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Trapped-particle diocotron modes
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Recent experiments have characterized trapped-particle modes on a non-neutral plasmgAolumn

A. Kabantsev, C. F. Driscoll, T. J. Hilsabeck, T. M. O’Neil, and J. H. Yu, Phys. Rev. 8&t225002

(20011, and in this paper we present a theoretical model of the modes. Theoretical predictions for
the mode frequency, damping rate, and eigenmode structure are compared to experimental
observation. The modes are excited on a non-neutral plasma column in which classes of trapped and
passing particles have been created by the application of a potential barrier. The column resides in
a Malmberg—Penning trap, and the barrier is created by applying a voltage to an azimuthally
symmetric section of the wall near the axial mid-point of the column. Low energy particles near the
edge of the columriwhere the barrier is strongare trapped in one end or the other, while high
energy particles near the center of the column transit the entire length. The modes have azimuthal
variation €=1,2,..., and oddz-symmetry. The trapped particles on either side of the barrier
executeEXB drift oscillations producing density perturbations that are 180° out of phase with each
other, while passing particles run back and forth along the field lines attempting to Debye shield the
perturbed charge density. The mode is damped by collisional scattering across the separatrix
between trapped and passing particles. The damping rate is calculated using a boundary layer
analysis of the Fokker—Planck equation. It is also shown that the damping is associated with the
radial transport of plasma particles. 03 American Institute of Physics.
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I. INTRODUCTION Particles with low axial velocity are then trapped in either
end, while high axial velocity particles pass back and forth
Electric and magnetic field inhomogeneities in plasmagver the full length of the column.
containment devices cause a fraction of the particles to re- The mode dynamics is easy to understand. Trapped par-
main localized in certain regions. This condition gives rise toticles in the two ends of the column undergo low frequency
a class of low frequency electrostatic oscillations known ag=xB drift oscillations that are 180° out of phase with each
trapped-particle modesin these modes, trapped particles other, while passing particles move back and forth along the

remain isolated from the global mode structure and experimagnetic field lines Debye shielding the charge perturbation
enceEXB drift oscillations locally, while passing particles ¢ tne trapped particles.

stream along the field lines Debye shielding the trapped-  The mode damping is due to collisional scattering of
part!cle charge density per'Furbatlons. In th'IS sense, trappe‘}lﬁarginally trapped particles. Following the analysis of
particle modes resemble drift waves wherein the trapped PaRosenbluth, Ross, and Kostomatofor the dissipative

ticles play the role of ions and passing particles the role OErapped-ion mode, we solve the Fokker—Planck equation in a
electrons. Trapped-particle modes were originally investi- '

gated for toroidal geometry, but have been predicted for ang1 In boundary layer near the separatrix between trapped and

observed in other geometries, such as the Columbia Lineé}assing particles, and find that the relative damping scales
Machine? ' ke v/w, rather thanv/w. Here, v is the collision fre-

Recent experiments with magnetically confined non-duency.® is the mode frequency, and the square root is im-

neutral plasma columns have characterized a new trappeB-Ortant because/w is rs]mall.”_ ) h h &
particle mode: the trapped-particle diocotron mode.this To understand why collisions have an enhanced effect

paper we provide a theoretical description of the mode, ang§€ar the separatrix, first note that the trapped and passing
compare theoretical prediction to experimental measuremef@rticles experience very different dynamics. In the absence
for the frequency, damping rate, and eigenmode structur&f collisions, the perturbed velocity distributions for the
The agreement is goodor example, 10% percent for fre- trapped and passing particles would be discontinu@us
quency and 50% percent for the damping yaieer a sub- value and slopeat the separatrix. Small angle scattering,
stantial range of experimental parameters. described by the Fokker—Planck collision operator, is essen-
The modes are excited on a non-neutgaire electron  tial in smoothing the discontinuity. Steep gradients in a nar-
plasma column to which an azimuthally symmetric potentialrow boundary layer enhance the effective collision frequency
barrier has been applied creating classes of trapped and pa#s-the point where an order unity correctihe smoothing
ing particles. This electrostatic barrier, the squeeze voltages made to the perturbed velocity distribution.
is typically applied near the axial mid-point of the column. Significantly, the correction contains a component that is
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Ly A L A static, 6-symmetric barrier is created by applying a
' ' ' negative voltagdthe “squeeze” potentialto a short cylin-
Ry - drical section of the bounding wall. The resulting barrier
_________ - potential is an increasing function of radius, with more par-
ticles trapped near the radial edge of the plasma than near the
_________ -+ B trap axis. At any given radius, the squeeze potential presents
__________ — an insurmountable barrier to low axial velocity particles,
trapping them in the end regions. Particles with high axial
'I' J_ I J_ '|' \{elocity pass over the squeeze potential and sample the en-
Ve = Vg — Ve tire length of the column.

In the experiments, the plasma has time to come into
FIG. 1. A pure electron plasma column confined in a Malmberg—Penningh€rmal equilibrium along each field line before the mode is

trap that has been partially divided by the application of an external squeezZ@unched. Thus, the equilibrium distribution function is given
voltage,V¢,. End cylinders are maintained at negative potentials to provideby

axial confinement, while radial confinement is provided by a large axial

magnetic fieldB=BZ.

N(r)exp{ - %[va/Z— eq&o(r,z)]]

in phase with the mode electric field, so the mode can ex- fo(r.z,v)= 1 ) '
change energy with the scattered particles. The dominant en- f dzf dv exp — £ [Mu*/2—egdo(r,2)]
ergy exchange occurs because the mode transports the scat- (1

tered particles radially outward. The liberated electrostatic
energy increases the mode energy, and would cause grovvtr}]

of & positive enerov. mode. However. the observed franne erev is thez-component of the velocity. The transverse
p ay : ’ PPEYelocity components have been integrated out, anticipating

particle diocotron mode has negative energy, so the mOdﬁﬁat drift dynamics will be used in the description of the

damps. . .
. . . mode. Thez-integrated densiti(r) and the temperature on
A direct experimental test was made to verify that scat- 9 W(r) P

. : ) " the axis[i.e., T(r=0)] are known from measurement. The
tering of marginally trapped particles causes the dampin

: o . emperature is assumed to be independentfof simplicity
The scattering rate was enhanced artificially by applying And for want of better knowledge. The possibility of intro-

potential that oscillates in resonance with the axial bounc%ucing error here will be discussed latsee Sec. Y The

motion of marginally trapped particles. The damping rateself-consistent equilibrium potentiady(r,z) is obtained
was observed to increase an order of magnitude coinciderE)E/ substituting  the  charge &eﬁsity _eny(r.2)

W'th_lfgg ?;)rgg?ggg:;ft:f (;scg:a_tslogrp;);enézilé follows. In_ —efdvfy(r,z,v) into Poisson’s equation and numerically
Inde paper Is organiz S WS. solving subject to the known boundary conditions for the
Sec. Il we describe the confinement geometry and plasm .
Lo X ) . otential on the trap wall.
equilibrium. Ir_1 Sec. lll we discuss the basic equations for th In Fig. 2, equilibrium density and potential contours are
mode dynamics. In Sec. IV we solve for the mode frequencyShOWn for a typical case. Theintegrated density profile,

and eigenmode structure in the absence of collisions. An anzN-(r) is monotonically decreasing with a peak of 8.2
lytic solution is possible in an idealized limit, but a numeri- 3 '

o L : . 10 cm™2 on axis. The plasma temperature in this example
cal solution is necessary for a realistic density profile ancf< b P P

potential barrier profile. In Sec. V, the effect of collisions is 's 1 eVand the end ring potentials arel00 V. A —20V
included, and the damping rate is calculated. In Sec. VI w squeeze potential is applied over a central conducting ring of

discuss Landau resonances and argue that Lardad (Tength 7 cm. The radial wall of the trap is located at 3.5 cm.

bounce resonantdamping are typically small for these The equilibrium solution in Fig. 2 demonstrates the effec-
moudes ping ypically tiveness of the Debye shielding in forcing the potential and

density to bez-independent, except in the squeeze region and
near the ends of the column. This condition holds generally
for the plasmas under consideration in this paper.

Figure 3 shows phase space orbits executed by particles

The pure electron plasma column is confined in amoving along a particular magnetic field linéat r
Malmberg—Penning trap configuration as shown schemati=0.5 cm) in the equilibrium of Fig. 2. All of the particles are
cally in Fig. 1. The confinement region is bounded radiallyreflected by the large confinement fields at the ends. Particles
by a series of conducting cylinders of radiRs,. The end whose maximum axial velocity is less than the separatrix
cylinders are held at negative potential to provide axial convelocity (0.68& for this field line are reflected by the
finement of the electron plasma, while radial confinement issqueeze barrier and are trapped in the ends. Orbits for the
provided by a large axial magnetic fielB=BZ Here, trapped particles are shown as dashed curves. Particles with a
(r,6,z) is a cylindrical coordinate system with theaxis  high axial energy pass through the squeeze region and
coincident with the axis of the cylindrical wall. Because thesample the entire length of the column during a bounce orbit.
column is unneutralized, there is a radial space charge eledhe passing particle orbits are shown as the solid curves in
tric field and consequerEXB drift rotation of the column.  Fig. 3.

IIl. CONFINEMENT GEOMETRY AND EQUILIBRIUM
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0 applied squeeze potential results in more trapped particles near the radial
-20 "IOZ ([)cm]lo 20 30 edge of the plasma and more passing particles near the trap axis.

FIG. 2. Density(a) and potentialb) contours for a squeezed column equi-
librium. A —20V squeeze potential has been appliedat7 cmring at
the axial midpoint of the plasma. It is clear that axial variations in densityBecause the barrier potential is strongest nearest the trap

and potential are shielded out of the two main parts of the column (6 cmug||, the separatrix velocity is an increasing function of ra-
<|z|<24 cm). dius
The density profiles of trapped and passing particles at

The separatrix velocity is determined indirectly from the @ny given radius can be determined from the total particle
experimental measurements. The electric potential inside théensity profileng(r) and the separatrix velocityy(r). The
trap is obtained using the Poisson—Boltzmann solution dedensity of particles trapped by the squeeze barrier at a par-

scribed above. Debye shielding produces a potential that idcular radius is

axially uniform inside the plasma on either side of the o
squeeze region. In the squeeze region, the potential varies nt(r):J”S dofo(r,15p) = no(r)erf vs(r) 3)
smoothly and reaches a maximumzat0. The energy bar- —vg(r) v2u

rier seen by a particle bouncing at a radius determined by

the difference in the potential between the region of smoot/gnd the passing density_ isp(r)=n0(r)—nt(r). Fig.ure 4
potential (say, z= + 15 cm) and the center of the squeezeShOWS the trapped, passing, and total density profiles for the

region z=0 cm). Particles with a maximum kinetic energy equilibrium of Fig. 2, and clearly demonstrates the radial

that matches this potential energy barrier are moving at thgependence of thg fraction of trapped particle;. )
separatrix velocity. The Debye shielding of the squeeze potential results in a

barrier that is a strong function of radius. Most particles near

2e the edge of the plasma are trapped and most particles near
0s(N =) Ty Lo(119 = do(r. O @ the trapped axis are passing. The radial localization of trap-
ping is a general feature of externally applied electrostatic
squeeze potentials.

1/2

IIl. DYNAMICAL EQUATIONS

Because the cyclotron frequency is the largest of the
relevant dynamical frequencies and the cyclotron radius is
the smallest of the length scales, the mode dynamics can be

z (cm) described by the drift kinetic equation,

d d Cadpd ¢C dp d eagbaf_cf
AUz Brogar Brarad mazan CH)
(4)

FIG. 3. Phase-space orbitsrat 0.5 cm with an applied squeeze potential \yheref = f(I’,G,Z,v,t) is the distribution of guiding centers

Vg~ ¢0(0,0)/2. Trapped orbits are dashed lines and passing orbits are soli : : :
A particle on the separatrix orbit has maximum velocity of 0.68he %nd ¢(r.0,2,t) is the electric potential. Of course,

shaded region represents the boundary ldyet to scalg¢ where velocity ¢(r,¢9_,z,t) is determined byf(r,e,z,v,t) thr(_)UQh Poisson’s
space diffusion occurs and causes mode damping. equation and the known boundary conditions #won the
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wall. On the right hand sideC(f) is the Fokker—Planck The justification of the linearization is subtle and re-
collision operator integrated over the velocity componentgjuires some discussion. As mentioned, we will find that the
transverse t®=BZz> mode damping is dominated by particles in a thin boundary
Although equilibrium distribution(1) was written down layer near the separatrix. However, a nonlinear effect of the
using thermal equilibrium considerations, not surprisingly itmode potential shifts the velocity of the separatrix up and
is a time independent solution of E@). This follows from  down by an amounév,~ed¢/muv ¢ every cycle. Particles in
the fact thatC(fy) =0, d¢g/df=0fq/90=0, andvdfy/dz  this band undergo a complicated sequence of trapping and

+(e/m)(dpyldz)(dfyldz)=0. detrapping transitions that is missed by the linearized equa-
We take the mode perturbation to be small and linearizeion (7). Why then is the linearization valid, and what is the
Eq. (4) in 6f=f—fyand8dp=¢d— ¢y. The result is criterion for validity?
The essential point is that small angle scattering, which
ﬁ+vi+wEi E% i_c Sf is included in Eq.7), causes rapid trapping and detrapping
gt Jz a0 m 9z dv transitions over a broader velocity band théw,. The ef-

fective collision frequency for scattering over the velocity

- —_ (5) interval dv is veg=D(ve)/(dvg)?, whereD(vy) is the parallel
mov 9z  Brdr 99 diffusion coefficient discussed above. One can understand

where wg=(c/Br)(d¢,/dr) is the EXB drift rotation fre-  this relation as the statement that velocity diffusion extends

quency for the equilibrium. Sinck, and ¢, are independent Over the rangedvs during the time vey [ie., (Svg)?

e dfg 96¢p ¢ Ifg d6p

of 6 andt, we consider perturbations of the form = Dv;ﬁl]. For the scattering transitions across the separatrix
_ _ to be at least as fast as the nonlinearity induced transitions,
(of,6¢)=(5f, 00 ) explito—int). 6)  we setvg=w'=|w—fwe|, the Doppler shifted mode fre-

quency as seen by a particle. This yields the collision domi-
nated widthdvs=+D/w’'=v+v/w’, where the approxima-
o e dpg 9 tion D=vv? has been used. In Sec. V, we will find that this
Tlotitegtv—+ o —r oo —C o, is the width of the boundary layer that dominates mode
damping. Thus, the criterion for validity of the linearization
e do¢y 9ty ict dfg is the inequality Svs> vy, which can be written as
“m oz w Brar 0% ™ Jvlw >esp/T, where we have sets=T/m.

The left hand side of Eq.7) includes the ternC(5f,),
which is the linearization of the Fokker—Planck collision op- V. FREQUENCY AND EIGENMODE
erator with respect to the perturbatiéf, . The linearization
includes four terms:

Equation(5) then reduces to the form

In this section, we solve for the mode frequency and
eigenmode structure. Both are described adequately by col-

9 95t of lisionless theory. The effect of weak collisions will be in-
C(ofp)= I D(v) P +F(v)of,|+ o 5D(v)% cluded in the next section, which discusses the mode damp-
ing.
The solution relies on the frequency ordering,
+6F(v)fp|, 8 >wg ,w, Wherew,= mv/L is the characteristic axial bounce

- frequency for electrons and=L;+A+L, is the overall
where D(v) and F(v) are the parallel diffusion and drag column length(see Fig. 1 Sincew and wg both scale like

coefficients evaluated for the equilibrium distributidg, 1/B, an expansion in the small paramet@fw,~ wg/wy,
andéD(v) andéF(v) are the diffusion and drag coefficients <1 is equivalently an expansion inBl/

evaluated for the perturbed distributidf,. For future ref- In zeroth order, Eq(7) reduces to

erence, note that any perturbation of the fordh,

=g(r,z)f, is such thatC(sh,)=0. Also, note that near the (v i € ‘7;% i) Sf :Ev %f (11)
separatrix, where derivatives of , are very large, only the gz m gz ) T gz

highest Qerivative term ifC(5f,) need be retained. In the whereC(8f,) has been neglected and use has been made of
separatrix boundary layer, E@) may be approximated by 9foldv=—(mulT)f, on the right hand side. Equatidfl)

P of, can be rewritten as
UE EE(?_ 5f€—Tf0 =0, (12)
The parallel diffusion coefficient is of orddd~ vv?, but v
more accurately is given by which is a statement that the quanti§f ,— (eS¢, /T)f] is
. constant along a bounce orbit. Thus, we may equate the
_ 8\me*nTA moZiaT = value of this quantity to its bounce-average value, obtaining
Dlv)=—"z73— Jtetdt, (10
mvg the result
where A=In(r./b) is the Coulomb logarithm for the case _ e _
WhereeZ/TEb<rc<)\D.6 5f€ <5f€>+ T[(Sd){ <5¢€>]f0 (13)
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Here, the bracket indicates a bounce-average, where(d¢,) is given by Eq.(17).
dz The next step is to determine the density perturbations
$———q[r,0,z,v(z,€)] associated with trapped and with passing particles. Because
(9)(r,6,€)= (z,€) (14) the separatrix velocity is a function of radidse., vy
dz ’ =v4(r)], one must be careful not to miscount particles. First
9 v(z,€) consider the trapped particles. Equatid®) can be under-

stood as implying that each trapped particle undergoes a ra-

where mv2/2—eg(r,z) = € specifies the orbit. In writing dial stepsr, = —cl 8¢, IBre’, so that
J J !

Eq. (13), use was made of the fact thi is constant along

an orbit. © © © cl Sy ot
To obtain an equation fqfsf ), we bounce-average Eq. Sty () =10(r=or e v) = 1(rv)= - — -
(7) projecting out the zeroth order terms. The remairtfirgt (20)

orden terms describe cross magnetic field drift motion, o ] ]
Thus, the perturbation in the trapped-particle charge density

ict afg is di
—ia(sf ) +it(weot )= 5 <5¢€ o > (15 'S givenby
—vg(r—orgj)
The second term on the right hand side of B speci- anf)(r)= f_ . do fO(r—sry )
fies the distribution of electrons along a bounce orbit. This os f
type of response, called an adiabatic response, gives rise to —us(r) "
Debye shielding. Thus, we anticipate here, and veaifyos- - f—u " do f(r,v), 21

teriori (see Sec. V)| that Debye shielding forces the mode
potential to bez-independent, except in the region of the which for smallér; takes the form
squeeze potential and near the ends of the column. ) P
—U
As a simple model that captures the essential physics, we 6n(‘)(r)—J " do 5f((tj)(r,v)+2ﬁ5r€jf(t)(r,vs)_
use a step function approximation for the mode potential, —us(r) or

Spyy(r), 0<z<Lq, 22
O(r,z)= s L.<7<0 (16)  Omission of the second term would miscount the number of
$ealr), 25250, trapped particles. Combining the two terms in E2) yields
wherel; andL, are the lengths of the two trapped-particle the result
regions(see Fig. 1 Likewise, we neglect the small but finite
axial extent of the squeeze region and end when evaluating Snit = ct 5‘% ‘9nt 23
the bounce averages. The model assumes that the trapped- iTBr W o

particle regions are long compared to the squeeze region ar\1iv ereny(r) is defined in Eq(3). Of course, this result can

ends. The advantage of the model is that a partial differenti
. . . e obtained more directly using a fluid theory for the trapped
eigenmode equation fa¥¢,(r,z) is reduced to two coupled
particles. Similar arguments for the passing particles yield

ordinary differential equations fof¢,,; and d¢,,. We will

see that a simple physically motivated guess as to the ratlthe perturbed density,

Sby118¢,, decouples these equations leaving a single ODE ct (6¢y) f7”p

eigenmode equation. n{P = Br o —[5¢el (8de)Ing, (24)
The step function model simplifies the evaluation of

bounce-averages. For trapped particles on pigie=1 or 2), Wherenp(r)=2f‘;°s(r)dvfo(r,u).

the bounce-average mode potential is given @¥b,) Substituting density perturbation@3) and (24) into
= ¢y, and for passing particles it is given by Poisson’s equation yields two coupled differential equations,
L1t Lr6¢ 10/ o £2
(0¢0=—"171, 17) . &r( 5¢g1) 20y

Since the squeeze region and ends are neglected, the bounce-

4mect S¢yi dny  4mecl (6 an
average products in Eq15) simplify: {wgdf )= wg(5f,) T ﬂ—twt i m—p

and (8¢, atolory=(8b.)atolar. Br o' o Br o dr
Equations(13) and (15) then imply that the perturbed 47re2np

distribution for trapped particles on the siflés given by T [0dej— ()], (25
5f(t):%%‘9_f° (18  for 8¢ (j=1 and 2. Two ratios of 5¢p;1(r)/ S¢p¢(r) for

9 Br o o’ ; ;
which the equations decouple are easy to guess. For the

wherew’ (r)=€wg(r)— . Likewise, the perturbed distribu- choice 8¢ 1(r) =3¢ ,(r)=(5¢), the two equations each
tion for passing particles on sideis given by reduce to the usual eigenmode equation for a diocotron mode

(o) cl (S¢) afo € 4mect 5y dng

19
of ¥ Br o [5¢€J (6d)1fo, (19 rﬁr( 6¢€J) _5¢€j:T7 gt

(26)
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whereng(r)=n(r)+ny(r). In this case, two in-phase dio- 9 R
cotron modes exist on the two sides of the barrier. r§5¢e|R5= - w_*5¢€(Rp): (31)
For the choicel;8¢.1=—L,8¢.,, Eq. (17) implies .
that(8¢,)=0 so the two equations each reduce to the formwhereo™ =€ — w/ wg . Eliminating the unknown coefficients
A, B, C yields the dispersion relation

19/( 4 5 625 _Amect S¢y; o , y
ror|Tar2a) 0% T B o ar Ro|(Le (Rlea) Ru 1
R/ \o* = 200p [\R-RY ~ o*
4we2np5 ) "
t—F 8¢, (27) B E€|_€+RSIH1 R L o, (32
Rp/ lo* = 200 JIRS=RY ~ w*]

This is the eigenmode equation for the trapped-particle dio-
cotron modgor more precisely, modesFrom the right hand  wherel ;=1 ,(Rs/\p).
side, one can see that trapped particles und&X® drift There are two roots for E¢32) with one above and one
motion locally and passing particles stream along field linedbelow the rotation frequency. The fast mode has a frequency
attempting to Debye shield the perturbed charge density ofery near the rotation frequency of the column and has not
the trapped particles. The conditiob;d¢,,=—L,8¢,,  yet been observed in the experiments. For appreciable
guarantees that the passing particle charge needed for shiekljueeze voltage, the lower root lies well below the column
ing on one side of the barrier is exactly liberated on the otherotation frequency and corresponds to the experimentally ob-
side. The equations must be solved subject to the boundaserved mode. The existence of two modes is due to the posi-
conditionsd¢,;(0)= d¢,;(R,) =0. tive and negative slope of the trapped density profile. This
An analytic solution of Eq(27) can be obtained in a situation is analogous to the inner and outer diocotron modes
particularly simple case. For very small Debye lengthsthat exist for hollow profiled.In the trapped-particle case,
shielding of the squeeze potential effectively separates théhe inner (fastej mode is not unstable, since the rotation
trapped and passing particles radially. In this regime, thdrequency is monotonically decreasing.
plasma may be described by a simplified model in which  As A\p—0, the dispersion relation reduces to
trapped and passing particles are divided by a separatrix ra- R2(_ R2! R2(_ R2¢
dius, Rs. The trapped and passing particle densities can be  « _ \év€ g( P - s
written as ny(r)=no(r)O(r—Ry) and ny(r)=ny(r)O (R Rv —Rs Ry
—r), where®(x) is the Heaviside step function. For a top
hat density profileny(r) =ny®(R,—r), an analytic solution
of Eq. (27) is possible.
The potential perturbation is composed of separate sol
tions in three regions. In region t €R,), the mode poten-
tial satisfies the Debye shielding equation

(33

This is the low frequency mode. The high frequency mode
has vanished. In this limit, the passing particles behave like a
conducting cylinder of radiuRg. This suggests that trapped-
uf)article diocotron modes may exist in a trap with a central
conducting cylinder containing two plasma columns that are
completely separated axially by a strong squeeze. In that
1o £2 ol case, the dam'ping mechgnism discussgd i_n Sec. v would be
T ﬁ(rﬁb‘ﬁbe) - r_25¢‘_ )\—25¢>e=0, (28)  absent. Equatiori33) provides some quick insight into the

D qualitative behavior of the low frequency trapped-particle
where\3=T/4we’n,. Since the potential cannot diverge at diocotron mode. For low squeeze potentidts,approaches
the origin, we obtains¢(r)=1,(r/\p), wherel, is amodi- the plasma radius and the azimuthal phase velocity of the
fied Bessel function of the first kind. In regions IR(<r  Wave approaches the rotation frequency of the column. At
<Rp) and Il (r>Ry), the mode potential satisfies the the opposite extreme, the separatrix radius approaches zero

Laplace equation and the frequency becomes that of the usual diocotron mode,
2¢
1d( o €2 Rp
= _ — 0= wg €—1+(— (34
s (r pe 5@) 206:=0, (29 Ru

This result is expected since the column has been completely

so we find 6¢(r)=Ar‘+B,r ¢ and 8¢} (r)=C,(r¢ L ; )
_ Reve/re), where use has been made of the boundary Condl(jlwded and the two halves are effectively decoupled in our

tion 5¢I€“(Rw):0- Equation(27) also must be satisfied at the reduced description that ignores space charge interactions of

interfacesr =R, andr =Ry, wherean,/r gives delta func- the two columns. As we will see, this frequency dependence

tion contributions. This requires that the potential be continu " Squeeze voltage is obs_e rved expenmentally.
For a careful comparison to experiment, we use the

ous at the interfacesg¢y(R) =3¢y (Rs) and 3¢} (R,) . : : )
= 5¢'{J'(Rp), and that the derivatives satisfy the jump condi—s'hOC)t'n.g methoq o obt'am a numerical solution of E2y)
i for realistic density profiles. Input to the theory are the mag-
ions C . ;
netic field strength, voltages on the end rings and barrier
9 Rt 2¢ electrode, z-integrated densityN(r), and temperaturel
ra—r5¢f|Ri: % 09u(Rs) (30 =T(r=0). From these quantities, the equilibrium trapped
° particle densityn,(r), and separatrix velocity¢(r) are de-
and termined, as discussed in Sec. Il, and Ey) is then solved
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FIG. 5. Mode frequency versus applied squeeze voltage for the low fre- 'g .
quencyt =1 trapped-particle mode. The value varies smoothly between the = Ok Y
rotation frequency at the radial edge of the plasma and the usual diocotron o
mode frequencyi.e., theEXB drift frequency at the wall radiys 2=}
- : : :
. . . 0 0.5 1 1.5
to find w. Figure 5 shows a comparison of the calculated and radius [cm]

measured mode frequency as a function of squeeze volta%e , , o _
for the temperaturd(r=0)=0.5 eV and magnetic fiel® IG. 6. Experimental gnd theoretical density eigenfunctions for the low
. frequency trapped-particle mode-ab and— 36 Volt squeeze. The theoret-

=10 kG. The azimuthal mode number fis=1. The agree- ¢ calculation used a density profile that was truncated at 1.5 cm. At outer
ment is very good10%), with both curves following the radii the trapped particles produce a positive perturbation. At inner radii the
trend expected from the analytic solution. From By), one  shielding response of the passing particles gives a negative perturbation. The
can see triviaIIy that the mode frequency is predicted to Scalgg:feg_f the zero crossing becomes smaller as the barrier strength is in-
with magnetic field strength as>1/B. This scaling is ob-
served experimentally to an accuracy of 2% over the range
300 Gto 10 kc_;g' Although the temperature enters H87)  gensity profile(atr = 1.5 cm) for use in the calculation. The
explicitly and implicitly [e.g., throughny(r), ny(r) and  gyperimental eigenfunction also contains a nonzero imagi-
vs(r)] the solutions forw exhibit only a weak dependence nary part. However, Fig. 6 compares the real parts of the
on temperature, changing less than 5% as the temperaturedgenfunctions. In the collisionless theosp is purely real.
varied by an order of magnitude. Measurements also show ™ The mode potentials for plasmas at various temperatures
only a weak dependencej varies by 5% asl’ varies over (0.1, 0.5, 1.0, 5.0 e\Vare shown in Fig. 7. The Debye shield-
0.5-5.0 eV. ) ) ) ing phenomenon resulting from the adiabatic motion of the

The density perturbation of the trapped-particle mode, ssing particles is readily observed. As the temperature is

vanishes at a specific radius. Inside this radius, the major't}ﬂecreased, the potential created by the trapped particle den-
of particles involved in the oscillation are passing and move

adiabatically along field lines. Outside this radius, the par-

ticles are mostly trapped and experience drift motion. Ex- 1
perimental and calculated density eigenfunctions at low and i — 01leV
high squeeze voltages are shown in Fig. 6. The zero crossing H --- 05eV
of the density perturbation decreases as the squeeze voltage 0.8 HooN | 1.0eV
is increased. This is expected since the stronger barrier traps z ! - 506V
more particles. ‘206 ;!
g

There is qualitative agreement but small systematic dis-
crepancy in the measured and observed eigenfunctions. At
low squeeze voltage, the theoretical model predicts a smaller o i
passing particle perturbation than is observed in the experi- w i
ment. At high squeeze voltage, the model predicts a larger
perturbation in the passing particles than is observed. The
origin of this discrepancy remains unclear. The discrepancy
in &n for r>1.5 cm is due to a truncation of the density 0" 1 5 3
profile. The experimentally measured density profiles exhibit radius [cm]

a small tail out at large radii. It is unknown whether this tail _ _ _
is real or some artifact of the measurement process. To avoid®: /- Mode potentialsd, (r) at various temperatures. The Debye shield-
Ing phenomenon resulting from the adiabatic motion of the passing particles

singularities in Eq.(27) caused by a WaV_e'ﬂUid resonance, s apparent. At low temperature, the mode potential is excluded from the
we have smoothly truncated the experimentally measurediterior of the column where the majority of particles are passing.
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FIG. 9. Trappeda) and passindgb) density perturbations for the low fre-
sity perturbation remains essentially unchanged. Howevenuency and first high frequency modes. For the lower branch, trapped and
the passing particles shield this potential from the interior offassing density perturbations are well-separated radially. For the upper
the column at very low temperatures. branch, both trapped and passing perturbations occur at inner radii.

As mentioned earlier, Eq32) predicts the existence of
another trapped-particle mode that has an azimuthal phase
velocity above the column rotation frequency. With this in V. COLLISIONS
mind, we return to the full kinetic model and look for nu- In this section, we return to the discussion of the low
merical solutions of Eq(27) for w>{wg(0). In fact, we  gequency trapped-particle diocotron mode and investigate
have found several eigenmodes in this high frequency ranggne effects of collisions between particles. Because the
Figure 8 shows plots of eigenmode potentials for three sucanned particles and the passing particles experience differ-
trapped-particle modes. In this case, the plasma was charagqt gynamics, the mode perturbation in the velocity distribu-

terized by the density profiles in Fig. 4, a magnetic field of5, is discontinuous in collisionless theory. Settifdid,)
10 kG, and a temperature of 1 eV. The potential perturbations. g i Eqgs.(18) and (19) yields
are indexed by the number of radial nodes, As the radial

nodes increase the azimuthal phase velocity of the waves e5¢)e,’f (r.v) lo|>vd(r)

asymptotes to the rotation frequency at the ais(r T ok s

=0)]. Forn,=0, the phase velocity is 10% above the peak  6f¢j(r.v)= , (35
. ) ) C€ 5¢€J afo(r,v)

plasma rotation frequency and the electric field at the trap Bl o o lv|<vg(r),

wall is 0.44% that of the lower branch mode. A small radial

electric field at the wall is a feature common to all of the where we have uset{"(r,v)="f(r,v) for |v|<v(r) and

high frequency modes. This makes them extremely difficultf P (r,v)=fq(r,v) for |v|>v(r). This expression for

to observe experimentally. Typically, diocotron modes aresf,(r,v) is discontinuous in value and slope @t v4(r).

launched and detected by applying time varying voltages t&When collisions are added to the theory, the Fokker—Planck

the wall sectors. The coupling of these self-shielded modesollision operator contains velocity derivatives that become

to the wall sectors is very weak. However, if the modes ararbitrarily large at such a discontinuity, so the effect of col-

excited by some other means, the density eigenfunctions cdisions on §f, cannot be ignored, even if is small. Small

be observed by dumping the plasma. angle scattering provides an essential correction, smoothing
In Fig. 9, the trapped and passing density perturbationthe distribution in a boundary layer near the separatrix. In

are shown for the low frequency amg=1 high frequency Fig. 10, the perturbed distribution function at a specific ra-

modes. For the low frequency mode, the main perturbatiomlius is plotted versus velocity. The solid line represefftg

of trapped particles occurs at outer radii, and the passinffom collisionless theory and clearly depicts the discontinu-

perturbation is at inner radii. In this situation, the potential isity at the separatrix velocity. The dashed line is the real part

effectively shielded from the column interior. In the high of the collisional correction t@f,; which removes the dis-

frequency oscillation, the main trapped and passing particleontinuity. We will derive this correction shortly. Signifi-

perturbations occur at inner radii. However, the trapped<cantly, the correction contains an imaginary component

particle perturbation is larger and a substantial mode poterdotted—dashed linehat is in phase with the mode electric

tial exists at inner radiisee Fig. 8. field, so the mode can exchange energy with the scattered
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mode quantities, but we can obtain an order of magnitude

5
4 . estimate to the collisional correction ﬁ:ff)’) by noting that
.'l the operator,

; : J dopg 0
= ' e
g 2 :ll U&_Z—"_E&_ZO%%I b (39
<1 '
g ! is a derivative along a bounce orbit, which can be taken of
“— 0_:_:_—_-__'_:*;__1 ------------------------- order w, since passing particles see the mode quantities
«@ 1 T ! change by order unity during a bounce orbit. Substituting Eq.

- *¢ |— collisionless (39) into Eq.(38) and solving the resulting equation yields

-=-- real

-2 real |
T 'magmary edd —(1+i) [ o

_ (P — ¢ b _

3 of T fo+bexp{ " Dv(vs)(v Us) |-

08 0.9 1 .1 12 13
\ZAA (40)

FIG. 10. Perturbed distribution function at=1 cm. The solid line repre- | this case, the correction is of widtﬁvgp)~ /Dv(vs)/wb,

sents collisionless theory and exhibits a discontinuity at the separatrix ra-. h . icl . h he b
dius. The dashed lines contain the corrections to the real and imaginary par%nce the passing particles see a sign change on the bounce

of &f due to collisional diffusion. In this case, collisions have smoothed outtime scale 1dby,.
the discontinuity over a widtlv ~0.1v . There is a disparity between the width of the boundary

layer for trapped and passing particlem(sp)< 5v<;> since
wp>w’. The consequence of this disparity is that only the
particles and damp as a consequence. We will show that thtrappgd-pamcle _correct|on contributes significantly to the
: i ; o . §amp|ng. Choosing andb so that the value and slope of the
velocity scattering and damping are intrinsically associated,., .~ . .
: . . ; distribution are continuous at=ruv yields
with a kind of neo-classical radial transport.

Including the effect of collisions, the trapped-particle
perturbation satisfies the equation a= ¢, e_fo_ i, ﬁ L
T Bro" | | Jo,+ o'
iw' —D ” POl 36 S
t0" =D, (vs) oo 00" = g ode 5 (36) vz b, o, "
I+ o+ T )

where only the second derivative term in the Fokker—Planck
collision operator has been retained. In the separatrix bound- d
ary layer region, where derivatives are large, the second ve-
locity derivative term suffices. Herd) ,(v¢) is the coeffi-
cient of parallel velocity diffusion evaluated at the separatrix — p=— 54,
velocity vg=v4(r) and is given by Eq(10).
For €>0, the solution to Eq(36) is given by
v2 b,

ef, ct of, Vo'
T Bro’ o] _ |\ Jop+ Vo'

mog
) (42

cl 8¢, of 1+i [ o TS T T
v S

Br o' odr ol
(37 Dropping terms of orderyw'/wy, gives a=d¢,[efy/T
) ) _ —(ctIBrw")(dfglor)],-,. and b=0. Substituting into
wherea is an arbitrary constant and we have chosen the Sigp,; , : s . :
oisson’s equation then yields an eigenvalue equation for the

so that the exponential decays as{vs) becomes large and .
_ o . .mode potential,
negative. The new term represents a collisional correction in

i (1 g _
a boundary layer of widthbvg’~ D, (vs)/w'. To under |enp %% 1

stand this width, note that the sign of the perturbation seeW¥? §¢,=4me T B I o
w

by the trapped particles changes on the time scadé,land

velocity diffusion can extend to the Widtﬁu(st) during this
time [i.e., (30)2~D,(vg)/w']. ;22 [Pulvglefy clifo 1) | o
Similarly, the passing-particle perturbation satisfies the 1+i o [T Bro e ©
equation ) 43
J e dgg d PN iy €9b¢ o . y
UE-FEE%—DU(US) W](&fﬁ T fo| =0, which is subject 'to .the bour)dary condition8¢,(0)
= 6¢¢(Ry)=0. Multiplying both sides of Eq43) by ¢ ,

38 . . . : .
(38) integrating overrdr, setting w=w,+ivy, and taking the

where we have use@(fy)=0. The solution of Eq(38) re-  imaginary part of both sides yields an expression for the
quires some information concerning thelependence of the growth or damping rate,
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2D (Us)
e 2 [£E0\Us)
P€f rdr|o¢| Cwg— o,
2 . ) (44)
f Rw ; |8¢el”  any See Tsidulko, PoP 18, 084505 (2011)
(Cwg—w)® r Dubin, PoP 18, 062114 (2011)

efy, ct odfg 1

T Br dr wg— o, o

on_t/or — f t an_0/or

For the plasmas considered here, the numerator ii48gis <0 on the side wher&¢$>0. On this side, the smoothing
positive and the denominator is negative so that the mode iaction of collisions must produce a velocity-space flux from
damped. To lowest order in the small parametgfe, and  passing to trapped. The situation is reversed on the other side
Vvl (€ we— w,), the eigenmodése,| may be approximated whered¢<0. Thus, the net effect is a spatial flux of trapped
by the eigenmode for= 0. Indeed, they values predicted in particles from the side wheré4<0 to the side wheré¢

this way by Eq.(44) agree closely with those obtained by >0. Physically, this is reasonable, since we expect collisions
direct numerical solution of Eq(43) using a shooting to produce a flux of trapped particles from the high potential

method. energy side {es¢$>0) to the low potential energy side
To understand the energy budget for the damping, wé—ed$<<0). Equivalently, we expect collisions to produce
rewrite Eqg.(44) as heating, and the second term is the heating rate.
0=29W The 6-average radial flux is given by
1 an e d¢y
Ry 2m O 0
+f rdr | - do2esg(r, 0t)d [Long(r,0,t)] 27 o 4000 (ONe=D(N)| ——=+5—"no|, (47
2 whereD, (r)=¢e(Ar)?w’ is a neo-classical like diffusion co-
f rdrf de| — } efficient. To understand this coefficient, note first that
=22D,(vy)/ 0" exd—v¥2v?]/\27v? is the fraction of
X[ v,(r,0,)8n(r,6,1)2L], (45) particles in the boundary layer at radius_ whe_re Vs
=uv4(r). In the absence of the mode, th&B drift orbits are
where circular for all of the particles. In the presence of the mode,
2Lecwf (Ru |82 an, the orbits for the trapped particles are distorted from circu-
=—5 fo (e —; ?WF (46)  larity by an amountAr =cf|8¢,|/Brw’, and the distortions
E r

on the two ends are 180° out of phase. When a trapped
is the mode energy, which turns out to be negative. The firgparticle is scattered and changes trapped-particle ¢
term in Eq.(45) is the rate of change of mode energy, whichdrift orbit), the particle effectively makes a radial stAp.
is positive during damping since botd and y are negative. For the particles in the boundary layer, the class changes at
In the second term, the quantin(r, 6,t) is the collisional  the ratew’.
correction to the trapped electron perturbation, and the con- Equation(47) is the usual form for the transport flux in
vective derivatived(L on;)/dt=(d/dt+ wgdld0)(Sn.L) is  the presence of a density gradient and an external force with
the flux of scattered electrons to the side where the modthe diffusion and mobility coefficients related by an Einstein
potential is + 84(r,6,t). As an electron moves along the relatio® [i.e., w=(e/T)D]. The radial electric field
magnetic field lines from the side where the potential is—d¢\/dr=—depoldr+(rw,/€)(Blc) is the effective field
— 8¢ to the side where it ist ¢, the mode does work in the rotating frame of the wave. This is the frame where the
2ed¢ on the electron. The second term is the rate of suchmode perturbation is static and the Einstein relation is valid.
work, which turns out to be positive. In the third term, the One can easily understand that diffusion in a negative den-
quantity v, (r,6,t)=—(c/Br)(d54/6) is the radial drift  sity gradient gng/dr<0) produces an outward radial flux.
velocity imparted by the mode potential, so the productHowever, the origin of the mobility term is more subtle. In
(6v,6n.) is the radial flux of scattered particles. Thus, theEXB drift motion, electrons can move radially only due to
third term is the rate at which the mode does work in movingan azimuthal electric field. Why then is there a preference for
the scattered particles through the potential gradiet/ Jr . transport in the direction of the radial electric force?
There is a net outward radial flux of scattered particles, so In fact, this radial mobility preference is intimately con-
the third term is negative, balancing the other two terms. Imected with the net axial flux of scattered particles from the
summary, the mode potential increases the kinetic energy dfigh potential energy side{es#>0) to the low potential
the scattered particles by acceleration along the magnetienergy side { ed¢<0). The preference for outward radial
field and decreases the electrostatic energy of the particles lisansport whered e/ dr >0 is illustrated by the schematic
radial transport outward, the latter effect being dominantdiagram in Fig. 11. For the cage=1, the solid curves rep-
When the liberated energy is added to the negative energgsent potential energy contouise., —eg,(r) —ed¢(r, 6)
mode, the mode damps. =const] on one side of the barrier, and the dashed curves the
To understand the sign of the second term, first recaltontours on the other side. The difference between the two
that in the absence of collisiongf,(vs)>0 and of(v) arises from the fact thadép has opposite signs in the two
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FIG. 11. Potential energy contours in the rotating frame of anL wave

(solid z>0, dashedz<0). A particle initially at point A is transported to  F|G. 12. Mode damping rate vs applied squeeze voltage from tH&ary
point E through orbits along potential contours and detrapping/retrapping44)] and experiments.
collisions at points B, C and D. For azimuthal phase velocity less than the
column rotation frequency, marginally trapped particles are more likely to
be scattered through the squeeze region when farthest from the trap center
and thus are transported radially outward. terms. The second term represents the work done by the

wave as particles move axially and remairessa. Since the

first two terms now have opposite signs, the third term could
ends. If we work in the rotating frame of the wave, the pat-be either positive or negative. However, for the high fre-
tern is stationaryexcept for the slow dampingA particle  quency modes &, — € wg)? is usually quite small and the
that is initially trapped in one end at point AwlXB drift  first term is large and positive. This requires the third term to
along the contours until it comes to the point B where thebe negative. Therefore, the damping of the high frequency
contour is farthest from the center; that is, wheremodes is associated with a net inward radial flux. Flux can
—edo(r,0) takes its maximum value. Statistically, this is be inward becauséey/dr is negative for high frequency
the point where the particle is most likely to be detrappedmodes.
and move rapidly to the other end, where this particle or an  Finally, we compare the measured and predicted and
equivalent particle is scattered and trapped. The particle willamping rates for the lower frequency mode using realistic
thenEXB drift along the dashed contour, continuing its mo- density profiles in the theory. Figures 12, 13 and 14 show a
tion outward to point C. Repeating the process then takes theomparison of the predicted and measured rates versus
particle to points D and E. squeeze voltage, magnetic field strength, and temperature,

If the sign ofed¢i/dr changes to negative, the dashedrespectively. The agreement is to within 50% over the ex-
curves change into solid curves avide versabut this rela-  pected range of validity for the theory. To understand the
beling is not significant. The important change is that thescaling trends we turn to Eq44). Since the denominator
particle nowEXB drifts azimuthally in the opposite sense, increases with the number of trapped particles, which in-
and so spirals radially inward (ED—C—B—A). The creases with the squeeze voltage, the damping rate is ex-
jumps from one side to the other now happen when the con-
tour is closest to the center.

The sign ofed¢y/dr changes to negative if the angular
velocity of the rotating frame exceeds the plasma rotation o — Theory
velocity. This implies that rapidly rotating asymmetric poten- © Experiment
tials can be used to compress the plasma radially. This tech-
nigue has been known for some time and is generally known
as the “rotating wall” effect'® We suggest that trapped-
particle transport is the microscopic mechanism of the “ro-
tating wall” in some circumstances.

Another frame in whiched g/ r is negative is one that
co-rotates with a high frequency trapped-particle mode. An
analysis similar to that given above for the low frequency
mode reveals that the high frequency modes are also damped
by the same collisional scattering process. The high fre-
guency modes are self-shielded with the potential perturba- 0 2 4 6 8 10
tion being largest at inner radii whesa, /Jr is positive. As magnetic field  [kG]

a result, the wave energy given by integ(db) is positive FIG. 13. Mode damping rate vs magnetic field. The theory correctly predicts

for the high frequency modes. Again, energy anservatio%eB’”zat high magnetic fields. At low field, the fast bounce assumption is
requires that the third term of Eg45) cancel the first two violated and the theory breaks down.
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cations that heating from radial transport caused by ambient

field errors raises the temperature more at largehere the

damping mechanism acts, thanrat 0, where the tempera-

° Vv =20V f[ure is measured. Moreoyer, the temperature inhomogeneity
° 5q IS more pronouncgd a_lt higher tempe_ratures where the_ Cross-

B=10kG field heat conduction is lower. Including such a correction to

the plasma temperature changes the slope of the measured

values toward agreement with the theory.

Recent experiments have demonstrated a correspon-
dence between the damping of trapped-particle diocotron
modes and asymmetry-induced transpbiin these experi-
ments, trapped particles are created in the usual manner with
0 an applied “squeeze” voltage. Static field erroisuch as
0 2 4 6 magnetic til} are introduced in the trap and produce per-

temperature  [eV] turbed drift orbits that are quantitatively similar to drift orbits
FIG. 14. Mode damping rate vs temperature. associqted with trapped-particle .modes. The rate of r_adial
expansion of the plasma column is found to be proportional
to the damping rate of the trapped-particle diocotron mode
pected to be a decreasing function of the squeeze voltagéVer a wide range of plasma parameters. This correspon-
and this trend is apparent in Fig. 12. Sinee and wg are  dence strongly suggests velocity space diffusion of margin-
proportional to 1B, Eq. (44) implies thaty scales as 1/B. ally trapped particles as the microscopic mechanism respon-
This scaling is observed for large field strengtB=(2  Sible for asymmetry-induced transport.
—10 kG), where the theory assumptian> wg , o, is well
satisfied, butyx1/B scaling is observed at a lower field
strength. This latter scaling is not understood theoretically.

Figure 14 shows that the measured and calculated damp- Wave—particle resonances are possible for this mode, but
ing rates are decreasing functions of temperature over thie associated Landau damping is small compared to the
range of measurementsT£0.5-6 eV), with the experi- collisional damping provide@,> |f we(r) — w,|. Here, w,
ments showing a somewhat stronger temperature depers the axial bounce frequency for a thermal particle. In Ap-
dence. The discrepancy may be due to a radial dependencependix A, we neglect collisional damping and obtain the fol-
the plasma temperature. There are some experimental indbwing expression for the Landau damping rate:

— Theo
O  Experiment

e o g
B [=)) o0
©

damping rate [103 sec_l]

@
)

VI. LANDAU RESONANCES

Ry * ﬁfo fO 2
wf I’drf dIZ 2ol € — —nNwp=||6H, p|*dNwp+  we— o, ]
0 0 Py T ’
YiD= — i, , (48)
ea |6H ¢ o

fRW ar [ d o
rar | —
0 0 (ewE_wr)2

where|{ wg— w,|/w, andy,p /| og— w,| are assumed to be dHg dHg
small. Equation (48) employs the canonical variables we(l,pg)= D, wp(l,pg) = —1~ (51)
(6,py.1,4), wherep,= —eBr?/2c is the canonical angular v
momentum conjugate t6, and (,¢) are action-angle vari- The angle variable is given by
ables defined for the equilibrium Hamiltonian, JH
dz—2
p " \/E f ’ A (52
Hoy=-——e ). 49 ) n’
0= 2m ~ &%o(Po2) “9 2 JFo(po) +edo(py.2)
The action is defined in the usual manner, and the bounce harmonic of the mode potential by
1 (2= A
1 SH =—Jde"”‘/’—e6 2(,pg,1),Pgl
(o Ho = 5 § 02Dz Ho.p, 50 tn"gm J, W8 T E0Rd R Pl
4 (53
and the Hamiltoniatd ,=H(l,p,) is obtained by inversion. With these definitions and expressi¢iB), one can un-

The rotation and bounce frequencies are then given by  derstand the issue that determines whether or not Landau
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Z2 lem] FIG. 16. Mode damping rate due to Landau resonance and collisions versus

emagnetic field. At high fields, particles that bounce in resonance with the
)y\@ve oscillation are very deeply trapped and do not experience significant
&g(ial electric fields of the mode. As a result, collisions dominate the damp-
ing process.

FIG. 15. Contour plot of mode potential showing axial dependence in th
squeeze region and near the column end. Since the axial bounce frequenc
large as compared to the mode frequency, Deybe shielding forces the mo
potential to bez-independent in the main part of the column. Bot 4 kG a
resonant particle at=1.2 cm the turning points are 6.8 and 21.2 cm and the
resonant energy exchange is small.

fore, only very deeply trapped particles bounce resonant with

o o ) the wave and the wave—particle energy exchange is small.

damping is negligible. By hypothesis, the bounce frequencys the magnetic field strength is reduced, the mode fre-

for a thermal particlew,= wy(l,py), is large compared to quency increases while the axial bounce frequency of the
the Doppler shifted mode frequent§we — ). particles remains fixed. For low enough valueBofweakly

Consequently, the argument of the delta function in Eqtrapped and even passing particles come into bounce reso-
(48) can vanish only for two special classes of particles. Thenance with the wave and the wave—particle energy exchange
first class consists of particles that are very close to the sepg larger. NearB=1 kG, the Landau damping rate is pre-
ratrix; the bounce frequency for these particles can be muchicted to exceed the collisional rate. However, in this low
smaller thatw,. However, direct calculation shows that magnetic field regimev,=|we— w,|, SO a basic assumption
these particles lie well within the collision dominated bound-of our theory is violated.
ary layer, providedo,>|€ wgz— w,|, so rapid collisional trap-
ping and de-trapping destroys the Landau resonance. The

. e — VII. CONCLUSION
second class consists of very slow partidles., | <I) that
are deeply trapped on one side of the barrier or the other. We have developed a quasi-3D model for the newly dis-
These particles can provide significant Landau damping onlgovered trapped-particle diocotron mode. The mode consists
if 6H, n(1,py) is substantial for the low values dfrequired  of two diocotron oscillations that are excited 180° out of
for frequency resonance. phase on either side of an applied squeeze barrier. The mode

Recall that Debye shielding forcégb,(z,r) to be nearly  dynamics consists of trapped particles executixB drift
z-independent in the trapped particle regions well away frommotion, while passing particles stream along field lines in a
the squeeze barrier. #¢,(z,p,y) were exactlyz-independent Debye shielding action. The model developed here accu-
over the region ofz accessible to the deeply trapped par-rately predicts the frequency and eigenmode structure of the
ticles, then Eq(53) would imply thatéH, ,=0, and there experimentally observed mode over a range of plasma pa-
would be no Landau damping. Thus, the strength of the Lanrameters. Furthermore, the model predicts the existence of
dau damping depends on the degreezafependence for additional trapped-particle modes that have azimuthal phase
S¢e(z,r) in the accessible region. velocities above the maximum column rotation frequency.

In Appendix B, we obtain approximate numerical solu- We have also identified the damping mechanism of the
tions for thez-dependence of the mode potential. As an ex-trapped-particle diocotron modes as velocity diffusion in a
ample of the results, Fig. 15 shows the potential contours foboundary layer near the trapped—passing separatrix. An
the specific case of the density profiles in Fig. 4-320 V  analysis based on Fokker—Planck collisions yields a damping
squeeze voltage, and a temperature of 1 eV. Using this soluate for the mode that agrees with observations to within
tion for 8¢4(r,z), we evaluate expressiod8) and obtain 50% and predicts the essential scaling with plasma param-
the Landau damping rate. Figure 16 shows a comparison adters. The damping of the negative energy modes is associ-
the Landau and collisional damping rates at several values @fted with a net outward radial flux of particles, and the
magnetic field strength. Fd>2 kG, the Landau damping damping of the positive energy modes is associated with a
rate is predicted to be negligible and collisions dominate thaet inward radial flux of particles. Recent experiments sug-
damping. In this high magnetic field regime the mode fre-gest that the mechanism responsible for transport in the
qguency is small compared to the bounce frequency. Thergrapped-particle modes may be responsible as well for trans-
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port observed when static field asymmetries are applied to
the plasma? Finally, the full 3D mode potential was calcu- +o
lated and used to show that Landau damping of the trapped- 0=Im f Zwrdrf dzf dv E el(n=n"y
particle modes is negligible in the high magnetic field limits, 0 - nn'=
but may become the dominant damping process for low

. of f
fields. #_ Nwp—
0 *
Nw,+{wg— o OH¢nHen (A4)
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APPENDIX A: DERIVATION OF LANDAU DAMPING
EXPRESSION

Ry * 2m = ; ’
0=Im j rdrf dlf dy >, €y
0 o Jo  TanZ.

ot fo
{——nw
dPg °T

————— | SHT ,6H A
. . . nwb+€wE—w €n €n ( 5)
Here, we derive an expression for rate of change in the
trapped-particle wave amplitude due to interactions W|thT

bounce-resonant electrons. Since the trap is amsymmetnchewInteglral gives the Kroenecker delta functiog, and

and the wall voltages are static, the total energy and canonl’© have

cal angular momentum are conserved quantities. Therefore, f?fo fo

the unperturbed Hamiltonian is integrable and it is possible — —Nw,=

to obtain a canonical transformation to action-angle variableg— |y, J rdrf dl E 9Py |6H o2
(0,py,4,1). This transformation is carried out formally in n==w [ Nwp+ €wE ® '

Ref. 12. In the new coordinates E@&) becomes (AB)

I
—+—
A g

(9H0 d
apg a6

Setting w=w, +ivy, p and expanding in the small quantity
v.p/w, we obtain

Ry ®
O:'}/LDJ rdl’f dl
0 0

otg 9 ofy 0
BIRTART I

where C=0 in the present collisionless analysis. Herg
= —eBr?/2c is the radial coordinatd,=$p,(z,p,,Ho)dz is

the bounce action andH=—eé¢ is the perturbed Hamil- ot fo
tonian. # and ¢ are the variables canonically conjugateptp +oo { ——nNw,=
. o .- Py
andl, respectively. We assume that the equilibrium satisfies % —||6H, |2 (A7)

the Boltzmann condition so thaf,/9Hy=—fo/T. Solving n= [ (Nop+Log— o)+ v

Eqg. (A1) for perturbations that vary as gxmy+{wg— wt
d P Yy as Xy e~ ot)] For y,p<0, thel-integral must be deformed into a contour

we obtain . . .
that passes below the pole in accordance with Landau’s ini-
&fo nwao tial value treatment. This procedure can be affected by re-
ap, T lacin with in the neighborhood of the pole. In-
5 o= Po Mo, A2) p 97w |'vLol g p

tegral (A7) can be divided into resonant and nonresonant
contributions. Forw,>weg— w,, the nonresonant contribu-
tion will be dominated by the@=0 term,

Nwpt+{€wg— o

where w,=dJHy/dl is the bounce frequency andg
=dHq/dp, is the bounce averaged rotation frequency.

Substituting into the Poisson equation gives afo
2 2 6_
LA P I P 0= fdfou IO8|5H|2
var\"ar) v a0 G0 PR P A
of f Ry ]
po_n&)b_l_o +|7LD|f l‘drf dl
=— ing| _%Po T 0 0
477ef_ dan_me N p— SHen.
€&f° fo
(A3) ap, T

2 |5H€,n|21

X A8
770 [ (Nwy+Zewg— )+ ¥ip (A9)

Multiplying the term on the left hand side of E¢A3) by
8¢y and integrating over the volume of trap yields a real

guantity. Therefore, it must also be true that where the second integral is evaluated in the neighborhood
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of the resonant points. We are considering a situation in . €
which o, # wg(r) anywhere inside the plasma, so that the ~ lim x—y)2r & = 8(X—Y), (A9)
first term is a proper integral. In the limit of smal{ 5, the e~0"
second term in Eq(A8) can be simplified using the follow-
ing form of the Dirac delta function: and we find that
|
Ry * afo 0 9
Wf rdrf dIZ, .0/ € — —Nwp=||H, o Nwp+ € 0g— o, ]
0 0 Py T ’
Y=~ : (A10)
|5He o?
rdrf dI
f (ewE wr)
which is Eq.(48).
|
APPENDIX B: AXIAL DEPENDENCE OF MODE ¢l any(r,z) S¢e(r)
POTENTIAL o =n(r—Ar.z)=n(r.z)= g —_— — R
A direct solution of the complete 3D eigenvalue problem (B4)

is a challenging numerical problem. Therefore, an iterative
approach will be used to find an approximationdab,(r,z)
in the high bounce frequency limitw> ¢ wg— ). Includ-
ing axial dependence, the Poisson equation for the perturb

wherew' (r)=€wg(r) — w andw is given in the solution of
Eqg. (27). Of course, the passing particles have no bounce
Qverage drift perturbation.

Substituting the total density perturbation into Poisson’s

tions Is , , equation yields the equation
190 J ¢ J
i P =z - 19 a IS
T o (rﬁr) r7+ P Se(r,z)=4medn,(r,z). ) L saulr2)
(B1) rar\"ar) T2 4z
To get the density perturbatiofn,(r,z), we note that there B 4me’no(r,z) 5é(r.2)
is a drift and an adiabatic contribution. From E3), the T e
adiabatic contribution is given by 2
dect dny(r, z) dmreny(r,z) Seby(1) B5)
+oefy(r,z,v 7 «(r).
5n%a):f de§¢{(r Z) Brw (r) ar T
o For consistency, we verify thaig,(r,z) = 5¢.(r) inside the
vg(r) efy(r,z,v) main column by setting them equal in E@®5) and noting
- f_v (r)dv —<5¢e r.z)), (B2)  that Eq.(27) is recovered. The radial boundary conditions on

Eq. (B5) are 6¢¢(0,2) = 5¢¢(Ry,2)=0. Further,5¢,(r,0)
where we have used¢,) =0 for passing particles. The first =0 because the mode is odd abast0. At large z, the
integral on the right hand side of E@?2) is straightforward. mode potential decays exponentially and we impose the con-
However, the second integral cannot be evaluated withoudition 5¢,(r,L..)=0, whereL., is suitably larger thari.
first obtainingd¢,(r,z) which is not yet known. In order to  Equation(B5) is discretized and solved directly by matrix
simplify the calculation, we recall that the squeeze and enghversion.

regions are small compared to the overall column length. To
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