
aboveT and D, so that after 10 s botfi and D are unstably decreasing
toward (71,%,).
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