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The Dougherty collision operator is a simplified Fokker-Planck collision operator that conserves
particle number, momentum, and energy. In this paper, a complete set of orthogonal eigenfunctions
of the linearized Dougherty operator is obtained. Five of the eigenfunctions have zero eigenvalue
and correspond to the five conserved quantities �particle number, three components of momentum,
and energy�. The connection between the eigenfunctions and fluid modes in the limit of strong
collisionality is demonstrated; in particular, the sound speed, thermal conductivity, and viscosity
predicted by the Dougherty operator are identified. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2727463�

I. BACKGROUND

In the kinetic theory of plasmas, the effect of collisions
on the particle distribution function is treated by the Fokker-
Planck collision operator of MacDonald, Rosenbluth, and
Judd1 �MRJ�. This operator satisfies the usual properties ex-
pected of a good collision operator:

�a� it vanishes for any thermal equilibrium distribution
function �any Maxwellian�;

�b� it drives the plasma to thermal equilibrium in the long-
time limit; that is, the long-time solution of the Boltz-
mann equation �f /�t=C�f , f� is a Maxwellian �here f is
the distribution for a given particle species and C is the
MRJ operator�;

�c� it conserves particle number, momentum, and energy.

In addition, the MRJ operator satisfies a property specific to
plasmas:

�d� it accurately accounts for the dominance of small-angle
scattering; i.e., it contains a velocity-space diffusion
term.

However, inversion of the MRJ operator to find the distribu-
tion function is not tractable in most cases of interest. There-
fore, it is desirable to find an operator that is invertible and
yet preserves the important properties listed above.

This ad hoc approach to the collision operator as a
means to analytic progress is not a new idea. For example,
Bhatnagar, Gross, and Krook2 �BGK� proposed a drastically
simplified collision operator in 1957, and in 1958 Lenard and
Bernstein3 �LB� utilized a Fokker-Planck operator with con-
stant diffusion and drag coefficients in order to study analyti-
cally the effect of collisions on plasma waves. However,
each of these operators neglects at least one of the properties
listed above and is incapable of predicting certain phenom-
ena as a result. Specifically, the BGK operator, while con-
serving the necessary quantities, neglects the dominant role
played by small-angle scattering in the collisional relaxation
of the distribution function; as a result, in the limit of weak
collisionality this operator fails to predict the dramatically
enhanced relaxation that occurs over regions of velocity-

space in which the distribution varies sharply. Conversely,
the LB operator accounts for velocity-space diffusion but
does not conserve momentum or energy; therefore, results
obtained from the LB operator cannot match those from fluid
theory in the limit of strong collisionality.

The focus of this article is a generalization of the LB
operator, conceived of by Dougherty,4 which retains each of
the properties �a� through �d�. The operator proposed by
Dougherty is given by

CD�f , f� = �
�

�v�
· �T�f�

m

� f

�v�
+ �v� − V��f��f� , �1�

where

V��f� =
1

n
� dv�v� f , T�f� =

1

3n
� dv�m�v� − V��2f ,

�2�

n�f� =� dv� f ,

� is a characteristic collision frequency, and m is the particle
mass; this operator applies only to collisions involving a
single species of particle. Unlike the LB operator, the
Dougherty operator conserves all of the desired quantities
and therefore can match onto fluid theory in the limit of
strong collisionality. Note here that strongly collisional does
not mean strongly coupled, but rather the weaker condition
that the mean-free path between collisions is smaller than the
spatial scale of interest �e.g., mode wavelength�.

The advantage of the Dougherty operator is that it is
analytically tractable. The sacrifice is that the velocity depen-
dence of the Fokker-Planck coefficients is neglected, and
therefore results are only qualitatively correct.

If the particle distribution function can be written as f
= f0+�f , where �f is a small perturbation and f0 is the Max-
wellian characterized by density n0, temperature T0, and zero
mean velocity, then one may write
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CD�f , f� � CD�f0,�f� + CD��f , f0�

	 �
�

�v�
· �T0

m

��f

�v�
+ v��f +

�T

m

� f0

�v�
− �V� f0� , �3�

where

�T = �3n0�−1� dv�m�v2 − 3T0/m��f , �V� = n0
−1� dv�v��f .

�4�

The first two terms in Eq. �3� are identical to the LB opera-
tor, while the remaining terms are responsible for restoring
momentum and energy conservation. Dougherty focuses on
the inversion of this linearized operator to find �f . Following
Chandrasekhar,5 he constructs a Green’s function for the lin-
earized kinetic equation

��f

�t
+ v� ·

��f

�x�
+

q

mc
�v� � B�� ·

��f

�v�
− �

�

�v�
· �v��f +

T0

m

��f

�v�
�

=
1

T0
�E� · v� f0 + ��m�V� · v�

T0
+

�T

T0

mv2

T0
− 3�� f0, �5�

treating the right-hand side as a source term. Using the
Green’s function, it is possible to obtain an expression for �f

in terms of �V� and �T, and this expression may be substi-
tuted in the definitions of these quantities, resulting in two

algebraic equations for �V� and �T. These equations can then
be solved and �f determined.

A different method for inverting the linearized Dough-
erty operator was introduced by DeSouza-Machado et al.6

These authors expand the velocity dependence of �f in an
infinite series of orthogonal basis functions �Hermite polyno-
mials�, converting the Dougherty operator to an infinite ma-
trix acting on the vector of coefficients in the orthogonal
function expansion. The Hermite polynomials diagonalize
the LB part of the Dougherty operator �the first two terms in
Eq. �3��, but not the whole operator.

In contrast, we expand �f in orthogonal basis functions
that diagonalize the whole Dougherty operator. Most of these
eigenfunctions are just the Hermite polynomials, but a few
are modified by the third and fourth terms in the linearized
Dougherty operator �Eq. �3��. Physically, the modified eigen-
functions �and eigenvalues� are a consequence of the conser-
vation properties of the Dougherty operator. One should note
that the eigenfunctions diagonalize only the collision opera-
tor, not the streaming and force terms in the Boltzmann equa-
tion. These terms couple the eigenfunctions.

We note that Ng, Bhattacharjee, and Skiff7 have deter-
mined a complete set of eigenfunctions that simultaneously
diagonalize the LB operator plus streaming and force terms,
in analogy with the Case–Van Kampen modes of the Vlasov
equation.8,9 An analogous theory for the Dougherty operator
is not considered in this paper.

Five of the eigenfunctions of the Dougherty operator
have eigenvalue zero �corresponding to conservation of par-
ticle number, three components of momentum, and energy�,
and these eigenfunctions are crucial in connecting onto fluid
theory. We discuss the relation between these special eigen-

functions and the usual hydrodynamic modes in the limit of
strong collisionality, identifying the sound speed, thermal
conductivity, and viscosity predicted by the Dougherty op-
erator.

More formally, the hydrodynamic modes arise because
the streaming term in the Boltzmann equation �i.e., ikvz�f for
�f �exp�ikz�� is not diagonalized by the new eigenfunctions.
Although the streaming term may be treated as a small per-
turbation in the limit of strong collisionality �hydrodynamic
limit�, it thoroughly mixes the degenerate eigenfunctions
with eigenvalue zero, yielding the hydrodynamic mode
eigenfunctions. These hydrodynamic eigenfunctions diago-
nalize both the collision operator and the streaming term in
the important subspace of undamped modes. In second-order
perturbation theory, the hydrodynamic modes pick up weak
damping due to weak coupling to eigenfunctions outside the
subspace.

II. EIGENFUNCTIONS OF THE LINEARIZED
DOUGHERTY OPERATOR

We may put the linearized Dougherty operator in self-
adjoint form by writing �f = f0� and substituting this expres-
sion in Eq. �3�. The result is

CD�f0,�f� + CD��f , f0�

= f0�� �2�

�u2 − u� ·
��

�u�
+

�T

T0
�u2 − 3� +

�V�


T0/m
· u��

	 f0���� , �6�

where we have introduced the scaled velocity u�	v� /
T0 /m;
the operator � is self-adjoint with weight function f0. In or-
der to find the eigenfunctions of this operator, we break it
into two parts—a differential operator,

�1��� 	 �� �2�

�u2 − u� ·
��

�u�
� , �7�

and an integral operator,

�2��� 	 ���T

T0
�u2 − 3� +

�V�


T0/m
· u�� . �8�

As mentioned above, the eigenfunctions �n1n2n3
of �1 are the

products of modified Hermite polynomials;10 that is,

�n1n2n3
=

Hen1
�ux�Hen2

�uy�Hen3
�uz�


n1!n2!n3!
. �9�

The corresponding eigenvalues are

�n1n2n3
= − ��n1 + n2 + n3� , �10�

where n1, n2, and n3 are non-negative integers. The functions
�n1n2n3

satisfy the orthogonality relation

n0�n1,m1
�n2,m2

�n3,m3
=� du��n1n2n3

f0�m1m2m3

	 n0��n1n2n3
��m1m2m3

� . �11�

We observe that any �n1n2n3
that satisfies �2��n1n2n3

�=0 is an
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eigenfunction of the total operator � with eigenvalue �n1n2n3
.

We therefore express �2 in terms of inner products with the
functions �n1n2n3

:

�2��� = �� 2
3 ��200 + �020 + �002�����200 + �020 + �002�

+ ��100����100 + ��010����010 + ��001����001� . �12�

Evidently, �2��� is the projection of � onto �200+�020

+�002, �100, �010, and �001. Therefore, for almost every
�n1n2n3

, �2��n1n2n3
�=0, and in each such case, �n1n2n3

is an
eigenfunction of � with eigenvalue �n1n2n3

. Hereafter, we re-
fer to these eigenfunctions and eigenvalues of � as �n1n2n3
and �n1n2n3

, respectively. The exceptions, for which the pro-
jection in Eq. �12� is nonzero, are clearly �200, �020, �002,
�100, �010, and �001. It is straightforward to find six addi-
tional eigenfunctions of � to replace these exceptions. A sen-
sible choice is

�100 	 ux, �010 	 uy, �001 	 uz, �200 	
1

6

�u2 − 3� ,

�13�

with eigenvalues �100=�010=�001=�200=0, and

�020 	
1

3
�uz

2 −
1

2
�ux

2 + uy
2��, �002 	

1

2
�ux

2 − uy
2� , �14�

with eigenvalues �020=�002=−2�. Defined in this manner,
the eigenfunctions �000, �100, �010, �001, and �200, which
span the null-space of �, correspond to particle number, x, y,
and z momentum, and kinetic energy. These eigenfunctions
also satisfy the orthogonality relation given by Eq. �11�.

In Refs. 7–9, proofs of completeness are nontrivial, since
in each case the eigenmodes are constructed “from scratch”
and not from a set of special functions whose completeness
has already been established. In contrast, the completeness of
the eigenfunctions found above follows immediately from
the completeness of the modified Hermite polynomials. Ex-
cept for �200, �020, and �002, the eigenfunctions �n1n2n3

are
given by Eq. �9�.

�n1n2n3
	 �n1n2n3

,

where the functions �n1n2n3
are defined by Eq. �9�. The three

exceptions, i.e., �200, �020, and �002, are mutually orthogo-
nal, and each can be expressed as a linear combination of the
functions �200, �020, and �002. Therefore, the eigenfunctions
�n1n2n3

span the same space as do the functions �n1n2n3
. Since

the set ��n1n2n3
� is known to be complete, it follows that the

set ��n1n2n3
� must be complete as well.

As a simple demonstration of the utility �and basic con-
sequences� of this complete set of eigenfunctions, we con-
sider the linearized kinetic equation

��f

�t
= CD�f0,�f� + CD��f , f0� �15�

which governs the evolution of a small, spatially uniform
perturbation in the distribution. The solution can be written
down immediately in terms of the eigenfunctions found
above,

�f�u�,t� = f0�u� �
n1=0

	

�
n2=0

	

�
n3=0

	

an1n2n3
�n1n2n3

�u��exp��n1n2n3
t� ,

�16�

where the coefficients an1n2n3
are determined from �f�u� , t

=0�. Note that all of the eigenvalues �n1n2n3
are negative

except for �000, �100, �010, �001, and �200, which are zero.
Thus, the initial perturbations in density, fluid-velocity, and

internal energy—�n, �V�, and �T, respectively—are pre-
served; all other components of the initial perturbation relax
on a timescale �−1 or faster. In other words, we find that

lim
t→	

f =
n0

�2
T0/m�3/2e−u2/2�1 +
�n

n0
+

�V� · u�


T0/m
+

�T�u2 − 3�
T0

� .

�17�

Since �n /n0, ��V� /
T0 /m�, and �T /T0 are small in compari-
son to unity, this time-asymptotic expression is equivalent to

a Maxwellian with density n0+�n, mean velocity �V�, and
temperature T0+�T.

In certain circumstances �for example, if the plasma of
interest is magnetized�, it may be useful to work in cylindri-
cal velocity coordinates, which we define by

u� = 
ux
2 + uy

2, �u = tan−1�uy/ux� . �18�

In these coordinates, the u� dependence of the eigenfunc-
tions of � may be expressed in terms of the associated La-
guerre polynomials Ln

m�x�. Specifically, the functions

�n�nzm1

�1� = u�
�m1�Lnr

�m1��u�
2 /2�sin�m1�u�Henz

�uz� ,

�19�
�n�nzm2

�2� = u�
�m2�Lnr

�m2��u�
2 /2�cos�m2�u�Henz

�uz�

are eigenfunctions of � with eigenvalues

�nrnzm1

�1� = − ��nz + 2nr + �m1��, �nrnzm2

�2� = − ��nz + 2nr + �m2�� ,

�20�

provided that �n� ,nz ,m2�� �1,0 ,0�, �0,1 ,0�, �0,0 ,1�,
�0,2 ,0�, �0,0 ,2�, and that �n� ,nz ,m1�� �0,0 ,1�; here,
n� ,nz, and m2 are non-negative integers and m1 is a positive
integer. The remaining eigenfunctions are

�001
�1� = u�sin �u, �001

�2� = u�cos �u,

�21�
�010

�2� = uz, �100
�2� = u�

2 + uz
2 − 3,

with eigenvalues �001
�1� , �001

�2� , �010
�2� , �100

�2� =0 and

�002
�2� = u�

2 cos�2�u�, �020
�2� = 2uz

2 − u�
2 , �22�

with eigenvalues �002
�2� , �020

�2� =−2�.

III. THE LIMIT OF STRONG COLLISIONALITY

If a collision operator is to remain an accurate model
when the effect of collisions becomes strong, it must con-
serve particle number, momentum, and energy. The reason is
that the fluid description of the plasma in this limit is char-
acterized by hydrodynamic modes that decay slowly com-
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pared with the typical collisional relaxation time, and the
existence of such modes requires that these quantities be
conserved. Because the Dougherty operator respects these
conservation laws, it naturally gives rise to fluid-like behav-
ior when collisions are strong.

To see that the Dougherty operator gives rise to such a
fluid theory, we imagine a single-species plasma and con-
sider how a perturbation of the form

�f�u�,z,t� = f0�u���u�,t�eikz �23�

evolves according to this operator.11 Neglecting external and
mean field forces, the linearized kinetic equation correspond-
ing to the Dougherty operator is

�ikuz

T0/m − ��� = −

��

�t
. �24�

Solving this equation is equivalent to finding the eigenfunc-
tions of the operator K	 ikuz


T0 /m−�. If collisions are suf-
ficiently strong �i.e., ��k
T0 /m�, then ikuz


T0 /m may be
treated as a perturbation to � in Eq. �24�. Thus, if �n1n2n3

and

n1n2n3

are the eigenfunctions and eigenvalues of K, then as a
first approximation,

�n1n2n3
= �n1n2n3

, 
n1n2n3
= − �n1n2n3

, �25�

provided that �n1n2n3
is nondegenerate.

However, in the degenerate subspace for which �n1n2n3
=0, one must diagonalize the perturbation, ikuz


T0 /m, in
order to obtain the correct lowest-order approximation to the
eigenfunctions of K. In this degenerate subspace, in the basis
�1, ux, uy, uz, �u2−3� /
6�, the operator ikuz


T0 /m has the
following matrix representation:

ikuz

T0/m = ik
T0/m �

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 
2/3

0 0 0 
2/3 0
� . �26�

The eigenvectors and eigenvalues of this “degenerate block”
are

�000
�0� =

1

5
�− 
2 +

1

2

�u2 − 3��, 
000
�1� = 0,

�100
�0� = ux, 
100

�1� = 0, �010
�0� = uy, 
010

�1� = 0,

�27�

�00±1
�0� =
 3

10
�1 ±
5

3
uz +

1

3
�u2 − 3�� ,


00±1
�1� = ± ik
5T0

3m
.

The second-order corrections to these eigenvalues are given
by the formula


n1n2n3

�2� = �
n1�,n2�,n3�

s·t·
�0��0

���n1n2n3

�0� ,ikvz�n1�n2�n3�
�0� ��2

− 
n1�n2�n3�
�0� ; �28�

they are 
000
�2� =k2T0 /3�m, 
100

�2� =
010
�2� =k2T0 /2�m, and 
00±1

�2�

=4k2T0 /9�m. Since 
000, 
100, 
010, and 
00±1 are smaller
than all other eigenvalues of K by at least a factor of
k
T0 /m /�, the time-asymptotic behavior of �f is dictated by
�000, �100, �010, and �00±1. Specifically, for sufficiently
large time t �i.e., �t�1�, a hydrodynamic phase ensues, dur-
ing which �f is given by

�f � f0eikz�A000�000e
−k2T0t/3�m + A100�100e

−k2T0t/2�m

+ A100�100e
−k2T0t/2�m

+ A001�001e
−4k2T0t/9�m−ik
5T0/3mt

+ A00−1�00−1e−4k2T0t/9�m+ik
5T0/3mt� , �29�

where the coefficients A000, A100, A010, and A00±1 are deter-
mined from ��u� , t=0�.

The first term on the right-hand side of Eq. �29� is prop-
erly identified as a heat conduction mode; the second and
third terms represent viscous relaxation; the fourth and fifth
terms are counterpropagating, damped sound waves.

The eigenvalues 
000, 
100, 
010, and 
00±1 �corre-
sponding to heat conduction, viscous relaxation, and sound
modes� can be compared with the corresponding eigenvalues
of the linearized hydrodynamic equations for the plasma �ne-
glecting external and mean-field forces�. This comparison
provides a means by which to obtain the viscosity �, thermal
conductivity K, and second viscosity �, that result from the
Dougherty collision operator. In this manner, we find that

� =
1

2
n0

T0

�
, �30�

K =
5

6
n0

T0

m�
, �31�

and �=0.
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