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Plasmas consisting exclusively of particles with a single sign of ch@.ge, pure electron plasmas

and pure ion plasmasan be confined by static electric and magnetic fiédg., in a Penning trap

and also be in a state of global thermal equilibrium. This important property distinguishes these
totally un-neutralized plasmas from neutral and quasineutral plasmas. This paper reviews the
conditions for and structure of the thermal equilibrium states and then develops a thermodynamic
theory of the trapped plasmas. Thermodynamics provides hundreds of general reldtomnsl|
relationg between partial derivatives of thermodynamic variables with respect to one another.
Thermodynamic inequalities place general and useful bounds on various quantities. General and
relatively simple expressions are provided for fluctuations of the thermodynamic variables. In
practice, trapped plasmas are often made to evolve through a sequence of thermal equilibrium states
through the slow additiofor subtraction of energy and angular momentuisay, by laser cooling

and torque beamsA thermodynamic approach to this late time transport describes the evolution
through coupled ordinary differential equations for the thermodynamic variables, which is a huge
reduction in complexity compared to the partial differential equations typically required to describe
plasma transport. These evolution equations provide a theoretical basis for the dynamical control of
the plasmas. ©1998 American Institute of Physids$1070-664X98)00106-2

I. INTRODUCTION states. The plasma evolution is then governed by coupled
ordinary differential equations for the time dependence of
the thermodynamic variables, which is a huge reduction in
complexity relative to the partial differential equations typi-

Plasmas with a single sign of char@eg., pure electron
plasmas and pure ion plasmase routinely confined in Pen-
ning traps for long timeshours and even days states of ) .
global thermal equilibriunt~* Moreover, the plasmas are cally required to describe plasma transport.

made to evolve through a sequence of thermal equilibrium AhltthUQh tr;erdmodgngmics plays Zn imgortant rolhe in
states by the slow additiofor subtraction of energy and much of many body physicg.g., in condensed matter phys-

angular momentum. These experiments suggest the need ) it has not been used to describe neutoalquasineutral
a thermodynamic theory of trapped plasmas. trapped plasmas. The reason for this apparent omission is
The main advantage of a thermodynamic description €8Sy 0 understand. Such plasmas cannot be confined by
that it provides a huge reduction in the level of complexityStat'C electric and magnetic fields and also be in a state of
required to specify the system state. Much of many bod>global thermal equilibriunt,so a thermodynamic description
physics can be viewed as the development of such reductioi$ Simply not available. The possibility of a thermodynamic
(e.g., Liouville distribution-Boltzmann distribution-fluid ~ description is an important property that distinguishes plas-
description, and thermodynamics is the ultimate reduction.Mas with a single sign of charge from their neuttahd
The system state is completely specified by the values of guasmeutr_a)l cousins. o _
few thermodynamic variables. However, no information is  There is some previous W&fkl on the thermodynamics
lost so long as the system is in thermal equilibrium. A com-C.)‘c _trapped plasmas with a sm_gle sign of charge, but it is
plete set of thermodynamic variables fixes all of the paramlimited in focus and scope and is not intended to be a general
eters(e.g., temperatujan the Gibbs distribution. development of the subject. For example, it focuses on the
We will see the power of this reduction in Sec. VI where Special case of long plasma columtfermally, infinitely
we discuss a thermodynamic approach to transport. ThiPng or shaped like a right circular cylindeand does not
theory applies when the evolution is slow enough that thelevelop and exploit Maxwell relations, thermodynamic in-

plasma passes through a sequence of thermal equilibriu@qualities, etc. Here, we provide a general development of
the subject that allows for realistic plasma configurations,

*This review paper is based in part on the Maxwell Prize lecture given byuses the natural thermodynamic variables for the trapped

Professor O’'Neil at the 1996 annual meeting of the Division of Plasmaplasma SySte_mS: and develops and applies the full thermody-
Physics in Denver, Colorado. namic formalism.
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FIG. 1. Schematic diagram of a Malmberg—Penning trap.

Sections 1l and Il review the confinement geometry,
constants of the motion, and the conditions for and structure
of the thermal equilibrium states for the trapped plasmas. _

Section IV develops the general theory of thermodynamics

for these systems. Section V considers the special case ot

large trapped plasmas, and shows that the thermodynamidG. 2. Penning trap for which the electrodes are hyperbolas of revolution.
functions for these systems are simply related to those for an
infinite homogeneous one component plasi@&P, which

are well known even in the limit of strong correlatibht?

Section VI devel the thermodvnami roach to tran As a preliminary to a discussion of the thermal equilib-
ectio evelops the thermodynamic approach 1o Wanss, , siates, it is necessary to determine the effective con-
port and applies it to explain observations in recent

. 2 i . . _~"“stants of the motion for the plasma. These quantities need not
expenment -Section VIl notes t_hat in some special configu- be exact constants; it is only necessary that they be nearly
rations the center-of-mass motion decouples from the othe onstant on the time scale required for interactions to bring
degrees of freedom. This introduces new constants of th

motion. which then enter as new thermodynamic variables e plasma charges into thermal equilibrium with each other.
y For our theoretical discussion, we introduce an idealized

'rl;hr(;Ithelrm\c/)dlyrt1lar:|(I:nthviﬁlryh01;r:ransp;§rtrthfer:ndesc:rllbtilsr?cliy odel of the plasma and trap such that the quantities of
amica’ evoiutio c € center-ol-mass motio |mterest are exact constants.

coupled to the other thermodynamic variables. This genera We consider a plasma dfl like charges that interact

ISZ::/etgel(;r)t/hS Igf:({[lrfedgsr?;r?ﬁc: (I)|fm tl;tacycelg bﬁ?eave'gc?rg electrostatically in a cylindrically symmetric Penning trap
y pped p With time- independent voltages applied to the electrodes and

3
plasmas: a time-independent and uniform axial magnetic fieRl,
=ZzB. There may be more than three electrodes, and all of
II. CONFINEMENT AND CONSTANTS the electrodes together completely bound the confinement
OF THE MOTION region so that the interior solution to Poisson’s equation is

. ] g 1 well defined. The vector potential for the uniform magnetic
Flgu_re 1 Sh.OWS a_S|m.pI.e example Of a Penning ap field can be written a8 = 0A4(r), whereA,(r)=Br/2. Here
conducting cylinder is divided axially into three sectlons(r 6,2) is a cylindrical coordinate system with teaxis

with the central section held at ground potential and the WQ gincident with the axis of symmetry of the trap. We write
end sections held at positive potentieafthroughout the pa- the electric potential as

per, the figures and discussion refer to positively charged
particles, but the case of negative charges is covered by ob-
vious sign changesAlso, there is a uniform axial magnetic b(r)= ¢T(r)+; eG(r|rJ-), @)

field. The plasma resides in the region of the central

grounded section with radial confinement provided by thevhereg+(r) is the trap potential in the absence of a plasma.
magnetic field and axial confinement by the electric fields.This potential satisfies Laplace’s equation and matches the
To understand radial force balance, one must realize that treotential specified on the conducting boundary, that is, on
plasma rotates about the axis of symmetry of the trap. Théhe electrodes. The quantiG(r|r;) is the Green’s function
associated Lorentz force¢xB/c), wherev is the rotational ~ that vanishes on the conductlng boundary, ani the po-
velocity, is directed radially inward and balances all of theSition of thejth charge. The Green’s function differs from
radially outward forcegcentrifugal, pressure, and electro- the Coulomb interaction fi/—r;| because of image charges
statio. This simple form of the tragwith cylindrical elec- N the conducting boundary.

trodes is often called a Malmberg—Penning tr&pFigure 2 To a good approximation, the motion of the charges is
shows a Penning trap in which the cylindrical electrodes argoverned by the Hamiltonian

replaced by hyperbolas of revolutidhl’” Such traps were

N —(elc)Ay(rr]? p?
developed originally to confine small humbers of charged E p, [pai (e/e) 20( )il +E
particles, but more recently have been used to confine charge = 2mr; 2m
clouds that are large and dense enough to qualify as a N . N
plasma. We will develop the theory so that it is broad enough + Z edr(r)+= 2 ! eZG(ri|rJ-), )
to encompass both of these traps. =1 i=1
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where the canonical momenta are given by with the neutrals change the plasma energy and angular mo-
o mentum; and most importantly there are small field errors

P, =mi, po_:mrjzgj + = Alrrj, p,=mz. (3 and construction errors that break the cylindrical symmetry

! ! ¢ and apply a small torque on the plasma. However, with care

The first sum is the kinetic energy, the second is the electro?! Of these effects can be made sufficiently small that inter-
static energy of the charges in the trap potential, and the thir@Ctions between the particles bring the plasma into thermal
is the electrostatic interaction energy of the charges witffduilibrium before the energy and angular momentum
each other and with their images. Diamagnetic and relativischange by a significant amount. Thus we proceed with a
tic effects have been neglected since velocities are typicall§€SCription of the plasma confinement and thermal equilib-
small(i.e., |v;|/c<1) in the experiments of interest. Also, in "M states using our idealized model. ,

the second sum, we have neglected the interaction energy of 1° understand the confinement, it is useful to introduce
each charge with its own image: typically this is much th_e Hamllt_onl_an in a frame that rotates with frequenew;
smaller thare¢(r) unless the charge is very near the wall. this quantity is given b

Note that the interaction of a particular charge with the im-  Ho=H+ wP,, (6)
ages of all of the other charges can be large and is retained in |

the third sum. The constants of the motion follow from the@"d is conserved so long &b and P, are conserved. Of
symmetry properties of the Hamiltonian, and these propertie§OUrse, we are free to view the dynamics from any rotating
are not changed by dropping the/€)? corrections and the frame that is convenlent. It is important to note here that
interaction of a charge with its own image. These approxi/S N0t necessarily the rotation frequency of the plasma. The
mations are used only to simplify the notation. Also, for MiNUs sign is included explicitly so that can be chosen to

notational simplicity, we have taken the case of a single spe2€ Positive(for a plasma of positive chargesWhen the
cies plasma; the results are easily generalized to a multisp&&nonical momenta are replaced with velocity variables, Eg.

cies plasma so long as all of the species have the same sig® takes the form
of charge. N m N 1 N ’
~ Since the Hamiltonian is invariant under translations in Hr=2, > i+ X epr(r).z)+ > 2 €G(ri|r)
time (i.e., 9H/at=0), the Hamiltonian itself is a constant of =1 =1 hi=1
the motion N e
. +w2 (mvg_r-+—Br-2/2), @)
H=E. 4 = il e
We may think ofH as the total particle energy, but should where we have used(c)A,(r)r=eBr?/2c. Carrying out a
note thatH is not the same as the “system energy,” i.e., thesmall amount of algebra yields the result
energy required to assemble the plasma in the trap. If for N N
simplicity we fix the voltages on the electrodes and the cur- _ m 22
rent in the solenoid, and do not include in our considerations HR_jZ]_ 2 (vt or;6;) +,Z’1 edr(r; 2)
the energy required to charge the electrodes and the solenoid N
in the absence of the plasma, the system energy ediials n } 2, 2G(r|r) ®)
plus the work done by external circuits as the plasma is as- 2i7=1 s
sembled. For example, as charges are brought from infinit
into the trap, image charges flow onto the electrodes, doinév re
work against the circuits holding the electrode voltages fixed.  e¢gg(r,z)=e¢+(r,z) + Mo (Qe— w)r?/2 (9
Also, work is required of the circuits holding the solenoid .

current fixed due to the mutual inductance between thé® the eﬁ_ective trap potential in the rotating frame &g
plasma and the solenoid. This will be discussed in detail in:eB/”_]C IS the_cyclotro_n frequency. .
This potential consists of three ternesp is the poten-

Sec. IV B, where it is the basis for our discussion of thermo- | q b | tained he el d
dynamic stability of non-neutral plasmas. tial energy due to the voltages maintained on the electrodes,

The cylindrical symmetry of the apparatus implies that ”1“’ rif2 is th? centrn‘uga! poten_ua}l, andnoCdcr /2.
the trap potential is of the fornbr(r )= +(r: ,z;) and that = [odr e(wr)B/c is the potential that is induced by rotation
the Green's function is of  the form G(rilr:) through the magnetic field. It is this last term that provides

it

=G(r;,2.1;,2,6,— 6;). Thus the Hamiltonian is invariant the radial confinement. For a suitable choice of the bias volt-

under translations i (i.e., E]-N:laH/aej=0), and the total @9€ ON the e_nd elegtrodes and for sufficiently laugd),
canonical angular momentum is conserved — ), the equipotential surfaces ethg(r,z) are nested sur-
faces of revolution with the value af¢g(r,z) increasing

N outward from the center of the trap. The teew(r,z) in-
Py= 21 Pe,=L. (5)  creases ag moves toward either end where the positively
3 biased end electrodes are located. For sufficiently large
Of course, for a real plasma in a real trap, the total enw(Q.— o), the termmw(Q.— w)r?/2 makesegg(r,z) an
ergy and the total canonical angular momentum are not corincreasing function of [even thougle¢+(r,z) is decreasing
served exactly. The charges slowly radiate away both energy r]. Thusegg(r,z) is a potential well that acts to confine
and angular momentum; there are neutrals, and collisionthe plasma.
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A simple confinement theorem can be constructed by

noting that the first and third sums in E{B) are non- 7 reeniin) ) e 0 7 ) e
negative. The non-negative character of the third sum fol- 7 700

lows from the fact thatG(r|r’)>0. A negative value for E= T = m

G(r|r’) would imply thatG(r|r’) reaches a minimum at

some pointr inside the confinement region; recall that FIC_;. 3. Plasma in thermal contact with heat and angular momentum reser-
G(r|r’) vanishes on the boundary and is positive near vorr

=r'. Of course, a minimum is not possible since

V2G(r,r')=0 except ar=r".

Particles can escape to the wall only by climbing high upthat is in thermal contact with an energy and angular mo-
in the potential well, that is, by increasing the second sum irmentum reservoir. For example, Fig. 3 shows a trapped
Eq. (8). This must be accompanied by a decrease in the othgrlasma that is in thermal contact with an infinitely long col-
two sums, sinceHy is conserved. Physically, the particles umn (the reservoir. It is characterized by temperatufeand
can climb up the potential only by using kinetic energy androtation frequency— . Thermal fluctuations produce a
electrostatic energy of interaction. Because these latter twtsansfer of energy and angular momentum back and forth
guantities are non-negative, their initial values set the maxibetween the reservoir and plasma. However, for a suffi-
mum amount that they can decrease. Suppose that all of tleéently large plasmai.e., N>1), the fluctuations in plasma
particles are initially insidébounded by some equipotential energy and angular momentum are small compared to the
surfacee¢g(r,z) =e¢, and that the first equipotential where mean energy and angular momentum and have only a small
the potential begins to decreager intersects the wallis  influence on the plasma state. Thus for most physical quan-
e¢gr(r,t)=ed,. Then only a small fraction of the charges tities, an average over the microcanonical distribution can be
can escape iNe(¢,— ¢,) is much larger than the initial replaced by an average over the Gibbs distributfoim es-
values of the first and third sums in E®). tablishing the correspondence between the two distributions,

In applying this theorem, we are free to choeseHow- T andw are chosen so th&=(H) andL=(P), where the
ever, care must be taken, sineeappears both in the effec- averages are over the Gibbs distribution. This well-known
tive trap potential and in the kinetic energy the rotating  equivalence between the two distributions is useful because
frame. Also, w must lie in the interval &2w<(). so that the Gibbs distribution offers advantages analytically; for ex-
w(Q.— w) is positive. Nevertheless, for any initial state of ample,H and P, enter the Gibbs distribution only through
the plasma, the well can be made deep enough to providéne combinationrHg=H+ wP,. However, we should note
confinement for a range ob values, if ). and the bias that the equivalence does not extend to averages of certain
voltage on the end electrodes are sufficiently large. fluctuations; for example,(H —E)?) is identically zero for
the microcanonical distribution and is smdli.e., ((H
—E)?/E?)~1/N] but nonzero for the Gibbs distribution.

From Eq.(8), one can see that the velocity dependence
A. Distribution function of f. is a product of Maxwellians in a frame that rotates with

Given that the particles remain confined, Coulomb inter-frequency—w. Thus the local fluid velocitfv)=wr ¢ is a
actions between the particles must bring the plasma to a staghear-free rigid rotor flow. Of course, a thermal equilibrium
of thermal equilibrium. For a thermal equilibrium plasma flow must be shear-free; viscous forces acting on a shear in

characterized by the fixed valugd(rq,vy,....ry,vy)=E  the flow would produce entropy, and that is impossible for a
and Py(ry,vy,....fn,Vn) =L, the 6N-dimensional particle state of maximum entropy. One should note the distinction

distribution is the distribution for a microcanonical between the meanings afhere and in the confinement theo-
ensembl& rem. Herew is the rotation frequency of the plasma as de-
termined by the values &= (H) andL=(P,); whereas, in
Fmc(T1Ve,e V) =ASLH=EJPy— L], (10 the confinement theorem,is the rotation frequency of some
whereA is a constant that is chosen to normalize the phasearbitrary frame from which we choose to view the dynamics.
space integral of the distribution to unity. According to To see that distributiofiLl1) describes a confined plasma,
the ergodic hypothesis, the average of any functiorwe note that the probability of finding a particle high up in
G(rq,vy1,...,fn,VN) taken over the microcanonical distribu- the potential well, that is, wheregg(r,z) is large, is expo-
tion is equal to the long time average of the function takemnentially small. The electrode surfaces are assumed to be
along the system trajectory in theNedimensional phase well outside the surface where the density becomes exponen-
space. tially small. The existence of thermal equilibrium states for
We will consider plasmas with enough particlesl ( confined plasmas with a single sign of charge has been
>1) that the distribution for a microcanonical ensemble isknown for many year§!~%*
well approximated by the distribution for a canonical en-  Note that the confinement works only for a plasma with
semble(the Gibbs distributioyt®?° a single sign of charge. In the effective trap poterjsale Eq.
(9)], the two terms that provide confinemdne., et and
Fe(r1, Ve Vi) =C X = (H+ wP ) /KT, (1D mwr?/2] both enter with the sign of the change as a co-
whereC is a factor used to normalize the integral fefto  efficient; so confinement of positive charges implies noncon-
unity. Formally the Gibbs distribution describes a plasmafinement of negative charges. As mentioned earlier, it is well

IIl. THERMAL EQUILIBRIUM STATES
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known that a neutral or quasineutral plasma cannot be cofpe velocity shiftijVjerrjbj . The spatial dependence,
fined by static electric and magnetic fields and also be in gcjuding all correlations, would be identicX.

state of global thermal equilibrium. Such a plasma cannot be e know what would happen if we put a collection of
confined and also be in a state of minimum free energy; thergositive charges into a potential well produced by the cylin-
is confined stably forever, at least for our ideal model whergnatch their density to that of the negative chafge., n

E andL are exact constants of the motion. =n_), neutralizing the negative charge out to some surface

This is a good point to return to the fact tia@ndL are  of reyolution where the supply of positive charges was ex-
not exactly constant for a real plasma in a real trap. As mennaysted. The condition=n_ is typically written a&

tioned earlier, various effectsadiation, collisions with neu- )
trals, and interactions with field errors and construction er-  @;=20(Q¢~ ), (12
rors that _break the cylindrical symm_e)r;prodt_;ce SIOW wherew?=4mne?/m is the square of the plasma frequency.
changes inE and L. However, by using a high-quality P .
. . . An alternate form of this argument starts from the obser-
vacuum and by constructing the trap with a high degree of _..
S vation that the plasma charges must arrange themselves so
cylindrical symmetryE andL can be nearly constant on the - ;
: . - . that any external electric field is Debye shielded out when
time scale required for Coulomb collisions to bring the . . :
. o . ._viewed in the plasma rest frantbere, the rotating frame of
charges into thermal equilibrium with each other. Thus dis-, ; ) : . .
oS . ; _— the plasma The effective external field in this frame is
tribution (11) still provides a correct description of the

plasma state, but the slow evolution®fandL translates to ~V¢ér, S0 we conclude that

a slow evolution ofT and w. If no counter measures were ?R(r)+ ¢p(r)=const (13
taken, the ambient heating and ambient tordtypically a
drag that opposes the plasma rotatismuld causel and w

to change in such a way that the plasma would be lost to t
wall. However, counter measures such as laser cooling a
laser torques can be used to maintaiandL (and therefore
T andw) at constant values indefinitely. Alternativef,and ~ feld- _ ,
L can be deliberately varied so that the plasma sweeps In these arguments we have introduced the demgity

through a sequence of thermal equilibrium stdtgSuch an f%’?d the space-charge_ pme’?"*ﬁd(r): Formally, these quan-
evolution will be discussed in Sec. Il C. tities are related to Gibbs distributigi1) through the inte-

grals

in the plasma interior, wherep,(r) is the plasma space-
neharge potentiat®® Equation(12) then follows from Pois-
Spn's equation,V?¢,=—4men, plus the relationV?¢ppg
=47qen_. Here we have used the fact that is a vacuum

B. Relation to a one-component plasma n(rl):f d3vy- -3 d3vyf e (14)

The Gibbs distribution for the trapped plasma is equiva-
lent to that for a one-component plast@CP.2* An OCP is  and
a system of point charges embedded in a uniform neutraliz-
ing background charg¥:*? The infinite homogeneous OCP ¢p(r)=f a3’ G(r|r")n(r"), (15)
has been a favorite theoretical model for the study of corre-
lation effects, and its thermodynamic properties are welwhereG(r|r’) is the Green’s function introduced in E{).
known. In Sec. V, we will relate the thermodynamic func- This general picture of a plasma that is uniform density
tions of an infinite homogeneous OCP to those of a largeut to a surface of revolution where the density drops to zero
trapped plasma. Here we use the equivalence between tlirea thin surface sheath has been verified by detailed numeri-
systems to help understand the spatial structure of theal solutiond*?®and by experiment®?’ The influence of the
trapped plasmas. surface extends into the plasma about a correlation length, so
To demonstrate the equivalence, we first note from Eqthe surface sheath is about a correlation length thick. For a
(9) that the second term ir¢g(r,z) is quadratic inr. As  weakly correlated plasma, the correlation length is of order
described earlier, this term provides the correction due tdhe Debye lengthyp= (kT/47ne?)Y?, and the density drops
rotation. Suppose that the radial confinement were not promonotonically to zero on this scale length. For a strongly
vided by rotation through a magnetic field but rather by ancorrelated plasma, the density does not fall monotonically to
imaginary cylinder of uniform negative char@® confine a  zero, but suffers oscillations near the surface. The density is
plasma of positive chargesSuch a charge distribution concentrated on nested shells. One can think of these shells
would produce a radial electric field,=—2men_r and an as crystal planes that are deformed to follow the contour of
electric potential$ _=men_r?, wheren_=constant is the the surface. The shell structure extends into the plasma a
density of the imaginary negative charge. If this charge deneorrelation length; which is a few times the interparticle
sity were chosen to have the valuen_=mw(Q, spacingn % for a plasma in the fluid state, but can be
—w)/2me, the cylinder of negative charge would provide a substantially larger for a plasma in a crystal state. Because of
potential-energy terne¢_ =mw(Q.— w)r?/2 that is identi-  the curvature of the surface, one expects dislocations near the
cal to the second term ia¢r. Thus the Gibbs distribution surface and a “surface correlation length” that is reduced
for the two systems would differ only by rotation, that is, by significantly from the bulk correlation length for an infinite
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homogeneous crystal. Numerical simulatifhsuggest a various cylinders so that the quartic term in the Taylor series
“surface correlation length” that is a few tens of interpar- vanishes; the cubic and quintic terms vanish by symmetry.
ticle spacings. We will refer to a plasma as large when the  Adding mw(Q.— w)r?/2 to ¢+ yields the effective trap
thickness of the surface sheath is much smaller than all thrgeotential in the rotating frame

plasma dimensions. In this case, the volume of the surface )

sheath is small compared to thg total pl_asma volume, and we ed(r 2)= Ma; (22+ Br3)+C, (18)

can relate the thermodynamic functions of the trapped 2

plasma to those of an infinite homogeneous Q&&e Sec. o ) _ i

V). For a weakly correlated plasma or a plasma in the fluidVich is also quadratic. The paramefeis defined as

state the criterion that the plasma be large is easily satisfied, 0(Q—w) 1 1 (95—95) 1

but for a crystal state where the shell structure extends into  g= > == — =, (19
w 2 4 o 2

the plasma for tens of interparticle spacing the criterion is z

quite demanding. _ whereQ),=Q.— 2w is the vortex frequency. The parameter
For some experiments with pure electron plasmas, the; jetermines the symmetry of the effective trap potential,
temperature is low enough and the magnetic field large,q hence the shape of the plasma. For example, véhen

enough that the cyclotron motion is quantizéce., illc =1 the plasma is spherically symmetric, whereaser1
~KT). Although the argument concerning the equivalencene plasma is squeezed into a line along heis, and for

between the Gibbs distributions for a trapped plasma and fOBHO the plasma is a flat two-dimension@D) pancake in
an OCP is classical, one can construct an equivalent quantufs x-y plane.
mechanical argument provided that thermal deBroglie wave- 110 quadratic form ofp(r,2) allows one to determine
length Vg‘ /mkT is small compared to the interparticle e shape of the plasni&?®As discussed earlier the plasma
spacing charges adjust their positions so that+ ¢, is constant in-

side the plasma. Thus the plasma space-charge potential
C. Spheroidal plasmas must be quadratic within the plasma. It is well known that a

There is an important special case where the shape of tphiformly charged spheroidellipse of revolution in free
surface of revolution can be determined analytically. TheSPace produces an interior potential that is quadraticand
plasma is small compared to the dimensions of the trap ang and an exterior potentl_al that approaches zero at |nf|n|ty.
resides in a nearly quadratic trap potential. As we will seeHere the plasma dimensions are small compared to the dis-
the surface of revolution is then a spherdah ellipse of tance to the walls, so the boundary condition t#gt=0 on

revolution).125 the conducting walls reduces approximately to the condition
Near the center of a trap, one expettig Taylor expan- that ¢, approache; zero at inf_inity. ThL_J§ the bounding sur-
sion) that the trap potential is approximately quadratic face of the plasma is a spheroid. By writing down the poten-

tial due to a uniformly charged spheroid and comparing the
coefficients ofr2 and ofz? to the corresponding coefficients
in — ¢r, We obtain the relations

Mw?
epr=—5 (Z=1%2)+C, (16)

wherew? andC are constants. The coefficient i relative 1
to that of z2 is determined by the requiremeRt?¢;=0. g(a)= 2B+ 1’ (20
Some traps are designed to make the quadratic approxima-
tion much better than would in general be expected. For
example, Fig. 2 shows a trap for which the conducting elec-
trodes are hyperbolas of revolution. Since the equipotential

surfaces for the quadratic potenfae., z°—r?/2=cons{ de- wherea=2Z,/R, is the aspect ratio of the spheroidR2is
fine hyperbolas of revolution, a trap for which the hyperbolashe spheroid diameter, an&gis the length. Equatiot21) is

extended to infinity would produce an exactly quadratic po-equivalent to Eq(12), and the functiorg(a) is given by
tential. In practice, the hyperbolas are truncated, as shown in

Fig. 2, so the quadratic form is only an approximation, g(a)zQ‘f(a/\/az—1)/(a2—1), (22
though it is very good over a substantial region near the

0 . . .
center of the trap. If the equation defining the cap electrode¥hereQz is an associated Legrendre function of the second
is 72— r2/2= ZS, the equation defining the center ring elec- kind. The aspect ratiea is a monotonically increasing func-

trode is Z2—r2/2= —r§/2, and the potential difference be- tion of B, as one would expect on the basis of the physical

tween cap and ring electrodes Vg, the frequencyw, is arguments fqllowing Eq(19). ) .
For a uniform density spheroid, the number of particles

—2B+1, (21)

N€|8
NoT N

given by o
is given by
2
— mwz 2 2
eVo=—%— (25+r5/2). (17) 4 )
2 N=3 7nZ,R;, (23)

Even for a trap with cylindrical electrodes, it is possible to
achieve a potential that is nearly quadratic over a substantigo for givenN the plasma radius and half length can be
region!’ This is accomplished by choosing the lengths of thewritten separately as
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FIG. 4. Side view of Bé plasma, together with fitted ellipgthe dashed line Provided by Huang, Tan, Bollinger, and Wineland of the NIST storage group
(Ref. 29.

3 N 113 the cooling laser was able to remove the heat fast enough
Rp=ag 2B—+1 m ) (24 that the temperatur@nd Debye lengthremained reasonably
small.
Z,=a(B)R,. (25 Figure 5, taken from Bollingeet al,»? shows a plot

Ry/Rg versusw/(). as determined by Eq24) for the ex-
perimental parametef3./w,=6.62. HereRy is the radius at
the Brillouin condition,w/Q.=1/2, which yields the mini-
mum radius and maximum density. The points are experi-

Figure 4 shows a side view image of a plasmaNo£8
x10* Be* ions in a quadratic trap potential together with amental measurements, and one can see that the agreement
with theory is very good.

fit to an ellipse. The picture was obtained by Huang, Tan, :

Bollinger, and Wineland of the National Institute of Science To understand the plasma evolution along the curve, we
and TechnologyNIST) ion storage group by simply imag-
ining the fluorescence from the laser excited Bens?® The
aspect ratio of the fitted ellipse is=1.763, which agrees to
better than 1% with the aspect ratic=1.75 predicted from
Egs. (19) and(20) for the independently measured frequen-
cies w,2m=754 kHz, Q. J27=7.608 MHz, and w/27w
=213.7 kHz.

In similar experiments by this groug, cooling and
torque lasergsee Sec. \jlwere used to control the plasma
energy and angular momentum so that the plasma rotation g™
frequency varied through the full range of allowed values,

Here a,=(e*/mw?)** and use has been made of E(20)
and(21).
This is a good point to make contact with experiment.

(@/Q,)/R, (1/2)

R

w=0, 0 0=0.~0, Here w,=0J/2-[(Q2)? 0 . . .

— 02/2]'2 is the single-particle magnetron frequenift 0.0 0.2 0.4 0.6 0.8 1.0
frequency, and the range of values follows from E({.9)

plus the requirement th@> 0. The torque laser changed the 0/,

angular momentum of the plasma and also did work on the

: ; ; RIG. 5. RadiusR, of a spheroidal 2000Be" ion plasma as a function of
plasma, since the torque was applled to a rotating plasma. Arotation frequency. The radius is scaled to the radius at the Brillouin limit

the plasme_l evolved, thiS Work appeared as a change in thg the rotation frequency to the cyclotron frequency. The solid curve is the
electrostatic energy, kinetic energy of rotation, and heat, buheoretical prediction with no adjustable parameters. Taken from Ref. 2.
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: , andN. However, this whole analysis implicitly assumes that
the cooling laser continually adjusts the valueko$o thatT

. (and\p) remain small(formally zerg.

Also, the analysis assumes that the evolution is suffi-
] ciently slow that the plasma passes through a sequence of
thermal equilibrium states. This is the kind of transport that
we want to describe more generally using a thermodynamic
approach. To that end, we first develop a thermodynamic
formalism for the trapped plasmas.

Q /o =662

54 13
(mN°q /a)z) 0

-3 IV. THERMODYNAMIC FRAMEWORK

01 02 03 04 05 06 07 08 09
w/Q A modern development of thermodynamics starts from

¢ the definition of the free energy
FIG. 6. Scaled angular momentum as a functiomffi} ., calculated for the _
trap parameters that correspond to the experimental results illustrated in Fig. Fr(T, o, B'{Vj}’N) =—kTIn Z (29)

5 in terms of the canonical partition function

1
ZC: 3N f d?’l’l"'dSVN EX[{—(H-I—(;)P(,)/kT],
. . . N!(h/m)
obtain an expression for the angular momentum as a function (30)

of w. In general the total canonical angular momentum for a ) o
thermal equilibrium plasma is given by where h is Planck’s constanf Here the subscripR is a

reminder that-y is the free energy in the rotating frame of
the plasma. The quantitie§ (w,B,{V;},N) are a complete
set of thermodynamic variables, since they determine the

where use has been made of the fact that the velocity depeﬁ@lue 0fZ;. The frap geometry is assumed to be given and

dence off. is a product of Maxwellians in a frame that xed. The dependence dh , andN is obvious, the depen-

rotates with frequency- w. For a uniform density spheroid, dence onB_enters th_rougrPg, and the dependence )
this reduces to (the potential on thgth electrodg enters throughtH. Al-

though (T,w,B,{V;},N) are a complete set of thermody-
L©=NmQ,R3/5, (270 namic variables, they are not the only complete set.
Other thermodynamic variables are introduced as partial
vatives ofFg. For example, from Eq929) and (30) it
gllows that

Q. 5
L=m - fZWr dr dz n(r,z)r<, (26)

where the superscript zero has been added to note that théiséri
expression refers to the limit of a zero thickness surfacq
sheath. Corrections due to the surface sheath will be obtaine

in Sec. IV. In Fig. 6 the scaled angular momentum, , 9 |Fr
Tl T =(Hg)=Eg, (31)
L© Q, 3 213 28 0BAV;}N
-y ! . . . . .
(mN°eYw,)™ " 5o, [ (28+1)a(B) where the bracket indicates an average over the Gibbs distri-

is plotted versusw/Q). for the experimental parameters bution. The entropys is defined through the relation

Q./w,=6.62. Here use has been made of Exf)). Fr=Er—TS (32)
In the experiment, the torque laser exerted a negative ) o B

torque, that is, a torque in the same sense as the pIaer‘ét“Ch together with Eq(31) implies the familiar result

rotation. The plasma started off in a state with large and  jF4

positive L and, correspondingly, with small rotation fre- T

quency, density, and aspect rati®., o= w,, @p=w,, and @B V1N

a=0). As L was decreased, the rotation frequency, density} jkewise, the partial derivatives df with respect to the

and aspect ratio all increased. Whierpassed through zero, other thermodynamic variables are physically meaningful

the rotation frequency was=(1./2 and the density and as- qguantities. For example, the partial derivative with respect to
pect ratio reached their maximum values,=./v2 and  , yields the angular momentum

a=g }(2w?/0?)]. As L became progressively more nega-

tive, the frequency continued to increase, but the density and ﬁ)

aspect ratio decreased. For large and negdtivehe fre- R VARY
BV

quency approached the upper lifit — w,,,, and the density ) o ) ) o
and aspect ratio again approached their minimum value@nd the partial derivative with respect hois by definition

--s (33

=(Py=L, (34)

(wp=w, anda=0). the chemical potential

One may worry that we did not explicitly specify the IF R
value of E in determining the plasma state; E§8) deter- N =u. (35
minesw as a function of trap parameters and the valuels of T, 0,B,{Vj}
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This function plays an important role in determining the ther-Now we add— ¢(r)V2<},’>(Tj) to the integrand on the left-hand
mal equilibrium of systems in which the number of particlesside, which makes no change sirﬁé:ﬁ(Ti):O except on the

can fluctuate. wall where ¢=0. However, this allows us to apply Green’s
The partial derivative oF g with respect tdB is equal to  theorem:

the average magnetic moment of the plasma

| rapvee- gvegpn

JF e O
—=r =f dBry - dBvy o= 0D (Mg, V)
B T,0dV.}.N 2¢c =1 . .
| - [[as 139w o-gve91, 42
Ne
— 2\ —
~5c o(r)=-M, (36 where the surface integral runs over the electrodes. However,

_ _ _ ~ on the electrodeg =0, and¢{) equals 1 on electrodeand
where the minus sign enters the last equality becausels equals 0 on the other electrodes, so we have

the rotation frequency of the plasma. Note thais a nega-
tive quantity for a non-neutral plasma, indicating that the f U s
magnetization induced by rotation opposes the applied mag- deS Ve z. amedriri), 43

netic field: the plasma is diamagnetic. This appears to con- here th ¢ int | | lectrod@aki
tradict the Bohr—van-Leeuwen theorem, which states tha ere the surface integral runs only over electrpdeaking

classical systems cannot display diamagnef$idowever, the average of this equation and using the relal)igjmls

the theorem only applies to systems which do not rotate iri Y #=470;, yields Eq.(37). ,
thermal equilibrium. In a non neutral plasma the magnetic  1he partial derivatives of the free energy expressed in

moment arises from the current created by rotation. Egs.(33)—(37) can be summarized by the total differential
The partial derivative oF g with respect to the electrode
voltageV; is equal to the average chargginduced on the dFr=—SdT+ de—; q;dV;—M dB+udN. (44)

electrode by the plasma:
Fr is an example of a thermodynamic potential for the sys-
ﬁ ——q (37) tem. By making Legendre transformations, we obtain the
IV T B Vi N I total differential of other thermodynamic potenti&lsFor

. _ example, using Legendre transformati@2) to eliminateF
To prove this relation we note that the voltagésenter the  in favor of E yields the total differential

Hamiltonian Hg only through the trap potentialp(r),

whose linear dependence ¢¥;} can be expressed as dEx=T dS+ de_E qidV;—M dB+ wdN (45)
- I J :
J

pr(n=2 Vi), (38)  Likewise, using the Legendre transformatiér Eg— wlL to
A . exchangeEg for the energy in the laboratory frante [see
where ¢{(r) is the potential caused by a unit voltage on Eq. (6)] yields
electrode [). Then Egs{(9), (29), and(30) imply that
dE=T dS-wdL— 2, q;dV;—M dB+ udN. (46)
J

aFR>
Vi T,0,B,N{Vj.j} Obviously, this procedure can be continued to generate many
such total differentials.
— | &®r.---d3 e (r V(1 ey Simply by rearranging terms, Eqgl5) and (46) can be
J ! NZ $r(rfelry v rewritten in the traditional fornrTdS=--- . For many situa-
tions, the trap parameters and the particle number are con-
:2 <e(;5(Tj)(ri)>_ (39 stant (i.e., dB=dV;=dN=0), so Eq.(46) reduces to the
i form
This average can be relateddpby using Poisson’s equation TdS=dE+ wdL. 47
Iﬁ;tgg ;Iﬁ;:.trostatlc potentiah induced by theN charges in This equation is formally equivalent to the well-know S

equation for a gas

V2p=—2 4mes(r—r)), (40) TdS=dE+pdV, (48)

wherep corresponds ta andV to L. We will make use of
with the boundary condition thap=0 on the electrodes. this formal correspondence from time to time as we proceed.
Multiplying each side by¢{(r) and integrating over im- Maswell relations
plies '
By taking cross derivatives of the coefficients in the total
d3rr (I V2eh1= — Amedd(r). 41 differentials, we obtain many Maxwell relatiofisundreds
J (7 (NV74] Z medr (1) “1 Simple examples that follow from E@44) are the following:
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ﬁL) ’Fg aS) “9) aER) 56
—_— = = — — , —_— :Cw,
oT 0BV dTow Jw TBAVIN JT N
2 JE Jw
ﬂ) :(? FR):_ﬂ) , (50) I) :Tﬁ> —w, (57)
0B T VLN 0Biw ow TV T L
9 JE JL JL
&qj J FR (?qk — =—T =] —w— s (58)
— =— =— . Jw T oT 5 Jw T
IV T,,B,{V| . N NV IV ©,TB{V) 4N
(51 JE JL
ﬁ =C,— w ﬁ . (59)
Equations(49) and (50) are typical of Maxwell relations in w @

that they connect quantities that at first glance seem UNerhe properties of Jacobians can be used to relate the deriva-

IaFed. Of course, the_ relatlons_ are generz_il. Equatish tive of any quantityA at fixedE to a derivative at fixed'.
might seem to be a simple reciprocal relation from electro-

: . . Cene For examplée®®
statics but, in fact, is more general since it involves the

plasma response. A I(AE)  I(AE)IAT)IAT)IB,T)

It is convenient to work theoretically with the variables oB|_ ~aB,E) 9(B,E)/d(B,T)
T and o since these variables enter the Gibbs distribution E
explicitly. However, these may not be the easiest variables to A\ GE/IT)A
manipulate experimentallf andL may be easier to control :E) GEIT)g (60)
thanT and w. For example, it may be easier to calculate the T
specific heat at constant rotation frequency A similar relation between derivatives at fixedand fixedw
35 can be derived by substituting for E and w for T in Eq.

c =T — (52) (60). Finally, the Jacobian of the transformation frof, )

JT " to (T,w) can be written as
but easier to measure the specific heat at constant angular J(E,L) _dJL 61
momentum iTw) o) (61)
aS
C=T-5] (53 B. Thermodynamic inequalities
L

The stability of a system in thermal equilibrium against
whereB, {V;}, andN are held constant in both cases. For-flyctuations away from equilibrium provides several useful
tunately, Maxwell relationgor combinations of Maxwell re-  inequalitiest® We begin the derivation of these inequalities
lations provide general relations between such quantities. by defining the system enerdy/ = E+3,q;V;+MB, which

Rather than develop these relations explicitly, we makejiffers from the plasméor particle energyE=(H) through
use of the formal correspondence betweenTti& equation  the addition of the energy associated with the induced image
for a gas and th@ dS equation for a rotating plasm@ee charges and the plasma magnetic moméit.is the total
Egs.(47) and(48)]. Recalling thatw corresponds t@ andL  work, including that done by external circuits, required to
to V, we see that, corresponds to the specific heat at con-construct a plasma out of individual charges brought in from
stant volumec, andc,, to the specific heat a constant pres-nfinity to a trap with fixed electrode voltaga4 and fixed
sure c,. Simply transcribing the well-known relation be- current in the solenoid that is used to maintain the magnetic
tweenc, andc, through the replacemenfs—w andV—L  field B. Here, as elsewhere in the papBr,s the uniform
yields the relatiof? vacuum field, so constant current is equivalent to congant

2 Note thatM is small and that terms of ordéyi? were ne-

— (OL19T),, (54) glected inE=(H), when diamagnetic interactiorfand rela-

dLldw)t tivistic correctiony were omitted in writing Hamiltoniari2).
The analysis should be thought of as an expansion carried
only to first order inM. As the plasma is assembled in the
trap, image chargeg; run onto the electrodes and the volt-
age sources for the electrodes do wailg;V; . Likewise the
current source does worlki B, the energy associated with
mutual inductance between the plasma and the surrounding
solenoid. For future reference, we write th@S equation
following from Eq. (46) in terms ofE’ rather tharE:

Co—CL=

In the next section, we will show thal./dw)+<0 and that
¢, =0, so Eq.(54) implies thatc,=c, =0. Also, we will see
that for a large plasma, the relative difference betwegn
andc, vanishes.

Other useful general relations linking derivatives at con-
stant T and w to those at constarE and L can also be
borrowed from the standan-V systent®

JE
) e (59) dE’=TdS—de+; Vidg+BdM+pudN. (62
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We consider a plasma that is confined in a trap with
fixed electrode voltage¥;=V,,, fixed magnetic fieldB Qr=E'—ToS+ woL_Ej: Vojdj—BoM —uoN  (68)
=By, and is in contact with a heat, angular momentum, and
particle reservoir parametrized by temperatligg rotation is a thermodynamic potential for the plasma. When
frequency — wo, and chemical potentigly. Initially, we — =wq, Vj=Vq;, and B=Bg, Qg=Eg—T;S—uoN is the
postulate that the system is slightly out of equilibrium; it grand potentiaP of the plasma as seen in a rotating frame.
does not have the values Bf L, g;, M, or N that would  From Eq.(67) we conclude that the thermal equilibrium state
correspond to Ty, wq,Vj0,Bo,u0) in thermal equilibrium.  achieved by a non neutral plasma connected to a heat, angu-
The system adjusts itself by interacting with the reservoirlar momentum and particle reservoir and confined by con-
exchanging energy, angular momentum and particles, and kstant electrode voltages and constant external magnetic field
also interacting with the external circuits that fix the elec-is the state for which the thermodynamic potentiy is
trode voltages and magnetic field. In what follows these cir-minimized.
cuits are assumed to have no entropy associated with them, Let us now examine the consequences of this result by
and the plasma and heat reservoir constitute a thermally is@onsidering small fluctuations of the system away from ther-
lated system(no heat is exchanged with the circuits, but mal equilibrium to some nearby state, under the conditions
work may be done on themFor example, a constant voltage that Tq, wq, Voj, Bo, and ug are fixed. Since the system
can be maintained by a homopolar generator that consists etarted in thermal equilibrium the thermodynamic potential
a massive conducting flywheel that rotates through a trand)z must increase away from equilibrium, and we can use
verse magnetic field. The state of the wheel is described by this fact to determine thermodynamic inequalities. Say that
single degree of freedom, the rotation angle, so there is neghere areP electrodes. Then Idi\,}, k=1,...P+4, be any
ligible entropy. complete set from thé>+4 conjugate pairs of thermody-

The second law then implies that the total entropy of thenamic variables

plasma and the reservoir must be non-negative in this equili-
bration process: {(Tas)a(_wal—)y{(vj 1qj)}1(BvM)1(/u‘aN)}' (69)

AS+AS,.=0. (63) Not_e that—af, the rotation frequency of the plasma, is the
. variable conjugate to the plasma angular momentum. The
Furthermore, the entropy change of the reservoir is related t@rm “conjugate” is used here in the sense that conjugate
the heatQ absorbed into the system from the reservoir,  pairs are connected by a derivative of the system erfeegy

~Q Eq. (62)].
ASres=T—. (64) The nearby state to which the system has been perturbed
0 is assumed to be characterized by changes in\i{fe by
However, the first law for the plasma states that small amountsé\. The change in(lg compared to the
minimum equilibrium value is then
Q=AE'"+W, (65
, , , _ IR 1 9*Qr
whereAE’ is the change in energy of the systéimcluding 5QR=E —— O\t = Z ——— 6N 6N =0, (70)
KON 2 Tk ONjONg J

the energy of image charges and the magnetic energy asso-
ciated withM), andW is t.he work done b_V_ th,'s system. The where the inequality follows from the fact th&tg is mini-
system can do work as it comes to equilibrium in a numbet,i-oq in the thermal equilibrium for which = 0.

of ways: for instance, induced image charges can flow onto  \ow since S\, can be either positive or negative, the
or off of the electrodes, which requires the system to do work «; \ 5riation of Q. must vanish, implying

—X;Vo;Aq; against the circuits that hold the electrode volt-

ages fixed; angular momentum and particle exchange with dQg
the reservoir causes work,AL — uoAN to be performed; a—)\k:O. (71)
and a change in magnetic momeXxi of the plasma does

work —ByAM against the power supply that fixes the cur- By using the definition of) in Eqg. (68) and substituting for
rent in the magnetic field solenoid. Adding these contribu-dE'/d\; from Eq.(62), we can rewrite Eq(71) as

tions yields the relation

00g JS aL aa;
= (T=To) == (0=wg) =+ (V;= Vo)) =
W=woAL— >, VojAQ;—BoAM— uoAN. (66) k k o k
: oM oN
This relation can also be obtained directly from E8R) by +(B=Bo) o=+ (1= o) 5-=0. (72
considering the change B’ at constant entropy, and setting K K
W=—-AE’". This equation implies that the thermal equilibrium state is

Substitution of Eqs(64)—(66) into Eqg. (63), and then such that

multiplication by the negative constantT, implies
T=Ty, w=wy, Vj:VjOY B=By, and u=pug.

AQR=<0, (67) (73
where For example, suppose thék,}={S,L,{q;},M,N} and that
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M=S. Then in Eq.(72), 9S/d\ is unity and the remaining concerning the topology of the constaff)g surfaces, it
partial derivatives are zero, so we obtdir-T,. The other remains true for any complete set bf’'s that we choose.
results in Eq(73) follow from setting\ =L, {q;}, M, and  Therefore we lose no information by choosing any particular
N one after the other. set of \,’s. A convenient set ig\,}={S,L,{q;},M,N}, be-
When conditiong(73) are satisfied, only the term qua- cause we have already determined the first derivativés.of
dratic in thed\,’s survives and inequality67) implies that ~ with respect to these variablgsee Eq.(72)]. For example,
this term must be non-negative. In other words, in the spacé®Qr/9S?)L (q3mn=3T/3S) (g} mn- The entire set of
of {\} the surfaces of consta@X)y are closed and nested second derivatives forms a matrix of dimensidds-4 by
so that6Qg=0 is a local minimum. Since this is a statementP+4:

aT) aT) { aT) ] aT) aT)
95 L{g;}MN L S{qjh,M.N 9k SLAdj.1MN M SL{q;hN oN SL{q}hM
(9(») { (9(1)) (?w) ﬁw)
JL S{q;}M.N 9k SL{dj . hMN M SL{ghN N SL{ghM
P00 ) ] 2 2 -
INjON 9K S.LAdj 4 hM.N oM SL.{qg;hN oN SL.{ghM
aB) &B)
Mlstigpn — MNsigam
au)
oN S.L{a}M
|
where only the top half of the matrix is displayed because it 5
is symmetric:d?Qg/ I\ ;I\ = 3*Qr/ININ; . (This symme- IN =0. (79
try provides a set of Maxwell relations for the systgm. Stia}hM

Stability implies that the eigenvalues of this matrix are  The fact that these inequalities are necessary but not suf-
non-negative, which yield®+4 thermodynamic inequali- ficient for stability can be seen by allowing variations in

ties. These inequalities form a necessary and sufficient set @f 5re than one parameter. For example, consider variations
criteria for stability of the equilibrium against fluctuations in j, poth S andLL. Then the determinant of thex2? matrix

any of the thermodynamic variables. _ _ composed of the upper left-hand sideddf)g/J\ ;I\, must
However, the eigenvalues are quite complicated in formy,q non-negative, which implies that

so we consider a simpler set of inequalities, which only form
a necessary set of criteria for stabilithey are not suffi- aT
ciend. Considering fluctuations in only one of thg's at a oS
time implies that each diagonal elemerVﬁQR/aAE, must be
non-negative. For example, we find

Jw

R , (80

aT\?
> —
aL

)L,{qj},M,N )S,{qj},M,N S{aj}.MN

providing more stringent bounds for bo#fi/dS and dw/JL
than are provided by Eq$75) and (76).

Equationg75)—(79) reflect stability along one particular
set of directions, given byA,}={S,L,{q;},M,N}, but more
information may be uncovered by considering other direc-
tions. The inequalities so obtained take the simplest forms
when only one of each conjugate pair in EG9 is

which implies that the specific heat at constant{q;}, M,
andN is non-negative, provided tha=0. It is also worth-
while to write out the other inequalities explicitly:

Jw employed as a \¢. For example, choose{\,}
- I) =0, (76)  ={T,L,{V;},B,N}, and take\,=L in Eq.(72). Then taking
S{qjhM.N another derivative with respect toyields
IV POr dw
— =0, (77 Iz === =0, (81
Ak SL{dj i hMN T.{V;}.B.N TAV;}.BN

where we have employed the equilibrium conditions, Eg.
(73), after taking the derivative. Figure 6 illustrates this in-
equality for the special case of a small coldy=0) plasma

=0, (78
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in a quadratic trap potential. Likewise, taking=T in Eq. = However, Eq(46) implies thatTﬁS/(?L)Ey{Vj}’BYN=w, SO we

(72 yieldsﬁS/&T)L,{Vj}'B'NBO. Assuming thaT>0, and us-  can write Eq.(82) as

ing definition(55), we find that the specific heaf must be

non-negative. This fact together with E¢p4) implies that T i (ﬂ) =0. (83)

c,=0 as well. Analogous arguments show that any other L\ T E{V1.BN

choice for the set of\,}'s consisting of one variable from :

each of the conjugate pairs in E9) can be employed

without changing the basic form of Eq&5)—(79). For ex-

ample, aM/ﬁB)T,wy{Vj}'NBO and 4V, /é’qj)T,L,{Vkﬂ},B,M;O The thermodynamic inequalities discussed in the previ-

as well. ous section can be related to the magnitude of fluctuations in
The inequalities, =0 anddw/JL);<0 are the analogs the plasma, and some of these relations may be of physical

of the inequalitiesc,=0 and dp/dV);<0 for a gas. The interest. For example, consider a fluctuatim=q; —(q;) in

latter two inequalities can be understood physically as théhe charge on a sectomt fixedN, w, T, B, and{V;}. Here

conditions for temperature and mechanical stability when th&ve employ the notatio(q;) for the equilibrium average, and

gas is in contact with a reservoir characterized by fixed temd; is the value of a particular realization of the canonical

perature and pressure. Likewise, the inequalitigs0 and  ensemble, which fluctuates i#g; about(q;). Standard ther-

dwldL)7=<0 are necessary for temperature and rotation fremodynamic argument$ allow us to express the average

quency stability when the plasma is in contact with a reser{9d;99;)t,,, in terms of thermodynamic derivatives. We first

voir characterized by fixed temperature and fixed rotatior£Xpress this average in terms(@fq;)r, ., (4;), and(a;):

frequency. In thinking about frequency stability, it is neces- _ _

sary to remember that w is the rotation frequency, so it (00;603)7,0=(Gi0) 7.0~ (i) a)- (84)

may be useful to rewritdw/JL)1<0 asd(—w)/dL)7=0. These averages can be expressed as derivatives of the ca-

Suppose, for example, that a fluctuation makes larger  nonical partition functionZ,. Using Egs.(29), (30), and

(more positive than the rotation frequency of the reservoir. (37), one finds

The reservoir will then exert a negative torque on the plasma,

opposing the differential rotation. The two inequalitiés (0i)=(KT/Z5)IZe 1V ) 1,0,8N (89

<0 andd(—w)/oL)7>0 thenimply thath (— ) <0, which 5,4 5 modification of the argument that led to E37) yields

is a frequency change of the sign required to restore eQUIIIb<Qqu'>T,w=[(kT)Z/Zc]f9zzc/ﬁVif7Vj)T,w,B,N- Putting  these

fium. _ averages together in E(4) yields
The inequality ‘?Vj/aqj)T,L,{Vk#j},B,ﬂBO also follows

from a straightforward physical picture. Ag is increased
(holding the other parameters fi¥e@ plasma consisting of
positive charges is pushed away from electrggeso the

C. Fluctuations

5q; 8 1 kT)? 7 z
(4q; qj>T,w_Z_C( ) Ve ]

W

(negativeé image charge on that electrode is decreased in kT 2 9Z¢ 9Z¢
magnitude. Z.) Vi dV;

The inequality dM/dB) ,, ;v n=0 implies that the )

. et . d°InZz

magnitude of the plasma'tegativeé magnetic momen =(kT)?2 C)
decreases aB increases, which may be counterintuitive at VidV, T.0,B.N
first glance since one expects the magnitude of the plasma
magnetization to increase Bsincreases. In fact, the magne- =kT — —kT —2 . (86
tization does tend to increase Bsincreases. However, the Nilt v Vi T,0,B,N

average magnetization is the magnetic moment divided b : ,
the plasma volume, and & increases the plasma volume ¥vhere in the last two steps we used B8f) and Maxwell's

decreases since the plasma radius tends to shrink. It is tiﬁ?ggg}fg .isTheerf?)LrjrzseCdni?]tSa?:’gigicggiz Bw 2?!2;& e{mzt
decrease in plasma volume which allows the magnetizatio 9 P @

. , . . nonical ensembleAverages over the microcanonical en-
to increase in magnitude even though the magnetic momelitgmble will be dis)::ussed gresentl
decreases in magnitude. P Y-

Finally, we may like to fixE rather thanS or T. For Wheni=j _the fa<_:t that §qi2>T'“’.mUSt be non-negative
example, consider variations bfat fixedE, V;, B, andN. provides us with an inequality similar to E¢¢7). Further-

Taking\ (=L in Eq.(72), and then taking another derivative more, fluctuations in image charge may be of some interest
with resSect ta yiélds 'éhe inequality since EQ.(86) shows that they provide a measure of the

temperature of the plasma. A similar relation can be derived
involving the magnetic momer! of the plasma:

aZQR) aT) as) "
j e — R {9
JL E{V;}.B.N L E{V)}BN JL E{V}} BN <5M2>T,w=kT£ i , (87
T,w,{V:},N
Jw :

=0. (82 which provides us with an inequality similar to that given by

-3 |
E{VjLBN Eg.(78). Measurements of fluctuations i, through the use
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of a circuit connected to an external inductance coupled téhe two ensembles may provide different results in the ther-
the plasma, for example, could also provide a temperaturemodynamic limit. One trivial example is that in the microca-

diagnostic.
Another useful relation follows from consideration of
fluctuations in the function (N) =;r?. The thermal equilib-

nonical ensembl¢sP3)e | =0, whereas in the canonical en-
sembleP, fluctuates. The reason that tb€1/N) corrections
are important can be understood from the following argu-

rium average of this function is the mean-square cylindricaiment. Consider the fluctuatiofA of an extensive quantity
radius,(r?), and this average can be obtained by taking @A. We evaluate(5A?) by taking the difference(5A?)

derivative of the free energy with respectdo

2 oFg
NmQ, do

(r#)= (88)

)T,{Vj},B,N .

Fluctuations in (1I><I)Eiri2 can be related to a derivative of
(r?) using arguments analogous to those that led to(&):

1 2 2kT  (r?
(raz ) -,
! T v 0@ TAV}.B.N
This relation implies that
T &(r?)
O 9e <0. (90
v 99 JrvieN

When (), is positive, the mean-square radius shrinkswas
increases, but whef?, becomes negativg 2) expands. Fig-
ure 5 illustrates this dependence for the special case of
quadratic trap potential.

Equation(90) can be employed to obtain an improved
bound ondL/dw. By recalling that the velocity dependence
in f. is a product of Maxwellians in a frame that rotates with
frequency— w, we obtain

L=m(Q,/2)N(r?).
A derivative with respect taw implies the relation
a(r?)
Jw

(91)

Nm
2

aL

Jw

+Nm(r2). (92
TAV;}LBN

v

T{V;}.BN

Since Eq.(90) implies that the left-hand side of E(?2) is
less than or equal to zero, we find the inequality

aL

o

<—-Nm(r?), (93

T.{V;},B.N

which is an improvement over inequalify6). Note that the
right-hand side of Eq(93) is the negative of the rotational
inertia of the plasma. Equatio(®3) again points out that

=(A?%)—(A)2. SinceA is extensive{A?) and(A)? scale as
N2. The O(1/N) difference between an evaluation of the
averages using different ensembles will therefore scai. as
However, typical fluctuation¢5A?) are also ofO(N); the
O(N?) terms cancel aftefA)? is subtracted frordA2). We
therefore cannot necessarily neglect th€l/N) difference
between evaluations of rms fluctuations using different en-
sembles.

Fortunately, it is possible to relate the fluctuations in
different ensemble¥: Given any two quantitiess and H
with average valueéG), (H) and fluctuationsSG and sH
about their average values, the fluctuations in a con&ant
L, B, {V;}, andN ensemble are related to the fluctuations in
a constanf, o, B, {V;}, andN ensemble by

aT) HG)
=
aT

aT
H_H
L)

d(H)

I

Ko

g AlT)
whereB, {V;}, andN are also held fixed throughout. In Sec.
V we will consider the case of a large trapped plasma and
show that the mean-square fluctuatiofdq;5q;), and
(8M?)g, are smaller than the fluctuations at consfarand
w, and are given by:

(8GSH)g  =(8GSH) T ,—KT? )
(wlT)

.

2 a(H)

aT

¥G)
aT

a(H)
. I wlT)

.

) (wIT)
¥G)
I wlT)

c I wlT)
TRTL

a(H)
T I wlT)

) . (99
.

oM
(M%)  =kT _B> \ (95
J TLAVjEN
<mm>-wT%) (96)
i00j)e, L =KT =~ :
s IV T,L,B,N

Egs.(75)—(79) are necessary but not sufficient conditions for These results differ from Eq¢86) and (87) becausel is

a stable equilibrium.
It is important to point out that the fluctuations in Egs.

held fixed in the derivatives, rather than
Another example of a fluctuation for which there is a

(86), (87), and(89) are assumed to occur in a system at fixeddifference between ensembles in the large plasma limit is the
w andT. We have added subscripts to the averages in orddfs fluctuation in thez component of the kinetic energy,

to point this out explicitly. However, it is presumably fluc-
tuations at fixed. andE that are of interest in many experi-

KZZEi%mvﬁ. This quantity can be followed in computer
simulations, and may also be observable using laser diagnos-

mental measurements. Although we have said that averagéss in actual experiments, since these diagnostics can deter-

in the microcanonicalfixed L andE) and canonicalfixed w

mine components of the particle velocities. In the canonical

andT) ensembles are identical for large systems, this stateensemble straightforward integrals over the Maxwellian ve-
ment must be modified when fluctuations are considered. Aocity distribution imply that(K,)=NkT/2, so the measure-
more precise statement is that averages of intensive quantirent of(K,) provides one with the temperature. Fluctuations

ties in the two ensembles are identicalQ¢1/N). However,
for fluctuations thes®(1/N) corrections are important, and

in K, are also related td through averages over a Maxwell-
ian:



Phys. Plasmas, Vol. 5, No. 6, June 1998 T. M. O'Neil and D. H. E. Dubin 2177

<5K2)T,w=%N(kT)2- 97 correlation$ to an infinite homogeneous OCP. In this sec-
tion, we relate the thermodynamic functions of a large
trapped plasma to those of an OCP, which are well known.
We say that the trapped plasma is large when the thick-
5 1 ) Nk ness of the surface sheathis small compared to both the
(0KDEL=5 N(KT)"| 1—5—]. (98)  |ength and the radius of the plasma. The volume of the sur-

2c. .

) ) face sheath is then small compared to the total plasma vol-
There can be a considerable difference between BB. | me. As discussed in Sec. Il B\ is of order\p for a
and(98). For example, for a large weakly correlated electronyeakly correlated plasma and of orden~ 22 for a strongly
plasma for which the cyclotron motion is quantized and inggrelated plasma, where the factois near unity for a fluid
the ground statéout motion parallel td remains classical  state but can be a few tens for a crystal state.
¢, —1/2Nk. Equation(98) then implies that 6K2)g | van-
ishes. However, Eq97) implies that(éKi}Tyw remains fi-
nite. In the microcanonical ensemble the fluctuatioinis

nonzero only by virtue of correlations which raisg above The first step in this program is to obtain a relation be-
1/2NKk. tween the energies. The energy of a trapped plasma as

viewed in the rotating frame is given by

However, using Eq94) one finds that in the constaktand
L ensemble the mean-square fluctuation is different:

A. Relation between energies

N(N—1)

D. Adiabatic processes 3
p ER=<HR>=§NkT+fd3rle¢R(r1)n(r1)+—2

Some experiments involve adiabatic processes for which

S=constant. For example, the rate of work done on the
plasma due to different adiabatic processes is givefsbg Xf d3r 1 d%r,€°G(r4|rp)p?(ry;ry),
Eq. (46)]
(103
JE JE M h
— =—q,, — =—M, where
IV SL.{VyjhBN " B SL{VjhN
(99) 2 — | B dByvadiroa--d®
aE) pe(ry,rp) d°vye--dPvndora--diryfe (104
— = —w.
aL S{V;}BN is the two-particle spatial distribution. In writing E¢LO3)

Tvoically. adiabai . ied b we used the fact that the velocity dependencefnis a
. ypically, adiabatic expansions are carried out by Vary'product of Maxwellians in the rotating frame. Setting
ing a sector voltageV; at constantL. The temperature

change in such a process is N(N—=1)p(rq,r)=N?p(ry,r,)

T —_asav) 19S14T) =n(ryn(rp)[1+g(ry,r2)], (109
Vi SLAViy 1 BN TV b BN LAV Wherlteg(rl,rz) is the spatial correlation function, yields the
resu
T 0q;
- — d—c.lll) , (100 3 3
CL L{V}}BN ERZENKT"‘f d°rn(ry)| edr(ra)

where we have employed E(3) and the Maxwell relation,

9 J(Fr—wl) 4S

1 3 2
+5] dree G(rafra)n(rz)
aT dTaV; 9V,

)L,B,{vk},N )T,L,{Vk#j},B,N.

1
(101 "'Ej d3r1d3r,n(r)n(ry)g(ry,rz)e?G(rq|r,).

Adiabatic expansions can also be carried out by varying the (109
magnetic field. The temperature change would then be given
by For a large plasma, the second of the three terms in this

expression is much larger than the other two. It is useful to

ﬂ) - l ﬂ) _ (102 compare this term to the energy of a zero temperature mean-
Blg gy CLIT LVLBN field plasma

eZ
V. THERMODYNAMIC FUNCTIONS FOR A LARGE E<R°)=eJ dr (I V(r)+ = J d3ryd3r,n©(ry)

TRAPPED PLASMA

As discussed in Sec. Il B, large trapped plasmas have a Xn@(r2)G(ryra), (107)
uniform density out to some surface of revolution where thewheren©)(r) is equal ton_=mw(Q.— w)/27we? out to the
density falls to zero in a thin surface sheath. The uniformsurface of the cold mean-field plasma and is zero beyond.
density is related t@ and(}. through Eq.12). The interior =~ The surface is a sharp boundary becage=0 for T=0.
of the trapped plasma is statistically equivaléntluding all The cold mean-field plasma is assumed to have the same
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number of particles, the same rotation frequency, and th&la?(AV/V)e?n~ Y3 The first term in Eq(108) is of order
same trap parameters as the actual plasma. The density difkT and the last of ordeNe’n~3 so the second term is
ferenceAn(r)=n(r) —n©(r) is nonzero only within a dis- negligible for sufficiently small\V/V.

tance\ of the surface; botim(r) andn(®(r) must equah_ Similarly, the third term in Eq(108), for which the in-

in the plasma interior. Spatial oscillatidor simply spatial tegrand is nonzero only when both andr, are within a
variation of n(r) is possible only within the surface layer, length\ of the surface, is another surface contribution. One
because knowledge of the surface position is necessary tan see this by writing this term as

define the phase of the oscillation. Thus for a large plasma

EQ is close in value to the second term in the expression for- J %, dr,62G (14 ) An(r ) AN(r,)

Eg in Eq. (106). 2
Formally, we will show that the difference is negligible e

in the limit where the volume of the surface layer is negli- = > f d3r2A¢>p(r2)An(r2), (111
gible compared to the volume of the plasma as a whole. To
this end, consider the difference whereA d)&,(rz) is the potential difference caused My(r ).

3 Writing d°r, asd?rdx whered?r is an area element of the
Er— E<R0>:§NkT+f d3r;An(ry)| edr(ry) surface an is a coordinate normal to the surface, we inte-

grate by parts neglecting surface curvature, to obtain
3 a2 (0) e dA X
+f d°ro€°G(ryra)n “2)} 2 f dzrf dx 222 f dx' An(x’). (112
2 ox s
1
+§f d3rd3r,€?G(rq|ry) An(ry)An(ry,) SincedA ¢, /9x—0 asx— =, we replace’A ¢,/Jx by its

maximum magnitude, #en_\ (this follows from the Pois-
1( o ) son equationd?A ¢/ 9x?>=—4qreAn). Since [* . .dx An(x)
+§fd r1d°ron(ron(ry)g(ry,ro)e°G(rylry). =0, we estimate[”_dx/* . .dx'An(x') to be of order
n_\2. Then the magnitude of the third term in E408) is
(108 of orderA 27€2n_An_\2, which is the same estimate that
The second term can be rewritten BatSr,eAn(r,)[ ¢(ry) was .o_btain.ed for th second term. Thus the third term also is
+¢(r1)], whereg®(r,) is the space-charge potential for negligible in the limitAV/vV—0. o
the cold mean-field plasma. For a cold mean-field plasma ‘AISO in this limit, we can neglect contributions to the
(i.e., \p=0), the conditionV ( g+ ¢§)0))=0 must hold out integral in the fourth term for, andr, values within the

; surface layer. In the plasma interior, we ma T
to the sharp bounding surface, so we ggi(r)+ ¢(r) T (ryr ) =q(r —rp) and G(r 4|t 5) = |41 T‘fdsz)
equal to a constarisay,C) over the whole interior. Because *1’0% l,dz gt lth 2/ it 1tz 12
the cold mean-field plasma and the actual plasma have tl%q'( ) reduces to the resu
same number of chargeﬁd3rAn(r_) is zero. Thus the sec- ER_E<R0>: Uoces (113
ond term in Eq(108 can be rewritten as

where

J s riemm e+ 600 —Cl. (109 2 r B0 [ 90

UOCPZE NKT+ 2 rW (114)
where the integral is over the volume outside the cold mean- ] o
field plasma. The densitp(r;) is nonzero only out to a IS the internal energy of an infinite homogeneous GEFhe
distance beyond the surface of the cold mean-field plasmafirst term is the mean kinetic energy and the second the cor-
Near the SurfacquR(r)qugE)O)(r) differs from C only by a relation energy. Again we note that the mean-field electro-
small amount static energy dominates the energy of a large trapped plasma,
that is,E®) is much larger that) ocp. In an OCP this mean-
) on X ) ©) field energy does not appear because there really is a uniform
Pr(N ¢y (1= (n-V)Tr(r)+¢p (N], (110 peutralizing background charge present, and the self-energy
of this background just canceE(RO).
wheren is the normal to the surface andis the distance Here we argued that the surface contribution to the free
from the surface, and the derivatives are evaluated just outnergy is small for sufficiently smalAV/V, and then we
side the surface. First order termssnvanish sinceV(¢r  neglected this contribution. For the case of slab geometry,
+ d)éo)) is zero inside and continuous at the surface. Thushe surface contribution can be calculated and compared in
integral (109 is of order AN%en_(n-V)? ¢r+ ¢E,°)] detail to the bulk contribution. The interesting case is that of
~ANn_e’n_\?, whereA is the surface area of the plasma. a crystal state, and for this case the plasma must be about 60
By settingAAn_=NAV/V, whereAV is the volume of the lattice planes across for the bulk free energy to domiffate.
correlation-length-thick surface shell aNdis the volume of  This is consistent with our estimate that a surface sheath for
the plasma as a whole, and recalling thas of order\p or  a large spheroidal plasma is a few tens of interparticle spac-

an 3 we obtain the estimatesN(AV/V)kT or ings.

2
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B. Free energy of an OCP

Following custom, we denote the correlation energy by

Uorr @and introduce the scaled correlation enétdy
3. 9(r)

U
corr J’d r ,
Ir]

NkT
which depends only on the coupling paramdter e?/akT.
Herea is the Wigner—Seitz radiu§.e., 4ra®n/3=1). The

B e?n_
~2kT

() (115
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C. Relation between the free energies

Returning to the original question of the relationship be-
tweenF andF gcp, we note that Eqg31), (113), and(116)
together with the fact theE(Ro) is independent of temperature
imply the relation
[(Fr—FoceER))/T]=0.

= (122

scaled correlation energy has been determined for the fulVhen carrying out the temperature derivative, everything

range ofl" values and is available in the literaturet?
The free-energyFocp is related toUgcp through the
equation[see Eq.(31)]

I Focp! T
—T2 %) =UoedT,n,N). (116
n,T
By integrating with respect td we obtain
FocdT.n,N)  FocdTo,n,N) J'T Uoce __, ,
T —_ T - TO T,z \T ,I’l,N)dT y
(117

whereT, is a reference temperature whetgcp is known.
By usingdT/T=—dI'/T’, we obtain

FoceT,n,N) _ FocdTo,n,N)
T To

I Uocp ar’
r-

N f r, NKT
(118

where the integral is now in a form that can be evaluate
using the known functiord ocp/NkT(I'). For a plasma in
the fluid state, T, is chosen to be very high so that
FocHTgo,n,N) is the well-known free energy of a weakly
correlated plasmédeal gas.'**? For a plasma in a crystal
state one choosdg, to be very low, so thaf o To,Nn,N) is
the well-known free energy of a harmonic lattite?

(r"

else is held constant. IF; and E), the quantities
(,B,{V;},N) are held constant, and focp the quantities
(n,N) are held constant. One should note here tha im-

plicitly a function of w andB through Eq.(12). Integrating
Eq. (122 with respect taTl yields the relation

Fr—Focp™ E(RO) =gT, (123

where g is some temperature-independent function. Using
S: - 07FR/5'T and Socp: - 8Focp/&T then y|e|dSS_ Socp
=g. SinceS and Sgcp must vanish aff =0 according to the
third law and since is independent of, we may conclude
thatg=0 and that

Fr(T,0,B{V;},N)=EX(w,B,{V;},N)
+Focd T,n,N), (124

wheren is an implicit function ofw andB through Eq(12).

GD. Other thermodynamic variables

The free energy is expressed in terms of the primary
thermodynamic variableg\} ={T,— w,B,{V;},N}, and the
conjugate variable$A}={S,L,M,{q;},—u} are obtained
as the partial derivatived,=—JFr/d\,. [See Eq.(44).
Note that the term “conjugate” is used in a slightly different
sense than in Eq69), since there it was convenient to con-

Other thermodynamic functions are obtained in the usuahect conjugate variables through derivatives of the system

manner through partial derivatives of the free endrgy.,
Socp= — dF ocp/ dT) o n]. For future reference, we note two
of these functions here. The pressure

an aFOCﬂ
p=- —) (119
Vv N N TN
is given by?
_ 1 Ucorr
p—nkT[lJrgNkT(I‘) . (120

In the limit of weak correlationIl{ <1), the second term in

energy rather than the free energy. This accounts for the
appearance of- u rather thanu in the set ofA,.] From
separatior(124) we will obtain A=A+ A, where

o_ _ PE
A== S (0 BAVEN), (125)
JF
ALY =— ﬁ;cp(n,T,N). (126
k

Here, all variables except, are held constant when carrying
out the derivatives.
Before proceeding to evaluate such derivatives, it is use-

the bracket is negligible compared to unity, and we recovefy| to recall the distinct properties () and Focp. As

the pressure for an ideal gas+ nkT. Also, we will need the
specific heat at constant dendfty
(F)/F} ]

__9Soch| . [3 ., 9
T ) —Nk[E—F o
n,N
(121)

=TT
which is easily obtained from Eq$114) and (115 using
TdSocp! IT)nn=0IUocp/ dT)n N - In the limit of weak corre-
lation, we recover the specific heat for an ideal gas
=3Nk/2.

U corr

NkT

mentioned earlier={) is much larger tha ocp. Also, E
increases withN faster than the first power, that iEY) is
nonextensive in the limiN—«; whereasFqcp is propor-
tional to N and so is extensive. Thus the nonextensive de-
pendence enters only throudjtﬁ’), and that dependence is
particularly simple becausE(RO) does not depend on tem-
perature(or on the state of correlati()mE(RO) is completely
determined byn [or, equivalently, byw(Q.— )], and the
shape and size of the cold mean-field plasma. The shape is
determined by some combination of N, B, and{V;}. In
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contrastF ocp/N depends om and T (and through these on
the correlation staje but does not depend on plasma shape.

The entropyS=— dF/dT),, s v,}.n iS Special sinc&?)
is independent of. We obtai®®

(?FOC

:S<1)=——P) =SocdT,n,N),
o | %

(127

where use has been made of Etp) to equated/dT),,  to
dldT), . A corollary is the result:

9S 9Socp

Co=T —
JT

n,N

) =Cp, (128
w,B,{Vj s
wherec,, is given in Eq.(121).

Thus S=Sgcp is extensive, and&/N=s(n,T) is inten-

sive and is determined by and T alone regardless of the

plasma shap?® In contrast,EL) makes large(nonexten-
sive) contributions tal, {q;}, M, andu. This implies large

cancellations inTdS equation(45). These cancellations are

embodied in the differential relation

o=dEQ—waw+%)qmdw+Mme—M@dM
(129

which follows from Eqs(125).

After the cancellation, th& ds equation must reduce to

the form
Tds=T —) dT+T n) dn. (130
T
The first coefficient can be written as
ds T dSocp 1
Tﬁ)n‘ﬁ T | TN (13

where c, is given in Eq.(121). By using Egs.(119 and
(126), the second coefficient can be written as
as) T av) T ap)

9*Focp
on/_ Noan nZ oT
T n

N IVIT (132

where p(n,T) is given in Eq.(120. Substituting into Eq.
(130 yields the result

p 1
Tds——dT+T—) d(—) (133

aT

which is well known from the thermodynamics of fluitfs.

In Sec. IVD we evaluated the change in temperature
under adiabatic changes ) andB. For a large plasma, the

entropy per particle is only a fraction af andn, so we

T. M. O'Neil and D. H. E. Dubin

dlnT 2

dInn) 3 (139
However, in a strongly correlated plasma the relation is
modified, since botlp andc, depend orl’; see Eqs(120

and (121). For I'=3 the pressure actually changes sign as
U.on/NKT becomes large and negative, so one might imag-
ine that during an adiabatic expansion the correlated plasma
might actually heat rather than cool. However, this is not the
case, although the rate of cooling during the expansion is
reduced compared to E(L35).2 In fact, using Eq(120), Eq.
(134) can be expressed succinctly in terms of the specific
heat, which is nonnegative:

1, 1Nk
37 2¢,)

dInT
dlnn/
S

(136

Adiabatic expansion has been proposed as a method of cool-
ing trapped pure electron plasmas.

To evaluateL®, M@, {g{}, and u®, we need an
expression forE(O)(w B {V} N) which depends on the
plasma shape. Fortunateliy ) can be calculated analyti-
cally for two geometries that are commonly used in experi-
ment.

The first is the case of a long column. Suppose that the
length of the central cylinder in Fig. 1 is much larger than the
radius(i.e.,|>R;). The shape of the zero temperature mean-
field plasma can then be approximated by a right circular
cylinder of lengthl and radiusR,,. The number of particles
is given by

N==RaIn, (137)

and expressiof107) for EQ) reduces to the simple form

2 2
E<°)=3 (Ne) (Ne) n Ry

R a - _1
471 I TR,

(138

whereR,, is related to N,w,B) through Egs(12) and(137)
and R, is the radius of the cylindrical trap electrodes. A
superscript zero has not been added#lifcsince by definition
the cold mean-field plasma has the same number of particles
as the actual plasmae., N=N(©),

As an example of Eq125), we evaluate the derivatives

0
IE
Jw

(Ne)2 1 JR2

(0) = 7
L 2l R2 En

)Bv{vj}vN B.{V|LN

~ (Ne®Q,
- 2lo(Q.— o) (139

should obtain the change in temperature under an adiabatic

change in density;

T ap
0= Tds——dT dn.

n? o7T (134

In an uncorrelated plasma= nkT and c,=3/2Nk, and we
find the usual adiabatic relation betweEmndn for an ideal
gas:

and

(Neﬁ 1 dRY
2l RZaB

)w,{Vj},N

B (Ne)’e
= imd0—w) (140
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Alternatively, these results can be obtained by evaluating 0 3 , o
LO=m(Q,/2)N(r2)(® andM©= —N(ew/2c)(r?)(® for a Ek R =10 Nmw3[2BRE+Z5]+NC, (143
right circular cylinder. By explicitly carrying out the deriva- . )
tives wherew,, C, andg are defined in Eqg18) and(19) andR,,
. andZ, are given as functions ¢8 andN in Egs.(20)— (25)
L L For this case, we already have an expressioi fOr[see Eq.
- ~ q
dw dw (27)]. This simple form was obtained by evaluatihg®
T,B,{Vj},N B,{Vj},N 2\ (0 . )
=m(Q,/2)N(r?)© directly, rather than evaluating the de-
(Ne)? [(Q— )+ w?] 14 rivative L(O=9EQ) dw. Again, the derivative
2l 0(Q—w)? (149 aL) aL“’))
ﬂ) _&M(O)) _ (Ne)® . 90 revin 99 e vN
B B 2I[mc(Q.—w)le]”’
TV oqvpn AllmASemw)/e] NmR [ 02 dinap)
(142 =— 1+ 24+ ————
. iy . S 3w; dB
we can check that inequaliti€$6) and (78) are satisfied for
this case. As discussed in Sec. IV B, these inequalities hold (144

when any combination of the conjugate variables in@®§) can be evaluated showing explicitly that inequalii6) is
are held constant. Finally, one should note that the right cirsatisfied for this case. Recall thatis a monotonically in-
cular cylinder approximation is too crude to capture the de<creasing function of3 according to Eq(20).
pendence ofEY) on {Vj}. A more sophisticated model This model does contain the dependenc&@! on Vi
would be requwed to evaluatg?® . so we can evaluatg{”=—dEQ/aV;. For the case of hy-

A second analytically tractable case is that of a spheroiperbolic electrodes, where E(q.7) may be used, we find that
dal plasma in a quadratic trap potentiake Sec. Ill ¢& The the induced charge on the ring and cap electrodes satisfies
zero temperature mean-field energy is given by 'y + A= —Ne, as one would expect, and that

o [25—(r§/2)+ (6/5)(R5—Z5) — (4/5)(28+1)(BR5—~Z5)d In a/dp]
qung qcap e z§+r§/2 ' (145)

Since the plasma is assumed to be far from the electrodeshere use has been made of EtR). This result is valid for
one can see that the plasma shape has little effect on tHarge plasmas in any confinement geometry. For a weakly
induced charge, as expected. Also, the induced charge torrelated plasma, whene=nkT is positive, the pressure
completely independent of the plasma radius when theauses a slight increase in the mean-square rafl{us)
plasma is spherical, which also follows from symmetry ar-=kT/7e?n=\3/4. For a strongly correlated plasma, where
guments. p~ —ne?/a is negative, the pressufiee., correlation causes

As an example of the finite temperature correction toa slight decrease in the mean-square raaﬁ(nsz)~—1/na
these zero temperature mean-field quantities, we evaluate ~ —a?. Equation (148 was obtained first for the special

case of a weakly correlated infinitely long colurfir®

LT, 0,8 AVLN) = dFo cp) Another example of a temperature correction is
o TB.{Vj}N dFocp| N
9" (T,0,B{Vj}.N)=— ) —) =0,
_&n) aFocp) (146) an N (9VJ T,w,B,{Vk;tj}yN
dol, on | (149
) ] ) where Eq.(12) has been used to show that/dV;), g=0.
With the aid of Eqs(12) and (119, this reduces to Thus the chargg; does not vary witll assuming thai and
B are held constant. However, df is replaced by its conju-
LO(T,w,B{V}N)= NQ, p(n,T) , (1477  9ate variableL, we obtain a nonzero correction
@(mw) oF on
OCP
wherep(n,T) is given in Eq.(120). A" (T.L.B.{VihN) = - on ) ,9_\/])
This result plus the relation=m(Q,/2)(r?) yields the T TEE VN
temperature correction to the mean square radlius Np 1 dn )
p( ,T) nn ‘Ni T,L.B{VisjhN

(2= (r2)¥=—r7, (148 (150
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where use has been made of Efl9 andp(n,T) is given T dw T oL/oT),
by Eg. (_120). As a s_pecific example, for an unc_orrelated Tl IT © ILldw); <1. (153
plasma in a hyperbolic trap, E¢L7) can be used with Egs. L
(20)—(27) to obtain Again, for the case of a long, weakly correlated plasma, Egs.
147) and (141) imply the result

~iT.LBAV}}N) (147 and (14D mply

—q(T,L,B,{V;},N Tao)|_ 8@ (Ao)® 154

_qcar{ il ’{ J}' ) ;ﬁ _[(QC_U))Z"F(J)Z] R_p . ( )

- _ dIn C;/d'f > NkT, (151) In Sec. IV C, we promised to verify Eq$95) and (96)

dIn a/dB+2w;/wy+3wy/Q; Vo for the case of a large plasma. In order to do so we first note

whereV, is the potential difference between the cap and ringIhat
electrodd see Eq(17)]. Sinceda/dB>0 Eg. (151 implies G) G) w #(G)
that charge flows off the cap electrode and onto the ring 7) :W) +? W) (159
electrode as temperature increases at condtan€onse- (@/T) @
quently, measurements gf might provide useful tempera- and
ture information, although the effect is small: fgp=1V in G G
a spherical plasma for whick,>w,, Eq. (151) predicts %(G) ) =T i >) _ (156)
that a temperature changg®oK induces a chargdq on the NolT)/ dw |,

electrodes of magnitude\g/eN|=5x10"5.
In the next section, we will need two results for large
plasmas that follow simply from the extensive and nonexten- aT)
E

Next, we employ Jacobian transformations to write

ATE)  a(T,w) o(T,E)

sive character of certain quantities. Sinte/ dw) IS nonex- aL :(?(L,E) T A(L,E) A(T,w)
tensive(increasing faster thaN) and dL/dT),, is extensive
(increasing likeN), Eq. (54) implies that the relative differ- JEldw)r  ToLIIT),+ wdlLldw)+
- . =— = , (157
encelc,,—c.|/Nk approaches zero for sufficiently lartye It cLiLldw)y cLiLldw)y

may be instructive to evaluate the differerice—c,,| for the
case of a long, weakly correlated plasma. Combining Eqshere we used Eqe55), (58), and(61). We can also employ

(54), (147), and(141) yields the result Egs.(59) and(60) to write
lco—cll  8(Qc—20)2 (Ap)? «9w) _Co—wl/dT), L
0 Ol _ Mo)" —| = 58
NK  [(Qe-w)+a?] | Ry < (152 oLl cuillow) (158

Likewise, for a sufficiently large plasma we conclude that When Eqs(155—(157) are employed in Eq.94), we obtain

kT [HG))  © &G)| ]? 0—TowldT), [ _HG)\ [#G)| w HG)
<5G2>E,L_<5G2>T,w__? W)wﬂL?W)T +kT o [2 ™ ) o )w+T — )T
o [HG)) |2 Co— wdLldT), [H(G)\ |?
T W)T } cLilldo)r | do )J ! (159

where hereG is eitherq; or M. Now, for a large plasma . Equation(160 can be further simplified using Maxwell

c,=C., d9;/dT),=0, and [dM/JT),|<|w/TdM/dw){|.  relations. For example, using E¢50) we can transform

The first two relations were proven in Eq452) and (149, IM/dw)t to obtain

and the last follows from the Maxwell relation

(9M/6’T)w,s,{vj},r\!=0_3/35)T,w,3,{vj},N toge_the_r with the fact (MP)e (M) = _ﬂ) ﬁ) kT

that S is extensive in the large plasma limit. ' ' dw T8 JB Te L/ dw)1 g
When these relations are employed in Ef59 and

; oM d
small terms are dropped, we find _ _) _‘é’) 1 (161)
Jw T,B d T,L
5G? 6G% 1 = Xe)) |F_ KT 160 h h h hol dN fixed al ith th
( YeL—(6G )1 = T N (160  where throughout we hol¢V;} an ixed along with the

specified  variables. However, dM/dw)gdw!/dB)_
=JdM/dB)_—IM/B),, and when this relation is used in
Sincedl/dw)r=<0 it follows that the fluctuations i or g; Eq. (161 and the result is compared to H87) we find that
at fixedE andL are smaller than fluctuations at fixddand  for a large plasma
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imply that @ is negative. The stationary field asymmetry
) . (162  slows the plasma rotation much as a caliper brake slows the
TLAViEN rotation of a freely spinning bicycle wheel.
An identical argument implies that in the large plasma limit T make this discussion more concrete, let us reexamine
Fig. 5. Suppose that the torque laser is turned off when the
<5q2>E L =kT ﬂ (163 plasma rotation frequency is at the far .right of the curve, that
is, w is large. The plasma is then subject to the unbalanced
) torque of ambient field errors 40> 0. Further, suppose that
Although these results differ from Eqe86) and (87), be-  the cogling laser, which exerts negligible torque, is left on
causel is fixed rather thanw in the derivatives, the right- g maintains the temperature at some low fixed value. Our
hand sides of Eq3162) and (163 are non-negative accord- gnaiysis then predicts that the plasma frequency decreases
ing to the general arguments of Sec. IV B. monotonically, and such evolution is observed.
For fixed T, the direction of evolution ofv determines
the direction of evolution of all other quantities. For ex-
VI. THERMODYNAMIC APPROACH TO TRANSPORT ample, from Fig. 5, one can see that starting at lasgR(t)
decreases untib(t)=(./2 and thenR,(t) increases. Inci-

As discussed in Sec. Il B, a collection of point chargesdentally, this kind of radial evolution is not limited to the
that interact electrostatically in an ideal traffime- case of a quadratic trap potential. Inequali§0) together
independent and cylindrically symmetrical electrode strucwith <0 implies that
ture and trap fieldsis characterized by two constants of the 5 )
motion,H=E andP,=L. However, for a real plasmaina  9(r") 4(r%| do (165
real trap, such effects as collisions with neutrals, radiation, dt dw |, dt
and interaction with smallbut unavoidablgfield errors pro- ) N
duce slow changes i andL. Also, laser beams and rotat- 1S negative foro(t)>€/2 and positive forw(t) <Qc/2.
ing field asymmetries are often applied to produce changesin The use of a rotating field asymmetry, sagy(r,z,6
E andL. We assume that these changes are slow compareti®ot), has proven to be an effective way of exerting a
to the time for Coulomb collisions to bring the plasma totorque that founteracts the torque due to static field
thermal equilibrium, so the plasma evolves through a se@Symmetries:* When the rotating field asymmetry is applied
quence of thermal equilibrium states, and the slow evolutiofPut there are no static asymmetjiethe new trap potential
of E andL translates to a slow evolution f andw. Ther- 1S ¢1(r,0,2,)=¢7(r,2) + ¢o(r,z,0+ wot).  The Hamil-
modynamics provides a simple framework for the descripfonian is then time dependent $=(H) is not constant.
tion of this late time transport. Throughout this section weHowever, the Hamiltonian in a frame that rotates with fre-
assume that the particle number and trap parameters are h&HeNCY —wo [i.e., H'=H+ woP,] is time |,ndependent S0
constant(i.e., dN=dV,=dB=0), so theTdS equation re- E’'=E+ wglL is constant. Substituting9dE’' =dE+ wydL

duces to the simple form given in EG7). into Eq. (47) and again imposing the second law yields the
result

SM? —kTaM
< >E,L_ (‘78

A. Direction of evolution

. . 0<TdS=—(wy— w)dL. 166
In some cases, thermodynamics alone can tell us the sign (0o~ ) (166

of the change in quantities and the direction of evolution. AsThus the torque opposes the differential rotation. For ex-
a simple example, consider the sign of the torque that a statample, the torque is in the same direction as the plasma
field error (asymmetry exerts on a rotating plasma. Of rotation if the field asymmetry rotates faster than the plasma.
course, one’s intuition is that the torque is a drag that opNot surprisingly, when a cooling mechanism maintalhat
poses the rotation, but how can we prove this? Fundamera fixed value without exerting an additional torque, the in-
tally, the intuition is an expression of the second law ofequality JL/dw)+<0 implies that the plasma rotation fre-
thermodynamics. Since the field asymmetry is static, that isqjuency evolves monotonically to the rotation frequency of

does not introduce explicit time dependence idtoH is still  the asymmetrygw.

a constant of the motion and we can d&=(dH)=0 in Eq. It is important to remember that the rotating asymmetry

(47) to obtain the result does work whenever it exerts a torgii®., E= wolL]. If the
0<TdS=wdlL=—(—w)dL, (164) rotating asymmetry is used to counteract ambient torques,

say, due to static field errors, then the plasma can remain in

where the inequality expresses the second law. Thus th&eady state only if a cooling mechanism extracts energy at
plasma rotation frequency{w) and dL have opposite the ratewoLo.
signs, that is, the torquie=dL/dt opposes the rotation. For Equation(166) also can be derived by using the thermo-
a plasma of positive charges, the rotation frequency is negatynamic potentialQ, that was defined in Eq68). One
tive (i.e., »>0) soL is positive. treats the field asymmetry and the process that maintains the

Next, let us suppose that some other effect, say, lasaemperature at a fixed value as a heat and angular momentum
cooling, maintains the plasma temperature at a constaméservoir. The reservoir is assumed to be fixed at the initial
value without exerting a torque. Then the relatien temperaturd of the plasma and the rotation frequeney,
=(dwl/dL)tL plus the inequalities dw/dL)7<0 andL>0 of the field error. The heat transfer is assumed to be suffi-
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librium with the reservoir even though it is not in frequency ® £ aT 173
equilibrium with the reservoir. The thermodynamic potential

Qg must decrease as the plasma evolves toward frequenayhere use has been made of E¢gl) and(171). This equa-
equilibrium with the reservoir. Thus we obtain tion could have been written down directly by taking the
I0g time derivative of the mixed functiom= w(L,T). By using
— AL=—(w—wg)AL, (167 Maxwell relations, the coefficients of Eq6l71) and (173

gL T.N,B{V;} can be written in many ways. However, one can see that only

¢, and the function.=L(w,T) are needed to evaluate the

ciently effective that the plasma remains in temperature equi- ( aL) : (m_) )
=L — T’
T [0}

OEAQR:

where the partial derivative was evaluated by setiipg=L, coefficients
T=To, Vj=Vjo, andB=By in Eq. (72). Again, we find that For the case of a large plasma, E¢&29), (152, (153,
the torque opposes the differential rotation, which together ; ; :
. . . oo . and (147) imply that evolution equation$171) and (173
with the inequalitydw/dL) =<0 implies that the rotation fre- .
) reduce to the simple form
guency of the plasma evolves toward that of the field asym-

metry. ¢ T=E+owl, (174
i ; JL - N(Q.—2w) 1 dp -
B. Evolution equations o = =Li- ((QC E w)) . (9_'?' T (179
If the plasma passes through a sequence of thermal equi- @y W2t @

librium states characterized by fixed valuesNaf{V;}, and  \yhere p(n,T) andc,(n,T,N) are given in Eqs(120) and
B, the temperature and rotation frequency at any instant Caf121). Here, then dependence ip andc, is determined by
be expressed ab=T(E,L) andw=w(E,L). The time de- , through Eq.(12). For the special case of a weakly corre-
rivative of these equations, lated plasmag, and (1h)(dp/JT) are the constantshBk/2
. andk, respectively. In Eqs(174) and (175 only the coeffi-
L(w,T,x)), (168  cientdL/dw)r=dL(?/dw depends on the plasma shape; the
E other coefficients are explicit functions af and T that are
Jo) - Jo\ - independent of plasma shape. Also, we have explicit expres-
iu=£> E(eran)+I) L(w,T,x)), (169  sions fordL(®/gw for the case of a long plasnisee Eqg.
L E (141] and for the case of a spheroidal plasisee Eq.
governs the plasma evolution, whee-E(w,T,x;) andL  (144)]. o _
=L(w,T,x;) are functions that describe the rate of energy As an appl'lcatlon.of these equations, let us return to the
and angular momentum exchange with various externgg*@mple considered in the last section. A static field error
agencies. For example, suppose that the plasma energy af@ts on the plasma producing a positive torgue-Q), and a
angu|ar mom.enturn. are Changing as a result of Co||isi0n§90|ing Iaser.maintains the temperature at some fixed value
with neutrals E andL then depend on the plasma stéite., ~ Without exerting a torque. From EL74), one can see that
on w andT) and on some parameteys that characterize the €nergy extraction, rather than input, is required. Seting
neutrals, such as the neutral density and temperature. Like=0 immediately yield€= — wL <0. As discussed earlier, a
wise, for interaction with a laser bear, and L are deter- static field error cannot chand@g so the cooling laser alone
mined by the plasma statee., » andT) and by parameters producesE. Note that energy must be extracted whetré}
x;j such as the intensity and frequency of the laser lightis decreasingfor w>./2) or increasing(for 0<(./2).
Assuming that the parametepg are constant, or known When(r?) is decreasing, the electrostatic energy is increas-
functions of time, the plasma evolution is governed by twoing, but the rotational kinetic energy is decreasing fast
ordinary differential equations for the time evolution ®f  enough that the total energy is decreasing. .
and w. This reduction in complexity from the partial differ- Next suppose that the cooling laser is turned off. Eor
ential equations typically required to describe transport is=0, Eqgs.(174) and (175 reduce to the form
possible because the plasma passes through a sequence of

LTy LT
_E . ((x), !X]) I

wl

thermgl equilib_rium states. T="">0. (176
With the aid of Eqgs.(55—(60), (157 and (158), Egs. Cn
(168 and (169 can be rewritten as . .
o Tcp—[N(Qe—2w)/(Qe— w)](AIn)pl/dT] T
Jw Jw - dw) - —= 2 T
. 0 ow e L/dw) T
cLo=|c, o ) L+ ) E, (170 ® w"d T
L) T oT) |T aT), a7
cLTzAwL+ E (171 wherewlL >0 andc,>0 have been used. For a large plasma,
h the coefficient ofT/T on the right-hand side of Eq177) is
where

small. The numerator is extensidiacreasing likeN) and the
T dw denominator is nonextensivicreasing faster thaN) so the
A=1l-— ﬁ) : (172 ratio becomes small for largd. A simple estimate for the
L case of a weakly correlated plasrfelong the lines of the
It is often more convenient to write E¢L70) as estimates in Eqg152) and(154)], shows that the coefficient
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is smaller tharO()\D/Rp)2< 1. Thus Eq.(177) implies that this point, we setéw=w— ' and ST=T—T’, linearize
|w/ w|<|T/T|; the plasma temperature rises substantially beE£gs.(174) and(175) with respect todw and 6T, and assume
fore the rotation frequency can change by a significanthat these quantities vary in time e¥. The result is
amount.

Nevertheless, it is interesting to consider the sigrivof Chv— B} _ » oL =l w L +E Sw,
Eliminating T yields the relation T/, 9T, dofp do);

o [N(Qe—2w)/(Qe— w)](1In)apl T - ] ) (181

w= L (178) [ aL (9L z?l_

Co(dLldw)t —) - —) Sw= —) —av}ﬁT, (182

The coefficient ofL is simply dw/JL)g, as can be seen by |90l 90)y T/
taking the time derivative olv=w[L,T(L,E)] holding E where
constant. Thermodynamic inequalitié8l) and (83) insure
that dw/dL)r<0 and thatd(w/T)/dL)e<0, but dw/dL)g oy N 20) 1 9p (183
can be either positive or negative. o(Qe—w) n T

For simpli.city we evaluate the coefficient in the'lirnit of Setting the determinant of the coefficients equal to zero
weak correlation. Foc,,=3Nk/2 andp=nkT the coefficient yields a quadratic equation for:

reduces to
0 Ota ar’+bv+c=0, (184
_ C
L. 3(Qc—w)(dlldw)r 0. (179 where
Sincel is positive, @ is negative. The static field error re- a=c, ﬂ) , (185
duces the rotation frequency as it did when the cooling laser Jw/ .

was on. However, suppose that the plasma has cooled to the
point where all of the charges are in the lowest Landau level
(i.e.,kT<AQ). In this case, a quantum mechanical expres-
sion for Focp must be used and the expression &ris
modified. Only one degree of freedom per particle partici-
pates in the thermal motion, so the specific heatcjs
=Nk/2. The pressure is still given gy=nkT. Substituting

oL oL
- (?_(1) Tcn_ (9_(1) T

aL) +aE
© 0| o)

oL +aE

} : (186)

+a

into Eq. (179 yields the coefficient gL\ oE gL\ oE
c=—| —=| ——=| —| . (187
Jw ~ (Qc—3w) 150 Jw TﬁT N JoT wo'?a) -
). (Qe=w)(dL/iw)r’ The two solutions to Eq(184) are
which is positive foro << ./3. Surprisingly, the torque due —b++b2—4ac
to the static field error increases the rotation frequency. Of V= ———%-—", (188

course, the accompanying heating rapidly raises the particles 3 _ . .
out of the lowest Landau level, and then the rotation fre-and stability requires Ref<O for both solutions. Inequali-

guency begins to decrease. ties (75 and (81) imply that a<O0, so stability required
<0 andc<0.
C. Temperature and frequency stability As a simple example, consider the case where the angu-

lar momentum may be considered constant on the time scale

Often there is a competition between various effects. FoFequired for significant changes in the energy. Setﬁﬁgo
example, radiation pressure from a laser exerts a torque that Egs.(186) and (187 yieldsc=0 and

compensates the torque from collisions with neutrals or in- . . )
teraction with field errors. Also, cyclotron radiation or laser dL\ 9E JaL\ JE JdL\ 9E

cooling may balance various heating effects. We search for b=— E ﬁ) +ﬁ) %) - %) ﬁ) . (189
stable stationary states, that is, states for whieho=0 and e e T Tt
for which small deviations from equilibriunw and 8T, are  The nonzero root is’= —b/a, which is stable fob<0, or
damped. As we will see, the issue of stability is important.dE/JdT), <0 since JL/dw)+<<0. Temperature fluctuations
Instabilities are observed when a parametecharacterizing  about the equilibrium are damped foE/9T), <0, since a
an applied torgue or cooling process is slowly varied and theositive 5T leads to a negativéE=9¢E/JT) ST, which re-
equilibrium location evolves ing, T) space. When the loca- stores the equilibrium. From E@173 one can see that the
tion enters an unstable region, eitheror T (or both can  fluctuationssT and éw are coupled and vary in such a way
vary rapidly (*jump” ) across the region to the next stable that 0= 6L =dL/dw)1dw+dL/IT),,ST.

equilibrium. _ _ Of course, for this case of constalnt it is simpler to
Suppose thaE(w,T) andL(w,T) are known functions replace evolution equation$l74 and (175 with c,T
and that @', T') is an equilibrium point wheree=L=0  =E(T,L) and L(w,T)=constant. This separates out the

and, therefore, wher€= w=0. To investigate stability near temperature evolution at the outset and the stability results
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A constant for simplicity. The intersectiods andB are equi-
E librium points whereE,;+E,=0. Point A is stable since

JE|1dT) +JE,/dT) <0 and pointB is unstable since
—————————— — — — JE,1dT) + dEy/dT) >0. From the evolution equatior), T

E, =E,+E,, one can see that the temperature will evolve to

point A if it is started off at any point to the left d&. When
started off at any point to the right &, the temperature
increases indefinitely.

In experiments! the temperature for a plasma in stable
equilibrium A is gradually reduced by slowly decreasing
|w,— wo|. One can see from Eq191) that wp tracks| o,
—wg|. If the slow decrease ifw,—wo| is made through
increments, one must be careful not to leave the temperature
to the right of pointB after the increment, that is, the incre-
FIG. 7. A construction used to determine temperature equilibria and stabilments should be smaller th&@Y(wp). This can be restrictive
e e e sy s coraaran 107 Sl OF couse,for sufienly smalby. expres
fr)][é t;lr)llﬁe zocale (;f interest.gThe dashedgcurve is an ambient heating ratg',lon (197) does not accurately represent- mteg(ﬂeQO) .
Ea(T,L), assumed constant for simplicity, and the dotted curve@. As another example where the stability criterion is easy
PointsA andB are equilibria sincé, + E,=0 at these points. Equilibrium 10 understand physically, consider the case where there is a
A is stable since’E, /dT), +JE,/dT)_<0; whereasB is unstable since ~ Strongly stable mechanism for temperature control, that is,
9E| 1T+ 9EIIT) >0. (0E/9T), is negative and substantially larger in magnitude
than the other terms to which it is compared in E{4s36)
and(187). The solution for the plus sign,

follow trivially from the Taylor expansions: cnﬁT 9E
=9E/4T),_ 8T and 0= dL/dw)1Sw+ ILIJT)6T. Ve= o Ch» (192
As an illustration, we suppose that a plasma of partially @
ionized atoms is heated by some ambient process at the rate JL B
E,(T,L) and laser cooled at the rafe e T5w+ﬁ oT=0, (193
- Nloy f*m dv,(fikjv,+2R)exd —v2/u?] describes strongly damped temperature and frequency fluc-
1= , ’ i i
ho, )_u [l+(w|—w0—k|vz)2(4/y(2))]\/;u tuations that conserve the angular momentum. In effect, this

(190 is the solution that we considered in the previous example.

. . The solution for the minus sign,
wherel, w,, andk,= w,/c are the intensity, frequency, and

wave number of the laser light. The laser light is assumed to Ll dw)t
be directed along the trap magnetic field and the intensity to V- :m'
be uniform over the cross section of the plasma. In this case,

the laser light does not exert a torque on the plasma, and the 9T=0, Jw#0, (195

cooling rate does not depend on the plasma rotation fregescrines weakly damped or growingw(|<|v.|) fre-
quency. The laser frequency is tuned near to but slightly,,ency fluctuations that are decoupled from the temperature
lower than an electric dipole transition of the partially ion- fjyctyations. Since dL/dw)<0 stability requires that
ized atoms that constitute the plasma. The transition is Cha';?L/ﬁw)T>O. This result is well known from the analysis of
acterized by the cross section at resongn@etr,]e frequency jnquction electric motors as the condition for frequency sta-
wol2m, and the line widthy,. We definewo=wo+ R/t jjity- recall, here, that- o is the frequency of rotation.
WhereRz.(hk,)Z/Zmi - The_dlstrlbutlon of ion-velocities par- Again, the analysis can be simplified at the outset by
allel to B is Maxwellian with thermal spread= y2T/m. noting that the temperature is effectively fixed. The time de-
~ We define the thermal Doppler widdip=kiu, and for  jyative of L(w,T), holding T fixed, yields the evolution
simplicity work in the limit wherey,, R/It<wp . Equation equationd)&L/&w)T=L(w,T), and Taylor expansion about
(190 then reduces to the form the equilibrium yields solutioi194).

- Nl Jmyo fi (@~ wg) o1 o As a specific illustration, we suppose that two laser

= Fw 2 oy © D. (191 beams act on the plasma. The first is an intense cooling beam
. that is directed along and provides strongly stable tempera-

From this form one can see th&; can be negative and ture control, that is, provides a large and negati#aT),, .
substantial only ifw; — g is negative butw,— wo| is NOtt00  This beam effectively fixed at some low value, but does
large compared tep . _ not exert a torque. The second is a narrow beam that is

In Fig. 7, the solid curve is a plot @, versuswp/(w,  directed transverse tB and passes through the plasma at a
—wp)?xT. The dashed and dotted curves are plots ofdistanced from the axis. The direction of propagation is in
E.(T,L) and —E,(T,L), respectively, assumed here to bethe same sense as the plasma rotation; so the torque due to

(194
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FIG. 8. Observed plasma rotation frequency versus frequency of torque
laser. First the laser frequency was gradually increased then gradually de-
creased, and the arrows indicate the direction of evolution when the plasma
rotation frequency was measured. The interesting feature is the hysteresis
loop. This result is from Heinzeat al. (Ref. 2.

FIG. 9. A construction used to determine frequency equilibria and stability
when the temperature is fixed. The solid curve in the upper half of the figure
is a plot of an ambient torque,(w) assumed to have a resonance peak, and

the radiation pressure can balance an ambient torque, Sép? dashed curve in the lower half is its negative ,(w). The three solid

s : urves in the lower half of the figure are plots of a laser tot‘quja),wl) for
due to a static field error. Of course, the ambient tOrq'J%Chreze values ofw, (i.e., wja<wg<w;c). Each intersection of the dashed

opposes the rotation. The second beam can heat or cool th&. . \ih a solid curve is an equilbrium, WheEEf(w,w,)+La(w)=0.

plasma depe_nding on how frequencies are adjusted. ) Equilibria 1, 2, 3, 4, and 5 are stable sindle /dw+dL,/dw>0; whereas,

For the simple case wherg), R/i<wp, the torque is 2’ s unstable sincL,/dw+dL,/dw<0. The equilibria are realized se-
given by38 guentially whenw, is first increased and then decreased, and this gives rise

\/_ to the hysteresis loop in Fig. 8.
- —logVmyg — 2,2
Li=——5—— ny(T,w,d)afikide" (¢~ wo~kde)lop,
ﬁw|2wD
(196 . e
and the condition for frequency stability is that
wherea is the cross-sectional area of the narrow laser beam, : :
and oLy dLa (199
Jo Jw
Py _ 3 . .
nx(T,&d)—f d°ré(y—d)a(z)n(r,w,T) (197 Dependence off (or wp) is not denoted since we assume

. o . that the intense cooling laser effectively fixes the valu@ .of
is Fhe line integral of the plasma density along the beam. In The experimenfssuggest that the ambient torque is due
writing Eq. (196), we used the fact that thecomponent of g 3 field errontilt in the magnetic field relative to the axis of
the plasma rotation velocity is given by -wr, 6  the cylindrical electrode structureand that the ambient
= wr, cos#=wd all along the beam. torque becomes largexhibits a resonant@ear a particular

In essence, this is the kind of laser system that was useghjye of the plasma rotation frequency w*). At this
to generate the experimental points in Fig. 5, where therequency, a tilt mode, which rotates backwards on the rotat-
plasma rotation frequency was varied through the full ranggng plasma, has zero frequency in the laboratory frame and is
of allowed values. A slight complication is that there were driven secularly by the static field error. The amplitude of
two cooling beams and neither was directed paralleBto  this mode presumably is limited by viscous effects, which
However, both beams passed through the center of thgiso set the frequency width of the resonance. The solid
plasma and provided strong cooling, as given by 890,  curve in the upper half of Fig. 9 is a sketch of an ambient
with very small torque. The dominant torque was providedtOrque La(w) with a resonance peak ai=w*, and the
by an off-axis transverse beam of the_ kind assumed in EQyashed curve in the lower half isLa(w), which is intro-
(%9% :(:urth?;] resgtlts_frorp thf's experlmetntbﬁ_:;m ?f ur'd%r'duced for construction purposes. The three solid curves in
shows & plot of the plasma rotation frequency versus thd IOWer half of the figure are plots bf(w,w) as iven by

%q. (196 for three values ol (i.e., w s<wg<w|c). TO

frequency Of. t_he torque Igser. Inte;reshn_gly, _the functien avoid confusion, the full Maxwellian is drawn only for curve
=w(w,) exhibits hysteresis behavior, with different values

of w obtained for the same value &f depending on whether
w) is slowly increasing or slowly decreasing. It is this behav-
ior that we will try to understand.

The condition for frequency equilibrium is that the laser
torque just balance the ambient torque

Each intersection of a solid curve with the dashed curve
is an equilibrium point, that is, a solution of E(.98. For
curveA, one can see graphically that equilibrium 1 is stable,
that is, thatdlL,/dw+dL,/dw>0. Recall, here, that the
) _ dashed curve is-L,(w). This equilibrium is indicated by
L(w,w;)+L,y(w)=0, (198 point 1 in Fig. 8. When the laser frequency is increased to
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w|g, equilibrium 1 evolves to equilibrium 2, which also is were calledE and L in the previous sections. Since the
stable. Here the equilibrium point is climbing the resonancecenter-of-mass motion decouples from the other degrees of
peak, so an increase in produces relatively little change in freedom,Eya, Liotais Ecm, @ndLgy, are all conserved inde-

w; see point 2 in Fig. 8. Curv8 has two other equilibria; pendently.

one can see graphically that 2 unstable and 5 is stable. Furthermore, the center-of-mass motion parallel to the
When the laser frequency is increaseddi@ , the equilib- magnetic field decouples from the other two degrees of free-
rium evolves to point 3, which is on the edge of the stabilitydom for the center of mass, so there is another constant of
boundary. A slight increase im, produces instability, and the motion*>” By using the Hamilton—Jacobi equatith,
the equilibrium jumps to equilibrium 4, the next stable equi-one can show that

librium. This jump produces the nearly vertical section (3
—4) of the curve in Fig. 8. For further increase i, o
simply tracksw, as before the resonance. When the proceswhere (,,Ln,!,) are the three conserved actions associated
is reversed by decreasing , only a small jump is encoun- with the parallel motion, azimuthdbr magnetroh motion,
tered. Note that for decreasing,, equilibrium 4 evolves and radial motion of the center of mass. Hergis the fre-
into equilibrium 5, which is stable. For a sufficiently narrow quency of the parallel motion of the center of mass, and
resonance the small jump encountered for decreasing :\/ﬁg_—zwf is the frequency of the radial motion. The

Ecm= @4l ,— ol emt o/l , (204

would not be apparent in Fig. 8. quantity wy,=Q/2— \(Q/2)>— »?/2 is the magnetron fre-
quency, but, as is our custom for rotation frequencies, a mi-
VIl. ADDITIONAL CONSTANTS OF THE MOTION nus sign has been introduced so thai = JE /L oy IS

For particular confinement configurations, the plasma{he rotation frequency associated with the angle variable
dynamics is characterized by additional constaioisnear —Cconjugate tol o, (an azimuthal angle Here we have used
constants of the motion. In a thermodynamic description, the fact thatEcq(1,,Lem,l,) is a Hamiltonian written in
these quantities become new thermodynamic variables, juégrms of the canonical momentg; (L, !,). In relating o,
as the original constant€ andL) become thermodynamic 0 the effective cyclotron frequency, one must remember that

variables. the radial oscillations are superimposed on the azimuthal
) ) ) motion. The effective cyclotron frequency in the laboratory
A. Center-of-mass motion for plasma confined in a frame is we=w, + wy= Qo2+ ’—z_(QCIZ)Z— w22, Formally,

quadratic trap potential the parallel action is defined through the equatiog,

As a first example, we consider a plasma that resides ir- MZ2/2+ M »2Z?/2, and the angular momentuln, is de-
a quadratic trap potentigbee Eq.(16)] and is small com- fined in Eq.(203), so Eq.(204) itself defines the actioh, .
pared to the distance to the electrodes. We allow the centegXn alternate discussion of these constants of the mdtisn
of mass of the plasm&.=(R,0,Z), to be displaced from ing Newton’s second law, rather than the Hamilton—Jacobi
the bottom of the potential well but assume that the displaceequation can be found in the review article by Brown and
ment is small compared to the distance to the electrodegabrielse"’
Image forces are then smale assume negligibleand the Under ideal conditions o, Liotars |22 Lem, @ndl, are
center-of-mass motion decouples from the other degrees efll conserved exactly, but for a real plasma in a real trap
freedom®® The total plasma energy and angular momentunthese guantities evolve slowly in time. When the time scale
of a single species plasma can be written as for this evolution is slow compared to the time for Coulomb
Eqota= Eent E, (200 c_oIIisior_‘ls to bring the plasma particles _into thefmgl equilib-
rium with each other, a thermodynamic description makes
Ligta=Lemt L, (20D  sense. One should picture here a spheroidal plasma that is in
thermal equilibrium in terms of its coordinates and velocities

where . :
, relative to the center of mass, but for which the center of
Nm . S Nm R mass is undergoing parallel, magnetron, and cyclotron mo-
Eam=—y (22+ RO+ RE) + — w§< 72~ 7) (202 oo going p J y
q The center-of-mass motion involves only three degrees
an of freedom and, consequently, makes negligible contribu-
. NeBR tions to the entropy, that i§,=S. HereS=S(E,L) is the
Lem=NmMRO+ C (203 entropy of a plasma at rest with enerByand angular mo-

mentumL, that is,S(E,L) is the same entropy function that
are the center-of-mass energy and angular momentuntand,ye considered previously. Combining the equatiothS,,

andL are the energy and angular momentum relative to the- 14 swith Egs.(47), (200, (201), and(204) yields the total
center of mass. In other wordg, andL are obtained from ifterential

Egs. (2)—(5) by replacing the usual cylindrical coordinates

by cylindrical coordinates with an origin at the plasma center ~ TdSg= dEqart @dLiga— 0, A1+ (0pn— w)dLcy

of mass and with & axis parallel to the trap axis, without ~ ol (205)
changing the functional forms df, P,, Ay, O ¢yap. Ex- e
cept for the use of coordinates and velocities relative to thevhere we have assumed that the trap parameters and particle
center of massk andL are the same as the quantities thatnumber are held fixedl.e.,dw,=dB=dN=0). The rotation
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frequency w=TaS/dL) =T3S/ Il tota) £ Ll has The kinetic energy associated with the center-of-mass mo-
total’ z'=cm''r

the same interpretation as in previous sections: it is the frelion is negligible in the drift approximation. Likewise, the

quency at which the plasma rotates about the center of masganonical angular momentum is dominated by the vector po-
as seen from an inertial frame of reference. The total differf€ntial contribution

entials for other thermodynamic potential®.g., Fiow NeB
= Eota— StoralT) @re obtained by making Legendre transfor- Lcm=2— RZ, (208
mations. c

As a sﬁmplg application of E(;(205), suppose that weak By combining these two equations we obtaiy(Lay),
anharmonicity in the trap potential leads to slow changes ifyhich can be thought of as the Hamiltonian for the center-

Iz, Im, andl, through weak coupling of the center-of-mass 4t mass motio® Thus the center of mass moves around the
motion to the many other degrees of freedom. The anharm@senter of the trap with the angular frequency

nicity does not break the cylindrical symmetry of the trap, so
both Ly @ndE,q, are constant on the time scale of interest. . JE:m  2Nec 1

Thus Eq.(205) plus the second law implies that wp(R)=—-0=- Lom 1.BRE (1-RORZ)’ (209

0<TdSyu= — w,dl,— (0—w)dLy— w,dl,. (206 In the limit where R/R,—0, this is the well-known fre-
quency of them=1 diocotron mode, and the finiﬂEZ/RVZv

This is a constraint on the direction of evolution in the spacé°Tection is simply the nonlinear frequency shift.
of the actions (,,L.,!,). The evolution is such as to reduce  '© develop a thermodynamic description, we again use

the center-of-mass energy as viewed in the rotating frame dhe equations

the plasma[i.e., dE;,/dt+ wdL.,/dt<0]. The other de- E —E 4+E 210

grees of freedom impose a kind of “friction” on the center- total™ =em © =

of-mass motion. L= Lot L, (210
Siota= S(E,L). (212

B. m=1 diocotron motion of a long, thin plasma in a Equation(47) then implies the total differential

cylindrical trap

As another example, we consider a long, thin plasma TdSoa= dBorart @dLiotart (0p— @) dlen. (213

shown in Fig. 1. The plasma radius and length are assumegleakly couples the center-of-mass motion to the other de-
to be ordered aR,<R,<l,, whereR,, is the radius of the  grees of freedom while conserving the total energy and an-

cylindrical wall. The cyclotron frequency is assumed to begyjar momentum. SettingEy,=dLow=0 in Eq.(213 and
sufficiently large(i.e., wp<{}) that the center-of-mass mo- ysjng the second law yields the result

tion transverse to the magnetic field separates cleanly into
drift and cyclotron motion. We suppose that external pertur- 0<TdSg,=(wp— w)dL¢y,. (214

bations of the plasma are slow comparedX}p, so only the o
sWhenR/R,<1 Eqg. (209 implies thatwp equals theExB

drift motion is excited. In particular, when the plasma i X
displaced off the axis of the cylindrical trap, the plasma ex-Otation frequency due to the plasma space charge, measured
t the wall. Sincew is greater than or equal to tHexB

periences an electric field due to its image in the wall andt ! i _
undergoesExB drift motion around the center of the trap. "°tation frequency measured in the plasfdae to the addi-

This motion of the plasma center of mass is called diocotrofion ©f t.he diamagnetic dr?‘tand the electric field in the
motion; it is similar to the magnetron motion discussedP'@sma is greater than the field at the wadlo(~ ) must be

above, except that here the electric field causing the drift if€gative wherR/R,,<1. It then follows from Eq(214) that
an image field, rather than the trap field. dL.,=(eB/c)RdR is negative, that is, that the plasma

We assume that displacement of the center of mass off'OVeS back toward the center of the trap. Setdngﬁa':o
axis is small compared to the distance to the wiaé., R ' Ed- (211 then implies that &dL=m(/2)Nd(r%), that
<R,). This together with the ordering,<R,, implies that 'S that the plasma expands in radius. _
the image field is nearly uniform over the cross section of the 10 Make further progress, we must specify the mecha-

plasma. The drift motion then translates the plasma as 3'S™ of rotational pumping In more_detan. _Con5|der a
whole with very little distortion, so the plasma can come to aplasma that has been displaced off axis. Relative to an axis

state of thermal equilibriunior near equilibriun centered through the plasma center of mass, the end confinement po-
on the moving center of mass. tentials are azimuthally asymmetri©f course, these poten-

The extra energy associated with the displacement is thlgﬁlls a]fle still symmetric relative tr? thel trap axibs a Elasma _
electrostatic energy of interaction with the im&ye llled flux tube rotates about the plasma axis, the tube is
alternately compressed and expanded in length. This rota-

2 2 tional pumping alternately increases and decredsesthe
(Ne) R .
=" Inl1- (207)  temperature for velocity components parallelBa. How-

P w ever, collisions constantly try to maintain equipartition be-
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tweenT, and T, , so there is dissipation of electrostatic en-
ergy into heat. A simple estimate for the case where the

Debye length is small yields the heating rate

2
2 |pRW) : (219

where v, , is the collisional equipartition rate and is a
numerical constant of order unify:*?

3 . R,R
= NkT=;  NkT«?

Given this heating rate, thermodynamics can be used to

determine the rate of plasma evoluti@ng.,R and]. Since

rotational pumping conserves the total energy and angularo0.005 |

momentum, Eqs(208—(211) imply that

0=Em=E— wopmQNRR (216)

(217)

Also, E andL are still related tol' and @ through evolution
equations(174) and (175), which for the case of weak cor-
relation and low rotation frequendy.e., v<w.) reduce to
the simple form

0=L,ym=L+mOQNRR

3 . .

5 NKT=wL +E, (218

oL : :

® — w=wlL—NKT. (219
Jw

Combining Eqs(216)—(218) yields the relation
3 . .
> NkT=(wp— 0)mMQNRR (220

and then using heating ra(215 to evaluateT provides the
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FIG. 10. Measured evolution of the plasma radRs and displacement
off-axis R (both scaled by the wall radilR,). Taken from Cluggistet al.
(Ref. 13.

which would contradict Eq.(222 if we set d(r?)/dt
=RyR,. However, by referring to Eq148 and noting that
(r3)=R2/2, one can see that

d RR d kT

at M= ReRet G e
By usingn/n=&/w and Eqs(220) and(223) to evaluate the
second turn on the right-hand side, E(&25 and(224) are
seen to be consistent.

The mode damping rat@21) and expansion rat€222)
were derived earlier from a transport perspectfivéefore
any connection to thermodynamics was realized. Also, the

(225

rate at which the plasma center of mass moves back towarhtes were found to be in good agreement with experirffent.

the axis of the trap

R V||'lkTK2R§

R™ 7 mO o-wp)?RE

(221

SinceR(t) can be thought of as the amplitude of ar=1
diocotron mode that is excited on the plasmas the mode
damping decrement due to rotational pumpth@’ Substitut-
ing L=m(Q./2)Nd(r?)/dt into Eq. (217 yields an expres-
sion for the plasma expansion rate

(222

and combining Eq9.141) and(217)—(221) yields the evolu-
tion rate of the plasma rotation frequency

@ +
o 133w

R2
52 V-
RP

(223

A comparison between Eqg22) and(223) illustrates a

subtle point concerning the approximations used here. From

the relationsw’~2w(; andN=mnRj| , we obtain

low

2w’ (224

In particular the temperature dependencey(f), which is
the same as that of heating rai&l5, was checked over
several decades variation n

Interestingly,y(T) is an increasing function d&f for low
T, which is the kind of temperature dependence in a heating
rate that can give rise to a temperature instabilgge Eq.
(189]. Qualitatively, the temperature dependence is easy to
understand. For largg, v, , T<T Y2 is a decreasing func-
tion. However, for a temperature sufficiently low that
VKT/m/Q.=r.<b=e?kT, the cyclotron adiabatic invari-
ant constrains the collisional dynamics and becomes ex-
ponentially smalf® Thus y(T) is an increasing function for
low T reaching a peak near the temperature whegreb.

The temperature instability has been used to explain a
limit cycle behavior that is observed witm=1 diocotron
modes'® Figure 10 shows the observed amplitude of the
mode and plasma radius versus time for an elapsed time of
300 s, which is about a million periods of the basic diocotron
motion. The sawtooth oscillations of the mode amplitude is a
manifestation of the limit cycle.

In the experiments, the diocotron mode is made unstable
to the resistive wall instability by inserting resistors between
azimuthally separated sections of the conducting wall. There
is a competition between resistive growth of the mode and
damping due to rotational pumping. Likewise, the tempera-
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ture evolution involves a competition between rotational 101
pumping, which transforms electrostatic energy into heat and
cooling due to cyclotron radiation.

The resistors change the total angular momentum at the
rate

- m{)
Lioai=2BLem=28 —5— NR, (226

where 8 is a constant determined by the wall impedatite.
Likewise, the resistors change the total energy at the rate
(IEem! L) 2BLem= — wp2BLlem. Also taking into ac- & 1

count the energy loss by cyclotron radiation yields the rate

ATHR 3,

V

10—4 PP PRI BT BRI B W
. mQ 3 (T—-Ty) 1075 107¢ 1073 107% 107! 100
Eroa= —2B80p —— NRP— 2 Nk ———,  (227) T (eV)
2 2 Trad

where 7,4 is the radiative rate and,, is the temperature of FIG. 11. Changes iR andT during a limit cycle. The cooling ratelashed

the wall. The cyclotron radiation makes negligible change infurve depends only off. The heating rate depends on bdtfandR; the

the angular momentum: for a single photai. =% and SE solid curves show the heating rate at the maximum and minimum values of
9 ! glep il R during the limit cycle. Taken from Cluggistt al. (Ref. 13.

=1, sowdéL/SE=w/Q).<1. For the conditions of the ex-

periment,3=0.1s ! and 7,,/~0.29 s.

Also, we know the rate at which rotational pumping andgr ' £q. (232 describes a very gradual monotonic increase in
cyclotron radiation change the plasma temperature. Fromg (t). This gradual increase can be seen in Fig. 10. Over a
heating rate(215) and the definition ofy in Eq. (221), we  gingle cycle, we can treaR,(t) as constant and consider
obtain only the coupling betweef andR through Eqgs(228 and

(T-Ty) (230.
K——. Following the previous analysis, we write these equa-
(229 tions as

me). NR? 3 N
2 2 Trad

3 .
> NkT=2y(w—wp)

Equations(208—(211) and (218 imply that T y(T)RZ- — (233
) ) 3 ) ) dt Trad
Eiotat thota,=§ NkT+(w— wp)mQNRR (229 d
L g RP=2[8-»(M]R%, (234
Using Egs.(226), (227), and (228) to replaceE g, Liotar,
andT then yields the result where
R=(3— 3k
R=(8- R, (230 T=2 (T-Ty) (235
where y=y(T,R;) is given in Eq.(221). Using this result
together with Eqs(221) and(226) yields the expansion rate and
d m{)
T (r3)=2yR?, (231) R2=2(w—wp) —— RZ. (236)
or its integral equivalent Note thatw is constant for constarR, and wp is constant
N for sufficiently smallR.
(r2)(t)=(r?y(0)+ f 2yR?dt. (232 For the conditions of the experimefite., B7,,4<1), the
0

intrinsic evolution of T is much faster than the evolution of
If the cyclotron radiation maintains the temperature at a sufR; so for most of the timel" has relaxed to an equilibrium
ficiently low level (i.e., \p<R,), then we can approximate T (R) determined by

(r?)(t) by (r)©(t)=R2(t)/2 in this last relation. Further- T*

. P . * 2
more, the evolution oR, is related to the evolution of the 0=y(THR*= —. (237)
rotation frequency through Eq224). rad

Equations (228), (230, and (232 are three coupled This temperature equilibrium is stable provided that
equations that determine the evolution Bf R, and R,.
These equations were obtained earlier, but not put in a ther- g7 R?— —=<0. (238
modynamics context. Numerical integration and analytical Trad
analysis of the equations show that they explain the limitHowever, asR continues to evolve, a stability boundary is
cycle behavior exhibited in Fig. 1. reached wherey/dT* — 1/7,,4 passes through zerd. then
To understand the importance of the temperature instaevolves rapidly(jumps to the next stable region. During this
bility in this behavior, we first note that for sufficiently small rapid evolution, the change R is negligible.
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A limit cycle [sawtooth oscillation in Fig. I0is illus-  ated with the plasma center-of-mass motion, and these enter
trated in Fig. 11. The two solid curves are plotsyffT)R?  the theory as additional thermodynamic variables. As a
versusT for R=R,,,, (top of sawtooth and R=R,;, (bot-  simple application, this extended theory was used to describe
tom of sawtooth, and the dashed curve is simply 7,.4. a limit cycle behavior observed with pure electron plasmas.
The cycle starts at poim, where bothT andR take their In general, this whole subject is very large, and there is
minimum values. At this point, inequalit{238) is satisfied much room(and needfor future work. For example, only a
so T is in a stable equilibrium. Howeveg is larger than few of the hundreds of Maxwell relations have been ex-
YT) so R grows. The equilibrium temperatufe=T*(R) plored. Only a reduced set of thermodynamic inequalities
tracks the growth oR according to Eq(237). During this was obtained, and only two of thedee., ¢,=0 and
phase, the system evolves to pdhtvhereR= R, Atthis  dw/dL)+<0] were used in any serious way. The method for
point, the temperature becomes unstable and evolves rapidbalculating fluctuations was illustrated with a couple of ex-
up to pointC, the next stable equilibrium. The value Bf  amples, but was not exploited, say, to discover new diagnos-
does not change significantly during this phase of the evolutics based on the measurement of fluctuations. Our work
tion, that is,R=R,,4 for both pointB and pointC. Now  should be thought of as simply a framework for future work.
wT) is larger thanB, soR begins to decrease, and again theOur hope is that the framework and the few applications
stable temperature equilibriui=T*(R) tracks the de- worked out will provide adequate guidance for other authors,
crease according to E¢R37). During this phase the system particularly experimentalists, to develop the applications
evolves to pointD, whereR=R,,;,. Here the temperature they need.
becomes unstable and evolves rapidly to the next stable equi- We single out experimentalists here for special encour-
librium at pointA, and that completes the cycle. agement because in other areas of research where thermody-
namics plays a prominent rol@.g., low-temperature con-
densed matter physicghe experimentalists are often the
expert practitioners. For example, they use thermodynamics

Plasmas that consist exclusively of particles with ato guide(or condition their choice of measurement and to
single sign of charge can be confined by static electric angelate the measurement of one quantity to other quantities of
magnetic fieldgin a Penning trapand also be in a state of interest(through Maxwell relations A simple example from
global thermal equilibrium. The possibility of using the pow- transport illustrates how thermodynamics can help guide the
erful techniques of thermal equilibrium statistical mechanicschoice of measurement. Suppose that a trapped plasma is
to describe the plasma state is a huge advantage. Gibiséowly evolving(through a sequence of thermal equilibrium
solves the complicated many body physics problem for usstate$ as a result of the interaction with a small static field
We began this paper with a brief review of the conditions forerror. Over the years, the non-neutral plasma community has
and structure of the thermal equilibrium states. The interinvestigated the influence of such a field asymmetry by mea-
ested reader can find a more detailed description of thesguring various quantities: the time required for the plasma
states, including a discussion of microscopic order and ofadius to double, the time for the central density to drop by a
phase transitions, in the new review article: “Nonneutralfactor of 2, etc. However, a thermodynamic approach makes
plasmas, liquids, and crystaléThe thermal equilibrium it clear that the plasma evolution is controlled by the rate of
states.” ° change of the plasma energy and angular momertuemE

Next we developed a thermodynamic theory of theandL). A static field asymmetry cannot change the plasma
trapped plasmas. The main advantage of such a theory is thahergy, so the only aspect of the field error that matters is the
it provides a large reduction in the level of complexity re- torque it applies on the plasma. The task of experiment is to
quired to specify the plasma state. Without loss of generalityneasure the torque, and the task of theory is to calculate the
the state is specified by any complete set of thermodynamigwrque. Simply by using a thermodynamic framework, we
variables(a few numbers The theory provides many gen- are forced to focus on the important physical quantity.
eral relationgMaxwell relation$ between partial derivatives
of the thermodynamic variables with respect to one another.
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