Transport in a toroidally confined pure electron plasma

S. M. Crooks® and T. M. O’'Neil”
Department of Physics 0319, University of California at San Diego, La Jolla, California 92093-0319

(Received 12 January 1996; accepted 29 March 1996

O’Neil and Smith[T.M. O’Neil and R.A. Smith, Phys. Plasmas8 (1994 ] have argued that a pure
electron plasma can be confined stably in a toroidal magnetic field configuration. This paper shows
that the toroidal curvature of the magnetic field of necessity causes slow cross-field transport. The
transport mechanism is similar to magnetic pumping and may be understood by considering a single
flux tube of plasma. As the flux tube of plasma undergoes poldidaB drift rotation about the
center of the plasma, the length of the flux tube and the magnetic field strength within the flux tube
oscillate, and this produces corresponding oscillation§jiand T, . The collisional relaxation of

T, toward T, produces a slow dissipation of electrostatic energy into heat and a consequent
expansior(cross-field transporof the plasma. In the limit where the cross section of the plasma is
nearly circular the radial particle flux is given By = %vLHT(r/pO)Zn/(—e&(l)/&r), wherev, | is

the collisional equipartition rate,, is the major radius at the center of the plasma, raiscthe minor

radius measured from the center of the plasma. The transport flux is first calculated using this simple
physical picture and then is calculated by solving the drift-kinetic Boltzmann equation. This latter
calculation is not limited to a plasma with a circular cross section.1996 American Institute of
Physics[S1070-664X96)01407-3

I. INTRODUCTION pPo>T>\p 2

Pure electron plasmas confined by a toroidal magnetigvherep, is the major radius at the center of the plasmés
field have been studied both experimentally and theoreticalljhe minor radius measured from the center of the plasma, and
since the 1960s° and have received renewed attention in\p is the Debye length. We also assume ttfaig?/c><1 so
recent year8-® The equilibria of pure electron plasmas con- that the diamagnetic corrections to the magnetic field are
fined by a toroidal magnetic field were studied by Doughertynegligible. These conditions are well satisfied in typical ex-
and Levy’ The equilibria exist due to the strong spaceperiments.
charge electric fields that arise because the plasma is nonneu- There are two ways to understand the transport. One can
tral. These fields cause particle drift orbits to be closed. Onéocus on a flux tube and note that the length of the tube and
can think of the poloidaExB drifts as providing the rota- the magnetic field strength in the tube vary as the tube un-
tional transform. dergoes poloidaExB drift rotation. The constancy of the

Recently, O’'Neil and Smithargued that a pure electron adiabatic invariantsu=mv, 2/2B and | =(27) *$dimy,
plasma can be confined stably in such a configuration whethen imply a cyclic variation infj and T, . The variations
the frequencies are ordered so that the cross-field motioare unequal, and collisional relaxation betwegnand T,
may be described by toroidal-averaged drift dynamics. Theproduces a slow heating of the plasma. The process is similar
found equilibria for which the energy is a maximum relative to magnetic pumpingand to rotational pumpin§jThis heat-
to neighboring states. The system point evolves on a contoung comes about at the expense of electrostatic energy, so the
of constant energy in the space of accessible states, and whplasma must expand in minor radius. In section Il, we use
the energy is a maximum, the contour shrinks to a point ant¢his viewpoint to calculate the radial flux for the simple case
no further change in the state is possible. where the plasma has circular cross section.

In this paper we obtain a collisional transport equation  Alternatively, one can focus directly on the drift orbits as
for a pure electron plasma that is confined in this geometrydetermined by the particle energilyand the adiabatic invari-
We assume the same frequency ordering that was used @ntsu andl. When a particle undergoes velocity scattering

analyze stability in a collision, these quantities change value and the drift
orbit changes, allowing the particle to step in radius. In sec-
0> 0> wg>vs7 1 (1) tion 1ll, the drift kinetic Boltzmann equation is used to cal-

. o _ culate the flux. This calculation does not require the plasma
where() is the cyclotron frequencyyr=uv/p is the toroidal  cross section to be circular but reduces to the result of sec-

rotation frequency for a thermal particleg~ w,?/Q is the  tion Il when a circular cross section is specified.
characteristice X B drift frequency in the poloidal direction,

v is the collision frequency, andis the transport time scale.

The length scale ordering is Il. HEATING AND TRANSPORT

dpresent address: MIT-Lincoln Laboratory, 244 Wood St., Lexington, Mas- A SChema“C dlagram fo.r a toroidal trap is shpwn in Fig.
sachusetts 02173. 1. The confinement region is bounded by a toroidal conduc-

YElectronic mail: toneil@ucsd.edu tor and the magnetic field is purely toroidal. Hepe ®,z) is
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z pressed aB=0Byp,/p where By and py are constants.
A Thus, the field strength in the flux tube Bypo/p(r,0),
wherep(r, ) is given by Eq.(3). The dominant motion of
the flux tube is theExB drift. Under the assumption of a
small inverse aspect ratior/jpg<<1) the electric field is
nearly radial and the flux tube drifts in a circular orbit with

frequency
_c aP(r) 5
YETBr o

As the flux tube drifts toward the inside of the torus its
length decreases and the magnetic field inside the flux tube
increases. Setting= wgt and usingr/pg<<1 vyields

L(t)=2mpg+ 271 COS wet,

(6)

FIG. 1. Toroidal confinemen metry, with th rdin Z) an r

(r% i”us?r;g; confinement geometry, with the coordinate$)(z) and B(t)ZBO—B()%COSwEt.

Since the magnetic momeni,= mvf/ZB, is a constant,

a cylindrical coordinate wherg is the major radius) is the  the perpendicular velocity of each particle increases as the

toroidal angle, and the axis is the axis of symmetry of the magnetic field increases. Of course, the average magnetic

torus. moment is also constant and is related to the perpendicular
In this section we assume for simplicity that the plasmatemperature by

has a circular cross section. This assumption is not necessary SN 5

and will be relaxed in section Ill. For the case of a circular 1 Mot 1

cross section it is useful to introduce a polar coordinate sys- const= N& B §TL ' ™

tem (r,0) which is centered on the plasma and is locally

oriented perpendicular to the magnetic field. Hérés the ~ Differentiating this equation with respect to time yields an

poloidal angle and is the minor radius measured from the €quation for the perpendicular temperature evolution

center of the plasma, The(®,z) coordinate system and the
dT, 1B

(r,6) coordinate system are related through the relations "B ITL ) (8)
p=po+r coséb, 3 o _ .
_ Similarly, the average of the square of the individual toroidal
z=r sin 6, 4 actions is a constant and is related to the parallel temperature
wherepg is the major radius at the center of the plasma. by
We derive an expression for the radial particle flux by SN >
considering a single flux tube of plasma as shown in Fig. 2. const= —, (Lmu;)?=—L2T,. 9)
The flux tube has length(r,8)=2mp(r,H), cross-sectional ONi=1 m

areadA, and contain®N particles, whereSN is a constant. . I . . . . .
i T . ' L Differentiating this expression with respect to time yields
Using Ampee’s law, the toroidal magnetic field can be ex- g P P y

(9TH 2 JL T 10

gt Lat I’ (10

The parallel and perpendicular temperatures also couple
collisionally so that the full temperature evolution is more
accurately described by

(9TH 2 JL

W:_EET”—FZVLH(TL_TH) (11)
and

JT, 1B

=Bt (T T, (12)

wherev, | is the equipartition rate. The factor of 2 difference
in the collisional coupling term for Eq11) relative to Eq.
(12) simply reflects the fact that there are two perpendicular
FIG. 2. Aflux tube of plasma. degrees of freedom and one parallel.
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A two time scale analysis of these equations based on the
smallness ofr/py, and on the frequency orderingg> v
yields the result

diz(Tp+(T)] 1

= 14
dt 2 L Po

where(-) indicates an average over the fast time scale, that

is, over a poloidaE x B drift time. The heating of the plasma

arises because the parallel and perpendicular temperature

fluctuations are unequal. Collisions cause a small phase shift

in the fluctuations and to second orderrifp, there is a net

heating in the plasma. Drift Surfaces
Since the confinement potentials are time independent,

the total energy in the plasma is conserved and the increase

in thermal energy must be balanced by a corresponding de-

crease in the electrostatic energy. The particle flux is found

by equating the increase in thermal energy to local Joule _ , - , _
heating FIG. 3. An illustration of how collisions allow a particle to change drift

surfaces.

r\?2 Particle Orbit Collisions
) (13

d(1 P
na §<TH>+<TL> =—e(9—rl“r, (14
The guiding center Hamiltonian in toroidal geometry is
wherel, is the radial particle flux and is the density. The given by

right hand sidg of this equation is the Joule heating per unit p2 1Bop
vplume. Equation$13) and(14) are solved for the flux and H= 5 29 oro +ed®(z,p(p,)), (17)
yield p°(P2)  p(P2)
1 T 2 where z and p, are canonically conjugate,
Fr:§ VL,H”(r)m %) (15 p,=(eBypo/c)In(pg/p), and p, and B,y are constants. The

first term gives the curvature drift, the second the gradient
Note that the flux depends on magnetic field strengtiB| drift and the third term th& x B drift. In a pure electron
only throughv, . This rather surprising result is due to an plasma thee X B drift is the dominant drift. Equivalently, one
accidental cancellation. The net heating in each poloidal romay say that the poloidal drift surfaces differ only slightly
tation is proportional to the phase shift in the temperaturdrom the equipotential surfaces.
fluctuations which scales ag, |/wg. The heating rate is It is useful to introduce a canonical transformation
equal to the heating per poloidal rotation times the poloidal 2=2(py )
rotation frequency. Thereforeyg drops out of the calcula- g rh
tion. In the regime of weak magnetizatidire.,r .>b, where P,=PPy. ¥,
re=v/Q, andb=e?mv?), the dependence on the magnetic
field strength is very weaky, | « In(r¢/b). In the regime of
strong magnetizatiorii.e., r.<b) », | becomes exponen- D(Z,p(p))=D(py)- (19
tially smalf~2°and our theory predicts that, becomes ex-
ponentially small.

(18

which is chosen such that

The new momentunyp,, is nearly constant during the evo-
lution except for small curvature and gradi¢Bt drifts. The

Hamiltonian takes the form
Ill. KINETIC TREATMENT

2

One can also understand this transport process in terms H= 2P® #Bopo +ed(p,y). (20
of single particle drift orbits. The frequency ordering 2mp=(py. ) p(Py. )
Q> wr>we ensures that the magnetic momeoyclotron  The gradient |[B| and curvature drifts normal to the
action u=mv?/2B and the toroidal action p,=const. surfaces are proportional abl/d.

1 1 We represent the plasma with a distribution of guiding
Po=5— é% Pode=>5— 3€ mo dl (16)  centers
f=1(pe,0,py,tha.). (21)

are good adiabatic invariants. Since the confinement poten-
tials are time independent, the energy is also conserved. ThEhis distribution evolves according to the drift-kinetic
closed single particle drift orbits are determined by thesd3oltzmann equation

three constants. As illustrated in Fig. 3, when a particle un-

dergoes a collision its parallel and perpendicular velocity —+[f,H]=C(f), (22
change, and it begins to move on a new drift surface. This o

event constitutes the fundamental step underlying the transvhereC(-) is the collision operator and the Poisson bracket
port. is given by
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Jf oH  of oH Jf oH where the superscript indicates the ordering in collisions and
[f.H]=—-g 9Pe + a9 apy Ipy I (23)  &p is the y-dependent part op(p,,). To find the colli-
sional response we inse#f () into the collision operator on

For our frequency orderingr= dH/dpg is large and so  the right hand side of Eq31) and obtain
af190 must be small. Physically this corresponds to the fact

2
that any initially large® variations are rapidly mixed by the iaf_ﬂ):ic T ( 1— p 2 Po | uBoR E) 33
toroidal streaming along the magnetic field. The sn@ll Jy WE 0 p | 2mp? p |T)]
variations are uninteresting from the standpoint of cross-fiel G T SE(0) L se(1) .
transport and may be eliminated by integrating &) over %itéltzjsgltutmg fot 677+ 5T into the transport equation
0, that is averaging over the toroidal motion. The result is y
o _ P2
ot of oH o aH_Cf_ ot w:% fgifdp@dﬂ 22_02+”'30R}
A oy ap, apy v (f), (29 Py ™ mp p
ap
where x| == _) SfD 34
Py (34)

— 2m
f(pe ,p¢,lﬂ.M,t)=J' dOf(pe,0,py,, ¥ u,t). (25  The collisionless terms vanish in the integral over Inte-
0 grating by parts and substituting from E@3) yields the

Rewriting this equation as result
of ofoH] o Mo 26 (?N(p“’):i”d—l’bfdpd , Po +MBOR}(@)
E_Fﬁ E _E w =C(f) (26) ot Py 2@ BtA 2mp? p p
and integrating ovepg, u , andy yields a transport equa- 1 |- p P% uBgoR|1
; X—C|fo| 1= —|20——=+—|=] |-
tion WEg p 2mp p T
IN(p,) ¢ dy dH — (35
T | [ 52 dpadn ], @7 . -
ot Py ™ Y After changing variables of integration frompg,u) to
where (vy,v,) this may be written as
IN(p,) ¢ dy 1 Sp
dy — w9 f_J 2 2, = 2| OF
Npo= [ 52 dpoduf ey a 5p¢,[ 2] Quid0L Mo g me, 7
i ‘i i 1 |- d 1 1
The integral over the collision operat_or vanishes because col- x—C[fO 1— or mvH2+ “mo, 2 _)“ (36)
lisions conserve the number of particles. WE p 2 T

To obtain a transport equation accurate to second ord%h eref_oz
in the small quantitygH/d¢ , we need only obtairi accu-
rate to first order igH/dy. Thus we look for a solution to
Eq. (24) in the form

N(p,)fu andfy is a Maxwellian.
We take the collision operator in the general form

C(f)=fd3v1d0|vre||(f(vi)f(v’)—f(vl)f(v)), (37

f=fo(H,py)+5f(Pe Py, 1), (29 , . _ _
__ wheredo is the differential cross section angy=v—v;.
where 6f/fy~(1/H)(dH/34) and Using this form we obtain
f_0=N(pw)(zqu/m)*’?e*H’Tee‘D’T. (30 IN(p,) d U dq;( 5;;)2 N
Written in velocity variablesf, is just a Maxwellian times a at apy ) 2w\ p | weT
density distribution which is constant on the equipotential 1
contours. The linearized form of E(4) is XJ d3v<mv2+ Emvlz) f d®v,do|ve]
95t 1ap| P3  uBRlog—- - —
2 9 PO TR 1 1
vyt 2ot Efo=C(fo+ o), " mv,§+§va,§+mv,z+§va,z)
(31
_ ; ; ; 1
where og=de®/dp,, is the poloidalExB drift frequen_cy, X Fl fl— mvHiJr Evai+mv“2
and we have neglected terms of ordeMNJlWN/dp,, relative
to we /T because they are smaller by a facigy/r?. 1
Given the frequt_ancy 9rdering< @E, this gquation may + Emviz) fosfun |t (39)
be solved perturbatively in the effective collision frequency.
Dropping the collision operator and integrating yields Energy is conserved in the binary collisions. That is,
- Sp[ P4  uBoR]1-— 1 1 1
o__°° - T2 S 2 o 121 e 12
of P ZW Tfo (32 2mvl+2mv 2mv 1t 2mv . (39
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p

N g (/[6p\2\ N 1 - ap,
Py P, %E This equation describes transport in poloidal action-
angle variables. To make contact with section Il, we consider

1 1 . LT
> f dgvldalvre||[<§mv’§+ Emvllz) fiaafu thg simple case where the plasm:;t cross section is circular. In
this casey= 0, p,=py=(eB/2c)r*, and

— g

This fact may be used to simplify E¢38) to the form IN(p,) J op\? T
Pl 5] ().
v

(1 2 S o | fyat (40) 2 R L P (45)
- —mv||1 —mUH MiTm| (- — = | 57—~ 3C0S"6= 5.
2 2 P o 27 p 2p
To evaluate the velocity integral in this equation, it is The transport equation then becomes
instructive to consider the collisional relaxation of an aniso- 2
. : L IN(r) 10 (1 T r
tropic Maxwellian distribution Rt S 2N B yirmd b (46)
at ror |2 ~1—edd®/or\ pg

—-1/2

-1 1 2 1,42
fa(v)= 27T) 27T, F{— 2Moy” Moy The quantity in brackets is the same radial particle flux that
m m Ty T, was found in section II.
(41
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