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Measurements have been made of nonlinear sawtooth oscillations of the displacement of a
magnetized electron column in a cryogenic, cylindrical trap. First reported 7 years ago, these
oscillations occur when the displacement is destabilized by a resistive wall and damped by a
temperature-dependent collisional viscosity. A typical evolution can last for thousands of seconds.
Measurements show that oscillations of the plasma displacement are accompanied by oscillations in
the plasma temperature. A simple predator-and-prey model of the temperature and displacement
gives rise to a limit cycle solution due to the nonmonotonic dependence of the viscosity on
temperature. These limit cycles are in good quantitative agreement with the measured sawtooth
oscillations. ©1997 American Institute of Physics.@S1070-664X~97!01305-0#
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I. INTRODUCTION

Nonlinear relaxation oscillations are a common pheno
enon in plasma physics. Examples include the sawto
instability,1 fishbone oscillations,2 and edge localized modes3

~ELM’s! in confined fusion plasmas, and the potential rela
ation instability in Q-machines4 and discharges.5 These os-
cillations are often modeled by predator-and-prey equatio6

where one parameter ‘‘preys’’ on another, resulting in a n
linear coupling between the rates of change of the two qu
tities.

In this paper, we present measurements of a comp
nonlinear evolution of the displacement and temperature
magnetized electron column in a cylindrical trap. First
ported 7 years ago,7 this behavior occurs when the displac
ment is destabilized by a resistive wall and damped b
temperature-dependent collisional viscosity. A typical evo
tion can last for thousands of seconds. In addition to non
ear sawtooth oscillations, we observe linear oscillations, q
escent periods where the displacement is nearly constant
bifurcation between these phenomena. Measurements s
that oscillations of the plasma displacement are accompa
by oscillations in the plasma temperature. Furthermore,
radius of the plasma column increases much more rap
than when the plasma is centered in the trap.

We find that a simple model quantitatively reproduc
the nonlinear behavior of the displacement, temperature,
plasma radius. In this model, the coupling between the th
variables is due to the relatively well-understood transp
and heating process called ‘‘rotational pumping.’’8 Rota-
tional pumping is the collisional dissipation of the axial com
pressions which are caused byE3B rotation of the column
through asymmetric confinement potentials; here, the c
finement potentials appear asymmetric only because of
displacement of the column away from the symmetry axis
the trap. Rotational pumping simultaneously decreases
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plasma displacement, increases the plasma radius, and J
heats the plasma.

In the limit where the plasma radius changes relativ
slowly, the evolution of the displacement and temperatur
described by a pair of predator-and-prey equations, in wh
the plasma radius is a control parameter. In this limit, eq
librium points can be found where the resistive growth of t
displacement is balanced by rotational pumping dampi
and the cooling of the plasma through cyclotron radiation
balanced by Joule-heating. The locations of the equilibri
points depend on the plasma radius, while the stability
these equilibria is determined by the dependence of r
tional pumping transport on temperature.

The complex behavior of the plasma arises because
rotational pumping transport rateg has a nonmonotonic de
pendence on temperatureT. As shown in Fig. 1, the mea
suredg(T) is peaked at about 0.1 eV. The solid curve is t
theoretical prediction of the transport rate. The Joule-hea
rate is proportional tog and to the square of the displac
mentD, while the cyclotron radiation cooling rate is propo
tional to T. The equilibrium temperature is stable abo
about 0.02 eV, where the slope of the cooling rate with
spect toT is steeper than that of the heating rate. Any
crease~decrease! in T increases~decreases! the cooling rate
more than the heating rate, restoring the equilibrium te
perature.

Sawtooth oscillations occur when the equilibrium tem
perature is in the unstable region below about 0.02
where the heating rate has the steeper slope. Any smal
crease inT then decreases the heating rate more than
cooling rate, causing a rapid cooling of the plasma until
temperature reaches a minimum set by Joule-heating f
background transport. However, the corresponding decre
in the damping rateg subsequently allowsD to grow until
the heating rate exceeds the cooling rate even at the m
mum temperature. The temperature then unstably grows u
it reaches a new, quasi-stable equilibrium near the pea
Fig. 1. Now,g is relatively large, causingD to slowly di-
minish until the cooling rate exceeds the heating rate at
temperatures. The temperature then unstably decreases

6,
6)/2062/10/$10.00 © 1997 American Institute of Physics
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to the minimum temperature, from whence the next sawto
oscillation begins.

II. EXPERIMENTAL APPARATUS

We confine the electron plasmas in a Pennin
Malmberg trap,9,10 shown schematically in Fig. 2. Electron
emitted from a tungsten filament are confined in a series
conducting cylinders of radiusRw51.27 cm, enclosed in a
vacuum can at 4.2 K. The electrons are confined axially
negative voltagesVc52200 V on cylinders 1 and 4; radia
confinement is provided by a uniform axial magnetic fie
with 40,B,60 kG. The trapped plasma typically has initi
density 109<n<1010 cm23, radius Rp;0.06 cm, length
Lp;3 cm, with a characteristic radial expansion tim
102,tm,103 s. The apparatus is operated in an inje
manipulate/dump cycle, and has a shot-to-shot reproduc
ity of dn/n;1%.

The self electric field of the electrons causes anE3B
drift rotation around an axis through the center of charge
a rate 0.3< f E<3 MHz. This rotation rate tends to be les
than the axial bounce frequency for a thermal electron, w
0.4< f b<40 MHz for 0.001,T,10 eV.

FIG. 1. Dependence of the rotational pumping transport and damping
g, on plasma temperatureT. The data points are measured values. The s
curve is the prediction of the rotational pumping theory when the thr
dimensional plasma shape is numerically calculated from the measured
sity profile. The Joule-heating rate is proportional togD2.

FIG. 2. Schematic of the cylindrical apparatus and electron plasma.
curvature of the confining equipotentials causes the distortion of the s
of the plasma ends, resulting in rotational pumping transport and damp
Phys. Plasmas, Vol. 4, No. 6, June 1997
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When the plasma is centered in the trap, t
z-integrated density or temperature of the plasma can
measured by dumping the electrons onto the end collect
by grounding cylinder 4. A rough histogram of th
z-integrated density is obtained from the charge on the
collectors. We smooth out this histogram by fitting it to
z-integrated density profile of the formQ(r ) } exp(2(r/a)p),
wherea andp are free parameters. While there is noa priori
reason for the density profile to have this form, more care
measurements of the density profile have shown it to b
reasonable approximation. Also, for the purposes of this
per, we are only interested in the mean plasma radius, w
is insensitive to the detailed form of the profile. We defi
the plasma radius by

Rp[
3

2

*0
Rwr 2dr*ndz

*0
Rwrdr*ndz

. ~1!

For a plasma with uniform density out toR0, this gives
Rp5R0.

The parallel plasma temperature,Ti , is measured by
slowly ramping the voltage on cylinder 4 to ground, a
measuring the number of electrons which escape as a f
tion of the confining voltage. We can reproducibly crea
plasmas with 0.001<Ti<20 eV, which givesTi to T' col-
lisional equilibration rates 103<n'i<105 s21.

We calculate thez-dependent plasma densityn(r ,z) and
space charge potentialf(r ,z) from the measured
z-integrated chargeQ(r ) and Ti , by numerically solving
Poisson’s equation, assuming that the electrons are in l
thermal equilibrium along each field line. That is, we assu

n~r ,z!5n0~r !exp$ef~r ,z!/kTi%, ~2!

where n0(r ) is obtained by requiring that*n(r ,z)dz
5Q(r ).

The electrons cool by cyclotron radiation. AtB540 kG,
the measured radiative cooling time ist rad50.29 s.9 Be-
causet rad@n'i

21 , the perpendicular and parallel temper
tures are presumed to be nearly equal, i.e.,T''Ti'T.

Figure 3 shows a cross-sectional view of the trap, w

te,
d
-
en-

e
pe
g.

FIG. 3. Schematic of a cross sectional view of the apparatus, with
plasma drifting around the trap axis at a displacementD in anm51 dio-
cotron orbit. The plasma simultaneously rotates around its own axis
frequencyf E . The wall sectors are electrically isolated from the ground
wall.
2063Cluggish et al.
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the magnetic field out of the page. A plasma column which
displaced from the axis of the trap willE3B drift around the
trap axis due to the electric field of its image charge. T
center of mass orbit is called them51 diocotron mode, and
has linear mode frequencyf D5NLec/pBRw

2 , whereD is the
displacement of the plasma column from the axis of the tr
and NL is the number of electrons per unit length of t
column. Also, there are small nonlinear and finite length c
rections tof D depending onD/RW , Rp /Rw , andLp /Rp .

11

In our experiments, 5, f D,20 kHz, so the orbit frequency i
always small compared to the plasma rotation frequency,
f D! f E .

The diocotron mode is detected by using one of 2 el
trically isolated wall sectors. The amplitude of the ima
charge current induced in the wall sector by the diocot
mode is proportional toD andNL . SinceNL is nearly con-
stant as the plasma evolves, we can measure the evolutio
D nondestructively.

The diocotron mode is manipulated using the other w
sector. The mode is initially induced by pulsing the sector
a negative voltage for one-half a mode period, which cau
the column toE3B drift away from the trap axis. Later
negative feedback12 from the detecting sector to the transm
ting sector is used to move the plasma back to the trap
before dumping, in order to measure the density or temp
ture.

In the experiments presented in this paper, the dioco
mode is continually destabilized by a resistanceRs which is
attached to the wall sector. The flow of the image cha
current through the resistor dissipates the mode energy.
causes the displacement to increase since the diocotron m
is a negative energy mode; the mode energy decreases a
plasma approaches its image charge. In the absence of d
ing, the displacementD grows exponentially at a rateb,
which we call the resistive growth rate.13 For a long plasma,
b is given by

b5
Ls
2 sin2~us/2!

p2LpRsCs
2

~2p f DRsCs!
2

11~2p f DRsCs!
2 , ~3!

whereLs andus are the axial and azimuthal dimensions
the wall sector, andRs2 i /2p f DCs is the impedance betwee
the sector probe and the grounded wall. In our experime
Rs'50 kV, and Cs'400 pF, giving typical growth rates
b;0.1 s21. Note that sincef D depends only weakly on th
shape of the density profile,b remains nearly constant as th
plasma evolves.

III. ROTATIONAL PUMPING

The plasmas in our experiments are subject to contin
rotational pumping transport,8,10 which damps the diocotron
mode, increases the plasma radius, and heats the pla
This transport occurs because the confining equipoten
surfaces are curved, as shown in Fig. 2. This causes a
compressions in a plasma which is displaced from the
axis, due to the rotation of the plasma around its own a
The plasma heats due to the dissipation of these comp
sions by the collisional, compressional viscosity of t
plasma. Conservation of energy then requires the plasm
2064 Phys. Plasmas, Vol. 4, No. 6, June 1997
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decrease in electrostatic energy by expanding radially a
thermal energy increases. Likewise, conservation of ang
momentum requires the plasma to move back to the trap
as it expands.

For a uniform density and temperature plasma, an e
mate of the rotational pumping damping rate of the diocot
mode,gest, is given by

gest52k2n'iS lD

Lp
D 2 ~Rp /Rw!2

12~Rp /Rw!2
. ~4!

Here,lD5(kT/4pe2n)1/2 is the Debye length andk charac-
terizes the geometry of the axial compressions. F
lD!Rp , numerical calculations of realistic end shapes g
k2'2.25Rw /Rp .

10 The estimate of Eq.~4! can be further
improved by calculating the three-dimensional shape of
plasma,10 and by numerically integrating the rotation
pumping theory14 over the measured plasma profilen(r ).
This gives the solid curve of Fig. 1, which is close to t
measured rates.

IV. EXPERIMENTAL OBSERVATIONS

Figure 4 shows a typical evolution of the plasma d
placementsD and radiusRp whenD is resistively destabi-
lized. Here,Rs530 kV, B550 kG, and the initial density is
n58.63109 cm23. The displacement is given a small, no
zero value immediately after injection in order to ‘‘seed’’ th
resistive growth instability. Initially,D increases exponen
tially with time. However, after about 20 s, the resistiv
growth appears to saturate. A quiescent period follows, d
ing whichD changes only slowly. At 110 s, there is a bifu
cation into sawtooth oscillations, which have a period
about 20 s. These sawtooth oscillations can last for th
sands of seconds. Concurrent with this evolution of the d
placement is a continual increase in the plasma radius,
rate much larger than is observed for a plasma which rem
on axis. However, no temperature measurements were m
for this evolution because such measurements are exc
ingly time consuming for long confinement times.

FIG. 4. Typical measured evolution of the plasma radiusRp and displace-
mentD ~scaled by the wall radiusRw), when a 30 kV resistor destabilizes
the m51 diocotron mode. The evolution ofD is measured in one shot
while the evolution ofRp is built up over many shots.
Cluggish et al.
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Measurements of shorter evolutions show that the s
tooth oscillations inD are coupled to oscillations in the tem
peratureT, and that each sawtooth crash is accompanied
an increase in the plasma radiusRp . Figure 5 shows the
evolution of the plasma displacement, temperature, and
dius during a single sawtooth oscillation. The left ordina
corresponds toD and Rp , and the right toT. Here,
Rs547 kV, B560 kG, and the initial density is
6.03108 cm23. The plasma temperature isT'1 eV at in-
jection, but it rapidly cools down toT'0.003 eV at the
beginning of the sawtooth oscillation att53.5 s. During the
rising period of the sawtooth,D grows exponentially with
time, but T and Rp remain nearly constant. However,
t518.4 s,T rapidly increases by a factor of 60 in 0.1 s. T
displacement and temperature then decrease for 5 s, du
which time the plasma radius increases by 25%. At 23 sT
drops from 0.03 eV to 0.003 eV in about 0.1 s, and the cy
begins again.

In other parameter regimes, we observe small, sinuso
oscillations of the displacement and temperature. A typ
evolution is shown in Fig. 6. Here,Rs530 kV,
B540 kG, and the initial density is 6.33108 cm23. Again,
the plasma is fairly hot upon injection,T'1 eV, but it rap-
idly cools until t56 s, whereuponT increases with increas
ing D. By t510 s, D and T have settled into sinusoida
oscillations with a frequency of about 8.5 s. The phase of
temperature oscillation lags behind the displacement
p/2. These oscillations are damped, i.e., the oscillation a
plitude of the second cycle is smaller than the first for b
D and T. In contrast with Fig. 5, here the plasma radi
increases slowly and continually over the 25 s evolution.
later times in this evolution, the oscillations grow. Figure
shows the evolution of the displacement out to 100 s. T
damping of the sinusoidal oscillations continues until t
third oscillation. Thereafter, the oscillations grow and th
bifurcate into sawtooth oscillations.

FIG. 5. Typical measured evolution ofD, Rp , and the temperatureT during
one sawtooth oscillation. The left ordinate corresponds toD andRp , the
right to T. Typical error bars forT are shown. The sawtooth ‘‘crash’’ in
D is preceded by a sharp rise inT. Similarly, the sawtooth ‘‘rise’’ inD is
preceded by a sharp drop inT. The plasma radius grows only during th
sawtooth crashes.
Phys. Plasmas, Vol. 4, No. 6, June 1997
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V. MODEL EQUATIONS

Figures 5 and 6 show that the oscillations in displa
ment are coupled to oscillations in temperature. Using
simple model, we show that this coupling arises through
tational pumping transport. We model the plasma using th
parameters: the temperatureT, the displacementD, and the
plasma radiusRp . We assume that the plasma is uniform
density and temperature and is of fixed length. The evolut
equations for the three parameters are then

d

dt
T5

2

3
NLe

2F2g
D2

Rp
2 S 12SRp

Rw
D 2D 1eG2

~T2Tw!

t rad
, ~5!

d

dt
D5~b2g!D, ~6!

d

dt
Rp5F2g

D2

Rp
2 1eGRp , ~7!

whereb is given by Eq.~3!, g(T,Rp) is given by Eq.~4!,
Tw53.731024 eV ~4.2 K! is the wall temperature, ande is

FIG. 6. Typical measured small oscillations ofD andT accompanied by a
constant slow increase inRp . The left ordinate corresponds toD andRp ,
the right toT. Typical error bars forT are shown. Note thatRp /Rw has been
scaled down by a factor of 10 to fit in the plot. The oscillations inD and
T are damped;T lags behindD by a phase ofp/2.

FIG. 7. Long time evolution ofD measured under the same conditions
the data shown in Fig. 6. The small oscillations damp for 3 cycles, t
grow for 3 cycles before changing into growing sawtooth oscillations.
2065Cluggish et al.
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the ‘‘anomalous’’ transport rate.~Anomalous transport is the
slow expansion of the plasma due to small construct
asymmetries in the trap.15! In Eqs.~5!–~7!, the evolution of
D is governed by a competition between resistive growthb
and rotational pumping dampingg. Similarly,T evolves due
to the competing effects of Joule-heating from rotatio
pumping and anomalous transport and cooling by cyclot
radiation towardsTw . The displacement and temperature a
coupled because the damping rateg depends onT and the
rotational pumping Joule-heating rate is proportional toD2.
The plasma radius increases monotonically due to rotatio
pumping and anomalous transport.

Figure 8 shows a simulated evolution ofD, T, andRp ,
obtained by numerically integrating Eqs.~5!–~7!, starting
from the same initial conditions as the data in Fig. 4. Sin
anomalous transport is weak and poorly understood, we s
ply set e equal to a constant value,e50.0023 s21. ~This
value was obtained from measurements of the transport
of a plasma identical to that measured for Fig. 4, but w
D50 andRs50.!

The simulation reproduces the same qualitative evo
tion of D as shown in Fig. 4, with factor-of-2 quantitativ
agreement. Both Fig. 4 and Fig. 8 show initial linear grow
which saturates and is followed by a quiescent period wh
D is slowly increasing. The simulation also reproduces
bifurcation into sawtooth oscillations. Examination of th
temperature evolution in the simulation shows strong c
pling betweenD andT. During the quiescent period betwee
32 and 77 s in Fig. 8, the temperature slowly decrease
D slowly increases, while the bifurcation into sawtooth o
cillations ofD is accompanied by a steep drop inT. In ad-
dition, the simulation shows that each sawtooth crash ofD is
accompanied by a temperature ‘‘spike.’’ These tempera
oscillations are similar to the observed oscillations shown
Fig. 5. Finally,Rp increases with each sawtooth crash in t
simulation, just as in the observed evolution in Fig. 5.

FIG. 8. Model evolution ofD, T, andRp obtained by numerically integrat
ing Eqs.~5!–~7!, starting from the same initial conditions as the measu
evolution shown in Fig. 4. The evolutions ofD andRp are similar to the
measured evolutions, and the coupling betweenD andT is similar to that
shown in the data in Figs. 5–6.
2066 Phys. Plasmas, Vol. 4, No. 6, June 1997
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VI. PREDATOR-AND-PREY MODEL

The good agreement between the simulation~Fig. 8! and
the data~Fig. 4! indicates that Eqs.~5!–~7! are sufficient to
describe the plasma. These equations can be further sim
fied if we note thatRp changes much more slowly thanD or
T in Figs. 4–6. In this section, we setRp5const in Eqs.
~5!–~7!. We find that most of the observed plasma behav
can be derived analytically in this limit. The magnitude
Rp is found to determine the stability ofD andT.

SinceRp is a constant, we set them51 diocotron mode
frequencyf D to be constant, and hence the resistive grow
rateb to be constant as well@see Eq.~3!#. Since the simu-
lated evolution shown in Fig. 8 reproduces most of the f
tures of the measured evolution, we keep the approxima
e5const. We can then define a minimum temperatu
Tmin , given by

Tmin[
2

3
NLe

2et rad1Tw . ~8!

Tmin is the minimum temperature to which the plasma c
cool through cyclotron radiation.

Defining new temperature and displacement variables

T [
3

2
~T2Tmin!,

D[2NLe
2S 12

Rp
2

Rw
2 D D2

Rp
2 ,

we can rewrite Eqs.~5! and ~6! as

d

dt
T 5gD2

T

t rad
, ~9!

d

dt
D52@b2g#D , ~10!

whereg[g(T ). We note that ifg were proportional toT ,
Eqs.~9! and ~10! would be the same as the Lotka–Volter
predator-and-prey equations,6 with T andD being the popu-
lations of predators and prey, respectively. Here, Eqs.~9! and
~10! are the rates of change of the thermal and electrost
energies per electron.

A. Fixed points

Equations ~9! and ~10! have fixed points (T i ,D i),
i50,1,2, wheredD /dt5dT /dt50. The i50 fixed point is
D05T 050. The other two are determined by balancing t
competing terms in Eqs.~9! and ~10!. Setting the resistive
growth rate equal to the rotational pumping damping rate
Eq. ~10! defines two equilibrium temperatures,T 1 andT 2,
i.e.

b5g~T i !, i51,2.

Figure 9 shows typical values ofb and g as functions of
T . Here we have usedb50.09 s21 and Tmin50.002 eV.
The damping rate,g(T ), is obtained from the theory curv
in Fig. 1. There is oneT i on each side of the peak ing.
Obviously, if b is larger than the peak ing, there is no
equilibrium andD increases without bound. However, whe

d

Cluggish et al.
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the
D.Rp , the assumption thatRp is slowly varying does not
hold. The case whereRp is rapidly increasing is discussed
Section VIII.

Setting the Joule-heating rate equal to the cyclotron
diation cooling rate in Eq.~9! with T 5T i yields 2 equilib-
rium displacements,D1 andD2:

bD i5T i /t rad, i51,2.

Figure 10 showsbD , T 1 /t rad, andT 2 /t rad plotted versus
D , with t rad50.1 s. TheD i are proportional to theT i .

B. Stability

The stability of the 3 equilibria is determined by linea
izing Eqs.~9! and~10! around the 3 fixed points. We defin
for i50,1,2,

dT i5T 2T i ,

dD i5D2D i ,

FIG. 9. Calculation of the equilibrium temperaturesT 1 andT 2 by setting
the resistive growth rateb ~dashed line! equal to the damping rateg(T )
~solid curve!.

FIG. 10. Calculation of the equilibrium displacementsD1 andD2 by setting
the Joule-heating rategD ~dashed line! equal to the cyclotron radiation
cooling rates at the two equilibrium temperatures,T 1 /t rad and T 2 /t rad
~solid lines!.
Phys. Plasmas, Vol. 4, No. 6, June 1997
-

and assume thatdT i and dD i vary like exp(lit). To first
order indT i anddD i , Eqs.~9! and ~10! are

l idT i5S g i8D i2
1

t rad
D dT i1g~T i !dD i ,

l idD i52~2g i8D i !dT i12~b2g~Ti !!dD i , ~11!

where

g i8[
]g

]T U
T i

.

InsertingT 05D050 and solving forl0 gives

l052~b2g~0!!. ~12!

Inserting (T i ,D i) and solving forl i , i51,2, gives

l i5
1

2 F S g i8D i2
1

t rad
D 6AS g i8D i2

1

t rad
D 228g8bD i G .

~13!

A fixed point is unstable ifl i.0. Thus, the low temperatur
T 05D050 fixed point is always unstable for any nontrivi
values of resistive destabilization from Eq.~12!, i.e. for all
b.g(T 50). Equation~13! shows that the other 2 fixed
points are stable only if two conditions are met:g i8.0 and
g i8D i,1/t rad.

The conditiong i8.0 must be satisfied for the fixed poin
to be stable to fluctuations inD . Physically, this means tha
the slope of the damping rateg with respect toT must be
greater than the slope of the resistive growth rateb. From
Fig. 9 we see that the (T 2 ,D2) fixed point never satisfies
this condition and is always unstable. A small decrease
D below D2 decreases the heating rategD and thus de-
creasesT . DecreasingT increasesg, thus causing a furthe
unstable decrease inD . Similarly, a small increase inD will
cause it to unstably grow.

Since (T 0 ,D0) and (T 2 ,D2) are both unstable, a
plasma with an initial displacement in the rang
0,D(t50),D2 will have its long term behavior deter
mined by the middle fixed point (T 1 ,D1). ~This condition is
satisfied in most of the experiments.! The middle fixed point
is always stable to fluctuations inD , but not necessarily
stable to fluctuations inT .

The condition forT stability is g i8D i,1/t rad. Physi-
cally, this means that the slope of the Joule-heating r
gD with respect toT must be less than the slope of th
cyclotron radiation cooling rateT /t rad. Figure 11~a! shows
the heating and cooling rates plotted versusT for a case
where (T 1 ,D1) is stable. The cooling rate increases fas
with T than the heating rate, so a small increase~decrease!
in T causes increased cooling~heating!, which returnsT to
T 1. We defineT crit as the ‘‘critical’’ temperature at which
the heating and cooling rates have the same slope. Fi
11~b! shows a case whereT 1,T crit and the (T 1 ,D1) fixed
point is unstable to temperature fluctuations. Note that
characteristic growth rate for this instability ist rad

21 . This is
usually much faster than the characteristic growth rateb
around the (T 2 ,D2) fixed point ~which is unstable toD
fluctuations but notT fluctuations!.
2067Cluggish et al.
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The (T 1 ,D1) fixed point is unstable (T 1,T crit) only
for large enoughRp . Examining Eq.~4! shows thatT crit is
the temperature wheredn'i /dT 50 ~for Tmin!T crit); hence
T crit depends only on the magnetic field. However,T 1 de-
pends onRp throughg, sinceg } Rp

2 . Examining Fig. 9, we
see that T 1 decreases asRp increases, making the
(T 1 ,D1) fixed point unstable at largeRp .

The behavior ofD and T from 0 to 65 s in Fig. 8 is
consistent with the behavior ofD and T around a stable
(T 1, D1) fixed point.D andT diverge away from the~0,0!
fixed point after the initial cooling. By 20 s,D andT have
overshot (T1 ,D1) and start to diverge from (T2 ,D2). Fi-
nally, by 35 s,D andT reach the stable (T1 ,D1) fixed point.

ThatD andT are stable from 35 to 65 s is evident fro
the fact that they change at rates slow compared to botb
and 1/t rad. The slow increase in the ratioD/T arises from
the slow increase inRp due to rotational pumping an
anomalous transport. The predator-and-prey model pred
thatD1 /T 151/bt rad. Converting to the physical variable
shows thatD1

2/T1 should grow nearly linearly withRp
2 :

~D1 /Rw!2

~T12Tmin!
5

~Rp /Rw!2

4
3NLe

2~12~Rp /Rw!2!bt rad
. ~14!

Equation~14! is in close agreement with the model evolutio
of Fig. 8. The unstable drop inT at 65 s, accompanied by
Hopf bifurcation6 into sawtooth oscillations, is also consi
tent with the model’s prediction that the temperature sho
go unstable whenRp becomes large enough thatT1 falls
belowTcrit . Finally, since the model evolution of Fig. 8 is i
qualitative agreement with the measured evolution of Fig
which it was meant to simulate, we believe the model agr
with the data in Fig. 4 as well.

FIG. 11. Stability of the equilibrium temperatureT 1 to temperature fluc-
tuations. ~a! Stable:T 1.T crit . The slope of the cooling rateT /t rad is
steeper than that of the heating rateg(T )D at T 5T 1. ~b! Unstable:
T 1,T crit .
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C. Small oscillations

Equation ~12! shows that l i is complex if
(g i8D i21/t rad)

2,8g i8bD i . This condition is satisfied only
if g i8.0, i.e. only at the (T 1 ,D1) fixed point, and only if the
real part ofl i is small compared to the imaginary part, whic
occurs whenT 1'T crit . If these conditions are satisfied
dT 1 and dD1 will execute small oscillations. The oscilla
tions grow or damp at the rate (g i8D i21/t rad)/2. At marginal
stability, g i8D151/t rad and l1 is purely imaginary. In this
case, the oscillation frequency is

Im~l1!5A2b/t rad,

anddD1 anddT 1 are related by

dD1

D1
5ei ~p/2!A2bt rad

dT 1

T 1
. ~15!

The measured sinusoidal oscillations ofD andT shown
in Fig. 6 are in good quantitative agreement with the sm
oscillations around the (T 1 ,D1) fixed point predicted by the
model. Since the oscillations are weakly damped, the fi
point must be near marginal stability, withT 'T crit . The
measured oscillation period, 8.5 s, is within 5% of the p
dicted frequency at marginal stability,A2b/t rad. The mea-
sured relative amplitudes of theT and D oscillations,
dD /D1 anddT /T 1, and the phase difference between the
p/2, are within 15% of the prediction of Eq.~15!. Further-
more, the measured values of the averageT andD are within
20% of the predicted values ofT1, D1. The quantitative dis-
crepancies between the model and the measurements
smaller than the experimental uncertainty. Due to the p
resolution of the radial density profile measurements,
long confinement times, and the complexity of the evolutio
of D and T, we estimate a 20% uncertainty in measuri
D and at least 10% inT .

D. Limit cycles

Even if the (T 1 ,D1) fixed point is unstable,T andD
do not diverge from it without bound. Instead, they exec
limit cycles6 around the unstable fixed point. These lim
cycles correspond to the sawtooth oscillations ofD and T
shown in Figs. 4, 5, 7, and 8.

Most of the time, the plasma temperature is determin
by a balance between heating and cooling. This occurs
causebt rad!1. That is, the temperature is able to respo
quickly to changes in the displacement. In this limit, t
evolution ofT can be described by setting the heating te
equal to the cooling term in Eq.~9!, i.e. T 5T * , where

T *
t rad

5g~T * !D . ~16!

We determine the stability of this quasi-equilibrium tempe
ture by settingD i5D , T i5T * , anddD i50 in Eq. ~11!.
The quasi-equilibrium is stable to temperature fluctuations
long as (dg/dT )uT

*
D,1/t rad, which is the same criterion

as was determined in Sec. V B for the fixed points. Note t
in Eq. ~16!, asT * approaches 0,g(T * ) doesnot go to zero
~for nonzeroTmin). HenceD must go to zero atT *50, and
the stability condition holds at small enoughT .
Cluggish et al.
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WhenT is unstable, it rapidly diverges fromT * , at a
characteristic rate of 1/t rad. However,T * is multi-valued
for D nearD1 due to the nonmonotonic dependence ofg on
T and due toTmin being greater than zero. Thus, any u
stable T * is bounded below by the stable region ne
T 50 and above by the stable region wheredg/dT <0; this
limits the magnitude of unstable excursions. The range
D is likewise bounded, as can be seen by differentiating
~16! with respect toT * , i.e.

dD

dT *
5
1

g S 1

t rad
2

dg

dT *
D D .

The maximum and minimum values ofD occur at margin-
ally stable values ofT * , i.e. where (dg/dT * )D51/t rad.
These stability boundaries give rise to limit cycles ofD and
T .

Figure 12 shows the heating rategD and cooling rate
T /t rad plotted versus temperature. The dashed line
T /t rad, while the two solid curves are the heating rates
Dmax andDmin , the maximum and minimum values ofD
during the limit cycle. The limit cycle evolves throughA,
B, C, D in Fig. 12; the equivalent points are also shown
A, B, C, D in Fig. 5. The limit cycle starts at pointA, where
both T 5T * and D are minimum. Since
(dg/dT )D,1/t rad at this point,T * is stable. However,D
increases slowly becauseb.g for T ,T 1; this causesT *
and gD to increase as well. Eventually,gD becomes so
large that heating overwhelms cooling. This occurs at po
B; T * becomes unstable andT andgD rapidly grow ~at a
rate much faster thanb) until the stableT * at pointC is
reached. Nowb is less thang, and D slowly decreases
causingT * andgD to decrease as well. At pointD, cyclo-
tron cooling becomes dominant, makingT * unstable.T and
gD then rapidly drop to pointA, where the cycle begins
again.

The measured sawtooth oscillations ofD andT shown
in Fig. 5 are in good structural agreement with the lim
cycles predicted by the model. Compared to Fig. 12, we
that the exponential increase inD during the sawtooth rise
where T is small and nearly constant, corresponds to

FIG. 12. Changes inD andT during a limit cycle. The cooling rate~dashed
line! depends only onT . The heating rate depends on bothT andD ; the
solid lines show the heating rate at the maximum and minimum value
D during the limit cycle.
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A→B portion of the limit cycle, whereas the factor of 6
rapid increase inT at the maximumD corresponds to the
jump fromB to C. The decrease inT andD over the next 4
s (@t rad) is consistent with theC→D portion of the cycle.
Finally, the rapid drop inT from 0.025 eV to 0.004 eV at the
minimumD is consistent with the jump fromD to A.

In the limits bt rad!1 and T 1@Tmin , simple relation-
ships can be derived between the rise time, crash time,
amplitude of the sawteeth. We assume thatD increases~de-
creases! exponentially during each sawtooth rise~crash!.
During the sawtooth rise,b@g, so the rise time is given by

t rise5
1

b
lnSDmax

Dmin
D .

During the sawtooth crash,g.b. To estimateg, we
note that during most of the sawtooth crash shown in Fig
the temperature remains near the temperature correspon
to the peak of the plot ofg in Fig. 1. Since the dependence
g on temperature is weak near the peak, we can approxim
g during the sawtooth crash byg'gpeak, wheregpeak is the
value ofg at the peak. Then the crash time is given by

tcrash5
1

gpeak2b
lnSDmax

Dmin
D .

Using Eqs.~3! and ~4! to calculateb and gpeak from the
experimental parameters for the data in Fig. 5, we calcula
rise time about 40% shorter than the measured time of 15
and a crash time about 20% shorter than the measured
of 4.6 s. The source of the error is most likely the shortco
ings of Eqs.~3! and ~4!. The equation forb assumes a long
plasma (Lp@Rw), and the equation forg assumes a uniform
radial density profile. Neither of these assumptions holds
the experiment.

E. Bifurcation

The model predicts that the (T 1 ,D1) fixed point is
stable only for small enoughRp . In the experiments,Rp

slowly increases due to rotational pumping and anomal
transport. As shown in Fig. 8,T1 decreases asRp increases.
WhenT1 falls belowTcrit , the fixed point becomes unstab
and the system undergoes a Hopf bifurcation into lim
cycles~sawtooth oscillations!. The limit cycles may be pre-
ceded by small oscillations. For example, in Fig. 7, the sm
oscillations grow for 3 cycles before turning into lim
cycles. In Fig. 4, on the other hand, no precursor oscillati
are observed. This indicates thatRp is increasing so rapidly
thatl1 is complex for less than one oscillation period.

VII. TIME-DEPENDENT ANOMALOUS TRANSPORT

In the model evolution depicted in Fig. 8, we assume
constant value for the anomalous transport ratee. Although
the agreement between the model and the data in Fig.
fairly good, there are some discrepancies. In this section
show that these discrepancies can probably be resolve
using a more accurate model fore.

of
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th

e
od
le
h

a-
t
us
na
a
o

-

n
om
ta
ic
a
d
e
s

on
nto
is
ion
s

e, the

o
cil-

only
g
of
ing
rate
ion

as-
a-

r

he

he

-

ri-

le

ior.

to
era-

rate

d

red
h
s.
In Fig. 13 we show the evolution ofD, T, andRp ob-
tained by numerically integrating Eqs.~5!–~7! starting from
the same initial conditions as Figs. 4 and 8, but using
following model fore:

e50.03S f Rf BD
2

}Rp
22T21. ~17!

This is an empirical estimate fore which approximates the
measured scalings withRp andT, and correctly predicts the
plasma lifetime within an order of magnitude.16

Comparison of Figs. 8 and 13 shows that the basic f
tures of the observed evolution are independent of the m
for e. Both simulations show initial linear growth to a stab
equilibrium, and then a bifurcation into limit cycles, wit
quantitative agreement with the measured evolution ofD to
within a factor of 2. This similarity between the two simul
tions occurs because, in both models,e is small and does no
increase withT. This means that heating from anomalo
transport is insignificant compared to heating from rotatio
pumping except at the lowest temperatures. It also me
that both models fore define a minimum temperature t
which the plasma can cool, i.e.

Tmin5
2

3
NLe

2e~Rp ,Tmin!t rad1Tw .

This equation is the same as Eq.~8!, except for the depen
dence ofe onRp andT. Tmin decreases asRp increases with
time, since the empirical model fore decreases withRp .

The differences between the simulations of Figs. 8 a
13 indicate that anomalous transport is responsible for s
of the discrepancies between the simulations and the da
Fig. 4. First, both Fig. 4 and Fig. 13 show a monoton
increase inD for the first 100 s, whereas Fig. 8 shows a pe
at 20 s. This indicates that the actual plasma temperature
not undergo a large oscillation as shown in Fig. 8. Rath
the initial value of the actual anomalous transport rate wa
large that the initialTmin'0.06eV was larger thanTcrit , sta-
bilizing the temperature against rapid cooling. AsRp slowly

FIG. 13. Model evolution ofD, T, andRp obtained using a temperature an
density dependent anomalous transport rate@Eq. ~17!# in the numerical in-
tegration of Eqs.~5!–~7!. Initial conditions are the same as the measu
evolution shown in Fig. 4 and the simulated evolution shown in Fig. 8. T
measured evolution shown in Fig. 4 shares features of both simulation
2070 Phys. Plasmas, Vol. 4, No. 6, June 1997
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increased,e and Tmin slowly decreased, causingT(D) to
monotonically decrease~increase!, as shown in Fig. 13.

A second feature of the evolution which depends
anomalous transport is the time at which the bifurcation i
sawtooth oscillations occurs. In the simulation of Fig. 8, th
bifurcation occurs 30 s earlier than measured bifurcat
time in Fig. 4; in the simulation of Fig. 13, it occurs 30
later. This discrepancy arises becauseTcrit increases asTmin
decreases. Thus, the smaller the anomalous transport rat
earlier the bifurcation occurs.

A third feature of the evolution which is sensitive t
anomalous transport is the amplitude of the sawtooth os
lations. In the simulation of Fig. 8,e andTmin are defined to
be constant, and the amplitude of the sawteeth changes
slightly. In Fig. 13,e andTmin decrease with time, causin
the oscillation amplitude to grow. The measured evolution
Fig. 4 is somewhere in between the 2 simulations, indicat
that a more accurate model for the anomalous transport
would probably give better agreement between simulat
and experiment.

The strong increase in sawtooth amplitude with decre
ing Tmin in Fig. 13 illustrates an important role which anom
lous transport plays in the nonlinear interaction betweenD
andT. That is, a nonzeroTmin limits the maximum value to
which D can grow. In fact, without anomalous transport,D
would simply grow until the plasma hit the wall; fo
Tmin5Tw53.731024 eV ~4.2 K!, the maximumD is greater
thanRw .

VIII. FURTHER PREDICTIONS OF THE MODEL

In this section we discuss two further predictions of t
predator-and-prey model. One is unstable growth ofT and
D when D.D2; this does not usually occur becauseRp

increases rapidly, violating the assumption of the model. T
other prediction is stabilization of the (T 1 ,D1) fixed point at
very low temperatures and largeRp ; this has not been ob
served.

The predator-and-prey model predicts thatT andD will
increase without bound forD.D2, because the (T 2 ,D2)
fixed point is always unstable to fluctuations inD. ~The in-
stability arises becausedg/dT ,0 at T 2, as shown in Fig.
9.! This unphysical behavior does not occur in the expe
ments becausedRp /dt increases asD increases. Increasing
Rp increasesT 2 andD2. EventuallyRp becomes so large
that T 2 andD2 overtakeT andD . ThenD is less than
D2, and T and D decrease away from the unstab
(T 2 ,D2) fixed point.

Figure 14 shows a measured example of this behav
The plasma is hot (T.1 eV) upon injection, but rapidly
cools. At 3.7 s, we move the plasma off-axis
D/Rw50.055. The subsequent heating causes the temp
ture to jump up a factor of 5 in 0.1 s, untilT reaches a
quasi-equilibriumT* given by Eq. ~16!. For about 0.8 s
thereafter, the temperature continues to grow, but at a
about 50 times slower, (1/T)(dT/dt)'0.3 s21!1/t rad. The
simultaneous growth ofD during this time indicates thatT
andD are diverging away from (T 2 ,D2). This unstable be-
havior is short lived, however. The plasma radiusRp rapidly

e
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increases; by 4.5 sT starts to decrease, and by 10 sD is
decreasing as well towards the (T 1 ,D1) fixed point.

The fact thatT andD are not maximum at the same tim
is a consequence of the rapid change inRp . Since
bt rad!1, the relationship betweenT and D is set by Eq.
~16!. Differentiating Eq.~16! with respect to time and con
verting to the physical variables gives

1

D2

dD2

dt
5F 1Rp

dRp
dt

1S 12
T

g

dg

dTD 1T dT

dt G
T5T

*

,

where we have used Eq.~4! for g. Since dg/dT,0 for
T >T 2 anddRp /dt.0, the temperature must be decreas
whenD is maximum, in agreement with Fig. 14.

The unobserved second prediction of the model is t
the (T 1 ,D1) fixed point should be stable for very sma
T , i.e. T less than the temperature of pointB in Fig. 12.
This condition should occur for very largeRp , where
g.b except at the very lowest temperatures. However,
have not observed this stabilization ofT 1 at largeRp , prob-
ably because the plasma is not uniform in density as
model assumes. Measurements of the radial density pr
indicate that the density profile has low density ‘‘wings
extending far from the bulk of the plasma. Presumably, th
wings contact the trap walls beforeg can become large
enough forT 1 to be stabilized. For instance, in the evolutio
shown in Fig. 4, the plasma starts losing electrons to the w
at 275 s, even thoughRp1D,Rw . Surprisingly, contact
with the wall has little effect on the plasma behavior; t
sawtooth oscillations last for hundreds of seconds longe

IX. CONCLUSIONS

We have made measurements of a nonlinear evolutio
the displacement of a pure electron plasma column in a

FIG. 14. Instability of (T 2 ,D2). From 3.7 to 4.5 s, bothT andD grow at a
rate slow compared to 1/t rad, indicating that they are unstably divergin
from (T 2 ,D2). The rapid growth ofRp moves the fixed point (T 2 ,D2)
aboveT andD, so that after 10 s bothT andD are unstably decreasing
toward (T 1 ,D1).
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lindrical trap. The evolution occurs when the displacemen
destabilized by a resistive wall and damped by temperat
dependent rotational pumping. Our measurements show
oscillations of the displacement,D, are coupled to oscilla-
tions of the temperature,T, and are accompanied by a mon
tonic increase in the plasma radius,Rp . Quantitative agree-
ment of the data with numerical integration of mod
evolution equations indicates that the coupling betweenD,
T, andRp arises through rotational pumping transport.

In the limit whereRp changes only slowly, the mode
equations reduce to a pair of predator-and-prey type eq
tions for D andT, whereRp is a control parameter. Fixed
points for this system exist where resistive growth is b
anced by rotational pumping damping, and Joule-hea
from the transport is balanced by cyclotron radiation coolin
The location of the fixed points depends onRp . Nonlinear
behavior arises because the stability of the fixed points
determined by the dependence of the transport rate on
perature, and that dependence is nonmonotonic. Thus
large enoughRp , a stable equilibrium can become unstab
This leads to bifurcation into limit cycles around the unsta
fixed point, corresponding to the observed sawtooth osc
tions.
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