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O’Neil and Smith@T.M. O’Neil and R.A. Smith, Phys. Plasmas1, 8 ~1994!# have argued that a pure
electron plasma can be confined stably in a toroidal magnetic field configuration. This paper shows
that the toroidal curvature of the magnetic field of necessity causes slow cross-field transport. The
transport mechanism is similar to magnetic pumping and may be understood by considering a single
flux tube of plasma. As the flux tube of plasma undergoes poloidalE3B drift rotation about the
center of the plasma, the length of the flux tube and the magnetic field strength within the flux tube
oscillate, and this produces corresponding oscillations inTi andT' . The collisional relaxation of
Ti toward T' produces a slow dissipation of electrostatic energy into heat and a consequent
expansion~cross-field transport! of the plasma. In the limit where the cross section of the plasma is
nearly circular the radial particle flux is given byG r5

1
2n',iT(r /r0)

2n/(2e]F/]r ), wheren',i is
the collisional equipartition rate,r0 is the major radius at the center of the plasma, andr is the minor
radius measured from the center of the plasma. The transport flux is first calculated using this simple
physical picture and then is calculated by solving the drift-kinetic Boltzmann equation. This latter
calculation is not limited to a plasma with a circular cross section. ©1996 American Institute of
Physics.@S1070-664X~96!01407-3#

I. INTRODUCTION

Pure electron plasmas confined by a toroidal magnetic
field have been studied both experimentally and theoretically
since the 1960s1–3 and have received renewed attention in
recent years.4–6 The equilibria of pure electron plasmas con-
fined by a toroidal magnetic field were studied by Dougherty
and Levy.2 The equilibria exist due to the strong space
charge electric fields that arise because the plasma is nonneu-
tral. These fields cause particle drift orbits to be closed. One
can think of the poloidalE3B drifts as providing the rota-
tional transform.

Recently, O’Neil and Smith5 argued that a pure electron
plasma can be confined stably in such a configuration when
the frequencies are ordered so that the cross-field motion
may be described by toroidal-averaged drift dynamics. They
found equilibria for which the energy is a maximum relative
to neighboring states. The system point evolves on a contour
of constant energy in the space of accessible states, and when
the energy is a maximum, the contour shrinks to a point and
no further change in the state is possible.

In this paper we obtain a collisional transport equation
for a pure electron plasma that is confined in this geometry.
We assume the same frequency ordering that was used to
analyze stability5

Vc@ v̄T@ vE@n@t21, ~1!

whereVc is the cyclotron frequency,v̄T5 v̄/r is the toroidal
rotation frequency for a thermal particle,vE;vp

2/Vc is the
characteristicE3B drift frequency in the poloidal direction,
n is the collision frequency, andt is the transport time scale.
The length scale ordering is

r0@r@lD ~2!

wherer0 is the major radius at the center of the plasma,r is
the minor radius measured from the center of the plasma, and
lD is the Debye length. We also assume thatr 2vE

2/c2!1 so
that the diamagnetic corrections to the magnetic field are
negligible. These conditions are well satisfied in typical ex-
periments.

There are two ways to understand the transport. One can
focus on a flux tube and note that the length of the tube and
the magnetic field strength in the tube vary as the tube un-
dergoes poloidalE3B drift rotation. The constancy of the
adiabatic invariantsm5mv'

2/2B and I5(2p)21rdlmv i
then imply a cyclic variation inTi andT' . The variations
are unequal, and collisional relaxation betweenTi and T'

produces a slow heating of the plasma. The process is similar
to magnetic pumping7 and to rotational pumping.8 This heat-
ing comes about at the expense of electrostatic energy, so the
plasma must expand in minor radius. In section II, we use
this viewpoint to calculate the radial flux for the simple case
where the plasma has circular cross section.

Alternatively, one can focus directly on the drift orbits as
determined by the particle energyH and the adiabatic invari-
antsm and I . When a particle undergoes velocity scattering
in a collision, these quantities change value and the drift
orbit changes, allowing the particle to step in radius. In sec-
tion III, the drift kinetic Boltzmann equation is used to cal-
culate the flux. This calculation does not require the plasma
cross section to be circular but reduces to the result of sec-
tion II when a circular cross section is specified.

II. HEATING AND TRANSPORT

A schematic diagram for a toroidal trap is shown in Fig.
1. The confinement region is bounded by a toroidal conduc-
tor and the magnetic field is purely toroidal. Here (r,Q,z) is
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a cylindrical coordinate wherer is the major radius,Q is the
toroidal angle, and thez axis is the axis of symmetry of the
torus.

In this section we assume for simplicity that the plasma
has a circular cross section. This assumption is not necessary
and will be relaxed in section III. For the case of a circular
cross section it is useful to introduce a polar coordinate sys-
tem (r ,u) which is centered on the plasma and is locally
oriented perpendicular to the magnetic field. Hereu is the
poloidal angle andr is the minor radius measured from the
center of the plasma, The (r,Q,z) coordinate system and the
(r ,u) coordinate system are related through the relations

r5r01r cosu, ~3!

z5r sin u, ~4!

wherer0 is the major radius at the center of the plasma.
We derive an expression for the radial particle flux by

considering a single flux tube of plasma as shown in Fig. 2.
The flux tube has lengthL(r ,u)52pr(r ,u), cross-sectional
areadA, and containsdN particles, wheredN is a constant.
Using Ampère’s law, the toroidal magnetic field can be ex-

pressed asB5Q̂B0r0 /r where B0 and r0 are constants.
Thus, the field strength in the flux tube isB0r0 /r(r ,u),
wherer(r ,u) is given by Eq.~3!. The dominant motion of
the flux tube is theE3B drift. Under the assumption of a
small inverse aspect ratio (r /r0!1) the electric field is
nearly radial and the flux tube drifts in a circular orbit with
frequency

vE5
c

Br

]F~r !

]r
. ~5!

As the flux tube drifts toward the inside of the torus its
length decreases and the magnetic field inside the flux tube
increases. Settingu5vEt and usingr /r0!1 yields

L~ t !52pr012pr cosvEt,

B~ t !5B02B0

r

r0
cosvEt.

~6!

Since the magnetic moment,m5mv'
2 /2B, is a constant,

the perpendicular velocity of each particle increases as the
magnetic field increases. Of course, the average magnetic
moment is also constant and is related to the perpendicular
temperature by

const.5
1

dN(
i51

dN 1
2mv' i

2

B
5
1

B
T' . ~7!

Differentiating this equation with respect to time yields an
equation for the perpendicular temperature evolution

]T'

]t
5
1

B

]B

]t
T' . ~8!

Similarly, the average of the square of the individual toroidal
actions is a constant and is related to the parallel temperature
by

const.5
1

dN(
i51

dN

~Lmv i !
25

2

m
L2Ti . ~9!

Differentiating this expression with respect to time yields

]Ti

]t
52

2

L

]L

]t
Ti . ~10!

The parallel and perpendicular temperatures also couple
collisionally so that the full temperature evolution is more
accurately described by

]Ti

]t
52

2

L

]L

]t
Ti12n',i~T'2Ti! ~11!

and

]T'

]t
5
1

B

]B

]t
T'2n',i~T'2Ti!, ~12!

wheren',i is the equipartition rate. The factor of 2 difference
in the collisional coupling term for Eq.~11! relative to Eq.
~12! simply reflects the fact that there are two perpendicular
degrees of freedom and one parallel.

FIG. 1. Toroidal confinement geometry, with the coordinates (r,Q,z) and
(r ,u) illustrated.

FIG. 2. A flux tube of plasma.
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A two time scale analysis of these equations based on the
smallness ofr /r0 and on the frequency orderingvE@n
yields the result

d@ 1
2 ^Ti&1^T'&#

dt
5
1

2
n',iS rr0D

2

T, ~13!

where^•& indicates an average over the fast time scale, that
is, over a poloidalE3B drift time. The heating of the plasma
arises because the parallel and perpendicular temperature
fluctuations are unequal. Collisions cause a small phase shift
in the fluctuations and to second order inr /r0 there is a net
heating in the plasma.

Since the confinement potentials are time independent,
the total energy in the plasma is conserved and the increase
in thermal energy must be balanced by a corresponding de-
crease in the electrostatic energy. The particle flux is found
by equating the increase in thermal energy to local Joule
heating

n
d

dt S 12 ^Ti&1^T'& D52e
]F

]r
G r , ~14!

whereG r is the radial particle flux andn is the density. The
right hand side of this equation is the Joule heating per unit
volume. Equations~13! and ~14! are solved for the flux and
yield

G r5
1

2
n',in~r !

T

2e]F/]r S rr0D
2

. ~15!

Note that the flux depends on magnetic field strength
only throughn',i . This rather surprising result is due to an
accidental cancellation. The net heating in each poloidal ro-
tation is proportional to the phase shift in the temperature
fluctuations which scales asn',i /vE . The heating rate is
equal to the heating per poloidal rotation times the poloidal
rotation frequency. Therefore,vE drops out of the calcula-
tion. In the regime of weak magnetization~i.e., r c@b, where
r c5 v̄/Vc andb5e2/mv̄2), the dependence on the magnetic
field strength is very weak,n',i } ln(rc /b). In the regime of
strong magnetization~i.e., r c!b) n',i becomes exponen-
tially small8–10 and our theory predicts thatG r becomes ex-
ponentially small.

III. KINETIC TREATMENT

One can also understand this transport process in terms
of single particle drift orbits. The frequency ordering
Vc@v̄T@vE ensures that the magnetic moment~cyclotron
action! m5mv'

2 /2B and the toroidal action

PQ5
1

2p R PQdQ5
1

2p R mv idl ~16!

are good adiabatic invariants. Since the confinement poten-
tials are time independent, the energy is also conserved. The
closed single particle drift orbits are determined by these
three constants. As illustrated in Fig. 3, when a particle un-
dergoes a collision its parallel and perpendicular velocity
change, and it begins to move on a new drift surface. This
event constitutes the fundamental step underlying the trans-
port.

The guiding center Hamiltonian in toroidal geometry is
given by11

H5
PQ
2

2mr2~pz!
1

mB0r0
r~pz!

1eF~z,r~pz!!, ~17!

where z and pz are canonically conjugate,
pz5(eB0r0 /c)ln(r0 /r), and r0 and B0 are constants. The
first term gives the curvature drift, the second the gradient
uBu drift and the third term theE3B drift. In a pure electron
plasma theE3B drift is the dominant drift. Equivalently, one
may say that the poloidal drift surfaces differ only slightly
from the equipotential surfaces.

It is useful to introduce a canonical transformation

z5z~pc ,c!,

pz5pz~pc ,c!, ~18!

which is chosen such that

F~z,r~pz!!5F~pc!. ~19!

The new momentum,pc , is nearly constant during the evo-
lution except for small curvature and gradientuBu drifts. The
Hamiltonian takes the form

H5
PQ
2

2mr2~pc ,c!
1

mB0r0
r~pc ,c!

1eF~pc!. ~20!

The gradient uBu and curvature drifts normal to the
pc5const. surfaces are proportional to]H/]c.

We represent the plasma with a distribution of guiding
centers

f5 f ~pQ ,Q,pc ,c,m,t !. ~21!

This distribution evolves according to the drift-kinetic
Boltzmann equation

] f

]t
1@ f ,H#5C~ f !, ~22!

whereC(•) is the collision operator and the Poisson bracket
is given by

FIG. 3. An illustration of how collisions allow a particle to change drift
surfaces.
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@ f ,H#5
] f

]Q

]H

]pQ
1

] f

]c

]H

]pc
2

] f

]pc

]H

]c
. ~23!

For our frequency orderingvT5]H/]pQ is large and so
] f /]Q must be small. Physically this corresponds to the fact
that any initially largeQ variations are rapidly mixed by the
toroidal streaming along the magnetic field. The smallQ
variations are uninteresting from the standpoint of cross-field
transport and may be eliminated by integrating Eq.~22! over
Q, that is averaging over the toroidal motion. The result is

] f̄

]t
1

] f̄

]c

]H

]pc
2

] f̄

]pc

]H

]c
5C~ f̄ !, ~24!

where

f̄ ~pQ ,pc ,c,m,t !5E
0

2p

dQ f ~pQ ,Q,pc ,c,m,t !. ~25!

Rewriting this equation as

] f̄

]t
1

]

]c F ]H

]pc
f̄ G2

]

]pc
F]H]c

f̄ G5C~ f̄ ! ~26!

and integrating overpQ , m , andc yields a transport equa-
tion

]N~pc!

]t
5

]

]pc
F E dc

2pE dpQdm
]H

]c
f̄ G , ~27!

where

N~pc!5E dc

2pE dpQdm f̄ . ~28!

The integral over the collision operator vanishes because col-
lisions conserve the number of particles.

To obtain a transport equation accurate to second order
in the small quantity,]H/]c , we need only obtainf̄ accu-
rate to first order in]H/]c. Thus we look for a solution to
Eq. ~24! in the form

f̄5 f̄ 0~H,pc!1d f̄ ~pQ ,pc ,c,m!, ~29!

whered f̄ / f̄ 0;(1/H)(]H/]c) and

f̄ 05N~pc!~2pT/m!23/2e2H/TeeF/T. ~30!

Written in velocity variables,f̄ 0 is just a Maxwellian times a
density distribution which is constant on the equipotential
contours. The linearized form of Eq.~24! is

vE

]d f̄

]c
1
1

r

]r

]c F2 PQ
2

2mr2
1

mB0R

r GvE

T
f̄ 05C~ f̄ 01d f̄ !,

~31!

wherevE5]eF/]pc is the poloidalE3B drift frequency,
and we have neglected terms of order (1/N)]N/]pc relative
to vE /T because they are smaller by a factorlD

2/r 2.
Given the frequency orderingn!vE , this equation may

be solved perturbatively in the effective collision frequency.
Dropping the collision operator and integrating yields

d f̄ ~0!52
dr

r F2 PQ
2

2mr2
1

mB0R

r G1T f̄ 0 ~32!

where the superscript indicates the ordering in collisions and
dr is the c-dependent part ofr(pc ,c). To find the colli-
sional response we insertd f̄ (0) into the collision operator on
the right hand side of Eq.~31! and obtain

]

]c
d f̄ ~1!5

1

vE
CF f̄ 0S 12

dr

r F2 PQ
2

2mr2
1

mB0R

r G1TD G . ~33!

Substituting f̄ 01d f̄ (0)1d f̄ (1) into the transport equation
yields

]N~pc!

]t
5

]

]pc
F E dc

2pE dpQdmF2 PQ
2

2mr2
1

mB0R

r G
3S 2

1

r

]r

]c D d f̄ ~1!G . ~34!

The collisionless terms vanish in the integral overc. Inte-
grating by parts and substituting from Eq.~33! yields the
result

]N~pc!

]t
5

]

]pc
H E dc

2pE dpQdmF2 PQ
2

2mr2
1

mB0R

r G S dr

r D
3

1

vE
CF f̄ 0S 12

dr

r F2 PQ
2

2mr2
1

mB0R

r G1TD G J .
~35!

After changing variables of integration from (pQ ,m) to
(v i ,v') this may be written as

]N~pc!

]t
5

]

]pc
H E dc

2pE dv id
2v'Fmv i

21
1

2
mv'

2G S dr

r D
3

1

vE
CF f̄ 0S 12

dr

r Fmv i
21

1

2
mv'

2G1TD G J . ~36!

where f̄ 05N(pc) f M and f M is a Maxwellian.
We take the collision operator in the general form

C~ f !5E d3v1dsuv relu~ f ~v18! f ~v8!2 f ~v1! f ~v !!, ~37!

whereds is the differential cross section andv rel5v2v1 .
Using this form we obtain

]N~pc!

]t
52

]

]pc
H E dc

2p S dr

r D 2 N

vET
N

3E d3vSmv i
21

1

2
mv'

2D E d3v1dsuv relu

3F Smv i81
21

1

2
mv'81

21mv i8
21

1

2
mv'82D

3 f M18 f M8 2Smv i1
21

1

2
mv'1

21mv i
2

1
1

2
mv'

2D f M1f M G J . ~38!

Energy is conserved in the binary collisions. That is,

1

2
mv1

21
1

2
mv25

1

2
mv81

21
1

2
mv82. ~39!
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This fact may be used to simplify Eq.~38! to the form

]N~pc!

]t
52

]

]pc
H K S dr

r D 2L
c

N

vE
TNE d3vS 12mv i

2D
3E d3v1dsuv reluF S 12mv i81

21
1

2
mv i8

2D f M18 f M8

2S 12mv i1
21

1

2
mv i

2D f M1f MG J . ~40!

To evaluate the velocity integral in this equation, it is
instructive to consider the collisional relaxation of an aniso-
tropic Maxwellian distribution

f A~v !5S 2pTi

m
D 21/2S 2pT'

m
D 21

expF2

1
2mv i

2

Ti
2

1
2mv'

2

T'

G .
~41!

The change in the parallel temperature due to collisions is
given by

d

dt S Ti

2 D5NE d3vS 12mv i
2D E d3v1dsuv relu

3~ f A~v18! f A~v8!2 f A~v ! f A~v1!!

5n',i~T'2Ti!, ~42!

where the last line is used as a definition of the equipartition
rate,n',i . By substitutingT'5T andTi5(12a)T into the
first line and taking the limita→0, one can easily show that

NE d3vS 12mv i
2D E d3v1dsuv reluF S 12mv i81

21
1

2
mi8

2D
3 f M18 f M8 2S 12mv i1

21
1

2
mv i

2D f M1f M G
52T2n',i . ~43!

This is precisely the integral that appears in Eq.~40!. The
transport equation can now be written in the relatively simple
form

]N~pc!

]t
52

]

]pc
H n',i K S dr

r D 2L
c

S T

2vE
DN~pc!J . ~44!

This equation describes transport in poloidal action-
angle variables. To make contact with section II, we consider
the simple case where the plasma cross section is circular. In
this case,c5u, pc5pu5(eB/2c)r 2, and

K S dr

r D 2L
c

5E du

2p

r 2

r2
cos2u5

r 2

2r2
. ~45!

The transport equation then becomes

]N~r !

]t
52

1

r

]

]r
r H 12 n',i

T

2e]F/]r S rr0D
2J . ~46!

The quantity in brackets is the same radial particle flux that
was found in section II.
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