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Collisional diffusion in a two-dimensional point vortex gas
or a two-dimensional plasma
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This paper analyzes collisional diffusion of a multispecies two-dimensional~2D! point vortex gas,
or a 2D plasma, in the presence of retrograde shear. Diffusion both along and across the shear flow
is calculated using Boltzmann, Kubo, Klimontovitch and resonance-broadening theories. It is shown
that diffusion is reduced in the presence of shear, just as for the shear reduction of transport observed
in fusion plasmas. Here, however, fluctuations are thermal rather than turbulent, allowing a rigorous
calculation of the transport. When there are several species of point vortices, Onsager relations
require that the diffusive flux conserves the total vorticityr(r ), which is proportional to charge
density in the plasma analogue. Surprisingly, the diffusive fluxconcentratesvortices with large
positive ~or negative! circulations at maxima~or minima! of the mean vorticity profile. ©2003
American Institute of Physics.@DOI: 10.1063/1.1564596#
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I. INTRODUCTION

The two-dimensional~2D! point vortex gas is a usefu
paradigm for more complex fluid flows, and has been s
cessfully applied to the study of 2D Euler flow,1 fluid
turbulence,2–5 and transport in neutral6–8 and non-neutral
plasmas.9 This paper considers the diffusion of a multisp
cies point vortex gas, focusing on the effect that an app
stable shear flow has on the diffusion.

Using kinetic theory based on Boltzmann, Kubo, a
Klimontovitch approaches, we show that the diffusion is
duced in the presence of applied retrograde velocity sh
This result is similar to the shear reduction of transport
served in fusion plasmas.10 Here however, the fluctuation
are assumed to be thermal, rather than turbulent, and co
quently the resulting shear reduction of the transport can
calculated rigorously.

The point vortex gas has relevance to magnetized p
mas due to the well-known isomorphism between the
namics of an ideal incompressible 2D fluid, described by
Euler equations, and the dynamics of a guiding-cen
plasma of charged rods undergoing 2DE3B drift
dynamics.11 The i th charged rod, with chargeqi per unit
length, is equivalent to a point vortex with circulation

g i52
4pc

B
qi , ~1!

whereB is the magnetic field strength andc is the speed of
light. Also, the electrostatic potentialf(r ) is related to the
stream functionc(r ) by c5cf/B.

Our results thus apply directly to experiments that m
sure collisional diffusion in cylindrical non-neutral plasm
columns. Such columns rotate with anE3B rotation fre-
quencyv(r )5Vu(r )/r that can have substantial radial she
We therefore focus our attention on cylindrically symmet
flows characterized by a shear rateS(r )[r ]v/]r . For an
electron column withg i.0, a monotonically decreasing den
sity n(r ) gives a retrograde flow withg iS,0.
1331070-664X/2003/10(5)/1338/13/$20.00
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Taylor and McNamara previously considered the co
sional diffusion of a homogeneous,shear-free, 2D guiding
center plasma as a possible model for anomalous transpo
fusion plasmas.7 In this seminal work, the authors obtaine
the diffusion coefficient of a ‘‘test’’ point vortex, assumin
that the distribution of vortices is random and uncorrelat
as

DTM5
1

2

c

B
A(

i 51

N qi
2

p
5

1

8p
A(

i 51

N g i
2

p
. ~2!

Equation~2! exhibits two important properties: first, the di
fusion scales as 1/B, in agreement with the semiempirica
Bohm-scaling law. Second, the diffusion coefficient is n
intensive, but rather increases in proportion to the sys
sizeR, sinceN}R2. This is because the diffusion is dom
nated by large-scale fluctuations~Dawson–Okuda vortices8!
whose size is of orderR. The Coulomb interaction is inher
ently long-range, and ‘‘collisions’’ can occur with arbitraril
large impact parameters; these long-rangeE3B drift colli-
sions are quite distinct from the short-range veloci
scattering collisions normally considered in plasma phys

The Dawson–Okuda vortices are simply fluctuations
the local vorticity, i.e., fluctuations in the charge density.
portion of the system containing roughlyNe point vortices,
each with circulationg, might be expected to have a fluctu
tion in the circulation of ordergANe. Such a fluctuation is a
locally rotating eddy that turns over in a time of orderDte

5Re
2/gANe, whereRe is the size of the eddy; the eddy pre

sumably dissipates in a timeDte . The macroscopic diffusion
is caused by a sequence of these random fluctuations,
step sizeRe and correlation timeDte . This gives the scaling
of Eq. ~2!, asDTM;Re

2/Dte;gANe.
However, Eq.~2! neglects all correlations between th

point vortices. One expects Debye shielding to limit t
maximum size of eddies to a Debye lengthlD . In this case
the diffusion is reduced to roughlyDTMlD /Re .7,8
8 © 2003 American Institute of Physics
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In this paper we consider the effect that stable shear fl
has on the Taylor–McNamara diffusion in a cylindrical vo
tex patch of overall radiusR, consisting ofN point vortices.
The shear flow destroys the largest Dawson–Okuda vorti
and greatly reduces the diffusion compared to Eq.~2!. A
previous paper analyzed the radial diffusion forN identical
point vortices, and also compared the theoretical result
simulations of the radial diffusion.9 Here, we generalize the
theory in several respects. First, we consider a system
sisting of several species. Diffusion coefficientsD̄ab for the
diffusion of speciesa due to gradients in the density of sp
ciesb are derived, and are shown to obey Onsager relati
The overall evolution of the system under the action of th
diffusive fluxes is considered. The Onsager relations im
that the diffusive flux conserves the total vorticity profi
r(r )5(agana(r ,t), wherena(r ) is the number of vortices
of speciesa per unit area.

Thus, the diffusive fluxes cannot drive the system to
thermal equilibrium state, in which vorticityr is related to
the stream functionc by r5Cebc, with C a constant andb
the inverse temperature. Instead, the system approach
thermal equilibrium state only if the effects of viscosity a
taken into account. The viscosity of a sheared point-vor
gas was analyzed previously, and calculated for the cas
nonmonotonicv(r ), but is still an active area of research.12

We will see that the diffusive fluxes do increase an entro
functional. Surprisingly, these fluxes cause point vortic
with large positive circulations to concentrate in regions
maximum average vorticity, and vortices with large negat
circulation to concentrate at vorticity minima@without
changing the total vorticity profiler(r ), however#. This
counter-intuitive vorticity concentration is closely related
the macroscopic motion of a vorticity clump up a bac
ground gradient or a vorticity holedown a background
gradient.13–15

Other authors16–18 have also considered the diffusion
vorticity in both turbulent and thermal 2D Euler flow, an
have come to similar conclusions concerning the relation
tween diffusion and gradient-driven drift. However, Refs.
and 18 associate this drift with amobility flux caused by the
gradient not in the vorticity, but in the stream function. Th
is correct only if the vorticity is already related to the strea
function through the Boltzmann distribution. Unfortunate
the authors use this mobility form for the drift to mistaken
conclude that diffusion and mobility can drive the system
a global thermal equilibrium state, even for a single spec
system. Since thermal equilibrium was already assum
their analysis cannot be employed to understand the
proach to thermal equilibrium.

Finally, we evaluate the diffusion along the direction
the shear flow~the u direction!. We find that vortices expe
rience superdiffusion in theu direction as they are swep
away by the shear flow.

II. BOLTZMANN ANALYSIS OF CLOSE COLLISIONS

In this section, we analyze the vortex motion during is
lated two-vortex collisions. This analysis applies to vortic
whose separation is small compared to an average inte
Downloaded 01 May 2003 to 132.239.69.90. Redistribution subject to A
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ticle spacing. Consider two vortices, at positionsra and rb ,
with circulationsga andgb , respectively. The vortices inter
act as they are carried along by a mean circular flowv(r )
with shearS(r ).

The Hamiltonian describing this dynamics is

H5E
0

r a
r dr gav~r !1E

0

r b
r dr gbv~r !

1
gagb

4p
ln@ ura2rbu2#, ~3!

with equations of motion

dua

dt
5

]H

]Pua

,
dPua

dt
52

]H

]ua
~4!

~and similarly for vortexb), where Pua
5gar a

2/2 is the ca-
nonical angular momentum associated with vortexa and
(r a ,ua) are polar coordinates. The symmetry ofH under
rotation implies that total angular momentum is conserv
Pua

1Pub
5constant. Let us define this constant in terms o

mean radial positionR for the two vortices:

Pua
1Pub

5~ga1gb!R2/2. ~5!

Then assuming that vortices are closely spaced so thaura

2rbu/R!1, it is useful to work in a frame rotating with
frequencyv(R), where the Hamiltonian is transformed to

H85H2~Pua
1Pub

!v~R!. ~6!

Defining Dr a,b5r a,b2R, we Taylor expandH8 to sec-
ond order inDr ab /R andua2ub . The result is

H85
S

2
~gaDr a

21gbDr b
2!1

gagb

4p
ln@~r a2r b!2

1R2~ua2ub!2#, ~7!

whereS5S(R). The equations of motion that follow from
Eq. ~7! are

dra

dt
52

gbR

2p

ua2ub

~r a2r b!21R2~ua2ub!2 , ~8a!

R
dua

dt
5SDr a1

gb

2p

r a2r b

~r a2r b!21R2~ua2ub!2 , ~8b!

and similarly for vortexb. Equation~8a! implies thatgar a

1gbr b5const. To first order inDr ab /R this is equivalent to
Eq. ~5!, and this equation allows us to identify the consta
asgar a1gbr b5(ga1gb)R. However, this implies that

gaDr a1gbDr b50. ~9!

Furthermore, Eqs.~8b! and ~9! imply that gaua1gbub

5const. If we defineQ5(gaua1gbub)/(ga1gb), we can
then see that the position of the ‘‘center of charge’’R
[(R,Q) is conserved in the dynamics~to first order inua

2ub and Dr a,b /R); in other words, the displacemen
Dra,b5ra,b2R[(Dr a,b, Dua,b) satisfy

gaDra1gbDrb50. ~10!
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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If we now use this relationship between the vortex positio
in Eq. ~7!, we can write the Hamiltonian in terms of only th
position of vortexa:

H8~r a ,ua!5
S

2

ga~ga1gb!

gb
Dr a

21gagb4p

3 lnF S 11
ga

gb
D 2

~Dr a
21R2Dua

2!G . ~11!

The contours of constantH8 are shown in Fig. 1, blowing up
a region centered onr5R, and withR assumed to be on th
positivex axis, i.e.,Q50, soDua5ua . Thus, the center o
the circular flow,r 50, is well to the left of the figure, and
thex direction corresponds tor , while they direction corre-
sponds tou. In Fig. 1~a!, theH8 contours are drawn assum
ing S(ga1gb),0. This is termed a ‘‘retrograde flow.’’ The
opposite case,S(ga1gb).0, is shown in Fig. 1~b!, and is
termed a ‘‘prograde flow.’’ In these diagrams, vortexa fol-
lows one of the constant-H contours shown, and theb vortex
is at the point

Drb52gaDra /gb , ~12!

according to Eq.~10!.
For the case of retrograde flow, a separatrix in the fl

exists, with X points for vortexa at locations (Dr a ,ua)
5(6 l ab,0) where the trapping widthl ab is defined as

l ab5A22gb
2/@4p~ga1gb!S#. ~13!

The equation for the separatrix,Dr s(u), of vortexa is

Dr s
25 l ab

2 ~11 ln@~Dr s
21R2u2!/ l ab

2 # !. ~14!

The b vortex separatrix has the same form, but is scaled
the factor ga /gb . Vortices located on streamlines outsid
their respective separatrices stream past one another, an
not suffer any net change in theirx positions from their
interaction. However, vortices within the separatrix regi
@the shaded region in Fig. 1~a!# reflect off of one another, and
therefore take a step in ther direction due to their collision.

For the remainder of the paper, we focus exclusively
retrograde flow,S(ga1gb),0. The case of prograde flow
was examined numerically in Ref. 9. No theory has yet b
developed that covers this case. We will briefly return to
prograde case in Sec. IV.

For retrograde flow, we use the previous picture o
two-body collision to determine the test-particle diffusio

FIG. 1. Flow diagram for~a! retrograde flowS(ga1gb),0; ~b! prograde
flow S(ga1gb).0.
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coefficient for diffusion of vortexa in the r direction due to
collisions with vortices of typeb. Vortex a encounters a
sequence of randomly distributed vortices of typeb moving
past it. The flux ofb vortices in theu direction, Gub , is
determined by the shear, as

Gub5nbSDr. ~15!

Here,nb is the areal density~in cm22) of theb vortices, and
Dr5Dr b2Dr a is ther displacement~impact parameter! be-
tween thea andb vortices when the vortices have a largeu
displacement~i.e., before this collision begins, but after th
previous collision with some other vortex has ended!. Let us
call thisu-distanceu0 . Then it is not difficult to show that if
Dr satisfies

uDru<u~ga1gb!/gbuDr s~u0!, ~16!

vortexa will be within its separatrix and take a step in thex
direction of magnitudeu2gbDr/(ga1gb)u.

The test particle diffusion coefficientDab
B due to these

Boltzmann collisions between vortices of typea and b is
given by half the square of this step, multiplied by the rate
which these steps occur, and integrated over all impact
rameters that lead to a finite step. This can be written

Dab
B 5

1

2 E2(ga1gb)Dr s(u0)/gb

(ga1gb)Dr s(u0)/gb
dDrS 2gb

ga1gb
Dr D 2

uGubu

5nbuSu@~ga1gb!/gb#2Dr s
4~u0!, ~17!

where in the second line we have used Eq.~15!. SinceRu0

@ l ab , the solution of Eq.~14! for Dr s(u0) is

Dr s~u0!' l abAln~R2u0
2/ l ab

2 !. ~18!

Using Eq.~13! for l ab then yields

Dab
B 5

gb
2nb

4p2uSu
ln2@R2u0

2/ l ab
2 #. ~19!

This expression generalizes our previous single-spe
result9 to multiple vortex species. The diffusion scales
1/uSu, displaying the same shear reduction of transport
tained previously for one species.

The argument of the logarithm depends onu0 , the mean
u displacement~mean-free path! between collisions. We can
estimate this displacement as follows. The cross section
collisions between a speciesb vortex and speciesa is
roughly 2u(ga1gb) l ab /gbu @see Eqs.~16! and ~14!#, so the
mean free path forb vortices is

Ru0'U gb

2(a~ga1gb!l abna
U

5S (
a

naA22~ga1gb!/pSD 21

, ~20!

where the sum is over all speciesa. Equation~19! is valid
provided that collisional events are well separated in sp
and time, that is,Ru0. l ab .
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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III. KUBO ANALYSIS OF DISTANT COLLISIONS

A. Radial diffusion

Equation~19! neglects the diffusive effect of collision
with large impact parameters. In the two-particle Boltzma
picture, such collisions produce no net radial step beca
the vortex deflection in the first half of the collision is e
actly reversed in the second half. However, these large
pact parameter collisions are not isolated events, and in
actions with the surrounding vortices break the tim
symmetry of the idealized two-body collision.

First we determine the radial diffusion caused by m
tiple large impact parameter collisions. To do so, we focus
a specific ‘‘test’’ vortex, located at positionr (t). This vortex
feels a fluctuating velocity fielddv(r ,t), due to the cumula-
tive effect of interactions with many distant vortices. T
fluctuation can be written as a sum of pairwise interactio

dv~r ,t !52 (
p51

N
]fp

]r
~ ur2r pu!3 ẑ, ~21!

where the sum runs over theN vortices in the system, a
positions r p(t), and fp(ur2r pu)5(gp)/(4p)ln@ur2r pu# is
the stream function created by thepth vortex at the test vor-
tex locationr (t).

The radial component of this velocity fluctuation caus
radial diffusion of the test vortex according to the Kubo fo
mula

DK5E
0

`

dt^dv r~ t !dv r~0!&, ~22!

where thê •& indicates an average over an ensemble of id
tically prepared systems. The ensemble average and tim
tegral can be easily evaluated using standard kinetic the
techniques. First, the radial velocity fluctuation is deco
posed into azimuthal Fourier modes:

dv r~ t !5 (
p51

N
gp

4pr (
m52`
mÞ0

`
im

umu
eim(u2up)S r ,

r .
D umu

, ~23!

where r ,(.) is the lesser~greater! of r and r p . Next, the
trajectory of each vortex is specified using the approximat
of integration along unperturbed orbits: each of thep
51, . . . ,N vortices rotate about the center of the overall v
tex patch, with

r p5r p0
,

~24a!
up~ t !5v~r p!t1up0

.

Similarly the trajectory of the test vortex is given by

r 5r 0 ,
~24b!

u~ t !5v~r !t1u0 .

The ensemble average is then evaluated using standard
niques for random distributions, converting^(p( p̄gpg p̄¯&
to ( p̄dpp̄*r p drp dup0

(bgb
2nb(r p) ¯ , wherenb is the den-

sity of vortices of typeb.
Substituting these results into Eq.~22! yields an expres-

sion for the radial diffusion coefficient,
Downloaded 01 May 2003 to 132.239.69.90. Redistribution subject to A
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DK5(
b

gb
2

~4pr !2 (
m52`
mÞ0

`

(
m̄52`
m̄Þ0

`
~2 !mm̄

umuum̄u

3E
0

`

dtE
0

`

r p drpE
0

2p

dup0
nb~r p!

3ei (m1m̄)(u02up0
)1 im[v(r )2v(r p)] tS r ,

r .
D umu1um̄u

. ~25!

Evolution of the t and up0
integrals implies that only the

m̄52m term contributes, giving

DK5(
b

gb
2

~4pr !2 (
m52`
mÞ0

`

2p2E
0

`

r p drp nb~r p!

3d~m@v~r !2v~r p!# !S r ,

r .
D 2umu

. ~26!

The d function can then be evaluated, yielding

DK5(
b

gb
2nb~r !

8uSu (
m52`
mÞ0

`
1

umu
. ~27!

Here, we have dropped contributions~if any! to the radial
integral from points that satisfyv(r p)5v(r ) with r pÞr ,
which can occur for nonmonotonic rotation frequen
profiles.12

These contributions toDK are, typically, smaller than the
r 5r p term because the sum overm in Eq. ~26! converges
when r pÞr .

For r p5r , however, the sum is logarithmically diverge
at largem. This divergence occurs because nearby vorti
following unperturbed orbits take a long time to separa
and therefore take a large radial step. The sum can be cu
by noting that there is a minimum separationd for which
unperturbed orbits are a good approximation. Adding the c
off to Eq. ~27! implies

DK5(
b

Dab
K , ~28!

where

Dab
K 5

gb
2nb~r !

4uS~r !u
lnS r

dD ~29!

is the diffusion coefficient of speciesa due to long-range
collisions with speciesb.

One possible estimate for the minimum separationd is
the trapping distancel ab , since vortices separated byl ab do
not follow unperturbed orbits. Another possibility is that vo
tices diffuse apart before they are carried away by the sh
and so cannot be treated with unperturbed orbit theory.
vortices separated inr by a distanced, the time to shear apar
a distance of orderd is given by 1/uSu, and the time to dif-
fusively separate by a distanced is d2/4DK. Equating the
two times gives the diffusion-limited minimum separatio
d5@4DK/uSu#1/2. With these two processes degrading sm
impact parameter collisions, the best estimate ford in Eq.
~29! is
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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d5Max~d,l ab!. ~30!

For the case whered. l ab , this somewhatad hocapproach
to the logarithmic divergence can be put on firmer footing
keeping the effect of fluctuations in the vortex trajectori
This will be discussed in Appendix A.

Finally, the total radial diffusion coefficient from
small and large impact parameter collisions is the sum of
Boltzmann and Kubo analyses,

Dab
total5Dab

B 1Dab
K . ~31!

Equation~31! is correct only when the shear is large enou
so thatD total,DTM, whereDTM is the zero-shear result give
by Eq. ~2!. However, comparing Eqs.~2! and ~31!, we see
that only a small shear,S/r;O(1/N1/2), is required to meet
this inequality. In other words, small shears wipe out
large-scale Dawson–Okuda vortices responsible for the
fusion predicted by Eq.~2!.

Figure 2 summarizes the theory and compares it to
cent simulations and experiments. The theoretical predic
~solid line! for Daa

total is plotted versus a normalized shear ra
2S/r. Computer simulations of diffusion in retrograde flow
consisting ofN5104 identical point vortices are shown a
solid squares, and can be seen to match the theory w9

provided that the shear is sufficiently large. For small she
the simulations approach the Taylor–McNamara result2 for
104 vortices, shown by the lower arrow on the left.

Also shown in the same figure are experimental res
for diffusion, measured recently in a pure ion plasma exp
ment~open triangles!.19 The number of charges in the plasm
wasN553107. For very low shears, the experimental d
fusion again approaches the Taylor–McNamara result~the
upper arrow on the left! which is larger than in the simula
tions because of the larger number of particles in the exp

FIG. 2. Diffusion versus shear rate in a single species point vortex
Solid and open squares are simulation results for retrograde and pro
flows, respectively~Ref. 9!. Open triangles are results of experiments
pure ion plasmas~Ref. 19!. Solid line, Eq. ~31! for total Daa assuming
N510 000 identical vortices, in a circular patch of uniform vorticity~as in
the simulations!. Dashed line, Eq.~29! for Daa

K , taking d5d. Dotted line,
Eq. ~71!.
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ment: see Eq.~2!. For larger shear, we compare the expe
ment to the Kubo diffusionDaa

K ~dashed line! since the
density is too high for Boltzmann collisions to enter. Th
trend in the experimental data matches the Kubo theory w
no adjustable parameters, although the absolute magnitu
off by roughly a factor of 4. The reason for this discrepan
is unknown, but could be due either to the difficulty of me
suring small shears in the experiments, or to the fact that
plasma is not well into the 2D regime. For data shown in
range 2S/r*0.1 the bounce frequency of the ions along t
magnetic field is smaller than the shear rate, indicating t
the plasma ions cannot be well approximated by boun
averaged rods of charge. Clearly, more work needs to
done before we can say that the theory explains the exp
ments in detail. Nevertheless, it is apparent that the sh
reduction of the diffusive transport is well represented by
theory, for retrograde flow.

However, for prograde flows, the theory fails. Diffusio
measured in simulations of prograde flow~open squares!
shows a different dependence on shear rate than the th
and is up to an order of magnitude smaller than the pre
tion of Eq. ~31!. We will return to the issue of diffusion in
prograde flow in Sec. IV.

B. Azimuthal diffusion and superdiffusion

So far we have focused on diffusion in the radial dire
tion because this is what can be most easily observed
experiments. However, the velocity fluctuations given by E
~21! imply that diffusion occurs in theu direction as well.
The Kubo expression for diffusion in theu direction is

Du
K5E

0

`

dt^dvu~ t !dvu~0!&. ~32!

This diffusion coefficient can be evaluated in an analogo
manner to the previous derivation of radial diffusion. T
result analogous to Eq.~26! is

Du
K5(

b

gb
2

~4p!2 (
m52`
mÞ0

`
2p2

m2 E
0

`

r p drp nb~r p!

3d~m@v~r !2v~r p!# !F ]

]r S r ,

r .
D umuG2

. ~33!

Taking the derivative and then evaluating thed function
~again keeping only the contribution fromr p5r ) yields

Du
K5(

b

gb
2nb~r !

8uSu (
mÞ0
m5`

`
1

umu
~34!

which is identical to Eq.~27!. This implies that the diffusion
coefficient from large impact parameter collisions is isot
pic, even in the presence of shear, i.e.,Du

K5DK. However,
this Kubo expression for diffusion does not provide a co
plete picture of theu dynamics in the sheared flow.

We now use an analysis based on the Langevin equa
to show that theu dynamics is superdiffusive. Consider a te
vortex located initially at position (r 0, u0). Then in a frame
rotating with the local rotation frequencyv(r 0), a Langevin
picture of the dynamics leads to the equations of motion

s.
de
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



n
to

in
io

s

tio

-
is
n
a

a

ich
n

x
ro

e-
ch,
he
-

The
n

h

is a

-

qs.

1343Phys. Plasmas, Vol. 10, No. 5, May 2003 Collisional diffusion in a two-dimensional point vortex . . .
dr

dt
5dv r~ t !,

~35!

r
du

dt
5v~r !2v~r 0!1dvu~ t !,

wheredv r and dvu are the fluctuating velocity fields give
by Eq. ~21!. If we linearize these equations with respect
the radial excursiondr (t), and definedu5u2St2u0, we
obtain

ddr

dt
5dv r~ t !,

~36!

r 0

dd u

dt
5Sdr 1dvu~ t !,

whereS5r 0 dv/dr0 is the shear rate. A standard Langev
analysis of these equations then yields for the radial diffus

^dr 2~ t !&52E
0

t

dt8^dv r~ t8!dv r~0!&~ t2t8!. ~37!

For times long compared to the autocorrelation timet, de-
fined as

t5E
0

`

dt8 t8^dv r~ t8!dv r~0!&/DK, ~38!

Eq. ~37! yields the usual result for diffusion in one~radial!
dimension:

^dr 2~ t !&52DK~ t2t!, t@t ~39!

with DK given by Eq.~22!.
However, for theu dynamics, the same analysis implie

r 0
2^du2~ t !&5 2

3 S2DKt312Du
Kt, t@t, ~40!

where we have neglected terms involving the autocorrela
time t. Thus, theu dynamics is superdiffusive, scaling ast3

for large t. Note that Eq.~38! implies the autocorrelation
time is of orderS21, and sinceDu

K5DK, we can therefore
drop the second term in Eq.~40! to the order of approxima
tion we are working. The origin of the superdiffusion
clear: as particles diffuse radially, they are swept away iu
by the shear flow at a rate which is more rapid than their r
of diffusion in u.

The shear also creates a correlation betweenu and r
dynamics,

r 0^du~ t !dr ~ t !&5SDKt2, t@t. ~41!

This correlation ofdu with dr is easy to understand: as
vortex takes a positive stepdr , it moves into a shear flow
that tends to increasedu for S.0 and decreasedu for S
,0. These correlations are similar in form to those wh
occur between velocity and position at early times in Brow
ian motion. Furthermore, although Eq.~40! keeps only the
diffusive effects of large-impact-parameter collisions, we e
pect that Boltzmann collisions treated in Sec. II would p
duce the same effects, so that we should replaceDK by D total

in Eq. ~40!.
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C. Klimontovitch approach to radial diffusion

It is instructive to derive the radial diffusion due to larg
impact-parameter collisions using a different approa
based on the Klimontovitch formalism. In this approach t
diffusive flux is derived by suitable averaging of the Klim
ontovitch equation for a system ofN point vortices.

Each species of vortex, with circulationga , is described
by a separate Klimontovitch vorticityha(r ,t), where

ha~r ,t !5 (
p51

Na

gad~r2r p~ t !! ~42!

andNa is the number of vortices of typea. The mean vor-
ticity of speciesa is za(r ,t)5^ha&, where the average is
over an ensemble of macroscopically identical systems.
Klimontovitch vorticity satisfies the Klimontovitch equatio

]ha

]t
2¹C3 ẑ•¹ha50, ~43!

where C(r ,t) is the stream function of the system, whic
satisfies the Poisson equation

¹2C~r ,t !5(
a

ha~r ,t !. ~44!

In order to derive a diffusive radial flux from Eqs.~42!–~44!,
one assumes that the mean vorticity for each species
function only of radius:

za5za~r ,t !. ~45!

The mean stream functionc(r ,t)[^C(r ,t)& is then also cy-
lindrically symmetric according to the average of Eq.~44!.
Fluctuations away from the mean are described bydza(r ,t)
[ha(r ,t)2za(r ,t) anddc(r ,t)[C(r ,t)2c(r ,t). By aver-
aging Eq.~43!, the radial fluxJr a

of vorticity arising from
speciesa can be written in terms of these fluctuations:

]za

]t
1

1

r

]

]r
~rJr a

!50, ~46!

where

Jr a
52 K 1

r

]dc

]u
dzaL . ~47!

The vorticity flux Jr a
is related to the particle fluxG r a

by
G r a

5Jr a
/ga . ~The vorticity flux is equivalent to radial cur

rent density in the plasma analogue of this system.! The fluc-
tuations can be evaluated approximately by linearizing E
~43! and ~44!,

]dza

]t
1v

]dza

]u
2

1

r

]dc

]u

]za

]r
50, ~48!

¹2dc5(
a

dza , ~49!

wherev5v(r ,t)5r 21]c(r ,t)/]r is the mean rotation fre-
quency.

The solution of Eqs.~48! and ~49! is most easily ex-
pressed by Fourier and Laplace transformation ofdz anddc
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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in u and t, respectively, under the assumption that fluctu
tions evolve rapidly compared to the transport time scale
that time variation ofv andza can be neglected; this is th
Boguliubov ansatz. The transformed stream functiondĉ is
defined by

dc~r ,u,t !5 (
m52`

`

eimuE ds

2p i
estdĉ~r ,m,s!, ~50!

with a similar definition fordẑa(r ,m,s). The solutions of
Eqs.~48! and~49! for dĉ are then given by a Green’s func
tion,

dĉ52(
a

(
p51

Na ga

2p

e2 imup0

s1 i l v~r p!
G~r ,r p ,m,s!. ~51!

The Green’s functionG satisfies

F1

r

]

]r
r

]

]r
2

m2

r 2 1(
a

im

s1 imv~r !

]za

]r GG~r ,r p ,m,s!

5
d~r 2r p!

r
, ~52!

whereup0
is the initial u location of vortexp, and r p is its

radial location. The solution fordẑa in terms ofdĉ is then

dẑa5

imdf̂
]za

]r
1(p51

Na gad~r 2r p!eimup0/2p

r ~s1 imv~r !!
. ~53!

The vorticity flux of speciesa is obtained from Eqs.~51!–
~53!, with the assumption of random statistics for the init
vortex positions:

Jr a
~r !52

1

2r (
m

umu E r p drpuG(r ,r p ,m,2 imv~r !)u2

3d@v~r !2v~r p!#(
b

S gbzb~r p!

r

]za~r !

]r

2
gaza~r !

r p

]zb~r p!

]r p
D . ~54!

Details of the algebra leading to Eq.~54! can be found in
Ref. 12 for the case of a single species; and the additio
multiple species to the problem is straightforward.

To obtain an expression for diffusive flux from Eq.~54!,
we evaluate the radial integral assuming that the domin
contribution from thed function occurs atr p5r , just as in
Sec. III A. The flux can be then written in terms of loc
diffusion coefficients, as

Jr a
52(

b
FDab

K ]za

]r
2D̄ab

K ]zb

]r G , ~55!

where

Dab
K 5

gbzb

2uSu (
m52`
mÞ0

`

umuuG~r ,r ,m,2 imv~r !!u2 ~56!
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is the diffusion coefficient for speciesa due to collisions
with speciesb, andD̄ab

K is an ‘‘off-diagonal’’ diffusion coef-
ficient related toDab

K through the equation

D̄ab
K 5

gazaDab
K

gbzb
. ~57!

These off-diagonal terms are commonly found in multisp
cies systems,20 but cannot be derived from the Kubo ap
proach of Sec. III A. Equation~56! is a generalization of Eq
~27! that allows for the influence of collective effects on th
interaction between vortices. When collective effects are
glected, one drops the term proportional to]za /]r in Eq.
~52!, resulting in a bare Green’s function

Gbare~r ,r ,m,2 imv~r !!52
1

2umu
.

Substituting this into Eq.~56! returns us to Eq.~27!, showing
the quasilinear Kubo calculation of Sec. III A agrees with t
Klimontovitch analysis. Furthermore, we have already se
in Sec. III A that the diffusion coefficient is dominated b
high azimuthal mode numbers, where the bare-interac
approximation is valid.

A similar expression forDaa
K in a single-species system

has been derived by Chavanis,16 although that author doe
not address the form of the cutoff to the logarithmic dive
gence. However, his flux equation, Eq.~28! of Ref. 16, is
incorrect, yielding a nonzero diffusive flux when only
single species is present. Flux equations for multiple spe
systems involving mobility flux have also been put forwa
by other authors,17 but these also incorrectly yield a nonze
diffusion flux for a single-species system. For a single s
cies, we see thatD̄aa

K 5Daa
K , and Eq.~55! correctly yields

zero diffusion flux. It is well known that momentum conse
vation requires that the dissipative flux must be viscous,
diffusive, when there is only a single species.21

Equations~56! and ~57! imply that the off-diagonal dif-
fusion termsD̄K satisfy the expected Onsager relation for
point vortex gas,

D̄ab

gaza
5

D̄ba

gbzb
, ~58!

as shown in Appendix B. These off-diagonal terms creat
flux of speciesa up or down a gradient in the vorticity from
speciesb. This flux is equivalent to the drift of vortices u
and down a background vorticity gradient, analyzed in R
13. The radial drift velocityv r a

5Jr a
/za is given by

v r a
52

D̄ab
K

za

]

]r
zb~r !. ~59!

An identical expression was derived in Ref. 13 using diff
ent methods and was found to work well in describing t
motion of individual retrograde vortices up or down a gra
ent in the background vorticity, provided that the corre
logarithmic cutoff is introduced. For the case of Ref. 1
speciesa vortices had very large circulation compared
speciesb ~the background vortices!, and the cutoffd in Eq.
~29! is then given byl ab .
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D. Diffusive plasma dynamics

Before we continue with a discussion of the test-parti
diffusion coefficient itself, it is useful to consider some of t
plasma dynamics that follows from the particle flux equ
tions, Eq.~55!. The conservation properties of the equatio
are relatively straightforward and of sufficient importance
merit discussion here. First, one can easily show that E
~55!, ~57!, and~58! imply

(
a

Jr a
50, ~60!

i.e., the total radial current is zero. This is dictated by co
servation of canonical angular momentum in a binary co
sion, together with the fact that when two particles mak
collisional step, they are at the same radius due to the r
nance condition~d function! in Eq. ~54!.

Equation~60! implies that the total vorticity profiler(r )
does not change with time in the evolution:

(
a

za~r ,t !5r~r !. ~61!

The vorticity of individual species may rearrange, but to
vorticity r(r ) is a fixed function of position, determined b
the initial condition. From this it follows trivially that tota
canonical angular momentum density and potential ene
density are constant in time. Under these dynamics, the
tem cannot approach a state of thermal equilibrium~where
the rotation frequency is radially uniform! from an arbitrary
initial condition; to do so would require viscous fluxes th
are not included in Eqs.~55!.

Nevertheless, one can show that there is anH theorem,
and that dissipation leads to separation and concentratio
each species, with no change in total vorticity. For the
tropy functional

S~ t !52(
a
E d2r

za~r ,t !

ga
ln za~r ,t !, ~62!

a few lines of algebra show thatdS/dt>0 ~see Appendix C!.
The increase of entropy is due to a dissipative rearrangem
of the vorticity of each species; species with higher circu
tion ga tend to concentrate in regions of higher total vort
ity. This can be proven as follows. The equilibrium state
one for whichJr a

50. Equations~55! and~57! then imply the
following equilibrium relation between the densities:

zb~r !5Cb@za~r !#gb /ga, ~63!

whereCb is a constant. Equation~63! implies a Boltzmann-
type form for the equilibrium vorticity of each specie
zb(r )5zb0

exp@2gbx(r)/T# where zb0
and T are constants

and x(r ) is a function determined by the initial condition
~i.e., the total circulation in each species, and the total v
ticity as a function of radius!. However, identification of the
functionx(r ) with the stream functionc(r ) is possible only
provided that the plasma is in a state of overall thermal eq
librium, where overall fluid rotation frequencyv(r ) is inde-
pendent ofr .
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Assume for simplicity that there are only two speciesa
andb, and thatga.0. Equations~61! and~63! then become

Cbza
gb /ga1za5r. ~64!

Two cases must be examined:~i! gb.ga and~ii ! gb,0. The
case 0,gb,ga can be obtained from case~i! by flipping
species labels. For case~i!, Eq. ~63! implies thatCb.0, so
the left-hand side of Eq.~64! is a monotonically increasing
function of za .

Therefore,za is a monotonically increasing function o
r. However, Eq.~63! also implies

zb

za
5Cbza

~gb /ga! 21. ~65!

Thus, if gb.ga , zb /za is a monotonically increasing func
tion of za , which monotonically increases withr. Therefore
zb /za increases asr increases, proving that speciesb, with
gb.ga , concentrates at largerr.

For case~ii !, we must haveCb,0 in Eqs.~64! and~65!.
One can then easily see thatza is still monotonically increas-
ing in r, but thatuzb /zau monotonically decreases inr. Thus,
our conclusion remains unchanged: speciesa, with ga

.gb , concentrates at largerr.
Concentration of vortices with large circulation aroun

peaks of the vorticity may seem counterintuitive in a diff
sive process. However, it can be thought of as an exten
to many vortices of the motion of a positive~or negative!
single vortex up~or down! a background vorticity gradient
well-known to fluids researchers.13,14 It has been suggeste
that such motion could lead to the formation of zon
flows,22 by amplifying vorticity peaks as new vortices mov
toward them. Unfortunately, our analysis shows that dif
sive vortex dynamics leaves the overall flow field u
changed, so zonal flows do not develop from the fluxes
scribed by Eq.~55!.

The equilibrium predicted by Eq.~63! can be easily ob-
served in simulations. Below we show the results of a m
lecular dynamics simulation ofN52000 point vortices, con-
sisting of two species:N151000 of species 1 with
circulationg15g, andN251000 of species 2 with circula
tion g25g/2. The density of each species is initially chos
to be the same:

n1~r ,0!5n2~r ,0!5
3N

2pR2 S 12
r

RD ,

r ,R50, r .R,
~66!

r~r ,0!5
9Ng

4pR2 S 12
r

RD , r ,R.

Over time, we observe that the density of species 1 conc
trates near the center compared to that of species 2.
evolution of mean square radius^r 2& i(t) for each species is
shown in Fig. 3. The mean square radius of species 1
creases, while that of species 2 increases.

The late-time density profiles of the two speciest
50.02R2/g) are shown in Fig. 4. They compare well to th
theoretical profiles predicted by Eqs.~61! and~63!, shown by
the dashed lines:
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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z2~r !5
211A114C1r~r !

2C1
,

~67!
z1~r !5C1z2

2~r !,

with C1512.824pR2/Ng, chosen so that

N152pE r z1~r !dr/g1

5N252pE r z2~r !dr/g251000. ~68!

On the other hand, Fig. 5 shows that the total charge den
has remained nearly unchanged, indicating that almos
viscous evolution toward a rigid-rotor thermal equilibriu
has yet taken place.

FIG. 3. Evolution of mean square radius in a molecular dynamics simula
of a two species point vortex gas with circulationsg andg/2. The quantity
2N1^r

2&11N2^r
2&2 , which is theoretically exactly conserved, is also plo

ted. Arrows provide the theoretical equilibrium values for each quantity

FIG. 4. Density profiles at the end of the molecular dynamics run. A
shown as dashed lines are the theoretical equilibrium profiles given
Eq. ~66!.
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IV. DISCUSSION

In this paper we have calculated diffusion coefficien
for a two-dimensional point vortex gas, or equivalently
two-dimensional guiding center plasma, in the presence
shear in the fluid velocity. The diffusion is reduced as t
shear increases. When several species of point vortex
present, the diffusion causes vortices with relatively la
circulation to concentrate at the peaks in the vorticity profi
This concentration is a statistical version of the motion o
single vortex up a vorticity gradient, a well-known phenom
enon in fluid mechanics.13,14

There are several outstanding issues remaining. First
found that although diffusive fluxes increase the entropy
the system, they do not cause the overall vorticity to vary
time. Viscous fluxes are required in order for the system
fully relax to a thermal equilibrium state. However, it ha
previously been shown that for a monotonically decreas
vorticity profile, the viscous fluxes vanish, at least when
quasilinear Klimontovitch approach is used in the
calculation.12 In order to understand viscous relaxation
this system, we must go beyond the quasilinear approac

Second, the quasilinear and Boltzmann methods u
here to calculateDab

total work only for retrograde flows, where
(ga1gb)S,0. It has previously been shown for the pr
grade case, (ga1gb)S.0, that diffusion is considerably re
duced compared to the retrograde case with the same v
of uSu. This effect can be seen in the simulation results p
sented in Fig. 2 and is caused by vortices becoming trap
through their mutual interaction, as shown by the streamli
in Fig. 1~b!.9 No rigorous theory has been developed whi
can explain this reduction of diffusion in detail. One possib
approach might be to employ Eq.~59!, which relates diffu-
sion to the drift velocity of vortices up or down the vorticit
gradient in a second species. A ‘‘mix and move’’ estimate h
been put forward for the drift velocity13 of a speciesa vortex
in a background of speciesb, in the case of prograde flow
for which ugau@ugbu, giving

n

o
y

FIG. 5. Overall vorticity/charge density at the end of the run~solid! together
with the initial vorticity density~dashed line!.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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v r a
52

ga

8p2uSu
]zb

]r
. ~69!

Using Eq.~59!, this would imply that for prograde flow the
off-diagonal diffusion coefficient is

D̄ab
K 5

gaza

8p2uSu
, ~70!

and Eq.~58! would then imply

Dab
K 5

gbzb

8p2uSu
. ~71!

This result for prograde flow is smaller than the retrogra
result, Eq.~29!, by the factor@2p2 ln(r/d)#21. However, it
remains to be seen whether this reduction in diffusion ac
ally explains the reduction observed in simulations of p
grade flow. For prograde flow wherega5gb , Eq. ~71! actu-
ally underestimates the diffusion by an order of magnitu
~see the dotted line in Fig. 2!; but this may be because Eq
~69! is only valid for ugau@ugbu. More simulations~and, we
hope, experiments! of systems withugau@ugbu will be re-
quired in order to test the validity of Eqs.~70! and~71!, and
a theory valid forugau'ugbu is still required.

Finally, we observe that the results of this paper o
apply when the shear is strong enough to destroy
Dawson–Okuda vortices that are present at zero shear.
resonance-broadening approach used in Appendix A all
us to extend the results into the low-shear regime
uSur 2/D total,1, but these results only qualitatively reprodu
the Taylor–McNamara limit given by Eq.~2!. Furthermore,
in this low-shear regime a theory based on a local diffus
coefficient is not rigorously valid, since neither the corre
tion time nor the correlation length of the fluctuations a
small.23 Since experiments on nonneutral plasmas can pr
this low-shear regime,19 it is important to obtain accurat
results for the diffusive flux due to Dawson–Okuda vortic
in a cylindrical vortex patch. Theoretical investigations
this problem are currently underway.
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APPENDIX A: CALCULATION OF THE LOGARITHMIC
CUTOFF VIA RESONANCE-BROADENING
THEORY

In Sec. III we presented results for diffusion due to m
tiple simultaneous long-range collisions between point vo
ces. The theory was based on integration along unpertu
orbits as the vortices are carried along by the shear fl
through the fluctuations. However, we found that the dif
sion was dominated by interactions between nearby vorti
resulting in a logarithmic divergence that was cutoff by t
diffusion itself, on a spatial separation scaled : see Eq.
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~30!. In this appendix we improve the theory so that noad
hoc cutoff need be introduced. This is accomplished by
counting for the diffusion in the orbit integrals, using res
nance broadening theory. The result has the added be
that it qualitatively reproduces the Taylor–McNamara res
Eq. ~2!, in the limit of zero shear. Thus, the resonanc
broadening theory allows us to predict the diffusion for a
value of the shear rateS.

We will consider only radial diffusion, and work in Car
tesian coordinates (x,y) for simplicity, wherex corresponds
to the local radial direction andy corresponds to the localu
direction. Now the shear flow has the formv0(x) ŷ with
shear rateS5]v0 /]x.

In these coordinates, the Kubo formula for the rad
diffusion coefficientDK is

DK5E
0

`

dt^dvx~ t !dvx~0!&. ~A1!

The velocity fluctuations in thex direction are provided by
Eq. ~22!, which when Fourier transformed yields

DK5 (
p51

N

(
p̄51

N E
0

`

dt gpg p̄E d2k d2k̄

~2p!4
~2 !

kyk̄y

k2k̄2

3^eik•(r (t)2rp(t))ei k̄•(r (0)2rp(0))&. ~A2!

Now the trajectoryr p(t) for each vortex is no longe
specified by Eq.~24!. Rather, we include the effect of diffu
sion in these orbits by adding random velocity fluctuation

xp~ t !5E
0

t

dt dvxp
~ t !1xp0

,

yp~ t !5E v0~xp~ t !!dt1yp0
1E

0

t

dt dvyp
~ t !

'v0~xp0
!t1SE

0

t

dt8E
0

t9
dt8 dvxp~ t8!

1ypo1E
0

t

dt dvyp~ t !. ~A3!

In principle these velocity fluctuations should also
evaluated using Eq.~21!. However, the averaging in Eq.~A2!
then becomes too complex. Rather, we will assume that th
fluctuations are uncorrelated white noise with Gaussian
tistics such that ^dvxdvy&50, and ^dvx(t)dvx(t8)&
5^dvy(t)dvy(t8)&52DKd(t2t8). Then the average in Eq
~A2! implies that only terms withp5 p̄ survive, and the ex-
pression becomes
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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DK5(
a

ga
2E

0

`

dtE d2k d2k

~2p!4 E d2r p0
n~xp0

!ei (k1 k̄)•(r02rp0
)1 iky[v0(x0)2v0(xp0

)] t~2 !
kyk̄y

k2k̄2

3^eikx*0
t dt[dvx(t)2dvxp

(t)] 1 iky$*0
t dt[dvy(t)2dvyp

(t)] 1S*0
t dt9*0

t9dt8[dvx(t8)2dvxp
(t8)] %&. ~A4!
ri
in

-
ng

of
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-

ity
i-
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The average over the white noise fluctuations can be car
out by first writing the integrals as Riemann sums, then us
the uncorrelated nature of the statistics. For instance,

^eiky*0
t dt8 dvy(t8)&5Pn51

t/Dt E
2`

`

dd vyn

e2
dvyn

2

2v̄2

A2p v̄2
eiky(n51

t/Dt Dtdvyn,

~A5!

where v̄252DK/Dt, dvyn
5dvy(nDt), and a Gaussian dis

tribution for the fluctuations is assumed. After completi
the squares in the integrals, the result is

^eiky*0
t dt8 dvy(t8)&5e2ky

2tDt v̄2/25e2ky
2DKt. ~A6!

Equation~A4! then becomes

DK5(
a

ga
2naE

0

`

dtE d2k d2k̄

~2p!4 E d2r p0
na~xp0

!

3ei (k1 k̄)•(r02rp0
)1 iky[v0(x0)2v0(xp0

)] t

3~2 !
kyk̄y

k2k̄2
e22k2DKt22kxkyDKSt222ky

2DKS2t3/3. ~A7!

For DK/(r 0
2S)!1, the integral over positionxp0

is dominated
by xp0

'x0 . Therefore we can expand:v0(x0)2v0(xp0
)

'S(x02xp0
). We can now perform the integrals overr p0

and k̄, yielding

DK5(
a

ga
2na~x0!E

0

`

dtE d2k

~2p!2

ky
2

k2~~kx1kySt!21ky
2!

3e22k2DKt22kxkyDKSt222ky
2DKS2t3/3. ~A8!

If we set DK50 on the right-hand side of Eq.~A8!, the
integrals overt andkx can be performed easily, yielding

DK5(
a

ga
2na~x0!

8uSu E dky

ukyu
. ~A9!

At small wave numbers the logarithmic divergence is cut
at kmin51/r 0 , since they ~i.e., u! direction is periodic with
period 2pr 0 . At large wave numbers the cutoff is atkmax

52p/d, whered5@4DK/uSu#1/2. Equation~A9! then returns
to Eq. ~29!.

If we keep finiteDK in Eq. ~A8!, the divergence at large
kx is regularized. In the limit asS→0, the integrals can be
easily performed, yielding
Downloaded 01 May 2003 to 132.239.69.90. Redistribution subject to A
ed
g

f

DK5(
a

ga
2na~x0!

2DK E d2k

~2p!2

ky
2

k6

5(
a

ga
2na

2DK

1

~2p!2

3p

4 E
kmin

` dky

ky
3 .

Performing the integral and takingkmin51/r 0 implies

DK
2 5(

a

ga
2na

2

3r 0
2

32p
. ~A10!

This result can only be regarded as approximate beca
we made the local approximation that thexp0

integral in Eq.
~A7! is dominated byxp0

.x0, which is not true for zero
shear. Nevertheless, Eq.~A10! does reproduce the expecte
Taylor–McNamara scaling thatDK;gAN, at least forr 0

'R. In order to do a better job for zero shear we must
beyond the resonance-broadening approach used here.
is a subject to which we will return in future work.

When bothS andDK are nonzero, the local approxima
tion is valid and the integrals in Eq.~A8! can be performed
in terms of special functions. First we add the periodic
cutoff kmin51/r 0 to theky integral, and we then change var
ables, takingu5A2DKuSukyt, v5A2DK/uSukx1u/2, and
k̄y5A2DK/uSuky . Then Eq.~A8! becomes

DK5(
a

ga
2na~x0!

~2p!2

2

uSu
E

0

`

du

3E
A~2DK/uSu!/r 0

`

dk̄yuk̄yue2 ~u/uk̄yu![ k̄y
2
1u2/12]

3E
2`

` dv e2uv2/uk̄yu

@ k̄y
21~v2u/2!2#@ k̄y

21~v1u/2!2#
. ~A11!

The integral overv can be evaluated in terms of error fun
tions. If we define

g~ k̄y!5 ip k̄yE
0

` du

u
e~u/ k̄y!(2k̄y

2
2u2/2)

3F e~u/ k̄y![ i k̄y1 ~u/2!] 2

A~ iu12k̄y!2
erfcFA~ iu12k̄y!2u/ k̄y

2
G

2
e~u/ k̄y![ i k̄y2 ~u/2)#

A~ iu22k̄y!2
erfcFA~ iu22k̄y!2u/ k̄y

2
G G
~A12!

then Eq.~A11! becomes
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DK5(
a

ga
2na~x0!

~2p!2

2

uSu
E

A~2DK/uSu!/r 0

`

dk̄y

g~ k̄y!

k̄y

. ~A13!

A plot of g( k̄y) is shown in Fig. 6. Ask̄y→0, one can show
that g→p2/2. Also at large k̄y , one can show thatg
→3p/8k̄y

2 , so the integral in Eq.~A13! is not divergent. In
the limit thatA2DK/uSur 0!1, Eq. ~A13! becomes

DK5(
a

ga
2na

~2p!2

2

uSu
p2

2
ln~ar 0 /A2DK/uSu!, ~A14!

where a is a number of order unity. This reproduces t
logarithmic cutoff previously introduced in anad hocfashion
in Eq. ~29!. The value ofa, found numerically by evaluating
the integral in Eq.~A13!, is a'1/4.

APPENDIX B: ONSAGER RELATIONS FOR
DIFFUSION IN A POINT VORTEX GAS

The continuity equation for the vorticity of speciesa
may be written as

]za

]t
52¹•Ja , ~B1!

whereJa is the vorticity flux. According to Onsager,24 the
vorticity flux caused by diffusion can be expressed in
following manner:

Ja5(
b

Lab¹Xb , ~B2!

whereXb5]S/]zb , S is the entropy density of the gas, an
where Lab are symmetric transport coefficients satisfyi
Lab5Lba . For an ideal gas of point vortices, the entro
density is

S52(
b

zb

gb
ln zb ~B3!

FIG. 6. The functiong( k̄y) appearing in Eq.~A13!.
Downloaded 01 May 2003 to 132.239.69.90. Redistribution subject to A
e

@see Eq.~62!# which implies thatXb52(1/gb)(ln zb11).
Therefore, we can write Eq.~B1! as

]za

]t
5(

b
¹•D̄ab¹zb , ~B4!

where

D̄ab5
Lab

gbzb
. ~B5!

SinceLab5Lba ,

D̄ba5
Lba

gaza
5

Lab

gaza
5

gbzb

gaza
D̄ab , ~B6!

proving Eq.~58!.

APPENDIX C: ENTROPY PRODUCTION FROM
DIFFUSION

In this appendix we derive an expression for the rate
entropy production due to the diffusive flux given by E
~55!. This expression shows explicitly that entropy increas
in the diffusive rearrangement of multiple charge species

Starting with Eq.~62! for the entropyS, we take a time
derivative and apply Eq.~46! to obtain

dS
dt

5(
a

1

ga
E d2r

1

r

]

dr
~r Jr a

!@ ln za11#. ~C1!

Integrating by parts, and substituting forJr a
from Eq. ~55!

yields

dS
dt

5(
a

(
b
E d2r FDab

K ]za

]r
2D̄ab

K ]zb

]r G 1

gaza

]za

]r
. ~C2!

ExpressingDab
K andD̄ab

K in terms of the symmetric Onsage
transport coefficientLab via Eqs. ~B5! and ~57!, Eq. ~C2!
becomes

dS
dt

5(
a

(
b
E d2r L abFgbzb

gaza
S ]za

]r D 2

2
]za

]r

]zb

]r G . ~C3!

Finally, applying the Onsager relationLab5Lba , Eq.
~C3! can be written as

dS
dt

5
1

2 (
ab

E d2r L abFgbzb

gaza
S ]za

]r D 2

1
gaza

gbzb
S ]zb

]r D 2

22
]za

]r

]zb

]r G
5

1

2 (
ab

E d2r
Lab

gazagbzb
Fgbzb

]za

]r
2gaza

]zb

]r G2

. ~C4!

This expression impliesdS/dt>0, with equality only when
the square brackets vanish. However, Eqs.~55! and~57! im-
ply that this condition is equivalent to the equilibrium co
dition Jr a

50.
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