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This paper analyzes collisional diffusion of a multispecies two-dimensi@i3l point vortex gas,

or a 2D plasma, in the presence of retrograde shear. Diffusion both along and across the shear flow
is calculated using Boltzmann, Kubo, Klimontovitch and resonance-broadening theories. It is shown
that diffusion is reduced in the presence of shear, just as for the shear reduction of transport observed
in fusion plasmas. Here, however, fluctuations are thermal rather than turbulent, allowing a rigorous
calculation of the transport. When there are several species of point vortices, Onsager relations
require that the diffusive flux conserves the total vortigityr), which is proportional to charge
density in the plasma analogue. Surprisingly, the diffusive florcentratesvortices with large
positive (or negative circulations at maximdor minima of the mean vorticity profile. ©2003
American Institute of Physics[DOI: 10.1063/1.1564596

I. INTRODUCTION Taylor and McNamara previously considered the colli-

The two-dimensiona(2D) point vortex gas is a useful sional diffusion of a homogeneoushear-free 2D guiding
aradiom for more complex fluid flows. and has been Suc_center plasma as a possible model for anomalous transport in

Eessfuﬁy applied to thg study of 2D’ Euler fldwluid fusion plasma$.In this seminal work, the authors obtained

s . 8 the diffusion coefficient of a “test” point vortex, assuming
turbulencé® and transport in neut&i® and non-neutral o o=
. : e . that the distribution of vortices is random and uncorrelated,
plasmas. This paper considers the diffusion of a multispe-

cies point vortex gas, focusing on the effect that an applie

stable shear flow has on the diffusion. N> S
Using kinetic theory based on Boltzmann, Kubo, and DTMZEE / i:i /2 ki @)
Klimontovitch approaches, we show that the diffusion is re- 2B VS wm 8w ViTy 7

duced in the presence of applied retrograde velocity shear.
This result is similar to the shear reduction of transport ob-Equation(2) exhibits two important properties: first, the dif-
served in fusion plasmd$.Here however, the fluctuations fusion scales as B/ in agreement with the semiempirical
are assumed to be thermal, rather than turbulent, and consBehm-scaling law. Second, the diffusion coefficient is not
quently the resulting shear reduction of the transport can bitensive, but rather increases in proportion to the system
calculated rigorously. sizeR, sinceN«R?. This is because the diffusion is domi-
The point vortex gas has relevance to magnetized plasaated by large-scale fluctuatiof®awson—Okuda vortic8s
mas due to the well-known isomorphism between the dywhose size is of ordeR. The Coulomb interaction is inher-
namics of an ideal incompressible 2D fluid, described by theently long-range, and “collisions” can occur with arbitrarily
Euler equations, and the dynamics of a guiding-centetarge impact parameters; these long-rafgeB drift colli-
plasma of charged rods undergoing 2BXB drift  sions are quite distinct from the short-range velocity-
dynamicst* The ith charged rod, with charge; per unit  scattering collisions normally considered in plasma physics.

length, is equivalent to a point vortex with circulation The Dawson—Okuda vortices are simply fluctuations in
Amc the local vorticity, i.e., fluctuations in the charge density. A
yi=— Tqi , (1) portion of the system containing roughlN, point vortices,

each with circulationy, might be expected to have a fluctua-

whereB is the magnetic field strength amdis the speed of tion in the circulation of order\/N,. Such a fluctuation is a
light. Also, the electrostatic potentia(r) is related to the locally rotating eddy that turns over in a time of ordet,
stream function/(r) by y=cg¢/B. =R%/y\N,, whereR, is the size of the eddy; the eddy pre-

Our results thus apply directly to experiments that measumably dissipates in a timkt, . The macroscopic diffusion
sure collisional diffusion in cylindrical non-neutral plasma is caused by a sequence of these random fluctuations, with
columns. Such columns rotate with & B rotation fre-  step sizeR, and correlation timé\t,. This gives the scaling
quencyw(r)=V,(r)/r that can have substantial radial shear.of Eq. (2), asDTM~R§/Ate~ y\Ne.
We therefore focus our attention on cylindrically symmetric However, Eq.(2) neglects all correlations between the
flows characterized by a shear r&&)=r Jdw/dr. For an  point vortices. One expects Debye shielding to limit the
electron column withy;> 0, a monotonically decreasing den- maximum size of eddies to a Debye length. In this case
sity n(r) gives a retrograde flow with; S<O0. the diffusion is reduced to rough® ™\ /R,."8
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In this paper we consider the effect that stable shear flowicle spacing. Consider two vortices, at positionsandr,,,
has on the Taylor—McNamara diffusion in a cylindrical vor- with circulationsy, andy, , respectively. The vortices inter-
tex patch of overall radiuR, consisting ofN point vortices.  act as they are carried along by a mean circular flogw)
The shear flow destroys the largest Dawson—Okuda vorticegith shearS(r).
and greatly reduces the diffusion compared to E). A The Hamiltonian describing this dynamics is
previous paper analyzed the radial diffusion fdridentical
point vortices, and also compared the theoretical results to H= frardr yao(r)+ frbrdr ypo(r)
simulations of the radial diffusiohHere, we generalize the a b
theory in several respects. First, we consider a system con-
sisting of several species. Diffusion coefficieﬁ_lgb for the + YaYb
diffusion of species due to gradients in the density of spe- 4
ciesb are derived, and are shown to obey Onsager relationsyith equations of motion
The overall evolution of the system under the action of these
diffusive fluxes is considered. The Onsager relations imply d#, JH dP(,a JoH

In[|ra—ry|?1, ()

that the diffusive flux conserves the total vorticity profile dt P, dt a6, )
p(r)==,vaNna(r,t), whereny(r) is the number of vortices é
of speciesa per unit area. (and similarly for vortexb), where Po,= yarglz is the ca-

Thus, the diffusive fluxes cannot drive the system to anonical angular momentum associated with vorgxand
thermal equilibrium state, in which vorticity is related to  (r,,69,) are polar coordinates. The symmetry ldf under
the stream functiony by p=Ce®?, with C a constant an@  rotation implies that total angular momentum is conserved:

the inverse temperature. Instead, the system approachespg +p, =constant. Let us define this constant in terms of a
thermal equilibrium state only if the effects of viscosity are jyean radial positiomR for the two vortices:

taken into account. The viscosity of a sheared point-vortex

gas was analyzed previously, and calculated for the case of Py _+ P, =(vat vp)R?/2. 5
nonmonotoniax(r), but is still an active area of researth. . .

We will see that the diffusive fluxes do increase an entropy! N€N assuming that vortices are closely spaced so|that
—rp|//R<1, it is useful to work in a frame rotating with

functional. Surprisingly, these fluxes cause point vortices e
with large positive circulations to concentrate in regions of"eduencye(R), where the Hamiltonian is transformed to

maximum average vorticity, and vortices with large negative  H'=H—(p, + P, )w(R). (6)
circulation to concentrate at vorticity miniméwithout a b
changing the total vorticity profilepo(r), howevet. This Defining Ar, ,=r,,— R, we Taylor expanH’ to sec-
counter-intuitive vorticity concentration is closely related to ond order inAr,,/R and 6,— 6,,. The result is
the macroscopic motion of a vorticity clump up a back- S
ground gradient or a vorticity holelown a background H = = (7,124 yArd) + 222 00 (1 = 1 )2
gradient* 2 Am
Other author$~*8have also considered the diffusion of R0, 0,)2] @

vorticity in both turbulent and thermal 2D Euler flow, and
have come to similar conclusions concerning the relation bewhere S=S(R). The equations of motion that follow from
tween diffusion and gradient-driven drift. However, Refs. 16Eq. (7) are

and 18 associate this drift withraobility flux caused by the

gradient not in the vorticity, but in the stream function. This % - _ YLR Oa— Oy (8a)
is correct only if the vorticity is already related to the stream At 2m (ra=rp)*+R%(6,— 6p)%

function through the Boltzmann distribution. Unfortunately, de .

the authors use this mobility form for the drift to mistakenly R—a=SAra+ L a_b (8b)

conclude that diffusion and mobility can drive the system to dt 2m (1a=rp)*+R(0a— 0p)*’
a global thermal equilibrium state, even for a single speciegnd similarly for vortexb. Equation(8a) implies thaty,r ,
system. Since thermal equilibrium was already assumedy ,,r, =const. To first order inr,, /R this is equivalent to
their analysis cannot be employed to understand the afeq. (5), and this equation allows us to identify the constant

proach to thermal equilibrium. as yalat ¥oro=(7a+ v5)R. However, this implies that
Finally, we evaluate the diffusion along the direction of
the shear flowthe 6 direction. We find that vortices expe- YalAra+ ypAr,=0. )

rience superdiffusion in the direction as they are swept

Furthermore, Eqgs.(8b) and (9) imply that y,0,+ y,6,
away by the shear flow.

=const. If we define® =(y,0.+ vp0,)/ (vat ¥p), We can
then see that the position of the “center of charge”
Il. BOLTZMANN ANALYSIS OF CLOSE COLLISIONS =(R,0) is conserved in the dynamidso first order inf,

In thi i | th ' tion during i — 0, and Ar,,/R); in other words, the displacements
n this section, we analyze the vortex motion during ISO-Ara,b:ra,b_RE(Ara,b- A6, ,) satisfy

lated two-vortex collisions. This analysis applies to vortices
whose separation is small compared to an average interpar- y,Ar,+ y,Ar,=0. (10
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FIG. 1. Flow diagram fora) retrograde flowS(y,+ v,)<O0; (b) prograde
flow S(y,+ vp)>0.

()

If we now use this relationship between the vortex position
in Eq. (7), we can write the Hamiltonian in terms of only the

position of vortexa:

S Ya(vat )

H'(ra,00)= 5 Arg+ Yaypd

xIn (11

Y 2
1+ —a) (Ar2+ RZAeg)}.
Yb

The contours of constaihkt’ are shown in Fig. 1, blowing up
a region centered on=R, and withR assumed to be on the
positivex axis, i.e.,®@ =0, soA§,=6,. Thus, the center of
the circular flow,r =0, is well to the left of the figure, and
the x direction corresponds to while they direction corre-
sponds tod. In Fig. 1(a), theH’ contours are drawn assum-
ing S(ya+ vp)<O0. This is termed a “retrograde flow.” The
opposite case$(y,+ v,)>0, is shown in Fig. (b), and is
termed a “prograde flow.” In these diagrams, vortaxXol-
lows one of the constari- contours shown, and thevortex

is at the point
Arp=—7vaAra/ vy, (12

according to Eq(10).

For the case of retrograde flow, a separatrix in the flow

exists, with X points for vortexa at locations Qr,,60,)
=(=1,4p,0) where the trapping width,, is defined as

lap=\—275/[47(yat 7)S]. (13)
The equation for the separatriXy¢(6), of vortexa is
Ar2=12 (1+In[(Ar2+R?62)/12,.]). (14)

Daniel H. E. Dubin

coefficient for diffusion of vortexa in ther direction due to
collisions with vortices of typeb. Vortex a encounters a
sequence of randomly distributed vortices of typenoving
past it. The flux ofb vortices in the@ direction, I'y,, is
determined by the shear, as

ng:anAp. (15)
Here,n, is the areal densitgin cm™2) of the b vortices, and
Ap=Ary—Ar,is ther displacemen{impact parametebe-
tween thea andb vortices when the vortices have a large
displacementi.e., before this collision begins, but after the
previous collision with some other vortex has endéekt us
call this #-distancef,. Then it is not difficult to show that if
Ap satisfies

S

|Ap|<|(yat ¥p)! volArs(60), (16)

vortexa will be within its separatrix and take a step in the
direction of magnitude2y,Ap/(va+ vp)|.

The test particle diffusion coefficie2, due to these
Boltzmann collisions between vortices of typeand b is
given by half the square of this step, multiplied by the rate at
which these steps occur, and integrated over all impact pa-
rameters that lead to a finite step. This can be written

) 2y
Yat Yo

B 1 ((vatvu)Ars(60) vy
ab:§ dA

2
AP) IT oo
—(vat v)Ars(6o) vp

=Np|SI[(vat Y)/ Y6]?Ar (o), (17)

where in the second line we have used Edy). SinceR6,
>1,,, the solution of Eq(14) for Arg(6y) is

Ar(00)~1 ap\IN(RZGZ/1Z,). (18)
Using Eq.(13) for I, then yields
B _ YoNe 2rp2p2/)2
Dab—mln [R65/15,]- (19

This expression generalizes our previous single-species
resulf to multiple vortex species. The diffusion scales as
1/9|, displaying the same shear reduction of transport ob-
tained previously for one species.

The argument of the logarithm depends @y the mean
0 displacementmean-free pathbetween collisions. We can

The b vortex separatrix has the same form, but is scaled bygiimate this displacement as follows. The cross section for
the factor y,/y,. Vortices located on streamlines outside .qiisions between a specids vortex and species is

their respective separatrices stream past one another, and

not suffer any net change in thex positions from their

interaction. However, vortices within the separatrix region

[the shaded region in Fig(d)] reflect off of one another, and
therefore take a step in thedirection due to their collision.

For the remainder of the paper, we focus exclusively on

retrograde flow,S(y,+ y,)<0. The case of prograde flow

was examined numerically in Ref. 9. No theory has yet been

ghly 2(v,+ vp)lan! vs| [see Eqs(16) and (14)], so the
mean free path fob vortices is

Vb |
22 a(vat o)l abna|

RGO%‘

(20

-1
=(E NaV—2(ya+yo)/ @S|

developed that covers this case. We will briefly return to the

prograde case in Sec. IV.

where the sum is over all specias Equation(19) is valid

For retrograde flow, we use the previous picture of aprovided that collisional events are well separated in space
two-body collision to determine the test-particle diffusion and time, that iSR0y>1,,.
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lll. KUBO ANALYSIS OF DISTANT COLLISIONS
K_
A. Radial diffusion D=3 (4Wr G > _2 |m||‘|

Mm=—% m=—wx

. . . .. m#0  m%0
Equation(19) neglects the diffusive effect of collisions

with large impact parameters. In the two-particle Boltzmann * * 2m

picture, such collisions produce no net radial step because f dtf ' drpf d6p, N(Tp)

the vortex deflection in the first half of the collision is ex-

actly reversed in the second half. However, these large im-

pact parameter collisions are not isolated events, and inter-

actions with the surrounding vortices break the time ) ) ) )

symmetry of the idealized two-body collision. Evolution of thet and 6, integrals implies that only the
First we determine the radial diffusion caused by mul-Mm=—m term contributes, giving

tiple large impact parameter collisions. To do so, we focus on .

a specific “test” vortex, located at positiar(t). This vortex DKX= E 2 2 f rpdrpNy(rp)

feels a fluctuating velocity fieldv(r,t), due to the cumula- e

tive effect of interactions with many distant vortices. The

(29

v ei(m+ﬁ)(00—0p0)+im[w(r)—w(rp)]t(r_<
M~

)Iml+m

fluctuation can be written as a sum of pairwise interactions <) 2
’ X S(mMLo(r)—o(rp)D| — (26)
_ 2 ¢p . .
ov(r,t)= TA& T (Ir=rph)x2, (21)  The & function can then be evaluated, yielding
where the sum runs over tHé vortices in the system, at DK=3 YoNo(T) i 1 27
positions r(t), and ¢p(|r—rp|)=(yp)/(47)In[[r—r,|] is 5 8|9 m . |m|’
the stream function created by tpéh vortex at the test vor- m#0
tex locationr(t). Here, we have dropped contributiofi§ any) to the radial

The radial component of this velocity fluctuation causesintegral from points that satisfy(r,)=w(r) with rp#r,
radial diffusion of the test vortex according to the Kubo for- which can occur for nonmonotonic rotation frequency

mula profiles??
" These contributions tBX are, typically, smaller than the
DK=f dt(Sv,(t) 5v,(0)), (22)  r=r, term because the sum ovar in Eq. (26) converges
0 whenr,#r.

where the(- ) indicates an average over an ensemble of iden-  Forr,=r, however, the sum is logarithmically divergent
tically prepared systems. The ensemble average and time i@t largem. This divergence occurs because nearby vortices

tegral can be easily evaluated using standard kinetic theorpllowing unperturbed orbits take a long time to separate,
techniques. First, the radial velocity fluctuation is decom-and therefore take a large radial step. The sum can be cut off

posed into azimuthal Fourier modes: by noting that there is a minimum separatidnfor which
unperturbed orbits are a good approximation. Adding the cut-

. im off to Eq. (27) implies

< _\Iml
’)’p em(o—op)| =
dur(t)= 21 4rr m_E_m T © W) 239
mro D*=3 D, 28
wherer -, is the lesser(greatey of r andr,. Next, the
trajectory of each vortex is specified using the approximation, o e

of integration along unperturbed orbits: each of the

=1,... N vortices rotate about the center of the overall vor- K yﬁnb(r) r
tex patch, with ab= 2[5(1)| In| 5 (29)
"p="py is the diffusion coefficient of species due to long-range

(249  collisions with specie®.

Op() = w(rp)t+ Op, One possible estimate for the minimum separatiois

Similarly the trajectory of the test vortex is given by the trapping distanck,;,, since vortices separated by, do
not follow unperturbed orbits. Another possibility is that vor-
r=ro, tices diffuse apart before they are carried away by the shear,

(24D and so cannot be treated with unperturbed orbit theory. For
vortices separated inby a distances, the time to shear apart
The ensemble average is then evaluated using standard te¢pidistance of ordes is given by 1/S|, and the time to dif-
hiques for random distributions, convertiig,25vpyp ) fusively separate by a distanaeis 5%/4D. Equating the
to Z;oppJr,dr deOEb?’bnb(rp) , Wheren,, is the den-  two times gives the diffusion-limited minimum separation

0(t) = w(r)t+ 6,.

sity of vortices of typeb. 5=[4DX/|S|1¥2. With these two processes degrading small
Substituting these results into E@?2) yields an expres- impact parameter collisions, the best estimatedan Eq.
sion for the radial diffusion coefficient, (29 is
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1000 F ] ment: see Eq(2). For larger shear, we compare the experi-
D™ N=5 x107 ment to the Kubo diffusionDX, (dashed ling since the

= < ’ ] density is too high for Boltzmann collisions to enter. The
‘g trend in the experimental data matches the Kubo theory with
:,:’ no adjustable parameters, although the absolute magnitude is
_ E off by roughly a factor of 4. The reason for this discrepancy
= is unknown, but could be due either to the difficulty of mea-
g . suring small shears in the experiments, or to the fact that the
> Dtotal plasma is not well into the 2D regime. For data shown in the
E o range 5/p=0.1 the bounce frequency of the ions along the

magnetic field is smaller than the shear rate, indicating that
the plasma ions cannot be well approximated by bounce-

.01 ¢ E 71 o 7 averaged rods of charge. Clearly, more work needs to be
q. (71) .. Ta done before we can say that the theory explains the experi-
0.001 b ‘ : ‘ E— ments in detail. Nevertheless, it is apparent that the shear
00001 0001 001 ot ! 10 reduction of the diffusive transport is well represented by the
28/p theory, for retrograde flow.

FIG. 2. Diffusion versus shear rate in a single species point vortex gas. Howeve_r’ f‘?r prograde flows, the theory fails. Diffusion
Solid and open squares are simulation results for retrograde and progradg@€asured in simulations of prograde fldwpen squargs
flows, respectively(Ref. 9. Open triangles are results of experiments on shows a different dependence on shear rate than the theory,
pure ion plasmasRef. 19. Solid line, Eq.(31) for total Do, assuming  gnd s up to an order of magnitude smaller than the predic-
N=10 000 identical vortices, in a circular patch of uniform vortidias in tion of Eq. (31). We will return to the issue of diffusion in

the simulations Dashed line, Eq(29) for DX, , takingd= 8. Dotted line, .
Eq. (72). q o g prograde flow in Sec. IV.

B. Azimuthal diffusion and superdiffusion

So far we have focused on diffusion in the radial direc-
d=Max(6,lap)- (30 tion because this is what can be most easily observed in
For the case wheré>|,,, this somewhatd hocapproach €xperiments. However, the velocity fluctuations given by Eq.
to the logarithmic divergence can be put on firmer footing by(21) imply that diffusion occurs in the direction as well.
keeping the effect of fluctuations in the vortex trajectories.The Kubo expression for diffusion in thdirection is
This will be discussed in Appendix A.

Finally, the total radial diffusion coefficient from D'§=J dt(Sv 4(t) Sv 4(0)). (32
small and large impact parameter collisions is the sum of the 0
Boltzmann and Kubo analyses, This diffusion coefficient can be evaluated in an analogous
plotal_ B | pK (31) manner to the previous derivation of radial diffusion. The
ab ab ab-

i ] _ result analogous to E@26) is
Equation(31) is correct only when the shear is large enough

so thatD™®'<D™ whereD™ is the zero-shear result given K ve & 2mP (=

by Eq. (2). However, comparing Eq€2) and (31), we see Dy=2 2=, m L Fpdrpny(rp)

that only a small sheaB/p~O(1/N?), is required to meet m#0

this inequality. In other words, small shears wipe out the g (r_\Im2

large-scale Dawson—Okuda vortices responsible for the dif- XS(Mla(r)—w(rp)]) a_r(Z) (33

fusion predicted by Eq2).
Figure 2 summarizes the theory and compares it to reTaking the derivative and then evaluating thefunction
cent simulations and experiments. The theoretical predictiofagain keeping only the contribution fromy=r) yields
(solid line) for DE:;a' is plotted versus a normalized shear rate )
2S/p. Computer simulations of diffusion in retrograde flows  pk_ % YoNp(T) > 1
consisting ofN=10" identical point vortices are shown as 0 8|S 7o |m|
solid squares, and can be seen to match the theory®well, m==
provided that the shear is sufficiently large. For small shearsvhich is identical to Eq(27). This implies that the diffusion
the simulations approach the Taylor—McNamara rédoit  coefficient from large impact parameter collisions is isotro-
10* vortices, shown by the lower arrow on the left. pic, even in the presence of shear, iD'gzDK. However,
Also shown in the same figure are experimental resultshis Kubo expression for diffusion does not provide a com-
for diffusion, measured recently in a pure ion plasma experiplete picture of the? dynamics in the sheared flow.
ment(open triangles'® The number of charges in the plasma We now use an analysis based on the Langevin equation
wasN=5x10’. For very low shears, the experimental dif- to show that the) dynamics is superdiffusive. Consider a test
fusion again approaches the Taylor—-McNamara re@bk  vortex located initially at positionrg, 6y). Then in a frame
upper arrow on the leftwhich is larger than in the simula- rotating with the local rotation frequenay(r,), a Langevin
tions because of the larger number of particles in the experipicture of the dynamics leads to the equations of motion

©

(39
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dr C. Klimontovitch approach to radial diffusion
——=0dv,(1), . : . e
dt vr(t) It is instructive to derive the radial diffusion due to large-
(35 impact-parameter collisions using a different approach,
r —sz(r)— o(ro)+ v (1), bgsec_j on the.KIimqntovitch fqrmalism. In t_his approach_ the
dt diffusive flux is derived by suitable averaging of the Klim-

ontovitch equation for a system of point vortices.
Each species of vortex, with circulation,, is described
by a separate Klimontovitch vorticity,(r,t), where

where év, and év 4 are the fluctuating velocity fields given
by Eq. (22). If we linearize these equations with respect to
the radial excursiordr(t), and defines6= 06— St— 6y, we

obtain Na
dsr m,l(r,o:pgl Yad(r—rp(1)) (42)
W: 5Ur(t),

andN, is the number of vortices of typa. The mean vor-
(36) ticity of speciesa is Z,(r,t)=(7,), Where the average is
rOT =S 81+ Sv (1), over an ensemble of macroscopically identical systems. The
Klimontovitch vorticity satisfies the Klimontovitch equation

whereS=rydw/dr, is the shear rate. A standard Langevin

analysis of these equations then yields for the radial diffusion (9_ta —-VW¥x2-V9,=0, (43
<5r2(t)>=thdt’(av,(t’)5v,(0)>(t—t’). (37)  WhereW(r,t) is the stream function of the system, which
0 satisfies the Poisson equation
For times long compared to the autocorrelation timele- )
fined as VAV (rO=2 7a(r.0). (44)
- fxdt’ t'(8v,(t")6v,(0))/DK (39) In order to derive a diffusive radial flux from Eq&l2)—(44),
0 one assumes that the mean vorticity for each species is a

Eq. (37) yields the usual result for diffusion in oreadial) function only of radius:

dimension: La= a1 ). (45

(or2(t))y=2DX(t—7), t>r (399  The mean stream functiop(r,t)=(W¥(r,t)) is then also cy-

, Ko lindrically symmetric according to the average of E44).

with D® given by Eq.(22). _ . Fluctuations away from the mean are describedSty(r,t)
However, for thed dynamics, the same analysis implies _ 7a(F0) = Z(r 1) and Sy(r,)=W(r,t)— (r,t). By aver-
12(56%(t)) = 25°DKE3+2DKt,  te 1, (40) aging Eq.(43), the radial_ fluxJ, of vorticity arising from

speciesa can be written in terms of these fluctuations:

where we have neglected terms involving the autocorrelation

time 7. Thus, thed dynamics is superdiffusive, scaling & 9%a + 1 i(rJ )=0 (46)

for large t. Note that Eq.(38) implies the autocorrelation gt roorla ’

time is of orderS™?, and sinceD}j=DX, we can therefore | pare

drop the second term in E¢40) to the order of approxima-

tion we are working. The origin of the superdiffusion is /1 f75¢5

clear: as particles diffuse radially, they are swept away in fa \r 96 fa)-

by the shear flow at a rate which is more rapid than their rate - _ .

of diffusion in 6. The vorticity flux Jp, Is related to the particle flui,a by

The shear also creates a correlation betwéeandr  I'r,=Jr,/7a. (The vorticity flux is equivalent to radial cur-

(47)

dynamics, rent density in the plasma analogue of this systérhe fluc-
) tuations can be evaluated approximately by linearizing Egs.
ro(86(t)or(t))=SDt?, t>r. 41 (43 and(44),

This correlation ofé6 with ér is easy to understand: as a

vortex takes a positive stefr, it moves into a shear flow ﬁjfa tow éjga - E 07; ;// r;_fa: ;
that tends to increaséd for S>0 and decreaséd for S ' '
<0. These correlations are similar in form to those which
occur between velocity and position at early times in Brown- ~ V28i= > 8a. (49
ian motion. Furthermore, although E@O0) keeps only the 2

diffusive effects of large-impact-parameter collisions, we ex-where w= w(r,t)=r"1gy(r,t)/Jr is the mean rotation fre-
pect that Boltzmann collisions treated in Sec. Il would pro-quency.

duce the same effects, so that we should reptéy D©°® The solution of Eqs(48) and (49) is most easily ex-
in Eq. (40). pressed by Fourier and Laplace transformatiodoénd oy

(48)
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in 6 andt, respectively, under the assumption that fluctuads the diffusion coefficient for species due to collisions

tions evolve rapidly compared to the transport time scale, s@ith specied, andﬁ'gb is an “off-diagonal” diffusion coef-
that time variation ofw and {, can be neglected; this is the ficient related tdjgb through the equation

Boguliubov ansatz. The transformed stream funciahis

. DK
defined by Egb:—yaga 2 (57)
. Yoéb
S(r,0,t)= z e"“"f ﬁeﬁéfp(r,m,s), (500  These off-diagonal terms are commonly found in multispe-
m=—o Tl

cies system&’ but cannot be derived from the Kubo ap-

. - _ - . proach of Sec. Il A. EquatioK56) is a generalization of Eq.
with a similar definition foréga(r,m,s). The SOM'O,”S of (27 that allows for the influence of collective effects on the
Egs.(48) and(49) for 6¢ are then given by a Green's func- interaction between vortices. When collective effects are ne-
tion, glected, one drops the term proportional &g,/dr in Eq.

o i, (52), resulting in a bare Green’s function
0

Sh=-2 2

Ya
- 1Zm6(r,rp,m,3). (51)

a

Gbare(r,r,m,—imw(r))=—m.
Substituting this into Eq56) returns us to Eq27), showing
19 9 m? im dla the quasilinear Kubo calculation of Sec. lll A agrees with the
Tor o~ r_2+§a: s+imo(r) ar G(r.rp,m,s) Klimontovitch analysis. Furthermore, we have already seen
in Sec. Il A that the diffusion coefficient is dominated by
_ (52) high azimuthal mode numbers, where the bare-interaction
r ' approximation is valid.
A similar expression fnga in a single-species system
. c has been derived by Chavantsalthough that author does
radial location. The solution fof{, in terms of §¢ is then not address the form of the cutoff to the logarithmic diver-
gence. However, his flux equation, E@8) of Ref. 16, is
im&;,)f?_faJrEN3 Y 8(r —r )Mo/ 27 incorrect, yielding a nonzero diffusive flux when only a
ar p=174 P 53 single species is present. Flux equations for multiple species
(53 systems involving mobility flux have also been put forward
by other authors! but these also incorrectly yield a nonzero
diffusion flux for a single-species system. For a single spe-
cies, we see thabX,=DX,, and Eq.(55) correctly yields
zero diffusion flux. It is well known that momentum conser-
1 vation requires that the dissipative flux must be viscous, not
Jp ()=— EE |m|J rodro|G(r,rp,,m—ima(r))|? diffusive, when there is only a single specfés.
m Equations(56) and (57) imply that the off-diagonal dif-

The Green’s functiorG satisfies

where O, is the initial 6 location of vortexp, andr is its

0a= r(s+imw(r))
The vorticity flux of species is obtained from Eqs(51)—
(53), with the assumption of random statistics for the initial
vortex positions:

Yolu(rp) La(r) fusion termsDK satisfy the expected Onsager relation for a
Yada(r) a§b<rp>) Dap _ Dpa
_ at’ J Zebh pl = , 58
Mo ary ' (54 Yala  Yolb 8

Details of the algebra leading to EG4) can be found in @S shown in Appendix B. These off-diagonal terms create a

Ref. 12 for the case of a single species; and the addition dfux of speciesa up or down a gradient in the vorticity from
multiple species to the problem is straightforward. speciesh. This flux is equivalent to the drift of vortices up

To obtain an expression for diffusive flux from E&4), and down a bacl_<ground_ vorticity grad_ient_, analyzed in Ref.
we evaluate the radial integral assuming that the dominant3- The radial drift velocity, =J, /{, is given by

contribution from thes function occurs at,=r, just as in DK
Sec. llIA. The flux can be then written in terms of local _ abi 59
o - Ur u(r). (59
diffusion coefficients, as a La OF
An identical expression was derived in Ref. 13 using differ-
K 9la =K 29 . e
J =-> | DK =2 -DK—=], (55  ent methods and was found to work well in describing the
a ) ar ar . e e . . .
motion of individual retrograde vortices up or down a gradi-
where ent in the background vorticity, provided that the correct

logarithmic cutoff is introduced. For the case of Ref. 13,

K Yolo “ . ) speciesa vortices had very large circulation compared to
Dab:mm;m Im[|G(r,r,m,—imao(r))| (56)  speciesb (the background vorticgsand the cutoffd in Eq.
m#0 (29) is then given byl .
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D. Diffusive plasma dynamics Assume for simplicity that there are only two specias,
Before we continue with a discussion of the test-particleandb' and thaty,>0. Equationd61) and (63) then become

diffusion coefficient itself, it is useful to consider some ofthe ¢ s"/%ay s — 64
. . béa {a=p (64)

plasma dynamics that follows from the particle flux equa-
tions, Eq.(55). The conservation properties of the equationsTWO cases must be examingd: y,> vy, and(ii) y,<0. The
are relatively straightforward and of sufficient importance to€ase 8<y,<7, can be obtained from cag® by flipping
merit discussion here. First, one can easily show that Eq$Pecies labels. For cas®, Eq. (63) implies thatC,>0, so
(55), (57), and(58) imply the left-hand side of Eq64) is a monotonically increasing
function of ¢, .

Therefore,{, is a monotonically increasing function of

; =0, (60 p. However, Eq(63) also implies
i.e., the total radial current is zero. This is dictated by con- ﬁ: bé«(ybh’a) -1 (65)
servation of canonical angular momentum in a binary colli-  {a a

sion, together with the fact that when two particles make arhus, if Yo>7a, {u!La is @ monotonically increasing func-

collisional step, they are at the same radius due to the reSQon of ¢.., which monotonically increases with Therefore

nance conditior($ function in Eq. (54). _ {1, increases ap increases, proving that species with
Equation(60) implies that the total vorticity profile(r) Yo> 7., concentrates at largex
a’

does not change with time in the evolution: For casd(i), we must haveC, <0 in Eqs.(64) and (65).
One can then easily see thgtis still monotonically increas-
> zar,t)=p(r). (61)  ingin p, but that|{, /¢, monotonically decreases jn Thus,
a

our conclusion remains unchanged: specés with vy,

The vorticity of individual species may rearrange, but total™ Yb concentrates at larger _ _

vorticity p(r) is a fixed function of position, determined by Concentration of vortices with large circulation around
the initial condition. From this it follows trivially that total P€aks of the vorticity may seem counterintuitive in a diffu-
canonical angular momentum density and potential energ§iVe Process. However, it can be thought of as an extension
density are constant in time. Under these dynamics, the sy$2 many vortices of the motion of a positiver negative

tem cannot approach a state of thermal equilibrigwhere ~ Single vortex up(or down a backgﬂound vorticity gradient,
the rotation frequency is radially unifojnfrom an arbitrary well-known to fluids researchetd!* It has been suggested

initial condition; to do so would require viscous fluxes that that %’Ch motion could lead to the formation of zonal
are not included in Eqg55). flows, < by amplifying vorticity peaks as new vortices move

Nevertheless. one can show that there isHatheorem. toward them. Unfortunately, our analysis shows that diffu-

and that dissipation leads to separation and concentration §{V& Vvortex dynamics leaves the overall flow field un-
each species, with no change in total vorticity. For the enchanged, so zonal flows do not develop from the fluxes de-

tropy functional scribed by EqG(55). . _
The equilibrium predicted by Eq63) can be easily ob-
5 Galr,t) served in simulations. Below we show the results of a mo-
S(t)= _Ea dr a In £(r, 1), (62 |ecular dynamics simulation ¢f=2000 point vortices, con-

sisting of two species:N;=1000 of species 1 with
a few lines of algebra show thdS/dt=0 (see Appendix € circulation y; =+, andN,=1000 of species 2 with circula-
The increase of entropy is due to a dissipative rearrangemetibn y,= vy/2. The density of each species is initially chosen
of the vorticity of each species; species with higher circulato be the same:
tion y, tend to concentrate in regions of higher total vortic-

. . A . r
ity. This can be proven as follows. The equilibrium state isp,(r,0)=n(r,0)= —2( 1— _),
one for whichJ; = 0. Equationg55) and(57) then imply the ! ? 27R R
following equilibrium relation between the densities: r<R=0, r>R,
£o(r)=Col £a(1) 1772, (63) ONy [ 1 (69
) ) ) ) p(l’,O)ZW 1—§ , r<R.
whereCy is a constant. Equatiof63) implies a Boltzmann- ™

type form for the equilibrium vorticity of each species, Over time, we observe that the density of species 1 concen-
{b(r) =L, exd —mwx(r)/T] where {, and T are constants, trates near the center compared to that of species 2. The
and x(r) is a function determined by the initial conditions evolution of mean square radigs?);(t) for each species is
(i.e., the total circulation in each species, and the total vorshown in Fig. 3. The mean square radius of species 1 de-
ticity as a function of radids However, identification of the creases, while that of species 2 increases.

function x(r) with the stream functior)(r) is possible only The late-time density profiles of the two specids (
provided that the plasma is in a state of overall thermal equi=0.02R?/y) are shown in Fig. 4. They compare well to the
librium, where overall fluid rotation frequeney(r) is inde-  theoretical profiles predicted by Eq$6.1) and(63), shown by
pendent ofr. the dashed lines:
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FIG. 3. Evolution of mean square radius in a molecular dynamics simulation
of a two species point vortex gas with circulatiopsind /2. The quantity ~ FIG. 5. Overall vorticity/charge density at the end of the ¢swlid) together
2N1(r?);+Nx(r?),, which is theoretically exactly conserved, is also plot- Wwith the initial vorticity density(dashed ling
ted. Arrows provide the theoretical equilibrium values for each quantity.

IV. DISCUSSION

Gar)= In this paper we have calculated diffusion coefficients

67) for a two-dimensional point vortex gas, or equivalently a
{a(r)=CZ5(r), two-dimensional guiding center plasma, in the presence of
With C. =12 .8247R%/N~. chosen so that shear in the fluid velocity. The diffusion is reduced as the
! ' v shear increases. When several species of point vortex are

—1+\1+4Cyp(r)
2C, ’

present, the diffusion causes vortices with relatively large

Ny=2a [ r {y(r)dr/y, circulation to concentrate at the peaks in the vorticity profile.

This concentration is a statistical version of the motion of a

=N,=2 f r 1dr/v-=1000. 68 smglel vortgx up a vornmty gradient, a well-known phenom-
2mem Landrly, (€8 enon in fluid mechanics*

There are several outstanding issues remaining. First, we
und that although diffusive fluxes increase the entropy of
the system, they do not cause the overall vorticity to vary in
time. Viscous fluxes are required in order for the system to
fully relax to a thermal equilibrium state. However, it has
previously been shown that for a monotonically decreasing
vorticity profile, the viscous fluxes vanish, at least when a

On the other hand, Fig. 5 shows that the total charge densit
has remained nearly unchanged, indicating that almost ng)
viscous evolution toward a rigid-rotor thermal equilibrium
has yet taken place.

1400 ; . . » 1 quasilinear Klimontovitch approach is used in their
calculation'? In order to understand viscous relaxation in
1200 N this system, we must go beyond the quasilinear approach.
Second, the quasilinear and Boltzmann methods used
1000 H™ | 1 here to calculat® '3 work only for retrograde flows, where
" (vat 7p)S<O0. It has previously been shown for the pro-
& 800 - ! 7 grade case,%,+ vp) S>0, that diffusion is considerably re-
= duced compared to the retrograde case with the same value
600 e X T of |S|. This effect can be seen in the simulation results pre-
2 W sented in Fig. 2 and is caused by vortices becoming trapped
400 W 1 through their mutual interaction, as shown by the streamlines
200 N | in Fig. 1(b).° No rigorous theory has been developed which
i can explain this reduction of diffusion in detail. One possible
approach might be to employ E9), which relates diffu-
0 t ' . . ; . ) . e
0 0.2 04 0.6 0.8 1 sion to the drift velocity of vortices up or down the vorticity

/R gradient in a second species. A “mix and move” estimate has

FIG. 4. Density profiles at the end of the molecular dynamics run. Also_been put forward for the drift VeIOCIJ&Of a species vortex

shown as dashed lines are the theoretical equilibrium profiles given by? @ bgckground of sp_e_cieb; in the case of prograde flow
Eq. (66). for which | y4|>|v,|, giving

Downloaded 01 May 2003 to 132.239.69.90. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



Phys. Plasmas, Vol. 10, No. 5, May 2003 Collisional diffusion in a two-dimensional point vortex . . . 1347

Ya b (30). In this appendix we improve the theory so thatam
Ur, = W ar (69) hoc cutoff need be introduced. This is accomplished by ac-
counting for the diffusion in the orbit integrals, using reso-
Using Eq.(59), this would imply that for prograde flow the nance broadening theory. The result has the added benefit

off-diagonal diffusion coefficient is that it qualitatively reproduces the Taylor—McNamara result,
Eqg. (2), in the limit of zero shear. Thus, the resonance-
—};b:')’ang,\, (70) broadening theory allows us to predict the diffusion for any
87°[S| value of the shear rat8.
and Eq.(58) would then imply We will consider only radial diffusion, and work in Car-
tesian coordinatesx(y) for simplicity, wherex corresponds
Kk Yoéb to the local radial direction ang corresponds to the loc#
ab:8777|s|' 1) direction. Now the shear flow has the foroy(x)y with

Thi It f de flow i ller than th t d shear rat&s= dvy/dx.
1S TesUlL ToT prograce Tow 1s smajer tan 'ne rerograde  n these coordinates, the Kubo formula for the radial

result, Eq.(29), by the factor[ 272 In(r/d)]"%. However, it diffusion coefficientDK is

remains to be seen whether this reduction in diffusion actu-

ally explains the reduction observed in simulations of pro-

grade flow. For prograde flow wheng= vy, Eq.(71) actu- o

ally underestimates the diffusion by an order of magnitude Dsz dt{ Sv,(t) Sv,(0)). (A1)
(see the dotted line in Fig.)2but this may be because Eq. 0
(69) is only valid for|y,|>|y,|. More simulationgand, we
hope, experimentsof systems with|y,|>|vy,| will be re-
quired in order to test the validity of Eq&/0) and(71), and

a theory valid for| y,|~| y,| is still required.

Finally, we observe that the results of this paper only
apply when the shear is strong enough to destroy the NN
Dawson—Okuda vortices that are present at zero shear. The K= S f
resonance-broadening approach used in Appendix A allows £
us to extend the results into the low-shear regime of
|S|r2/D™"®< 1, but these results only qualitatively reproduce X<eik-(r(t)—rp(t))eii(r(O)—rp(O))> (A2)
the Taylor—McNamara limit given by Ed2). Furthermore, '
in this low-shear regime a theory based on a local diffusion
coefficient is not rigorously valid, since neither the correla-  Now the trajectoryr (t) for each vortex is no longer
tion time nor the correlation length of the fluctuations aregpecified by Eq(24). Rather, we include the effect of diffu-

23 o; : . . . . .
small™ Since experiments on nonneutral plasmas can probgion in these orbits by adding random velocity fluctuations:
this low-shear regim&’ it is important to obtain accurate

results for the diffusive flux due to Dawson—Okuda vortices
in a cylindrical vortex patch. Theoretical investigations of t
this problem are currently underway. Xp(t)= Jodt v () +Xp,

The velocity fluctuations in the direction are provided by
Eqg. (22), which when Fourier transformed yields

d%kd’k  kyky
() —
(2m)* e

. dtyp'ygf
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APPENDIX A: CALCULATION OF THE LOGARITHMIC +Ypot fodt Svyp(1). (A3)
CUTOFF VIA RESONANCE-BROADENING
THEORY
In Sec. lll we presented results for diffusion due to mul- In principle these velocity fluctuations should also be

tiple simultaneous long-range collisions between point vorti-evaluated using Eq21). However, the averaging in EGA2)

ces. The theory was based on integration along unperturbetien becomes too complex. Rather, we will assume that these
orbits as the vortices are carried along by the shear flovfluctuations are uncorrelated white noise with Gaussian sta-
through the fluctuations. However, we found that the diffu-tistics such that (dv,dv,)=0, and (dv,(t)dv.(t"))

sion was dominated by interactions between nearby vorticess ( dv,(t) 5vy(t’)>=2DK5(t—t’). Then the average in Eq.
resulting in a logarithmic divergence that was cutoff by the(A2) implies that only terms withp=p survive, and the ex-
diffusion itself, on a spatial separation scake see Eq. pression becomes
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2 2
DK 2 Yaf j d*k d’k der (X )el(k+k) (ro—rp )+|k ylvo(xo) —vo(Xp )]t( )k k
(2m)* Po kK2
« <eikxfgdt[5vx(t)— By (1)] +iky{ [ 5at[ Boy (1) - dvy (0] +sr8dt L dt ov (')~ 5uxp(t/)]}>_ (A4)
|
The average over the white noise fluctuations can be carried Na(Xo) d2k k2
out by first writing the integrals as Riemann sums, then using DK=2 2DK f 2
the uncorrelated nature of the statistics. For instance, a
2
van 1 37 (= dk
502 :2 a Ka f 3 .
= 2DX (2m)° Kmin Ky
. t o ’ t/At
(efkylodt" duy(t)y = [TYAL f chvyn e'kyEn 18ty Performing the integral and taking,,,=1/r o implies
(A5) y2n, 3r3
D (A10)
wherev?=2D"/At, év, =bv,(nAt), and a Gaussian dis- a
tribution for the fluctuations is assumed. After completing  This result can only be regarded as approximate because
the squares in the integrals, the result is we made the local approximation that the integral in Eq.
(A7) is dominated byx, =x,, which is not true for zero
iky SLdt! Sy (t')y — a—K2tAT2/2_ o—k2DK Po
(et 2oy(1)) = Tl tat 2= g7 DT, (AB)  shear. Nevertheless, EGA10) does reproduce the expected

Taylor—McNamara scaling thdd*~ /N, at least forr,
~R. In order to do a better job for zero shear we must go
2 beyond the resonance-broadening approach used here. This
DK 2 n f f d%k dk f & n(x.) is a subject to which we will return in future work.
a po MalXpy When bothS andDX are nonzero, the local approxima-
tion is valid and the integrals in EgA8) can be performed
x @l (K+K)- (0= rp)) +iky[uo(X0) ~ volxp It in terms of special functions. First we add the periodicity
o cutoff k,i,=1/r; to thek, integral, and we then change vari-
mefzkzDth2kxkyDKSt272k§DK82t3/3 (A7) ables, takingu= 2D :|S|k t, v=12DX/[Sk,+u/2, and

Equation(A4) then becomes

*(=) 12K ' ky=2DX/[S]k,. Then Eq.(A8) becomes
2
For DK/(r(Z)S)< 1, the integral over positiompo is dominated DK= M i
by Xp,~Xo. Therefore we can expandio(Xo) —vo(Xp,) a  (2m)? |9
~S(x0—xp0). We can now perform the integrals oVef, " o o,
andk, yielding X f\/m/rodk [kyle™ (u/lky)ky +u?/12]
2 dk kS . uo/lk,|
DX= 2n(x)f dtf . dve
; Yalal%o 0 (277)2 kz((kx+kySt)2+k)2/) x _oc[ +(U_U/2)2][ +(U+U/2)2]. (All)
x @~ 2k?DKt—2kk DKSE-2KDK %3 (A8)

The integral ovew can be evaluated in terms of error func-

If we set DX=0 on the right-hand side of E¢A8), the tions. If we define

integrals overt andk, can be performed easily, yieldin o _ (edu —
g X p 'l g o) =i 7K, _e(U/ky)(ZPy*UZ/Z)
ou

2
DKZE M % (A9) - _ _
2 8|S| |ky| e(u/ky)[lky+ (u/2)]2 C{ \/(iu +2ky)2u/ky]
X erf

At small wave numbers the logarithmic divergence is cutoff ~/(iu+2?)2 2
at k,i,=1/r, since they (i.e., 6) direction is periodic with Y
period 2mry. At large wave numbers the cutoff is Bf,a e(u/ky)liky— (u/2)] ‘/(iu—2?)2u/?
=215, where 5=[4DX/|S|12. Equation(A9) then returns - erf 4 4
to Eq.(29). \/(iu—ZK,)Z 2

If we keep finiteD¥ in Eq. (A8), the divergence at large
k, is regularized. In the limit a$—0, the integrals can be
easily performed, yielding then Eq.(A11l) becomes
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FIG. 6. The functiorg(?y) appearing in Eq(A13).
K_ na(XO) i ?g( y) (A13)
a (2m)? |9 JV@oNishir Y ?y

A plot of g(k,) is shown in Fig. 6. A%k, —0, one can show
that g—m2/2. Also at large ky, one can show thag

—>377/8F2y, so the integral in Eq(AL13) is not divergent. In
the limit that 2DX/[S[ry<1, Eq.(A13) becomes
'}’2 N, 2 w?
DK=Z 2 2?8 2 —In(ary/y2D¥/|9)), (A14)

where « is a number of order unity. This reproduces the

logarithmic cutoff previously introduced in aud hocfashion
in Eq. (29). The value ofa, found numerically by evaluating
the integral in Eq(A13), is a~1/4.

APPENDIX B: ONSAGER RELATIONS FOR
DIFFUSION IN A POINT VORTEX GAS

The continuity equation for the vorticity of species
may be written as

a

o=V

(B1)
whereJ, is the vorticity flux. According to Onsagét,the
vorticity flux caused by diffusion can be expressed in th
following manner:
Ja=% LapVXp, (B2)
whereX,=dS5/d¢y,, S is the entropy density of the gas, and
where L,, are symmetric transport coefficients satisfying

L.p=Lpa. For an ideal gas of point vortices, the entropy
density is
b
S==2 >Ing, (B3)
b Yb

Collisional diffusion in a two-dimensional point vortex . . . 1349

[see EQ.(62)] which implies thatX,= —(1/yp)(In ,+1).
Therefore, we can write EqB1) as

Jd
ga =2 V-DapVis, (B4)
where
- Lab
= . B5
B vl B5)
Sincel ;p=Lpa,
—  Lpa Lap wéb—=
Dy.= = = B6
ba Yala Yala 7Vala (B6)

proving Eq.(58).

APPENDIX C: ENTROPY PRODUCTION FROM
DIFFUSION

In this appendix we derive an expression for the rate of
entropy production due to the diffusive flux given by Eg.
(55). This expression shows explicitly that entropy increases
in the diffusive rearrangement of multiple charge species.

Starting with Eq.(62) for the entropysS, we take a time
derivative and apply Eq46) to obtain

ds

o 1,109
H_g Zf d?r = g (r 3 )lInLa+1]. (C1)

Integrating by parts, and substituting far from Eq. (55
yields

S5 3 [

1 aga
Yala &r

K aga

Dav ) — (C2

ab 3r

—K agb}

ExpressingDX, andDX, in terms of the symmetric Onsager
transport coefficient ,,, via Egs. (B5) and (57), Eq. (C2)

becomes
3 [l

Finally, applying the Onsager relation,,=Ly,, EQ.
(C3) can be written as

Yoo
Yala

3§a aé’b
ar or } ©3

1 ) Yolb ([ 94a 2
E f arla aza( ar)
')’aga((?_gb) (9§a (9§b
YVolp\ ar o ar
ab (?ga &gb 2
——E m[?’biby—hiay} . (CH

This expression impliedS/dt=0, with equality only when
the square brackets vanish. However, E§5) and (57) im-

ply that this condition is equivalent to the equilibrium con-
dition Jr, =0.
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