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Thermal equilibria and thermodynamics of trapped plasmas with a
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Plasmas consisting exclusively of particles with a single sign of charge~e.g., pure electron plasmas
and pure ion plasmas! can be confined by static electric and magnetic fields~e.g., in a Penning trap!
and also be in a state of global thermal equilibrium. This important property distinguishes these
totally un-neutralized plasmas from neutral and quasineutral plasmas. This paper reviews the
conditions for and structure of the thermal equilibrium states and then develops a thermodynamic
theory of the trapped plasmas. Thermodynamics provides hundreds of general relations~Maxwell
relations! between partial derivatives of thermodynamic variables with respect to one another.
Thermodynamic inequalities place general and useful bounds on various quantities. General and
relatively simple expressions are provided for fluctuations of the thermodynamic variables. In
practice, trapped plasmas are often made to evolve through a sequence of thermal equilibrium states
through the slow addition~or subtraction! of energy and angular momentum~say, by laser cooling
and torque beams!. A thermodynamic approach to this late time transport describes the evolution
through coupled ordinary differential equations for the thermodynamic variables, which is a huge
reduction in complexity compared to the partial differential equations typically required to describe
plasma transport. These evolution equations provide a theoretical basis for the dynamical control of
the plasmas. ©1998 American Institute of Physics.@S1070-664X~98!00106-2#
-

e
ium

d

ity
d

tio

n
of
is

m
m

re
h

th
riu

led
of
in

i-

in
s-

n is
d by

of
n
ic
as-

is
eral
the

n-
t of
ns,
ped
ody-

b
m

I. INTRODUCTION

Plasmas with a single sign of charge~e.g., pure electron
plasmas and pure ion plasmas! are routinely confined in Pen
ning traps for long times~hours and even days! in states of
global thermal equilibrium.1–4 Moreover, the plasmas ar
made to evolve through a sequence of thermal equilibr
states by the slow addition~or subtraction! of energy and
angular momentum. These experiments suggest the nee
a thermodynamic theory of trapped plasmas.

The main advantage of a thermodynamic description
that it provides a huge reduction in the level of complex
required to specify the system state. Much of many bo
physics can be viewed as the development of such reduc
~e.g., Liouville distribution→Boltzmann distribution→fluid
description!, and thermodynamics is the ultimate reductio
The system state is completely specified by the values
few thermodynamic variables. However, no information
lost so long as the system is in thermal equilibrium. A co
plete set of thermodynamic variables fixes all of the para
eters~e.g., temperature! in the Gibbs distribution.

We will see the power of this reduction in Sec. VI whe
we discuss a thermodynamic approach to transport. T
theory applies when the evolution is slow enough that
plasma passes through a sequence of thermal equilib

*This review paper is based in part on the Maxwell Prize lecture given
Professor O’Neil at the 1996 annual meeting of the Division of Plas
Physics in Denver, Colorado.
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states. The plasma evolution is then governed by coup
ordinary differential equations for the time dependence
the thermodynamic variables, which is a huge reduction
complexity relative to the partial differential equations typ
cally required to describe plasma transport.

Although thermodynamics plays an important role
much of many body physics~e.g., in condensed matter phy
ics!, it has not been used to describe neutral~or quasineutral!
trapped plasmas. The reason for this apparent omissio
easy to understand. Such plasmas cannot be confine
static electric and magnetic fields and also be in a state
global thermal equilibrium,5 so a thermodynamic descriptio
is simply not available. The possibility of a thermodynam
description is an important property that distinguishes pl
mas with a single sign of charge from their neutral~and
quasineutral! cousins.

There is some previous work6–10on the thermodynamics
of trapped plasmas with a single sign of charge, but it
limited in focus and scope and is not intended to be a gen
development of the subject. For example, it focuses on
special case of long plasma columns~formally, infinitely
long or shaped like a right circular cylinder! and does not
develop and exploit Maxwell relations, thermodynamic i
equalities, etc. Here, we provide a general developmen
the subject that allows for realistic plasma configuratio
uses the natural thermodynamic variables for the trap
plasma systems, and develops and applies the full therm
namic formalism.
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Sections II and III review the confinement geomet
constants of the motion, and the conditions for and struc
of the thermal equilibrium states for the trapped plasm
Section IV develops the general theory of thermodynam
for these systems. Section V considers the special cas
large trapped plasmas, and shows that the thermodyna
functions for these systems are simply related to those fo
infinite homogeneous one component plasma~OCP!, which
are well known even in the limit of strong correlation.11,12

Section VI develops the thermodynamic approach to tra
port and applies it to explain observations in rece
experiments.2 Section VII notes that in some special config
rations the center-of-mass motion decouples from the o
degrees of freedom. This introduces new constants of
motion, which then enter as new thermodynamic variab
The thermodynamic theory of transport then describes a
namical evolution in which the center-of-mass motion
coupled to the other thermodynamic variables. This gene
ized theory is used to describe a limit cycle behavior o
served in the late time dynamics of trapped pure elect
plasmas.13

II. CONFINEMENT AND CONSTANTS
OF THE MOTION

Figure 1 shows a simple example of a Penning trap.14 A
conducting cylinder is divided axially into three sectio
with the central section held at ground potential and the
end sections held at positive potential.~Throughout the pa-
per, the figures and discussion refer to positively char
particles, but the case of negative charges is covered by
vious sign changes.! Also, there is a uniform axial magneti
field. The plasma resides in the region of the cen
grounded section with radial confinement provided by
magnetic field and axial confinement by the electric fiel
To understand radial force balance, one must realize tha
plasma rotates about the axis of symmetry of the trap.
associated Lorentz force (ev3B/c), wherev is the rotational
velocity, is directed radially inward and balances all of t
radially outward forces~centrifugal, pressure, and electr
static!. This simple form of the trap~with cylindrical elec-
trodes! is often called a Malmberg–Penning trap.15 Figure 2
shows a Penning trap in which the cylindrical electrodes
replaced by hyperbolas of revolution.16,17 Such traps were
developed originally to confine small numbers of charg
particles, but more recently have been used to confine ch
clouds that are large and dense enough to qualify a
plasma. We will develop the theory so that it is broad enou
to encompass both of these traps.

FIG. 1. Schematic diagram of a Malmberg–Penning trap.
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As a preliminary to a discussion of the thermal equili
rium states, it is necessary to determine the effective c
stants of the motion for the plasma. These quantities need
be exact constants; it is only necessary that they be ne
constant on the time scale required for interactions to br
the plasma charges into thermal equilibrium with each oth
For our theoretical discussion, we introduce an idealiz
model of the plasma and trap such that the quantities
interest are exact constants.

We consider a plasma ofN like charges that interac
electrostatically in a cylindrically symmetric Penning tra
with time-independent voltages applied to the electrodes
a time-independent and uniform axial magnetic field,B
5 ẑB. There may be more than three electrodes, and al
the electrodes together completely bound the confinem
region so that the interior solution to Poisson’s equation
well defined. The vector potential for the uniform magne
field can be written asA5 ûAu(r ), whereAu(r )5Br/2. Here
(r ,u,z) is a cylindrical coordinate system with thez axis
coincident with the axis of symmetry of the trap. We wri
the electric potential as

f~r !5fT~r !1(
j

eG~r ur j !, ~1!

wherefT(r ) is the trap potential in the absence of a plasm
This potential satisfies Laplace’s equation and matches
potential specified on the conducting boundary, that is,
the electrodes. The quantityG(r ur j ) is the Green’s function
that vanishes on the conducting boundary, andr j is the po-
sition of the j th charge. The Green’s function differs from
the Coulomb interaction 1/ur2r j u because of image charge
in the conducting boundary.

To a good approximation, the motion of the charges
governed by the Hamiltonian

H5(
j 51

N S pr j

2

2m
1

@pu j
2~e/c!Au~r j !r j #

2

2mrj
2 1

pzj

2

2mD
1(

j 51

N

efT~r j !1
1

2 (
i , j 51

N

8 e2G~r i ur j !, ~2!

FIG. 2. Penning trap for which the electrodes are hyperbolas of revolut
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where the canonical momenta are given by

pr j
5mṙj , pu j

5mrj
2u̇ j1

e

c
Au~r j !r j , pz5mżj . ~3!

The first sum is the kinetic energy, the second is the elec
static energy of the charges in the trap potential, and the t
is the electrostatic interaction energy of the charges w
each other and with their images. Diamagnetic and relati
tic effects have been neglected since velocities are typic
small ~i.e., uvj u/c!1! in the experiments of interest. Also, i
the second sum, we have neglected the interaction energ
each charge with its own image; typically this is mu
smaller thanefT(r ) unless the charge is very near the wa
Note that the interaction of a particular charge with the i
ages of all of the other charges can be large and is retaine
the third sum. The constants of the motion follow from t
symmetry properties of the Hamiltonian, and these proper
are not changed by dropping the (v/c)2 corrections and the
interaction of a charge with its own image. These appro
mations are used only to simplify the notation. Also, f
notational simplicity, we have taken the case of a single s
cies plasma; the results are easily generalized to a multi
cies plasma so long as all of the species have the same
of charge.

Since the Hamiltonian is invariant under translations
time ~i.e., ]H/]t50!, the Hamiltonian itself is a constant o
the motion

H5E. ~4!

We may think ofH as the total particle energy, but shou
note thatH is not the same as the ‘‘system energy,’’ i.e., t
energy required to assemble the plasma in the trap. If
simplicity we fix the voltages on the electrodes and the c
rent in the solenoid, and do not include in our considerati
the energy required to charge the electrodes and the sole
in the absence of the plasma, the system energy equaH
plus the work done by external circuits as the plasma is
sembled. For example, as charges are brought from infi
into the trap, image charges flow onto the electrodes, do
work against the circuits holding the electrode voltages fix
Also, work is required of the circuits holding the soleno
current fixed due to the mutual inductance between
plasma and the solenoid. This will be discussed in detai
Sec. IV B, where it is the basis for our discussion of therm
dynamic stability of non-neutral plasmas.

The cylindrical symmetry of the apparatus implies th
the trap potential is of the formfT(r j )5fT(r j ,zj ) and that
the Green’s function is of the form G(r i ur j )
5G(r i ,zi ,r j ,zj ,u i2u j ). Thus the Hamiltonian is invarian
under translations inu ~i.e., ( j 51

N ]H/]u j50!, and the total
canonical angular momentum is conserved

Pu5(
j 51

N

pu j
5L. ~5!

Of course, for a real plasma in a real trap, the total
ergy and the total canonical angular momentum are not c
served exactly. The charges slowly radiate away both ene
and angular momentum; there are neutrals, and collis
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with the neutrals change the plasma energy and angular
mentum; and most importantly there are small field err
and construction errors that break the cylindrical symme
and apply a small torque on the plasma. However, with c
all of these effects can be made sufficiently small that int
actions between the particles bring the plasma into ther
equilibrium before the energy and angular moment
change by a significant amount. Thus we proceed wit
description of the plasma confinement and thermal equi
rium states using our idealized model.

To understand the confinement, it is useful to introdu
the Hamiltonian in a frame that rotates with frequency2v;
this quantity is given by18

HR5H1vPu , ~6!

and is conserved so long asH and Pu are conserved. Of
course, we are free to view the dynamics from any rotat
frame that is convenient. It is important to note here that2v
is not necessarily the rotation frequency of the plasma. T
minus sign is included explicitly so thatv can be chosen to
be positive ~for a plasma of positive charges!. When the
canonical momenta are replaced with velocity variables,
~6! takes the form

HR5(
j 51

N
m

2
v j

21(
j 51

N

efT~r j ,zj !1
1

2 (
i , j 51

N

8 e2G~r i ur j !

1v(
j 51

N S mvu j
r j1

e

c
Br j

2/2D , ~7!

where we have used (e/c)Au(r )r 5eBr2/2c. Carrying out a
small amount of algebra yields the result

HR5(
j 51

N
m

2
~vj1vr j û j !

21(
j 51

N

efR~r j ,zj !

1
1

2 (
i , j 51

N

8 e2G~r i ur j !, ~8!

where

efR~r ,z!5efT~r ,z!1mv~Vc2v!r 2/2 ~9!

is the effective trap potential in the rotating frame andVc

5eB/mc is the cyclotron frequency.
This potential consists of three terms:efT is the poten-

tial energy due to the voltages maintained on the electro
2mv2r 2/2 is the centrifugal potential, andmvVcr

2/2
5*0

r dr e(vr )B/c is the potential that is induced by rotatio
through the magnetic field. It is this last term that provid
the radial confinement. For a suitable choice of the bias v
age on the end electrodes and for sufficiently largev(Vc

2v), the equipotential surfaces ofefR(r ,z) are nested sur-
faces of revolution with the value ofefR(r ,z) increasing
outward from the center of the trap. The termefT(r ,z) in-
creases asz moves toward either end where the positive
biased end electrodes are located. For sufficiently la
v(Vc2v), the termmv(Vc2v)r 2/2 makesefR(r ,z) an
increasing function ofr @even thoughefT(r ,z) is decreasing
in r #. ThusefR(r ,z) is a potential well that acts to confin
the plasma.
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A simple confinement theorem can be constructed
noting that the first and third sums in Eq.~8! are non-
negative. The non-negative character of the third sum
lows from the fact thatG(r ur 8).0. A negative value for
G(r ur 8) would imply that G(r ur 8) reaches a minimum a
some point r inside the confinement region; recall th
G(r ur 8) vanishes on the boundary and is positive near
5r 8. Of course, a minimum is not possible sin
¹2G(r ,r 8)50 except atr5r 8.

Particles can escape to the wall only by climbing high
in the potential well, that is, by increasing the second sum
Eq. ~8!. This must be accompanied by a decrease in the o
two sums, sinceHR is conserved. Physically, the particle
can climb up the potential only by using kinetic energy a
electrostatic energy of interaction. Because these latter
quantities are non-negative, their initial values set the ma
mum amount that they can decrease. Suppose that all o
particles are initially inside~bounded by! some equipotentia
surfaceefR(r ,z)5ef1 and that the first equipotential wher
the potential begins to decrease~or intersects the wall! is
efR(r ,t)5ef2 . Then only a small fraction of the charge
can escape ifNe(f22f1) is much larger than the initia
values of the first and third sums in Eq.~8!.

In applying this theorem, we are free to choosev. How-
ever, care must be taken, sincev appears both in the effec
tive trap potential and in the kinetic energy~in the rotating
frame!. Also, v must lie in the interval 0,v,Vc so that
v(Vc2v) is positive. Nevertheless, for any initial state
the plasma, the well can be made deep enough to pro
confinement for a range ofv values, if Vc and the bias
voltage on the end electrodes are sufficiently large.

III. THERMAL EQUILIBRIUM STATES

A. Distribution function

Given that the particles remain confined, Coulomb int
actions between the particles must bring the plasma to a
of thermal equilibrium. For a thermal equilibrium plasm
characterized by the fixed valuesH(r1 ,v1 ,...,rN ,vN)5E
and Pu(r1 ,v1 ,...,rN ,vN)5L, the 6N-dimensional particle
distribution is the distribution for a microcanonic
ensemble19

f mc~r1 ,v1 ,...,rN ,vN!5Ad@H2E#d@Pu2L#, ~10!

whereA is a constant that is chosen to normalize the pha
space integral of the distribution to unity. According
the ergodic hypothesis, the average of any funct
G(r1 ,v1 ,...,rN ,vN) taken over the microcanonical distribu
tion is equal to the long time average of the function tak
along the system trajectory in the 6N-dimensional phase
space.

We will consider plasmas with enough particles (N
@1) that the distribution for a microcanonical ensemble
well approximated by the distribution for a canonical e
semble~the Gibbs distribution!19,20

f c~r1 ,v1 ...,rN ,vN!5C exp@2~H1vPu!/kT#, ~11!

whereC is a factor used to normalize the integral off c to
unity. Formally the Gibbs distribution describes a plas
y
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that is in thermal contact with an energy and angular m
mentum reservoir. For example, Fig. 3 shows a trapp
plasma that is in thermal contact with an infinitely long co
umn ~the reservoir!. It is characterized by temperatureT and
rotation frequency2v. Thermal fluctuations produce
transfer of energy and angular momentum back and fo
between the reservoir and plasma. However, for a su
ciently large plasma~i.e., N@1!, the fluctuations in plasma
energy and angular momentum are small compared to
mean energy and angular momentum and have only a s
influence on the plasma state. Thus for most physical qu
tities, an average over the microcanonical distribution can
replaced by an average over the Gibbs distribution.20 In es-
tablishing the correspondence between the two distributio
T andv are chosen so thatE5^H& andL5^Pu&, where the
averages are over the Gibbs distribution. This well-kno
equivalence between the two distributions is useful beca
the Gibbs distribution offers advantages analytically; for e
ample,H and Pu enter the Gibbs distribution only throug
the combinationHR5H1vPu . However, we should note
that the equivalence does not extend to averages of ce
fluctuations; for example,̂(H2E)2& is identically zero for
the microcanonical distribution and is small@i.e., ^(H
2E)2/E2&;1/N# but nonzero for the Gibbs distribution.

From Eq.~8!, one can see that the velocity dependen
of f c is a product of Maxwellians in a frame that rotates w
frequency2v. Thus the local fluid velocitŷv&5vr û is a
shear-free rigid rotor flow. Of course, a thermal equilibriu
flow must be shear-free; viscous forces acting on a shea
the flow would produce entropy, and that is impossible fo
state of maximum entropy. One should note the distinct
between the meanings ofv here and in the confinement theo
rem. Herev is the rotation frequency of the plasma as d
termined by the values ofE5^H& andL5^Pu&; whereas, in
the confinement theorem,v is the rotation frequency of som
arbitrary frame from which we choose to view the dynami

To see that distribution~11! describes a confined plasm
we note that the probability of finding a particle high up
the potential well, that is, whereefR(r ,z) is large, is expo-
nentially small. The electrode surfaces are assumed to
well outside the surface where the density becomes expo
tially small. The existence of thermal equilibrium states f
confined plasmas with a single sign of charge has b
known for many years.21–24

Note that the confinement works only for a plasma w
a single sign of charge. In the effective trap potential@see Eq.
~9!#, the two terms that provide confinement@i.e., efT and
mvVcr

2/2# both enter with the sign of the change as a c
efficient; so confinement of positive charges implies nonc
finement of negative charges. As mentioned earlier, it is w

FIG. 3. Plasma in thermal contact with heat and angular momentum re
voir.
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known that a neutral or quasineutral plasma cannot be c
fined by static electric and magnetic fields and also be i
state of global thermal equilibrium. Such a plasma canno
confined and also be in a state of minimum free energy; th
is always free energy to drive instabilities. In contrast, d
tribution ~11! describes a totally un-neutralized plasma th
is confined stably forever, at least for our ideal model wh
E andL are exact constants of the motion.

This is a good point to return to the fact thatE andL are
not exactly constant for a real plasma in a real trap. As m
tioned earlier, various effects~radiation, collisions with neu-
trals, and interactions with field errors and construction
rors that break the cylindrical symmetry! produce slow
changes inE and L. However, by using a high-quality
vacuum and by constructing the trap with a high degree
cylindrical symmetry,E andL can be nearly constant on th
time scale required for Coulomb collisions to bring t
charges into thermal equilibrium with each other. Thus d
tribution ~11! still provides a correct description of th
plasma state, but the slow evolution ofE andL translates to
a slow evolution ofT and v. If no counter measures wer
taken, the ambient heating and ambient torque~typically a
drag that opposes the plasma rotation! would causeT andv
to change in such a way that the plasma would be lost to
wall. However, counter measures such as laser cooling
laser torques can be used to maintainE andL ~and therefore
T andv! at constant values indefinitely. Alternatively,E and
L can be deliberately varied so that the plasma swe
through a sequence of thermal equilibrium states.1,2 Such an
evolution will be discussed in Sec. III C.

B. Relation to a one-component plasma

The Gibbs distribution for the trapped plasma is equi
lent to that for a one-component plasma~OCP!.24 An OCP is
a system of point charges embedded in a uniform neutra
ing background charge.11,12 The infinite homogeneous OC
has been a favorite theoretical model for the study of co
lation effects, and its thermodynamic properties are w
known. In Sec. V, we will relate the thermodynamic fun
tions of an infinite homogeneous OCP to those of a la
trapped plasma. Here we use the equivalence between
systems to help understand the spatial structure of
trapped plasmas.

To demonstrate the equivalence, we first note from
~9! that the second term inefR(r ,z) is quadratic inr . As
described earlier, this term provides the correction due
rotation. Suppose that the radial confinement were not p
vided by rotation through a magnetic field but rather by
imaginary cylinder of uniform negative charge~to confine a
plasma of positive charges!. Such a charge distribution
would produce a radial electric fieldEr522pen2r and an
electric potentialf25pen2r 2, wheren25constant is the
density of the imaginary negative charge. If this charge d
sity were chosen to have the valueen25mv(Vc

2v)/2pe, the cylinder of negative charge would provide
potential-energy termef25mv(Vc2v)r 2/2 that is identi-
cal to the second term inefR . Thus the Gibbs distribution
for the two systems would differ only by rotation, that is, b
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the velocity shiftvj→vj1vr j û j . The spatial dependence
including all correlations, would be identical.24

We know what would happen if we put a collection
positive charges into a potential well produced by the cyl
der of uniform negative charge~and the electrode potentials!.
The positive charges would go to the bottom of the well a
match their density to that of the negative charge~i.e., n
5n2!, neutralizing the negative charge out to some surf
of revolution where the supply of positive charges was
hausted. The conditionn5n2 is typically written as23

vp
252v~Vc2v!, ~12!

wherevp
254pne2/m is the square of the plasma frequenc

An alternate form of this argument starts from the obs
vation that the plasma charges must arrange themselve
that any external electric field is Debye shielded out wh
viewed in the plasma rest frame~here, the rotating frame o
the plasma!. The effective external field in this frame i
2¹fR , so we conclude that

fR~r !1fp~r !5const ~13!

in the plasma interior, wherefp(r ) is the plasma space
charge potential.1,25 Equation~12! then follows from Pois-
son’s equation,¹2fp524pen, plus the relation¹2fR

54pen2 . Here we have used the fact thatfT is a vacuum
field.

In these arguments we have introduced the densityn(r )
and the space-charge potentialfp(r ). Formally, these quan
tities are related to Gibbs distribution~11! through the inte-
grals

n~r1!5E d3v1¯d3rNd3vNf c ~14!

and

fp~r !5E d3r 8G~r ur 8!n~r 8!, ~15!

whereG(r ur 8) is the Green’s function introduced in Eq.~1!.
This general picture of a plasma that is uniform dens

out to a surface of revolution where the density drops to z
in a thin surface sheath has been verified by detailed num
cal solutions23,26and by experiment.1,3,27The influence of the
surface extends into the plasma about a correlation length
the surface sheath is about a correlation length thick. Fo
weakly correlated plasma, the correlation length is of or
the Debye length,lD5(kT/4pne2)1/2, and the density drops
monotonically to zero on this scale length. For a stron
correlated plasma, the density does not fall monotonically
zero, but suffers oscillations near the surface. The densit
concentrated on nested shells. One can think of these s
as crystal planes that are deformed to follow the contour
the surface. The shell structure extends into the plasm
correlation length; which is a few times the interpartic
spacingn21/3 for a plasma in the fluid state, but can b
substantially larger for a plasma in a crystal state. Becaus
the curvature of the surface, one expects dislocations nea
surface and a ‘‘surface correlation length’’ that is reduc
significantly from the bulk correlation length for an infinit
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homogeneous crystal. Numerical simulations26 suggest a
‘‘surface correlation length’’ that is a few tens of interpa
ticle spacings. We will refer to a plasma as large when
thickness of the surface sheath is much smaller than all t
plasma dimensions. In this case, the volume of the sur
sheath is small compared to the total plasma volume, and
can relate the thermodynamic functions of the trapp
plasma to those of an infinite homogeneous OCP~see Sec.
V!. For a weakly correlated plasma or a plasma in the fl
state the criterion that the plasma be large is easily satis
but for a crystal state where the shell structure extends
the plasma for tens of interparticle spacing the criterion
quite demanding.

For some experiments with pure electron plasmas,
temperature is low enough and the magnetic field la
enough that the cyclotron motion is quantized~i.e., \Vc

;kT!. Although the argument concerning the equivalen
between the Gibbs distributions for a trapped plasma and
an OCP is classical, one can construct an equivalent quan
mechanical argument provided that thermal deBroglie wa
length A\2/mkT is small compared to the interpartic
spacing.28

C. Spheroidal plasmas

There is an important special case where the shape o
surface of revolution can be determined analytically. T
plasma is small compared to the dimensions of the trap
resides in a nearly quadratic trap potential. As we will s
the surface of revolution is then a spheroid~an ellipse of
revolution!.1,25

Near the center of a trap, one expects~by Taylor expan-
sion! that the trap potential is approximately quadratic

efT.
mvz

2

2
~z22r 2/2!1C, ~16!

wherevz
2 andC are constants. The coefficient ofr 2 relative

to that of z2 is determined by the requirement¹2fT50.
Some traps are designed to make the quadratic approx
tion much better than would in general be expected.
example, Fig. 2 shows a trap for which the conducting el
trodes are hyperbolas of revolution. Since the equipoten
surfaces for the quadratic potential@i.e.,z22r 2/25const# de-
fine hyperbolas of revolution, a trap for which the hyperbo
extended to infinity would produce an exactly quadratic p
tential. In practice, the hyperbolas are truncated, as show
Fig. 2, so the quadratic form is only an approximatio
though it is very good over a substantial region near
center of the trap. If the equation defining the cap electro
is z22r 2/25z0

2, the equation defining the center ring ele
trode is z22r 2/252r 0

2/2, and the potential difference be
tween cap and ring electrodes isV0 , the frequencyvz is
given by

eV05
mvz

2

2
~z0

21r 0
2/2!. ~17!

Even for a trap with cylindrical electrodes, it is possible
achieve a potential that is nearly quadratic over a substa
region.17 This is accomplished by choosing the lengths of
e
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various cylinders so that the quartic term in the Taylor ser
vanishes; the cubic and quintic terms vanish by symmetr

Adding mv(Vc2v)r 2/2 to fT yields the effective trap
potential in the rotating frame

efR~r ,z!5
mvz

2

2
~z21br 2!1C, ~18!

which is also quadratic. The parameterb is defined as

b5
v~Vc2v!

vz
2 2

1

2
5

1

4

~Vc
22Vv

2!

vz
2 2

1

2
, ~19!

whereVv[Vc22v is the vortex frequency. The paramet
b determines the symmetry of the effective trap potent
and hence the shape of the plasma. For example, wheb
51 the plasma is spherically symmetric, whereas forb@1
the plasma is squeezed into a line along thez axis, and for
b→0 the plasma is a flat two-dimensional~2D! pancake in
the x-y plane.

The quadratic form offR(r ,z) allows one to determine
the shape of the plasma.1,2,25As discussed earlier the plasm
charges adjust their positions so thatfR1fp is constant in-
side the plasma. Thus the plasma space-charge pote
must be quadratic within the plasma. It is well known tha
uniformly charged spheroid~ellipse of revolution! in free
space produces an interior potential that is quadratic inr and
z and an exterior potential that approaches zero at infin
Here the plasma dimensions are small compared to the
tance to the walls, so the boundary condition thatfp50 on
the conducting walls reduces approximately to the condit
that fp approaches zero at infinity. Thus the bounding s
face of the plasma is a spheroid. By writing down the pote
tial due to a uniformly charged spheroid and comparing
coefficients ofr 2 and ofz2 to the corresponding coefficient
in 2fR , we obtain the relations

g~a!5
1

2b11
, ~20!

vp
2

vz
2 52b11, ~21!

wherea5Zp /Rp is the aspect ratio of the spheroid, 2Rp is
the spheroid diameter, and 2Zp is the length. Equation~21! is
equivalent to Eq.~12!, and the functiong(a) is given by

g~a!5Q1
0~a/Aa221!/~a221!, ~22!

whereQ1
0 is an associated Legrendre function of the seco

kind. The aspect ratioa is a monotonically increasing func
tion of b, as one would expect on the basis of the physi
arguments following Eq.~19!.

For a uniform density spheroid, the number of partic
is given by

N5
4

3
pnZpRp

2, ~23!

so for given N the plasma radius and half length can
written separately as
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FIG. 4. Side view of Be1 plasma, together with fitted ellipse~the dashed line!. Provided by Huang, Tan, Bollinger, and Wineland of the NIST storage gr
~Ref. 29!.
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Rp5a0F 3

2b11

N

a~b!G
1/3

, ~24!

Zp5a~b!Rp . ~25!

Here a0[(e2/mvz
2)1/3 and use has been made of Eqs.~20!

and ~21!.
This is a good point to make contact with experime

Figure 4 shows a side view image of a plasma ofN.8
3104 Be1 ions in a quadratic trap potential together with
fit to an ellipse. The picture was obtained by Huang, T
Bollinger, and Wineland of the National Institute of Scien
and Technology~NIST! ion storage group by simply imag
ining the fluorescence from the laser excited Be1 ions.29 The
aspect ratio of the fitted ellipse isa51.763, which agrees to
better than 1% with the aspect ratioa51.75 predicted from
Eqs.~19! and ~20! for the independently measured freque
cies vz/2p5754 kHz, Vc/2p57.608 MHz, and v/2p
5213.7 kHz.

In similar experiments by this group,1,2 cooling and
torque lasers~see Sec. VI! were used to control the plasm
energy and angular momentum so that the plasma rota
frequency varied through the full range of allowed valu
v5vm to v5Vc2vm . Here vm5Vc/22@(Vc/2)2

2vz
2/2#1/2 is the single-particle magnetron frequency~drift

frequency!, and the range of values follows from Eq.~19!
plus the requirement thatb.0. The torque laser changed th
angular momentum of the plasma and also did work on
plasma, since the torque was applied to a rotating plasma
the plasma evolved, this work appeared as a change in
electrostatic energy, kinetic energy of rotation, and heat,
.

,

-

on
,

e
As
he
ut

the cooling laser was able to remove the heat fast eno
that the temperature~and Debye length! remained reasonably
small.

Figure 5, taken from Bollingeret al.,1,2 shows a plot
Rp /RB versusv/Vc as determined by Eq.~24! for the ex-
perimental parametersVc /vz56.62. HereRB is the radius at
the Brillouin condition,v/Vc51/2, which yields the mini-
mum radius and maximum density. The points are exp
mental measurements, and one can see that the agree
with theory is very good.

To understand the plasma evolution along the curve,

FIG. 5. RadiusRp of a spheroidal 20009Be1 ion plasma as a function of
rotation frequency. The radius is scaled to the radius at the Brillouin li
and the rotation frequency to the cyclotron frequency. The solid curve is
theoretical prediction with no adjustable parameters. Taken from Ref. 2
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obtain an expression for the angular momentum as a func
of v. In general the total canonical angular momentum fo
thermal equilibrium plasma is given by

L5mS Vc

2
2v D E 2pr dr dz n~r ,z!r 2, ~26!

where use has been made of the fact that the velocity de
dence of f c is a product of Maxwellians in a frame tha
rotates with frequency2v. For a uniform density spheroid
this reduces to

L ~0!5NmVvRp
2/5, ~27!

where the superscript zero has been added to note tha
expression refers to the limit of a zero thickness surf
sheath. Corrections due to the surface sheath will be obta
in Sec. IV. In Fig. 6 the scaled angular momentum,

L ~0!

~mN5e4/vz!
1/35

Vv

5vz
F 3

~2b1I !a~b!G
2/3

, ~28!

is plotted versusv/Vc for the experimental paramete
Vc /vz56.62. Here use has been made of Eq.~24!.

In the experiment, the torque laser exerted a nega
torque, that is, a torque in the same sense as the pla
rotation. The plasma started off in a state with large a
positive L and, correspondingly, with small rotation fre
quency, density, and aspect ratio~i.e.,v.vm , vp.vz , and
a.0!. As L was decreased, the rotation frequency, dens
and aspect ratio all increased. WhenL passed through zero
the rotation frequency wasv5Vc/2 and the density and as
pect ratio reached their maximum values@vp5Vc /& and
a5g21(2vz

2/Vc
2)#. As L became progressively more neg

tive, the frequency continued to increase, but the density
aspect ratio decreased. For large and negativeL, the fre-
quency approached the upper limitVc2vm , and the density
and aspect ratio again approached their minimum va
~vp5vz anda.0!.

One may worry that we did not explicitly specify th
value of E in determining the plasma state; Eq.~28! deter-
minesv as a function of trap parameters and the values oL

FIG. 6. Scaled angular momentum as a function ofv/Vc , calculated for the
trap parameters that correspond to the experimental results illustrated in
5.
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andN. However, this whole analysis implicitly assumes th
the cooling laser continually adjusts the value ofE so thatT
~andlD! remain small~formally zero!.

Also, the analysis assumes that the evolution is su
ciently slow that the plasma passes through a sequenc
thermal equilibrium states. This is the kind of transport th
we want to describe more generally using a thermodyna
approach. To that end, we first develop a thermodyna
formalism for the trapped plasmas.

IV. THERMODYNAMIC FRAMEWORK

A modern development of thermodynamics starts fro
the definition of the free energy

FR~T,v,B,$Vj%,N!52kT ln Zc ~29!

in terms of the canonical partition function

Zc5
1

N! ~h/m!3N E d3r1¯d3vN exp@2~H1vPu!/kT#,

~30!

where h is Planck’s constant.19 Here the subscriptR is a
reminder thatFR is the free energy in the rotating frame o
the plasma. The quantities (T,v,B,$Vj%,N) are a complete
set of thermodynamic variables, since they determine
value ofZc . The trap geometry is assumed to be given a
fixed. The dependence onT, v, andN is obvious, the depen
dence onB enters throughPu , and the dependence onVj

~the potential on thej th electrode! enters throughH. Al-
though (T,v,B,$Vj%,N) are a complete set of thermody
namic variables, they are not the only complete set.

Other thermodynamic variables are introduced as pa
derivatives ofFR . For example, from Eqs.~29! and ~30! it
follows that

2T2
]

]T FFR

T G
v,B,$Vj %,N

5^HR&[ER , ~31!

where the bracket indicates an average over the Gibbs d
bution. The entropyS is defined through the relation

FR5ER2TS, ~32!

which together with Eq.~31! implies the familiar result

]FR

]T D
v,B,$Vj %,N

52S. ~33!

Likewise, the partial derivatives ofFR with respect to the
other thermodynamic variables are physically meaning
quantities. For example, the partial derivative with respec
v yields the angular momentum

]FR

]v D
T,B,$Vj %,N

5^Pu&[L, ~34!

and the partial derivative with respect toN is by definition
the chemical potential

]FR

]N D
T,v,B,$Vj %

5m. ~35!

ig.
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This function plays an important role in determining the th
mal equilibrium of systems in which the number of particl
can fluctuate.

The partial derivative ofFR with respect toB is equal to
the average magnetic moment of the plasma

]FR

]B D
T,v,$Vj %,N

5E d3r1¯d3vN

e

2c
v(

i 51

N

r i
2f c~r1 ,...,vN!

5
Ne

2c
v^r 2&52M , ~36!

where the minus sign enters the last equality because2v is
the rotation frequency of the plasma. Note thatM is a nega-
tive quantity for a non-neutral plasma, indicating that t
magnetization induced by rotation opposes the applied m
netic field: the plasma is diamagnetic. This appears to c
tradict the Bohr–van-Leeuwen theorem, which states
classical systems cannot display diamagnetism.30 However,
the theorem only applies to systems which do not rotate
thermal equilibrium. In a non neutral plasma the magne
moment arises from the current created by rotation.

The partial derivative ofFR with respect to the electrod
voltageVj is equal to the average chargeqj induced on the
electrode by the plasma:

]FR

]Vj
D

T,v,B,$VkÞ j %,N

52qj . ~37!

To prove this relation we note that the voltagesVj enter the
Hamiltonian HR only through the trap potentialfT(r ),
whose linear dependence on$Vj% can be expressed as

fT~r !5(
j

Vj f̂T
~ j !~r !, ~38!

where f̂T
( j )(r ) is the potential caused by a unit voltage

electrode (j ). Then Eqs.~9!, ~29!, and~30! imply that

]FR

]Vj
D

T,v,B,N,$VkÞ j %

5E d3r1¯d3vN(
i

ef̂T
~ j !~r i ! f c~r1,¯,vN!

5(
i

^ef̂T
~ j !~r i !&. ~39!

This average can be related toqj by using Poisson’s equatio
for the electrostatic potentialf induced by theN charges in
the plasma:

¹2f52(
i

4ped~r2r i !, ~40!

with the boundary condition thatf50 on the electrodes
Multiplying each side byf̂T

( j )(r ) and integrating overr im-
plies

E d3r @f̂T
~ j !~r !¹2f#52(

i
4pef̂T

~ j !~r i !. ~41!
-

g-
n-
at

in
c

Now we add2f(r )¹2f̂T
( j ) to the integrand on the left-han

side, which makes no change since¹2f̂T
( j )50 except on the

wall wheref50. However, this allows us to apply Green
theorem:

E d3r @f̂T
~ j !¹2f2f¹2f̂T

~ j !#

5E dS•@f̂T
~ j !¹f2f¹f̂T

~ j !#, ~42!

where the surface integral runs over the electrodes. Howe
on the electrodesf50, andf̂T

( j ) equals 1 on electrodej and
equals 0 on the other electrodes, so we have

E
sj

dS•¹f52(
i

4pef̂T
~ j !~r i !, ~43!

where the surface integral runs only over electrodej . Taking
the average of this equation and using the relation*sj

dS
•¹f54pqj , yields Eq.~37!.

The partial derivatives of the free energy expressed
Eqs.~33!–~37! can be summarized by the total differentia

dFR52SdT1Ldv2(
j

qjdVj2M dB1mdN. ~44!

FR is an example of a thermodynamic potential for the s
tem. By making Legendre transformations, we obtain
total differential of other thermodynamic potentials.19 For
example, using Legendre transformation~32! to eliminateFR

in favor of ER yields the total differential

dER5T dS1Ldv2(
j

qjdVj2M dB1mdN. ~45!

Likewise, using the Legendre transformationE5ER2vL to
exchangeER for the energy in the laboratory frameE @see
Eq. ~6!# yields

dE5T dS2vdL2(
j

qjdVj2M dB1mdN. ~46!

Obviously, this procedure can be continued to generate m
such total differentials.

Simply by rearranging terms, Eqs.~45! and ~46! can be
rewritten in the traditional formTdS5¯ . For many situa-
tions, the trap parameters and the particle number are
stant ~i.e., dB5dVj5dN50!, so Eq. ~46! reduces to the
form

TdS5dE1vdL. ~47!

This equation is formally equivalent to the well-knownTdS
equation for a gas

TdS5dE1pdV, ~48!

wherep corresponds tov andV to L. We will make use of
this formal correspondence from time to time as we proce

A. Maxwell relations

By taking cross derivatives of the coefficients in the to
differentials, we obtain many Maxwell relations~hundreds!.
Simple examples that follow from Eq.~44! are the following:
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]L

]TD
v,B,$Vj %,N

5
]2FR

]T]v
52

]S

]v D
T,B,$Vj %,N

, ~49!

]L

]BD
T,v,$Vj %,N

5
]2FR

]B]v D52
]M

]v D
T,B,$Vj %,N

, ~50!

]qj

]Vk
D

T,v,B,$VlÞk%,N

52
]2FR

]Vk]Vj
5

]qk

]Vj
D

v,T,B,$VlÞ j %,N

.

~51!

Equations~49! and ~50! are typical of Maxwell relations in
that they connect quantities that at first glance seem u
lated. Of course, the relations are general. Equation~51!
might seem to be a simple reciprocal relation from elect
statics but, in fact, is more general since it involves
plasma response.

It is convenient to work theoretically with the variable
T and v since these variables enter the Gibbs distribut
explicitly. However, these may not be the easiest variable
manipulate experimentally;E andL may be easier to contro
thanT andv. For example, it may be easier to calculate t
specific heat at constant rotation frequency

cv5T
]S

]TD
v

~52!

but easier to measure the specific heat at constant an
momentum

cL5T
]S

]TD
L

, ~53!

whereB, $Vj%, andN are held constant in both cases. Fo
tunately, Maxwell relations~or combinations of Maxwell re-
lations! provide general relations between such quantities

Rather than develop these relations explicitly, we ma
use of the formal correspondence between theTdSequation
for a gas and theTdS equation for a rotating plasma@see
Eqs.~47! and~48!#. Recalling thatv corresponds top andL
to V, we see thatcL corresponds to the specific heat at co
stant volumecv andcv to the specific heat a constant pre
sure cp . Simply transcribing the well-known relation be
tweencv andcp through the replacementsp→v andV→L
yields the relation19

cv2cL52T
~]L/]T!v

2

]L/]v)T
. ~54!

In the next section, we will show that]L/]v)T<0 and that
cL>0, so Eq.~54! implies thatcv>cL>0. Also, we will see
that for a large plasma, the relative difference betweencv

andcL vanishes.
Other useful general relations linking derivatives at co

stant T and v to those at constantE and L can also be
borrowed from the standardp-V system19

]E

]TD
L

5cL , ~55!
e-

-
e

n
to

lar

-

e

-

-

]ER

]T D
v

5cv , ~56!

]E

]L D
T

5T
]v

]T D
L

2v, ~57!

]E

]v D
T

52T
]L

]TD
v

2v
]L

]v D
T

, ~58!

]E

]TD
v

5cv2v
]L

]TD
v

. ~59!

The properties of Jacobians can be used to relate the de
tive of any quantityA at fixedE to a derivative at fixedT.
For example,19

]A

]BD
E

5
]~A,E!

]~B,E!
5

]~A,E!/]~A,T!]~A,T!/]~B,T!

]~B,E!/]~B,T!

5
]A

]BD
T

]E/]T)A

]E/]T)B
. ~60!

A similar relation between derivatives at fixedL and fixedv
can be derived by substitutingL for E and v for T in Eq.
~60!. Finally, the Jacobian of the transformation from (E,L)
to (T,v) can be written as

]~E,L !

]~T,v!
5

]L

]v D
T

cL . ~61!

B. Thermodynamic inequalities

The stability of a system in thermal equilibrium again
fluctuations away from equilibrium provides several use
inequalities.19 We begin the derivation of these inequalitie
by defining the system energyE85E1( jqjVj1MB, which
differs from the plasma~or particle! energyE5^H& through
the addition of the energy associated with the induced im
charges and the plasma magnetic moment.E8 is the total
work, including that done by external circuits, required
construct a plasma out of individual charges brought in fr
infinity to a trap with fixed electrode voltagesVj and fixed
current in the solenoid that is used to maintain the magn
field B. Here, as elsewhere in the paper,B is the uniform
vacuum field, so constant current is equivalent to constanB.
Note thatM is small and that terms of orderM2 were ne-
glected inE5^H&, when diamagnetic interactions~and rela-
tivistic corrections! were omitted in writing Hamiltonian~2!.
The analysis should be thought of as an expansion car
only to first order inM . As the plasma is assembled in th
trap, image chargesqj run onto the electrodes and the vo
age sources for the electrodes do work( jqjVj . Likewise the
current source does workMB, the energy associated wit
mutual inductance between the plasma and the surroun
solenoid. For future reference, we write theTdS equation
following from Eq. ~46! in terms ofE8 rather thanE:

dE85TdS2vdL1(
j

Vjdqj1BdM1mdN. ~62!
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We consider a plasma that is confined in a trap w
fixed electrode voltagesVj5Vj 0 , fixed magnetic fieldB
5B0 , and is in contact with a heat, angular momentum, a
particle reservoir parametrized by temperatureT0 , rotation
frequency2v0 , and chemical potentialm0 . Initially, we
postulate that the system is slightly out of equilibrium;
does not have the values ofE, L, qj , M , or N that would
correspond to (T0 ,v0 ,Vj 0 ,B0 ,m0) in thermal equilibrium.
The system adjusts itself by interacting with the reserv
exchanging energy, angular momentum and particles, an
also interacting with the external circuits that fix the ele
trode voltages and magnetic field. In what follows these
cuits are assumed to have no entropy associated with th
and the plasma and heat reservoir constitute a thermally
lated system~no heat is exchanged with the circuits, b
work may be done on them!. For example, a constant voltag
can be maintained by a homopolar generator that consis
a massive conducting flywheel that rotates through a tra
verse magnetic field. The state of the wheel is described
single degree of freedom, the rotation angle, so there is n
ligible entropy.

The second law then implies that the total entropy of
plasma and the reservoir must be non-negative in this eq
bration process:

DS1DSres>0. ~63!

Furthermore, the entropy change of the reservoir is relate
the heatQ absorbed into the system from the reservoir,

DSres5
2Q

T0
. ~64!

However, the first law for the plasma states that

Q5DE81W, ~65!

whereDE8 is the change in energy of the system~including
the energy of image charges and the magnetic energy a
ciated withM !, andW is the work done by this system. Th
system can do work as it comes to equilibrium in a num
of ways: for instance, induced image charges can flow o
or off of the electrodes, which requires the system to do w
2( jV0 jDqj against the circuits that hold the electrode vo
ages fixed; angular momentum and particle exchange
the reservoir causes workv0DL2m0DN to be performed;
and a change in magnetic momentDM of the plasma does
work 2B0DM against the power supply that fixes the cu
rent in the magnetic field solenoid. Adding these contrib
tions yields the relation

W5v0DL2(
j

V0 jDqj2B0DM2m0DN. ~66!

This relation can also be obtained directly from Eq.~62! by
considering the change inE8 at constant entropy, and settin
W52DE8.

Substitution of Eqs.~64!–~66! into Eq. ~63!, and then
multiplication by the negative constant2T0 implies

DVR<0, ~67!

where
d

r,
by
-
-
m,
o-

of
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a

g-

e
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so-

r
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th

-

VR[E82T0S1v0L2(
j

V0 jqj2B0M2m0N ~68!

is a thermodynamic potential for the plasma. Whenv
5v0 , Vj5V0 j , and B5B0 , VR5ER2T0S2m0N is the
grand potential19 of the plasma as seen in a rotating fram
From Eq.~67! we conclude that the thermal equilibrium sta
achieved by a non neutral plasma connected to a heat, a
lar momentum and particle reservoir and confined by c
stant electrode voltages and constant external magnetic
is the state for which the thermodynamic potentialVR is
minimized.

Let us now examine the consequences of this result
considering small fluctuations of the system away from th
mal equilibrium to some nearby state, under the conditio
that T0 , v0 , V0 j , B0 , and m0 are fixed. Since the system
started in thermal equilibrium the thermodynamic poten
VR must increase away from equilibrium, and we can u
this fact to determine thermodynamic inequalities. Say t
there areP electrodes. Then let$lk%, k51,...,P14, be any
complete set from theP14 conjugate pairs of thermody
namic variables

ˆ~T,S!,~2v,L !,$~Vj ,qj !%,~B,M !,~m,N!‰. ~69!

Note that2v, the rotation frequency of the plasma, is th
variable conjugate to the plasma angular momentum.
term ‘‘conjugate’’ is used here in the sense that conjug
pairs are connected by a derivative of the system energy@see
Eq. ~62!#.

The nearby state to which the system has been pertu
is assumed to be characterized by changes in thelk’s by
small amountsdlk . The change inVR compared to the
minimum equilibrium value is then

dVR5(
k

]VR

]lk
dlk1

1

2 (
j ,k

]2VR

]l j]lk
dl jdlk>0, ~70!

where the inequality follows from the fact thatVR is mini-
mized in the thermal equilibrium for whichdlk50.

Now sincedlk can be either positive or negative, th
first variation ofVR must vanish, implying

]VR

]lk
50. ~71!

By using the definition ofVR in Eq. ~68! and substituting for
]E8/]l j from Eq. ~62!, we can rewrite Eq.~71! as

]VR

]lk
8~T2T0!

]S

]lk
2~v2v0!

]L

]lk
1(

j
~Vj2V0 j !

]qj

]lk

1~B2B0!
]M

]lk
1~m2m0!

]N

dlk
50. ~72!

This equation implies that the thermal equilibrium state
such that

T5T0 , v5v0 , Vj5Vj 0 , B5B0 , and m5m0 .

~73!

For example, suppose that$lk%5ˆS,L,$qj%,M ,N‰ and that
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lk5S. Then in Eq.~72!, ]S/]lk is unity and the remaining
partial derivatives are zero, so we obtainT5T0 . The other
results in Eq.~73! follow from settinglk5L, $qj%, M , and
N one after the other.

When conditions~73! are satisfied, only the term qua
dratic in thedlk’s survives and inequality~67! implies that
this term must be non-negative. In other words, in the sp
of $dlk% the surfaces of constantdVR are closed and neste
so thatdVR50 is a local minimum. Since this is a stateme
e

re
-
et
in

rm
rm
e

t

concerning the topology of the constantdVR surfaces, it
remains true for any complete set oflk’s that we choose.
Therefore we lose no information by choosing any particu
set oflk’s. A convenient set is$lk%5ˆS,L,$qj%,M ,N‰, be-
cause we have already determined the first derivatives ofVR

with respect to these variables@see Eq.~72!#. For example,
]2VR /]S2)L,$qj %,M ,N5]T/]S)L,$qj %,M ,N . The entire set of
second derivatives forms a matrix of dimensionsP14 by
P14:
]2VR

]l j]lk
51

]T

]SD
L,$qj %,M ,N

]T

]L D
S,$qj %,M ,N

H ]T

]qk
D

S,L,$qj Þ1%,M ,N
J ]T

]M D
S,L,$qj %,N

]T

]ND
S,L,$qj %,M

2
]v

]L D
S,$qj %,M ,N

H 2
]v

]qk
D

S,L,$qj Þk%,M ,N
J 2

]v

]M D
S,L,$qj %,N

2
]v

]ND
S,L,$qj %,M

H ]Vj

]qk
D

S,L,$qj Þk%,M ,N
J ]Vj

]M D
S,L,$qj %,N

]Vj

]N D
S,L,$qj %,M

¯

]B

]M D
S,L,$qj %,N

]B

]ND
S,L,$qj %,M

]u

]ND
S,L,$qj %,M

2 , ~74!
suf-
in
ions

r

ec-
ms

q.
n-
where only the top half of the matrix is displayed becaus
is symmetric:]2VR /]l j]lk5]2VR /]lk]l j . ~This symme-
try provides a set of Maxwell relations for the system.!

Stability implies that the eigenvalues of this matrix a
non-negative, which yieldsP14 thermodynamic inequali
ties. These inequalities form a necessary and sufficient s
criteria for stability of the equilibrium against fluctuations
any of the thermodynamic variables.

However, the eigenvalues are quite complicated in fo
so we consider a simpler set of inequalities, which only fo
a necessary set of criteria for stability~they are not suffi-
cient!. Considering fluctuations in only one of thelk’s at a
time implies that each diagonal element,]2VR /]lk

2, must be
non-negative. For example, we find

]T/]S)L,$qj %,M ,N>0, ~75!

which implies that the specific heat at constantL, $qj%, M ,
andN is non-negative, provided thatT>0. It is also worth-
while to write out the other inequalities explicitly:

2
]v

]L D
S,$qj %,M ,N

>0, ~76!

]Vk

]qk
D

S,L,$qj Þk%,M ,N

>0, ~77!

]B

]M D
S,L,$qj %,N

>0, ~78!
it

of

,

]m

]ND
S,L,$qj %,M

>0. ~79!

The fact that these inequalities are necessary but not
ficient for stability can be seen by allowing variations
more than one parameter. For example, consider variat
in both S and L. Then the determinant of the 232 matrix
composed of the upper left-hand side of]2VR /]l j]lk must
be non-negative, which implies that

2S ]T

]SD
L,$qj %,M ,N

]v

]L D
S,$qj %,M ,N

>S ]T

]L D
S,$qj % ,M ,N

2

, ~80!

providing more stringent bounds for both]T/]S and]v/]L
than are provided by Eqs.~75! and ~76!.

Equations~75!–~79! reflect stability along one particula
set of directions, given by$lk%5$S,L,$qj%,M ,N%, but more
information may be uncovered by considering other dir
tions. The inequalities so obtained take the simplest for
when only one of each conjugate pair in Eq.~69! is
employed as a lk . For example, choose $lk%
5$T,L,$Vj%,B,N%, and takelk5L in Eq. ~72!. Then taking
another derivative with respect toL yields

]2VR

]L2 D
T,$Vj %,B,N

52
]v

]L D
T,$Vj %,B,N

>0, ~81!

where we have employed the equilibrium conditions, E
~73!, after taking the derivative. Figure 6 illustrates this i
equality for the special case of a small cold (lD.0) plasma
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in a quadratic trap potential. Likewise, takinglk5T in Eq.
~72! yields]S/]T)L,$Vj %,B,N>0. Assuming thatT.0, and us-
ing definition~55!, we find that the specific heatcL must be
non-negative. This fact together with Eq.~54! implies that
cv>0 as well. Analogous arguments show that any ot
choice for the set of$lk% ’s consisting of one variable from
each of the conjugate pairs in Eq.~69! can be employed
without changing the basic form of Eqs.~75!–~79!. For ex-
ample, ]M /]B)T,v,$Vj %,N

>0 and ]Vj /]qj )T,L,$VkÞ j %,B,m>0
as well.

The inequalitiescL>0 and]v/]L)T<0 are the analogs
of the inequalitiescv>0 and ]p/]V)T<0 for a gas. The
latter two inequalities can be understood physically as
conditions for temperature and mechanical stability when
gas is in contact with a reservoir characterized by fixed te
perature and pressure. Likewise, the inequalitiescv>0 and
]v/]L)T<0 are necessary for temperature and rotation
quency stability when the plasma is in contact with a res
voir characterized by fixed temperature and fixed rotat
frequency. In thinking about frequency stability, it is nece
sary to remember that2v is the rotation frequency, so i
may be useful to rewrite]v/]L)T<0 as](2v)/]L)T>0.
Suppose, for example, that a fluctuation makes2v larger
~more positive! than the rotation frequency of the reservo
The reservoir will then exert a negative torque on the plas
opposing the differential rotation. The two inequalitiesDL
,0 and](2v)/]L)T.0 then imply thatD(2v),0, which
is a frequency change of the sign required to restore equ
rium.

The inequality ]Vj /]qj )T,L,$VkÞ j %,B,m>0 also follows
from a straightforward physical picture. AsVj is increased
~holding the other parameters fixed!, a plasma consisting o
positive charges is pushed away from electrodej , so the
~negative! image charge on that electrode is decreased
magnitude.

The inequality ]M /]B)T,v,$Vj %,N
>0 implies that the

magnitude of the plasma’s~negative! magnetic momentM
decreases asB increases, which may be counterintuitive
first glance since one expects the magnitude of the pla
magnetization to increase asB increases. In fact, the magne
tization does tend to increase asB increases. However, th
average magnetization is the magnetic moment divided
the plasma volume, and asB increases the plasma volum
decreases since the plasma radius tends to shrink. It is
decrease in plasma volume which allows the magnetiza
to increase in magnitude even though the magnetic mom
decreases in magnitude.

Finally, we may like to fixE rather thanS or T. For
example, consider variations ofL at fixedE, Vj , B, andN.
Takinglk5L in Eq. ~72!, and then taking another derivativ
with respect toL yields the inequality

]2VR

]L2 D
E,$Vj %,B,N

5
]T

]L D
E,$Vj %,B,N

]S

]L D
E,$Vj %,B,N

2
]v

]L D
E,$Vj %,B,N

>0. ~82!
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However, Eq.~46! implies thatT]S/]L)E,$Vj %,B,N5v, so we
can write Eq.~82! as

2T
]

]L S v

T D
E,$Vj %,B,N

>0. ~83!

C. Fluctuations

The thermodynamic inequalities discussed in the pre
ous section can be related to the magnitude of fluctuation
the plasma, and some of these relations may be of phys
interest. For example, consider a fluctuationdqi5qi2^qi& in
the charge on a sectori at fixedN, v, T, B, and$Vj%. Here
we employ the notation̂qi& for the equilibrium average, and
qi is the value of a particular realization of the canonic
ensemble, which fluctuates bydqi about^qi&. Standard ther-
modynamic arguments19 allow us to express the averag
^dqidqj&T,v in terms of thermodynamic derivatives. We fir
express this average in terms of^qiqj&T,v , ^qi&, and^qj&:

^dqidqj&T,v5^qiqj&T,v2^qi&^qj&. ~84!

These averages can be expressed as derivatives of th
nonical partition functionZc . Using Eqs.~29!, ~30!, and
~37!, one finds

^qi&5~kT/Zc!]Zc /]Vj )T,v,B,N , ~85!

and a modification of the argument that led to Eq.~37! yields
^qiqj&T,v5@(kT)2/Zc#]

2Zc /]Vi]Vj )T,v,B,N . Putting these
averages together in Eq.~84! yields

^dqidqj&T,v5
1

Zc
~kT!2

]2

]Vi]Vj
ZcD

T,v

2S kT

Zc
D 2 ]Zc

]Vi

]Zc

]Vj

5~kT!2
]2 ln Zc

]Vi]Vj
D

T,v,B,N

5kT
]qi

]Vj
D

T,v,B,N

5kT
]qj

]Vi
D

T,v,B,N

, ~86!

where in the last two steps we used Eq.~85! and Maxwell’s
relation, ~51!. The subscripts on̂dqidqj&T,v point out that
the average is performed in a constantT andv ensemble~the
canonical ensemble!. Averages over the microcanonical e
semble will be discussed presently.

When i 5 j the fact that̂ dqi
2&T,v must be non-negative

provides us with an inequality similar to Eq.~77!. Further-
more, fluctuations in image charge may be of some inte
since Eq.~86! shows that they provide a measure of t
temperature of the plasma. A similar relation can be deriv
involving the magnetic momentM of the plasma:

^dM2&T,v5kT
]M

]B D
T,v,$Vj %,N

, ~87!

which provides us with an inequality similar to that given b
Eq. ~78!. Measurements of fluctuations inM , through the use
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of a circuit connected to an external inductance coupled
the plasma, for example, could also provide a tempera
diagnostic.

Another useful relation follows from consideration
fluctuations in the function (1/N) ( i r i

2. The thermal equilib-
rium average of this function is the mean-square cylindri
radius, ^r 2&, and this average can be obtained by taking
derivative of the free energy with respect tov:

^r 2&5
2

NmVv

]FR

]v D
T,$Vj %,B,N

. ~88!

Fluctuations in (1/N)( i r i
2 can be related to a derivative o

^r 2& using arguments analogous to those that led to Eq.~86!:

K S d
1

N (
i

r i
2D 2L

T,v

52
2kT

NmVv

]^r 2&
]v D

T,$Vj %,B,N

. ~89!

This relation implies that

T

Vv

]^r 2&
]v D

T,$Vj %,B,N

<0. ~90!

When Vv is positive, the mean-square radius shrinks asv
increases, but whenVv becomes negativêr 2& expands. Fig-
ure 5 illustrates this dependence for the special case
quadratic trap potential.

Equation~90! can be employed to obtain an improve
bound on]L/]v. By recalling that the velocity dependenc
in f c is a product of Maxwellians in a frame that rotates w
frequency2v, we obtain

L5m~Vv/2!N^r 2&. ~91!

A derivative with respect tov implies the relation

Nm

2
Vv

]^r 2&
]v D

T,$Vj %,B,N

5
]L

]v D
T,$Vj %,B,N

1Nm^r 2&. ~92!

Since Eq.~90! implies that the left-hand side of Eq.~92! is
less than or equal to zero, we find the inequality

]L

]v D
T,$Vj %,B,N

<2Nm^r 2&, ~93!

which is an improvement over inequality~76!. Note that the
right-hand side of Eq.~93! is the negative of the rotationa
inertia of the plasma. Equation~93! again points out tha
Eqs.~75!–~79! are necessary but not sufficient conditions
a stable equilibrium.

It is important to point out that the fluctuations in Eq
~86!, ~87!, and~89! are assumed to occur in a system at fix
v andT. We have added subscripts to the averages in o
to point this out explicitly. However, it is presumably fluc
tuations at fixedL andE that are of interest in many exper
mental measurements. Although we have said that aver
in the microcanonical~fixed L andE! and canonical~fixed v
andT! ensembles are identical for large systems, this st
ment must be modified when fluctuations are considered
more precise statement is that averages of intensive qu
ties in the two ensembles are identical toO(1/N). However,
for fluctuations theseO(1/N) corrections are important, an
to
re

l
a

a

r

er

es

e-
A
ti-

the two ensembles may provide different results in the th
modynamic limit. One trivial example is that in the microc
nonical ensemblêdPu

2&E,L50, whereas in the canonical en
semblePu fluctuates. The reason that theO(1/N) corrections
are important can be understood from the following arg
ment. Consider the fluctuationdA of an extensive quantity
A. We evaluate^dA2& by taking the differencê dA2&
5^A2&2^A&2. SinceA is extensive,̂ A2& and^A&2 scale as
N2. The O(1/N) difference between an evaluation of th
averages using different ensembles will therefore scale aN.
However, typical fluctuationŝdA2& are also ofO(N); the
O(N2) terms cancel after̂A&2 is subtracted from̂A2&. We
therefore cannot necessarily neglect theO(1/N) difference
between evaluations of rms fluctuations using different
sembles.

Fortunately, it is possible to relate the fluctuations
different ensembles.31 Given any two quantitiesG and H
with average valueŝG&, ^H& and fluctuationsdG anddH
about their average values, the fluctuations in a constanE,
L, B, $Vj%, andN ensemble are related to the fluctuations
a constantT, v, B, $Vj%, andN ensemble by

^dGdH&E,L5^dGdH&T,v2kT2
]T

]ED
L

]^G&
]T D

~v/T!

3
]^H&
]T D

~v/T!

1k
]T

]L D
E
H ]^G&

]T D
~v/T!

]^H&
]~v/T! D

T

1
]^G&

]~v/T! D
T

]^H&
]T D

~v/T!
J

1k
]~v/T!

]L D
E

]^G&
]~v/T! D

T

]^H&
]~v/T! D

T

, ~94!

whereB, $Vj%, andN are also held fixed throughout. In Se
V we will consider the case of a large trapped plasma a
show that the mean-square fluctuations^dqidqj&E,L and
^dM2&E,L are smaller than the fluctuations at constantT and
v, and are given by:

^dM2&E,L5kT
]M

]B D
T,L,$Vj %,N

, ~95!

^dqidqj&E,L5kT
]qj

]Vj
D

T,L,B,N

. ~96!

These results differ from Eqs.~86! and ~87! becauseL is
held fixed in the derivatives, rather thanv.

Another example of a fluctuation for which there is
difference between ensembles in the large plasma limit is
rms fluctuation in thez component of the kinetic energy

Kz5( i
1
2mvz

2. This quantity can be followed in compute
simulations, and may also be observable using laser diag
tics in actual experiments, since these diagnostics can d
mine components of the particle velocities. In the canoni
ensemble straightforward integrals over the Maxwellian
locity distribution imply that̂ Kz&5NkT/2, so the measure
ment of^Kz& provides one with the temperature. Fluctuatio
in Kz are also related toT through averages over a Maxwel
ian:
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^dK2&T,v5 1
2N~kT!2. ~97!

However, using Eq.~94! one finds that in the constantE and
L ensemble the mean-square fluctuation is different:

^dKz
2&E,L5

1

2
N~kT!2S 12

Nk

2cL
D . ~98!

There can be a considerable difference between Eqs.~97!
and~98!. For example, for a large weakly correlated electr
plasma for which the cyclotron motion is quantized and
the ground state~but motion parallel toB remains classical!,
cL→1/2Nk. Equation~98! then implies that̂ dKz

2&E,L van-
ishes. However, Eq.~97! implies that^dKz

2&T,v remains fi-
nite. In the microcanonical ensemble the fluctuation inKz is
nonzero only by virtue of correlations which raisecL above
1/2Nk.

D. Adiabatic processes

Some experiments involve adiabatic processes for wh
S5constant. For example, the rate of work done on
plasma due to different adiabatic processes is given by@see
Eq. ~46!#

]E

]Vj
D

S,L,$VkÞ j %,B,N

52qj ,
]E

]BD
S,L,$Vj %,N

52M ,

~99!
]E

]L D
S,$Vj %,B,N

52v.

Typically, adiabatic expansions are carried out by va
ing a sector voltageVj at constantL. The temperature
change in such a process is

]T

]Vj
D

S,L,$VkÞ j %,B,N

52]S/]Vj )T,L,$VkÞ j %,B,N /]S/]T)L,$Vj %,B,N

52
T

cL

]qj

dT D
L,$Vj %,B,N

, ~100!

where we have employed Eq.~53! and the Maxwell relation,

]qj

]T D
L,B,$Vk%,N

52
]~FR2vL !

]T]Vj
5

]S

]Vj
D

T,L,$VkÞ j %,B,N

.

~101!

Adiabatic expansions can also be carried out by varying
magnetic field. The temperature change would then be g
by

]T

]BD
S,L,B,N

52
T

cL

]M

]T D
L,$Vj %,B,N

. ~102!

V. THERMODYNAMIC FUNCTIONS FOR A LARGE
TRAPPED PLASMA

As discussed in Sec. III B, large trapped plasmas hav
uniform density out to some surface of revolution where
density falls to zero in a thin surface sheath. The unifo
density is related tov andVc through Eq.~12!. The interior
of the trapped plasma is statistically equivalent~including all
h
e

-

e
n

a
e

correlations! to an infinite homogeneous OCP. In this se
tion, we relate the thermodynamic functions of a lar
trapped plasma to those of an OCP, which are well know

We say that the trapped plasma is large when the th
ness of the surface sheathl is small compared to both th
length and the radius of the plasma. The volume of the s
face sheath is then small compared to the total plasma
ume. As discussed in Sec. III B,l is of order lD for a
weakly correlated plasma and of orderan21/3 for a strongly
correlated plasma, where the factora is near unity for a fluid
state but can be a few tens for a crystal state.

A. Relation between energies

The first step in this program is to obtain a relation b
tween the energies. The energy of a trapped plasma
viewed in the rotating frame is given by

ER5^HR&5
3

2
NkT1E d3r1efR~r1!n~r1!1

N~N21!

2

3E d3r1d3r2e2G~r1ur2!r~2!~r1 ;r2!,

~103!

where

r~2!~r1 ,r2!5E d3v1¯d3vNd3r3¯d3rNf c ~104!

is the two-particle spatial distribution. In writing Eq.~103!
we used the fact that the velocity dependence inf c is a
product of Maxwellians in the rotating frame. Setting

N~N21!r~r1 ,r2!.N2r~r1 ,r2!

[n~r1!n~r2!@11g~r1 ,r2!#, ~105!

whereg(r1 ,r2) is the spatial correlation function, yields th
result

ER5
3

2
NkT1E d3r1n~r1!FefR~r1!

1
1

2E d3r 2e2G~r1ur2!n~r2!G
1

1

2E d3r1d3r2n~r1!n~r2!g~r1 ,r2!e2G~r1ur2!.

~106!

For a large plasma, the second of the three terms in
expression is much larger than the other two. It is usefu
compare this term to the energy of a zero temperature m
field plasma

ER
~0!5eE d3rfR~r !n~0!~r !1

e2

2 E d3r1d3r2n~0!~r1!

3n~0!~r2!G~r1ur2!, ~107!

wheren(0)(r ) is equal ton25mv(Vc2v)/2pe2 out to the
surface of the cold mean-field plasma and is zero beyo
The surface is a sharp boundary becauselD50 for T50.
The cold mean-field plasma is assumed to have the s
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number of particles, the same rotation frequency, and
same trap parameters as the actual plasma. The density
ferenceDn(r )[n(r )2n(0)(r ) is nonzero only within a dis-
tancel of the surface; bothn(r ) andn(0)(r ) must equaln2

in the plasma interior. Spatial oscillation~or simply spatial
variation! of n(r ) is possible only within the surface laye
because knowledge of the surface position is necessar
define the phase of the oscillation. Thus for a large plas
ER

(0) is close in value to the second term in the expression
ER in Eq. ~106!.

Formally, we will show that the difference is negligib
in the limit where the volume of the surface layer is neg
gible compared to the volume of the plasma as a whole.
this end, consider the difference

ER2ER
~0!5

3

2
NkT1E d3r1Dn~r1!FefR~r1!

1E d3r2e2G~r1ur2!n~0!~r2!G
1

1

2E d3r1d3r2e2G~r1ur2!Dn~r1!Dn~r2!

1
1

2E d3r1d3r2n~r1!n~r2!g~r1 ,r2!e2G~r1ur2!.

~108!

The second term can be rewritten as*d3r1eDn(r1)@fR(r1)
1fp

(0)(r1)#, wherefp
(0)(r1) is the space-charge potential fo

the cold mean-field plasma. For a cold mean-field plas
~i.e., lD50!, the condition¹(fR1fp

(0))50 must hold out
to the sharp bounding surface, so we setfR(r )1fp

(0)(r )
equal to a constant~say,C! over the whole interior. Becaus
the cold mean-field plasma and the actual plasma have
same number of charges,*d3rDn(r ) is zero. Thus the sec
ond term in Eq.~108! can be rewritten as

E
outside

d3r1en~r1!@fR~r1!1fp
~0!~r1!2C#, ~109!

where the integral is over the volume outside the cold me
field plasma. The densityn(r1) is nonzero only out to a
distancel beyond the surface of the cold mean-field plasm
Near the surface,fR(r )1fp

(0)(r ) differs from C only by a
small amount

fR~r !fp
~0!~r !.

x2

2
~ n̂•¹!2@fR~r !1fp

~0!~r !#, ~110!

where n̂ is the normal to the surface andx is the distance
from the surface, and the derivatives are evaluated just
side the surface. First order terms inx vanish since¹(fR

1fp
(0)) is zero inside and continuous at the surface. Th

integral ~109! is of order Al3en2(n̂•¹)2@fR1fp
(0)#

;Aln2e2n2l2, whereA is the surface area of the plasm
By settingAln25NDV/V, whereDV is the volume of the
correlation-length-thick surface shell andV is the volume of
the plasma as a whole, and recalling thatl is of orderlD or
an21/3, we obtain the estimatesN(DV/V)kT or
e
dif-

to
a,
r

o

a

he

n-

.

t-

s

Na2(DV/V)e2n21/3. The first term in Eq.~108! is of order
NkT and the last of orderNe2n21/3, so the second term is
negligible for sufficiently smallDV/V.

Similarly, the third term in Eq.~108!, for which the in-
tegrand is nonzero only when bothr1 and r2 are within a
lengthl of the surface, is another surface contribution. O
can see this by writing this term as

1

2 E d3r1d3r2e2G~r1ur2!Dn~r1!Dn~r2!

5
e

2 E d3r2Dfp~r2!Dn~r2!, ~111!

whereDfp(r2) is the potential difference caused byDn(r1).
Writing d3r2 asd2rdx whered2r is an area element of th
surface andx is a coordinate normal to the surface, we int
grate by parts neglecting surface curvature, to obtain

2
e

2 E d2rE dx
]Dfp

]x E
2`

x

dx8Dn~x8!. ~112!

Since]Dfp /]x→0 asx→6`, we replace]Dfp /]x by its
maximum magnitude, 4pen2l ~this follows from the Pois-
son equation]2Df/]x2.24peDn!. Since *2`

` dx Dn(x)
50, we estimate*2`

` dx*2`
x dx8Dn(x8) to be of order

n2l2. Then the magnitude of the third term in Eq.~108! is
of orderA 2pe2n2ln2l2, which is the same estimate tha
was obtained for the second term. Thus the third term als
negligible in the limitDV/V→0.

Also in this limit, we can neglect contributions to th
integral in the fourth term forr1 and r2 values within the
surface layer. In the plasma interior, we may setn(r )
5n2 , g(r1 ,r2)5g(r12r2), and G(r1ur2).ur12r2u21; so
Eq. ~108! reduces to the result

ER2ER
~0!5UOCP, ~113!

where

UOCP5
3

2
NkT1

Ne2n2

2 E d3r
g~r !

ur u
~114!

is the internal energy of an infinite homogeneous OCP.11 The
first term is the mean kinetic energy and the second the
relation energy. Again we note that the mean-field elect
static energy dominates the energy of a large trapped plas
that is,ER

(0) is much larger thanUOCP. In an OCP this mean-
field energy does not appear because there really is a uni
neutralizing background charge present, and the self-en
of this background just cancelsER

(0) .
Here we argued that the surface contribution to the f

energy is small for sufficiently smallDV/V, and then we
neglected this contribution. For the case of slab geome
the surface contribution can be calculated and compare
detail to the bulk contribution. The interesting case is that
a crystal state, and for this case the plasma must be abou
lattice planes across for the bulk free energy to dominat32

This is consistent with our estimate that a surface sheath
a large spheroidal plasma is a few tens of interparticle sp
ings.
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B. Free energy of an OCP

Following custom, we denote the correlation energy
Ucorr and introduce the scaled correlation energy11,12

Ucorr

NkT
~G!5

e2n2

2kT E d3r
g~r !

ur u
, ~115!

which depends only on the coupling parameterG5e2/akT.
Here a is the Wigner–Seitz radius~i.e., 4pa3n/3[1!. The
scaled correlation energy has been determined for the
range ofG values and is available in the literature.11,12

The free-energyFOCP is related toUOCP through the
equation@see Eq.~31!#

2T2
]@FOCP/T#

]T D
n,T

5UOCP~T,n,N!. ~116!

By integrating with respect toT we obtain

FOCP~T,n,N!

T
5

FOCP~T0 ,n,N!

T
2E

T0

T UOCP

T82 ~T8,n,N!dT8,

~117!

whereT0 is a reference temperature whereFOCP is known.
By usingdT/T52dG/G, we obtain

FOCP~T,n,N!

T
5

FOCP~T0 ,n,N!

T0
1NE

G0

G UOCP

NkT
~G8!

dG8

G8
,

~118!

where the integral is now in a form that can be evalua
using the known functionUOCP/NkT(G). For a plasma in
the fluid state,T0 is chosen to be very high so tha
FOCP(T0 ,n,N) is the well-known free energy of a weakl
correlated plasma~ideal gas!.11,12 For a plasma in a crysta
state one choosesT0 to be very low, so thatFOCP(T0 ,n,N) is
the well-known free energy of a harmonic lattice.11,12

Other thermodynamic functions are obtained in the us
manner through partial derivatives of the free energy@e.g.,
SOCP52]FOCP/]T)n,N#. For future reference, we note tw
of these functions here. The pressure

p52
]n

]VD
N

]FOCP

]n D
T,N

~119!

is given by12

p5nkTF11
1

3

Ucorr

NkT
~G!G . ~120!

In the limit of weak correlation (G!1), the second term in
the bracket is negligible compared to unity, and we reco
the pressure for an ideal gas,p5nkT. Also, we will need the
specific heat at constant density12

cn5T
]SOCP

]T D
n,N

5NkH 3

2
2G2

]

]G FUcorr

NkT
~G!/G G J ,

~121!

which is easily obtained from Eqs.~114! and ~115! using
T]SOCP/]T)n,N5]UOCP/]T)n,N . In the limit of weak corre-
lation, we recover the specific heat for an ideal gascn

53Nk/2.
y

ll

d

al

r

C. Relation between the free energies

Returning to the original question of the relationship b
tweenFR andFOCP, we note that Eqs.~31!, ~113!, and~116!
together with the fact thatER

(0) is independent of temperatur
imply the relation

]

]T
@~FR2FOCP2ER

~0!!/T#50. ~122!

When carrying out the temperature derivative, everyth
else is held constant. InFR and ER

(0) , the quantities
(v,B,$Vj%,N) are held constant, and inFOCP the quantities
(n,N) are held constant. One should note here thatn is im-
plicitly a function of v andB through Eq.~12!. Integrating
Eq. ~122! with respect toT yields the relation

FR2FOCP2ER
~0!5gT, ~123!

where g is some temperature-independent function. Us
S52]FR /]T and SOCP52]FOCP/]T then yieldsS2SOCP

5g. SinceS andSOCP must vanish atT50 according to the
third law and sinceg is independent ofT, we may conclude
that g50 and that

FR~T,v,B,$Vj%,N!5ER
~0!~v,B,$Vj%,N!

1FOCP~T,n,N!, ~124!

wheren is an implicit function ofv andB through Eq.~12!.

D. Other thermodynamic variables

The free energy is expressed in terms of the prim
thermodynamic variables$lk%5$T,2v,B,$Vj%,N%, and the
conjugate variables$Lk%5$S,L,M ,$qj%,2m% are obtained
as the partial derivativesLk52]FR /]lk . @See Eq.~44!.
Note that the term ‘‘conjugate’’ is used in a slightly differe
sense than in Eq.~69!, since there it was convenient to con
nect conjugate variables through derivatives of the sys
energy rather than the free energy. This accounts for
appearance of2m rather thanm in the set ofLk .# From
separation~124! we will obtain Lk5Lk

(0)1Lk
(1) , where

Lk
~0!52

]Ek
~0!

]lk
~v,B,$Vj%,N!, ~125!

Lk
~1!52

]FOCP

]lk
~n,T,N!. ~126!

Here, all variables exceptlk are held constant when carryin
out the derivatives.

Before proceeding to evaluate such derivatives, it is u
ful to recall the distinct properties ofER

(0) and FOCP. As
mentioned earlier,ER

(0) is much larger thanFOCP. Also, ER
(0)

increases withN faster than the first power, that is,ER
(0) is

nonextensive in the limitN→`; whereas,FOCP is propor-
tional to N and so is extensive. Thus the nonextensive
pendence enters only throughER

(0) , and that dependence i
particularly simple becauseER

(0) does not depend on tem
perature~or on the state of correlation!. ER

(0) is completely
determined byn @or, equivalently, byv(Vc2v)#, and the
shape and size of the cold mean-field plasma. The shap
determined by some combination ofv, N, B, and $Vj%. In
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contrast,FOCP/N depends onn andT ~and through these on
the correlation state!, but does not depend on plasma sha

The entropyS52]F/]T)v,B,$Vj %,N
is special sinceER

(0)

is independent ofT. We obtain29,8

S5S~1!52
]FOCP

]T D
n,N

5SOCP~T,n,N!, ~127!

where use has been made of Eq.~12! to equate]/]T)v,B to
]/]T)n . A corollary is the result:

cv5T
]S

]TD
v,B,$Vj %,N

5T
]SOCP

]T D
n,N

5cn , ~128!

wherecn is given in Eq.~121!.
Thus S5SOCP is extensive, andS/N5s(n,T) is inten-

sive and is determined byn and T alone regardless of th
plasma shape.8,28 In contrast,ER

(0) makes large~nonexten-
sive! contributions toL, $qj%, M , andm. This implies large
cancellations inTdS equation~45!. These cancellations ar
embodied in the differential relation

O5dER
~0!2L ~0!dv1(

j
qj

~0!dVj1M ~0!dB2m~0!dN,

~129!

which follows from Eqs.~125!.
After the cancellation, theTds equation must reduce t

the form

Tds5T
]s

]TD
n

dT1T
]s

]nD
T

dn. ~130!

The first coefficient can be written as

T
]s

]TD
n

5
T

N

]SOCP

]T D
n,N

5
1

N
cn , ~131!

where cn is given in Eq.~121!. By using Eqs.~119! and
~126!, the second coefficient can be written as

T
]s

]nD
T

52
T

N

]V

]n D
N

]2FOCP

]V]T D
N

52
T

n2

]p

]TD
n

, ~132!

where p(n,T) is given in Eq.~120!. Substituting into Eq.
~130! yields the result

Tds5
cn

N
dT1T

]p

]TD
n

dS 1

nD , ~133!

which is well known from the thermodynamics of fluids.33

In Sec. IV D we evaluated the change in temperat
under adiabatic changes inVj andB. For a large plasma, th
entropy per particle is only a fraction ofT and n, so we
should obtain the change in temperature under an adiab
change in density;

05Tds5
cn

N
dT2

T

n2

]p

]TD
n

dn. ~134!

In an uncorrelated plasmap5nkT and cn53/2Nk, and we
find the usual adiabatic relation betweenT andn for an ideal
gas:
.

e

tic

] ln T

] ln nD
s

5
2

3
. ~135!

However, in a strongly correlated plasma the relation
modified, since bothp and cn depend onG; see Eqs.~120!
and ~121!. For G*3 the pressure actually changes sign
Ucorr/NkT becomes large and negative, so one might im
ine that during an adiabatic expansion the correlated pla
might actually heat rather than cool. However, this is not
case, although the rate of cooling during the expansion
reduced compared to Eq.~135!.8 In fact, using Eq.~120!, Eq.
~134! can be expressed succinctly in terms of the spec
heat, which is nonnegative:

] ln T

] ln nD
s

5F1

3
1

1

2

Nk

cn
G . ~136!

Adiabatic expansion has been proposed as a method of c
ing trapped pure electron plasmas.

To evaluateL (0), M (0), $qj
(0)%, and m (0), we need an

expression forER
(0)(v,B,$Vj%,N), which depends on the

plasma shape. Fortunately,ER
(0) can be calculated analyti

cally for two geometries that are commonly used in expe
ment.

The first is the case of a long column. Suppose that
length of the central cylinder in Fig. 1 is much larger than t
radius~i.e., l @Rp!. The shape of the zero temperature mea
field plasma can then be approximated by a right circu
cylinder of lengthl and radiusRp . The number of particles
is given by

N5pRp
2ln, ~137!

and expression~107! for ER
(0) reduces to the simple form

ER
~0!5

3

4

~Ne!2

l
1

~Ne!2

l
ln

Rw

Rp
, ~138!

whereRp is related to (N,v,B) through Eqs.~12! and~137!
and Rw is the radius of the cylindrical trap electrodes.
superscript zero has not been added toN, since by definition
the cold mean-field plasma has the same number of part
as the actual plasma~i.e., N5N(0)!.

As an example of Eq.~125!, we evaluate the derivative

L ~0!5
]ER

~0!

]v D
B,$Vj %,N

52
~Ne!2

2l

1

Rp
2

]Rp
2

]v D
B,$Vj %,N

5
~Ne!2Vv

2lv~Vc2v!
~139!

and

M ~0!52
]ER

~0!

]B D
v,$Vj %,N

5
~Ne!2

2l

1

Rp
2

]Rp
2

]B D
v,$Vj %,N

52
~Ne!2e

2lmc~Vc2v!
. ~140!
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Alternatively, these results can be obtained by evalua
L (0)5m(Vv/2)N^r 2& (0) andM (0)52N(ev/2c)^r 2& (0) for a
right circular cylinder. By explicitly carrying out the deriva
tives

]L

]v D
T,B,$Vj %,N

.
]L ~0!

]v D
B,$Vj %,N

52
~Ne!2

2l

@~Vc2v!21v2#

v2~Vc2v!2 , ~141!

]M

]B D
T,v,$Vj %,N

.
]M ~0!

]B D
v,$Vj %,N

.
~Ne!2

2l @mc~Vc2v!/e#2 ,

~142!

we can check that inequalities~76! and~78! are satisfied for
this case. As discussed in Sec. IV B, these inequalities h
when any combination of the conjugate variables in Eq.~69!
are held constant. Finally, one should note that the right
cular cylinder approximation is too crude to capture the
pendence ofER

(0) on $Vj%. A more sophisticated mode
would be required to evaluateqj

(0) .
A second analytically tractable case is that of a sphe

dal plasma in a quadratic trap potential~see Sec. III C!. The
zero temperature mean-field energy is given by
de
t

e
th
ar

to
te
g

ld

r-
-

i-

ER
~0!5

3

10
Nmvz

2@2bRp
21Zp

2#1NC, ~143!

wherevz , C, andb are defined in Eqs.~18! and~19! andRp

andZp are given as functions ofb andN in Eqs.~20!–~25!.
For this case, we already have an expression forL (0) @see Eq.
~27!#. This simple form was obtained by evaluatingL (0)

5m(Vv/2)N^r 2& (0) directly, rather than evaluating the de
rivative L (0)5]ER

(0)/]v. Again, the derivative

]L

]v D
T,B,$Vj %,N

.
]L ~0!

]v D
B,$Vj %,N

52
2NmRp

2

5 S 11
Vv

2

3vp
2 S 21

d ln a~b!

db D D
~144!

can be evaluated showing explicitly that inequality~76! is
satisfied for this case. Recall thata is a monotonically in-
creasing function ofb according to Eq.~20!.

This model does contain the dependence ofER
(0) on $Vj%

so we can evaluateqj
(0)52]ER

(0)/]Vj . For the case of hy-
perbolic electrodes, where Eq.~17! may be used, we find tha
the induced charge on the ring and cap electrodes sati
qring

(0) 1qcap
(0)52Ne, as one would expect, and that
qring
~0! 2qcap

~0!52Ne
@z0

22~r 0
2/2!1~6/5!~Rp

22Zp
2!2~4/5!~2b11!~bRp

22Zp
2!d ln a/db#

z0
21r 0

2/2
. ~145!
kly

re

l

Since the plasma is assumed to be far from the electro
one can see that the plasma shape has little effect on
induced charge, as expected. Also, the induced charg
completely independent of the plasma radius when
plasma is spherical, which also follows from symmetry
guments.

As an example of the finite temperature correction
these zero temperature mean-field quantities, we evalua

L ~1!~T,v,B,$Vj%,N!5
]FOCP

]v D
T,B,$Vj %,N

5
]n

]v D
B

]FOCP

]n D
T,N

. ~146!

With the aid of Eqs.~12! and ~119!, this reduces to

L ~1!~T,v,B,$Vj%,N!5
NVv

v~Vc2v!

p~n,T!

n
, ~147!

wherep(n,T) is given in Eq.~120!.
This result plus the relationL5m(Vv/2)^r 2& yields the

temperature correction to the mean square radius34

^r 2&2^r 2&~0!5
p~n,T!

pe2n2 , ~148!
s,
he
is
e
-

where use has been made of Eq.~12!. This result is valid for
large plasmas in any confinement geometry. For a wea
correlated plasma, wherep5nkT is positive, the pressure
causes a slight increase in the mean-square radiusD^r 2&
5kT/pe2n5lD

2 /4. For a strongly correlated plasma, whe
p;2ne2/a is negative, the pressure~i.e., correlation! causes
a slight decrease in the mean-square radiusD^r 2&;21/na
;2a2. Equation ~148! was obtained first for the specia
case of a weakly correlated infinitely long column.35,36

Another example of a temperature correction is

qj
~1!~T,v,B,$Vj%,N!52

]FOCP

]n D
T,N

]n

]Vj
D

T,v,B,$VkÞ j %,N

50,

~149!

where Eq.~12! has been used to show that]n/]Vj )v,B50.
Thus the chargeqj does not vary withT assuming thatv and
B are held constant. However, ifv is replaced by its conju-
gate variableL, we obtain a nonzero correction

qj
~1!~T,L,B,$Vj%,N!52

]FOCP

]n D
T

]n

]Vj
D

T,L,B,$VkÞ j %,N

52
Np

n

1

n

]n

]Vj
D

T,L,B,$VkÞ j %,N

,

~150!
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where use has been made of Eq.~119! andp(n,T) is given
by Eq. ~120!. As a specific example, for an uncorrelat
plasma in a hyperbolic trap, Eq.~17! can be used with Eqs
~20!–~27! to obtain

2qring
~1! ~T,L,B,$Vj%,N!

5qcap
~1!~T,L,B,$Vj%,N!

52
d ln a/db

d ln a/db12vz
2/vp

213vz
2/Vv

2

NkT

V0
, ~151!

whereV0 is the potential difference between the cap and r
electrode@see Eq.~17!#. Sinceda/db.0 Eq. ~151! implies
that charge flows off the cap electrode and onto the r
electrode as temperature increases at constantL. Conse-
quently, measurements ofqj might provide useful tempera
ture information, although the effect is small: forV051 V in
a spherical plasma for whichVv@vz , Eq. ~151! predicts
that a temperature change of 1 K induces a chargeDq on the
electrodes of magnitudeuDq/eNu5531025.

In the next section, we will need two results for larg
plasmas that follow simply from the extensive and nonext
sive character of certain quantities. Since]L/]v)T is nonex-
tensive~increasing faster thanN! and]L/]T)v is extensive
~increasing likeN!, Eq. ~54! implies that the relative differ-
enceucv2cLu/Nk approaches zero for sufficiently largeN. It
may be instructive to evaluate the differenceucL2cvu for the
case of a long, weakly correlated plasma. Combining E
~54!, ~147!, and~141! yields the result

ucv2cLu
Nk

5
8~Vc22v!2

@~Vc2v!21v2# S lD

Rp
D 2

!1. ~152!

Likewise, for a sufficiently large plasma we conclude tha
n

g

g

-

s.

UT

v

]v

]T D
L
U5UTv ]L/]T)v

]L/]v)T
U!1. ~153!

Again, for the case of a long, weakly correlated plasma, E
~147! and ~141! imply the result

US T

v

]v

]T D U5 8~Vc2v!2

@~Vc2v!21v2# S lD

Rp
D 2

!1. ~154!

In Sec. IV C, we promised to verify Eqs.~95! and ~96!
for the case of a large plasma. In order to do so we first n
that

]^G&
]T D

~v/T!

5
]^G&
]T D

v

1
v

T

]^G&
]v D

T

~155!

and

]^G&
]~v/T! D

T

5T
]^G&
]v D

T

. ~156!

Next, we employ Jacobian transformations to write

]T

]L D
E

5
]~T,E!

]~L,E!
5

]~T,v!

]~L,E!

]~T,E!

]~T,v!

52
]E/]v)T

cL]L/]v)T
5

T]L/]T)v1v]L/]v)T

cL]L/]v)T
, ~157!

where we used Eqs.~55!, ~58!, and~61!. We can also employ
Eqs.~59! and ~60! to write

]v

]L D
E

5
cv2vL/]T)v

cL]L/]v)T
. ~158!

When Eqs.~155!–~157! are employed in Eq.~94!, we obtain
^dG2&E,L2^dG2&T,v52
kT2

cL
F ]^G&

]T D
v

1
v

T

]^G&
]v D

T
G2

1kT
v2T]v/]T)L

cL
H 2

]^G&
]v D

T
F ]^G&

]T D
v

1
v

T

]^G&
]v D

T
G

2
v

T F ]^G&
]v D

T
G2J 1kT

cv2v]L/]T)L

cL]L/]v)T
F ]^G&

]v D
T
G2

, ~159!
ll

n

where hereG is either qj or M . Now, for a large plasma
cv5cL , ]qj /]T)v50, and u]M /]T)vu!uv/T]M /]v)Tu.
The first two relations were proven in Eqs.~152! and ~149!,
and the last follows from the Maxwell relatio
]M /]T)v,B,$Vj %,N

5]S/]B)T,v,B,$Vj %,N
together with the fact

that S is extensive in the large plasma limit.
When these relations are employed in Eq.~159! and

small terms are dropped, we find

^dG2&E,L2^dG2&T,v5F ]^G&
]v D

T
G2 kT

]L/]v)T
. ~160!

Since]L/]v)T<0 it follows that the fluctuations inM or qj

at fixedE andL are smaller than fluctuations at fixedT and
v. Equation~160! can be further simplified using Maxwe
relations. For example, using Eq.~50! we can transform
]M /]v)T to obtain

^dM2&E,L2^dM2&T,v52
]M

]v D
T,B

]L

]BD
T,v

kT

]L/]v)T,B

5kT
]M

]v D
T,B

]v

]BD
T,L

, ~161!

where throughout we hold$Vj% andN fixed along with the
specified variables. However, ]M /]v)B]v/]B)L

5]M /]B)L2]M /]B)v , and when this relation is used i
Eq. ~161! and the result is compared to Eq.~87! we find that
for a large plasma
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^dM2&E,L5kT
]M

]B D
T,L,$Vj %,N

. ~162!

An identical argument implies that in the large plasma lim

^dqj
2&E,L5kT

]qj

]Vj
D

T,L,$ViÞ j %,B,N

~163!

Although these results differ from Eqs.~86! and ~87!, be-
causeL is fixed rather thanv in the derivatives, the right-
hand sides of Eqs.~162! and~163! are non-negative accord
ing to the general arguments of Sec. IV B.

VI. THERMODYNAMIC APPROACH TO TRANSPORT

As discussed in Sec. II B, a collection of point charg
that interact electrostatically in an ideal trap~time-
independent and cylindrically symmetrical electrode str
ture and trap fields! is characterized by two constants of th
motion, H5E and Pu5L. However, for a real plasma in
real trap, such effects as collisions with neutrals, radiati
and interaction with small~but unavoidable! field errors pro-
duce slow changes inE andL. Also, laser beams and rota
ing field asymmetries are often applied to produce change
E andL. We assume that these changes are slow comp
to the time for Coulomb collisions to bring the plasma
thermal equilibrium, so the plasma evolves through a
quence of thermal equilibrium states, and the slow evolut
of E andL translates to a slow evolution ofT andv. Ther-
modynamics provides a simple framework for the desc
tion of this late time transport. Throughout this section
assume that the particle number and trap parameters are
constant~i.e., dN5dVj5dB50!, so theTdS equation re-
duces to the simple form given in Eq.~47!.

A. Direction of evolution

In some cases, thermodynamics alone can tell us the
of the change in quantities and the direction of evolution.
a simple example, consider the sign of the torque that a s
field error ~asymmetry! exerts on a rotating plasma. O
course, one’s intuition is that the torque is a drag that
poses the rotation, but how can we prove this? Fundam
tally, the intuition is an expression of the second law
thermodynamics. Since the field asymmetry is static, tha
does not introduce explicit time dependence intoH, H is still
a constant of the motion and we can setdE5^dH&50 in Eq.
~47! to obtain the result

0<TdS5vdL52~2v!dL, ~164!

where the inequality expresses the second law. Thus
plasma rotation frequency (2v) and dL have opposite
signs, that is, the torqueL̇5dL/dt opposes the rotation. Fo
a plasma of positive charges, the rotation frequency is ne
tive ~i.e., v.0! so L̇ is positive.

Next, let us suppose that some other effect, say, la
cooling, maintains the plasma temperature at a cons
value without exerting a torque. Then the relationv̇
5(]v/]L)TL̇ plus the inequalities (]v/]L)T<0 and L̇.0
t
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imply that v̇ is negative. The stationary field asymmet
slows the plasma rotation much as a caliper brake slows
rotation of a freely spinning bicycle wheel.

To make this discussion more concrete, let us reexam
Fig. 5. Suppose that the torque laser is turned off when
plasma rotation frequency is at the far right of the curve, t
is, v is large. The plasma is then subject to the unbalan
torque of ambient field errors soL̇.0. Further, suppose tha
the cooling laser, which exerts negligible torque, is left
and maintains the temperature at some low fixed value.
analysis then predicts that the plasma frequency decre
monotonically, and such evolution is observed.

For fixed T, the direction of evolution ofv determines
the direction of evolution of all other quantities. For e
ample, from Fig. 5, one can see that starting at largev, Rp(t)
decreases untilv(t)5Vc/2 and thenRp(t) increases. Inci-
dentally, this kind of radial evolution is not limited to th
case of a quadratic trap potential. Inequality~90! together
with v̇,0 implies that

d^r 2&
dt

5
]^r 2&
]v D

T

dv

dt
~165!

is negative forv(t).Vc/2 and positive forv(t),Vc/2.
The use of a rotating field asymmetry, say,f0(r ,z,u

1v0t), has proven to be an effective way of exerting
torque that counteracts the torque due to static fi
asymmetries.3,4 When the rotating field asymmetry is applie
~but there are no static asymmetries!, the new trap potentia
is fT(r ,u,z,t)5fT(r ,z)1f0(r ,z,u1v0t). The Hamil-
tonian is then time dependent soE5^H& is not constant.
However, the Hamiltonian in a frame that rotates with fr
quency2v0 @i.e., H85H1v0Pu# is time independent so
E85E1v0L is constant. Substituting 05dE85dE1v0dL
into Eq. ~47! and again imposing the second law yields t
result

0<TdS52~v02v!dL. ~166!

Thus the torque opposes the differential rotation. For
ample, the torque is in the same direction as the plas
rotation if the field asymmetry rotates faster than the plas
Not surprisingly, when a cooling mechanism maintainsT at
a fixed value without exerting an additional torque, the
equality ]L/]v)T<0 implies that the plasma rotation fre
quency evolves monotonically to the rotation frequency
the asymmetry,v0 .

It is important to remember that the rotating asymme
does work whenever it exerts a torque@i.e., Ė5v0L̇0#. If the
rotating asymmetry is used to counteract ambient torqu
say, due to static field errors, then the plasma can remai
steady state only if a cooling mechanism extracts energ
the ratev0L̇0 .

Equation~166! also can be derived by using the therm
dynamic potentialVR , that was defined in Eq.~68!. One
treats the field asymmetry and the process that maintains
temperature at a fixed value as a heat and angular mome
reservoir. The reservoir is assumed to be fixed at the in
temperatureT of the plasma and the rotation frequency2v0

of the field error. The heat transfer is assumed to be su
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ciently effective that the plasma remains in temperature e
librium with the reservoir even though it is not in frequen
equilibrium with the reservoir. The thermodynamic potent
VR must decrease as the plasma evolves toward frequ
equilibrium with the reservoir. Thus we obtain

0>DVR5
]VR

]L D
T,N,B,$Vj %

DL52~v2v0!DL, ~167!

where the partial derivative was evaluated by settinglk 5L,
T5T0 , Vj5Vj 0 , andB5B0 in Eq. ~72!. Again, we find that
the torque opposes the differential rotation, which toget
with the inequality]v/]L)T<0 implies that the rotation fre
quency of the plasma evolves toward that of the field asy
metry.

B. Evolution equations

If the plasma passes through a sequence of thermal e
librium states characterized by fixed values ofN, $Vj%, and
B, the temperature and rotation frequency at any instant
be expressed asT5T(E,L) and v5v(E,L). The time de-
rivative of these equations,

Ṫ5
]T

]ED
L

Ė~v,T,x j !1
]T

]L D
E

L̇~v,T,x j !, ~168!

v̇5
]v

]ED
L

Ė~v,T,x j !1
]v

]L D
E

L̇~v,T,x j !, ~169!

governs the plasma evolution, whereĖ5Ė(v,T,x j ) and L̇
5L̇(v,T,x j ) are functions that describe the rate of ener
and angular momentum exchange with various exte
agencies. For example, suppose that the plasma energy
angular momentum are changing as a result of collisi
with neutrals.Ė andL̇ then depend on the plasma state~i.e.,
on v andT! and on some parametersx j that characterize the
neutrals, such as the neutral density and temperature. L
wise, for interaction with a laser beam,Ė and L̇ are deter-
mined by the plasma state~i.e., v andT! and by parameters
x j such as the intensity and frequency of the laser lig
Assuming that the parametersx j are constant, or known
functions of time, the plasma evolution is governed by t
ordinary differential equations for the time evolution ofT
andv. This reduction in complexity from the partial differ
ential equations typically required to describe transpor
possible because the plasma passes through a sequen
thermal equilibrium states.

With the aid of Eqs.~55!–~60!, ~157! and ~158!, Eqs.
~168! and ~169! can be rewritten as

cLv̇5Fcv

]v

]L D
T

1v
]v

]T D
L
G L̇1

]v

]T D
L

Ė, ~170!

cLṪ5AvL̇1Ė, ~171!

where

A512
T

v

]v

]T D
L

. ~172!

It is often more convenient to write Eq.~170! as
i-
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v̇S ]L

]v D
T

5L̇2S ]L

]TD
v

Ṫ, ~173!

where use has been made of Eqs.~54! and~171!. This equa-
tion could have been written down directly by taking th
time derivative of the mixed functionv5v(L,T). By using
Maxwell relations, the coefficients of Eqs.~171! and ~173!
can be written in many ways. However, one can see that o
cv and the functionL5L(v,T) are needed to evaluate th
coefficients.

For the case of a large plasma, Eqs.~128!, ~152!, ~153!,
and ~147! imply that evolution equations~171! and ~173!
reduce to the simple form

cnṪ5Ė1vL̇, ~174!

v̇
]L

]v D
T

5L̇2
N~Vc22v!

v~Vc2v!

1

n

]p

]T
Ṫ, ~175!

where p(n,T) and cn(n,T,N) are given in Eqs.~120! and
~121!. Here, then dependence inp andcn is determined by
v through Eq.~12!. For the special case of a weakly corr
lated plasma,cn and (1/n)(]p/]T) are the constants 3Nk/2
andk, respectively. In Eqs.~174! and ~175! only the coeffi-
cient ]L/]v)T.]L (0)/]v depends on the plasma shape; t
other coefficients are explicit functions ofv and T that are
independent of plasma shape. Also, we have explicit exp
sions for ]L (0)/]v for the case of a long plasma@see Eq.
~141!# and for the case of a spheroidal plasma@see Eq.
~144!#.

As an application of these equations, let us return to
example considered in the last section. A static field er
acts on the plasma producing a positive torque (L̇.0), and a
cooling laser maintains the temperature at some fixed va
without exerting a torque. From Eq.~174!, one can see tha
energy extraction, rather than input, is required. SettingṪ
50 immediately yieldsĖ52vL̇,0. As discussed earlier,
static field error cannot changeE, so the cooling laser alone
producesĖ. Note that energy must be extracted whether^r 2&
is decreasing~for v.Vc/2! or increasing~for v,Vc/2!.
When ^r 2& is decreasing, the electrostatic energy is incre
ing, but the rotational kinetic energy is decreasing f
enough that the total energy is decreasing.

Next suppose that the cooling laser is turned off. ForĖ
50, Eqs.~174! and ~175! reduce to the form

Ṫ5
vL̇

cn
.0. ~176!

v̇

v
5

T†cn2@N~Vc22v!/~Vc2v!#~1/n!]p/]T‡

v2]L/]v)T

Ṫ

T
,

~177!

wherevL̇.0 andcn.0 have been used. For a large plasm
the coefficient ofṪ/T on the right-hand side of Eq.~177! is
small. The numerator is extensive~increasing likeN! and the
denominator is nonextensive~increasing faster thanN! so the
ratio becomes small for largeN. A simple estimate for the
case of a weakly correlated plasma@along the lines of the
estimates in Eqs.~152! and~154!#, shows that the coefficien
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is smaller thanO(lD /Rp)2!1. Thus Eq.~177! implies that
uv̇/vu!uṪ/Tu; the plasma temperature rises substantially
fore the rotation frequency can change by a signific
amount.

Nevertheless, it is interesting to consider the sign ofv̇.
Eliminating Ṫ yields the relation

v̇5
cn2@N~Vc22v!/~Vc2v!#~1/n!]p/]T

cn~]L/]v!T
L̇. ~178!

The coefficient ofL̇ is simply ]v/]L)E , as can be seen b
taking the time derivative ofv5v@L,T(L,E)# holding E
constant. Thermodynamic inequalities~81! and ~83! insure
that ]v/]L)T<0 and that](v/T)/]L)E<0, but ]v/]L)E

can be either positive or negative.
For simplicity we evaluate the coefficient in the limit o

weak correlation. Forcn53Nk/2 andp5nkT the coefficient
reduces to

]v

]L D
E

5
Vc1v

3~Vc2v!~]L/]v!T
,0. ~179!

Since L̇ is positive,v̇ is negative. The static field error re
duces the rotation frequency as it did when the cooling la
was on. However, suppose that the plasma has cooled to
point where all of the charges are in the lowest Landau le
~i.e., kT!\Vc!. In this case, a quantum mechanical expr
sion for FOCP must be used and the expression forcn is
modified. Only one degree of freedom per particle part
pates in the thermal motion, so the specific heat iscn

5Nk/2. The pressure is still given byp5nkT. Substituting
into Eq. ~179! yields the coefficient

]v

]L D
E

52
~Vc23v!

~Vc2v!~]L/]v!T
, ~180!

which is positive forv,Vc/3. Surprisingly, the torque du
to the static field error increases the rotation frequency.
course, the accompanying heating rapidly raises the part
out of the lowest Landau level, and then the rotation f
quency begins to decrease.

C. Temperature and frequency stability

Often there is a competition between various effects.
example, radiation pressure from a laser exerts a torque
compensates the torque from collisions with neutrals or
teraction with field errors. Also, cyclotron radiation or las
cooling may balance various heating effects. We search
stable stationary states, that is, states for whichṪ5v̇50 and
for which small deviations from equilibrium,dv anddT, are
damped. As we will see, the issue of stability is importa
Instabilities are observed when a parameterx j characterizing
an applied torque or cooling process is slowly varied and
equilibrium location evolves in (v,T) space. When the loca
tion enters an unstable region, eitherv or T ~or both! can
vary rapidly ~‘‘jump’’ ! across the region to the next stab
equilibrium.

Suppose thatĖ(v,T) and L̇(v,T) are known functions
and that (v8,T8) is an equilibrium point whereĖ5L̇50
and, therefore, whereṪ5v̇50. To investigate stability nea
-
t

er
the
el
-

-

f
es
-

r
at
-

or

.

e

this point, we setdv5v2v8 and dT5T2T8, linearize
Eqs.~174! and~175! with respect todv anddT, and assume
that these quantities vary in time asent. The result is

Fcnn2
]Ė

]TD
v

2v
]L̇

]TD
v
GdT5Fv

]L̇

]v
D

T

1
]Ė

]v
D

T
Gdv,

~181!

F ]L

]v D
T

n2
]L̇

]v
D

T
Gdv5F ]L̇

]TD
v

2anGdT, ~182!

where

a5
N~Vc22v!

v~Vc2v!

1

n

]p

]T
. ~183!

Setting the determinant of the coefficients equal to z
yields a quadratic equation forn :

an21bn1c50, ~184!

where

a5cn

]L

]v D
T

, ~185!

b5H 2
]L̇

]v
D

T

cn2
]L

]v D
T
Fv

]L̇

]TD
v

1
]Ė

]TD
v
G

1aFv
]L̇

]v
D

T

1
]Ė

]v
D

T
G J , ~186!

c5
]L̇

]v
D

T

]Ė

]TD
v

2
]L̇

]TD
v

]Ė

]v
D

T

. ~187!

The two solutions to Eq.~184! are

n5
2b6Ab224ac

2a
, ~188!

and stability requires Re(n)<0 for both solutions. Inequali-
ties ~75! and ~81! imply that a<0, so stability requiresb
,0 andc,0.

As a simple example, consider the case where the an
lar momentum may be considered constant on the time s
required for significant changes in the energy. SettingL̇50
in Eqs.~186! and ~187! yields c50 and

b52
]L

]v D
T

]Ė

]TD
v

1
]L

]TD
v

]Ė

]v
D

T

52
]L

]v D
T

]Ė

]TD
L

. ~189!

The nonzero root isn52b/a, which is stable forb,0, or
]Ė/]T)L,0 since ]L/]v)T,0. Temperature fluctuation
about the equilibrium are damped for]Ė/]T)L,0, since a
positivedT leads to a negativedĖ5]Ė/]T)LdT, which re-
stores the equilibrium. From Eq.~173! one can see that th
fluctuationsdT anddv are coupled and vary in such a wa
that 05dL5]L/]v)Tdv1]L/]T)vdT.

Of course, for this case of constantL, it is simpler to
replace evolution equations~174! and ~175! with cnṪ
5Ė(T,L) and L(v,T)5constant. This separates out th
temperature evolution at the outset and the stability res
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follow trivially from the Taylor expansions: cndṪ
5]Ė/]T)LdT and 05]L/]v)Tdv1]L/]T)dT.

As an illustration, we suppose that a plasma of partia
ionized atoms is heated by some ambient process at the
Ėa(T,L) and laser cooled at the rate37

Ėl5
NIs0

\v l
E

2`

1` dvz~\klvz12R!exp@2vz
2/u2#

@11~v l2v082klvz!
2~4/g0

2!#Apu
,

~190!

whereI , v l , andkl5v l /c are the intensity, frequency, an
wave number of the laser light. The laser light is assume
be directed along the trap magnetic field and the intensit
be uniform over the cross section of the plasma. In this c
the laser light does not exert a torque on the plasma, and
cooling rate does not depend on the plasma rotation
quency. The laser frequency is tuned near to but sligh
lower than an electric dipole transition of the partially io
ized atoms that constitute the plasma. The transition is c
acterized by the cross section at resonances0 , the frequency
v0/2p, and the line widthg0 . We definev085v01R/\
whereR5(\kl)

2/2mi . The distribution of ion-velocities par
allel to B is Maxwellian with thermal spreadu5A2T/mi .

We define the thermal Doppler widthvD5klu, and for
simplicity work in the limit whereg0 , R/\!vD . Equation
~190! then reduces to the form

Ėl5
NIs0

\v l

Apg0

2

\~v l2v0!

vD
e2~v l2v0!2/vD

2
. ~191!

From this form one can see thatĖl can be negative and
substantial only ifv l2v0 is negative butuv l2v0u is not too
large compared tovD .

In Fig. 7, the solid curve is a plot ofĖl versusvD
2 /(v l

2v0)
2}T. The dashed and dotted curves are plots

Ėa(T,L) and 2Ėa(T,L), respectively, assumed here to

FIG. 7. A construction used to determine temperature equilibria and st
ity. The solid curve is a plot of the laser cooling rateĖl(T,L) versus
vD

2 /(v l2v0)2}T, assuming that the angular momentumL is constant on
the time scale of interest. The dashed curve is an ambient heating
Ėa(T,L), assumed constant for simplicity, and the dotted curve is2Ėa .
PointsA andB are equilibria sinceĖl1Ėa50 at these points. Equilibrium
A is stable since]Ėl /]T)L1]Ėa /]T)L,0; whereas,B is unstable since
]Ėl /]T)L1]Ė/]T)L.0.
y
ate

to
to
e,
he
e-
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constant for simplicity. The intersectionsA andB are equi-
librium points whereĖl1Ėa50. Point A is stable since
]Ėl /]T)L1]Ėa /]T)L,0 and point B is unstable since
]Ėl /]T)L1]Ė0 /]T)L.0. From the evolution equationcnṪ
5Ėl1Ėa , one can see that the temperature will evolve
point A if it is started off at any point to the left ofB. When
started off at any point to the right ofB, the temperature
increases indefinitely.

In experiments,37 the temperature for a plasma in stab
equilibrium A is gradually reduced by slowly decreasin
uv l2v0u. One can see from Eq.~191! that vD tracks uv l

2v0u. If the slow decrease inuv l2v0u is made through
increments, one must be careful not to leave the tempera
to the right of pointB after the increment, that is, the incre
ments should be smaller thanO(vD). This can be restrictive
for small vD . Of course, for sufficiently smallvD , expres-
sion ~191! does not accurately represent integral~190!.

As another example where the stability criterion is ea
to understand physically, consider the case where there
strongly stable mechanism for temperature control, that
(]Ė/]T)v is negative and substantially larger in magnitu
than the other terms to which it is compared in Eqs.~186!
and ~187!. The solution for the plus sign,

n15
]Ė

]TD
v

Y cṅ , ~192!

]L

]v D
T

dv1
]L

]TD
v

dT50, ~193!

describes strongly damped temperature and frequency
tuations that conserve the angular momentum. In effect,
is the solution that we considered in the previous exam
The solution for the minus sign,

n25
]L̇/]v)T

]L/]v)T
, ~194!

dT.0, dvÞ0, ~195!

describes weakly damped or growing (un2u!un1u) fre-
quency fluctuations that are decoupled from the tempera
fluctuations. Since ]L/]v)T,0 stability requires that
]L̇/]v)T.0. This result is well known from the analysis o
induction electric motors as the condition for frequency s
bility; recall, here, that2v is the frequency of rotation.

Again, the analysis can be simplified at the outset
noting that the temperature is effectively fixed. The time d
rivative of L(v,T), holding T fixed, yields the evolution
equationv̇]L/]v)T5L̇(v,T), and Taylor expansion abou
the equilibrium yields solution~194!.

As a specific illustration, we suppose that two las
beams act on the plasma. The first is an intense cooling b
that is directed alongB and provides strongly stable temper
ture control, that is, provides a large and negative]Ė/]T)v .
This beam effectively fixesT at some low value, but doe
not exert a torque. The second is a narrow beam tha
directed transverse toB and passes through the plasma a
distanced from the axis. The direction of propagation is
the same sense as the plasma rotation; so the torque d

il-

te,
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the radiation pressure can balance an ambient torque,
due to a static field error. Of course, the ambient torq
opposes the rotation. The second beam can heat or coo
plasma depending on how frequencies are adjusted.

For the simple case whereg0 , R/\!vD , the torque is
given by38

L̇ l.
2Is0Apg0

\v l2vD
n̄x~T,v,d!a\klde2~v l2v02kldv!2/vD

2
,

~196!

wherea is the cross-sectional area of the narrow laser be
and

n̄x~T,v,d!5E d3rd~y2d!d~z!n~r ,v,T! ~197!

is the line integral of the plasma density along the beam
writing Eq. ~196!, we used the fact that thex component of
the plasma rotation velocity is given byx̂•vr'û
5vr'cosu5vd all along the beam.

In essence, this is the kind of laser system that was u
to generate the experimental points in Fig. 5, where
plasma rotation frequency was varied through the full ran
of allowed values.2 A slight complication is that there wer
two cooling beams and neither was directed parallel toB.
However, both beams passed through the center of
plasma and provided strong cooling, as given by Eq.~190!,
with very small torque. The dominant torque was provid
by an off-axis transverse beam of the kind assumed in
~196!. Further results from this experiment can be und
stood from the criterion for frequency stability. Figure
shows a plot of the plasma rotation frequency versus
frequency of the torque laser. Interestingly, the functionv
5v(v l) exhibits hysteresis behavior, with different valu
of v obtained for the same value ofv l depending on whethe
v l is slowly increasing or slowly decreasing. It is this beha
ior that we will try to understand.

The condition for frequency equilibrium is that the las
torque just balance the ambient torque

L̇ l~v,v i !1L̇a~v!50, ~198!

FIG. 8. Observed plasma rotation frequency versus frequency of to
laser. First the laser frequency was gradually increased then graduall
creased, and the arrows indicate the direction of evolution when the pla
rotation frequency was measured. The interesting feature is the hyste
loop. This result is from Heinzenet al. ~Ref. 2!.
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and the condition for frequency stability is that

]L̇ l

]v
1

]L̇a

]v
.0. ~199!

Dependence onT ~or vD! is not denoted since we assum
that the intense cooling laser effectively fixes the value ofT.

The experiments2 suggest that the ambient torque is d
to a field error~tilt in the magnetic field relative to the axis o
the cylindrical electrode structure! and that the ambien
torque becomes large~exhibits a resonance! near a particular
value of the plasma rotation frequency (v5v* ). At this
frequency, a tilt mode, which rotates backwards on the ro
ing plasma, has zero frequency in the laboratory frame an
driven secularly by the static field error. The amplitude
this mode presumably is limited by viscous effects, whi
also set the frequency width of the resonance. The s
curve in the upper half of Fig. 9 is a sketch of an ambie
torque L̇a(v) with a resonance peak atv5v* , and the
dashed curve in the lower half is2L̇a(v), which is intro-
duced for construction purposes. The three solid curve
the lower half of the figure are plots ofL̇ l(v,v l) as given by
Eq. ~196! for three values ofv l ~i.e., v lA,v lB,v lC!. To
avoid confusion, the full Maxwellian is drawn only for curv
A.

Each intersection of a solid curve with the dashed cu
is an equilibrium point, that is, a solution of Eq.~198!. For
curveA, one can see graphically that equilibrium 1 is stab
that is, that ]L̇ l /]v1]L̇a /]v.0. Recall, here, that the
dashed curve is2L̇a(v). This equilibrium is indicated by
point 1 in Fig. 8. When the laser frequency is increased

ue
e-
a

sis

FIG. 9. A construction used to determine frequency equilibria and stab
when the temperature is fixed. The solid curve in the upper half of the fig
is a plot of an ambient torqueL̇a(v) assumed to have a resonance peak, a
the dashed curve in the lower half is its negative2L̇a(v). The three solid
curves in the lower half of the figure are plots of a laser torqueL̇ l(v,v l) for
three values ofv l ~i.e., v lA,v lB,v lC!. Each intersection of the dashe
curve with a solid curve is an equilibrium, whereL̇ l(v,v l)1L̇a(v)50.
Equilibria 1, 2, 3, 4, and 5 are stable since]L̇ l /]v1]L̇a /]v.0; whereas,
28 is unstable since]L̇ l /]v1]L̇a /]v,0. The equilibria are realized se
quentially whenv l is first increased and then decreased, and this gives
to the hysteresis loop in Fig. 8.
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v lB , equilibrium 1 evolves to equilibrium 2, which also
stable. Here the equilibrium point is climbing the resonan
peak, so an increase inv l produces relatively little change i
v; see point 2 in Fig. 8. CurveB has two other equilibria;
one can see graphically that 28 is unstable and 5 is stable
When the laser frequency is increased tov lC , the equilib-
rium evolves to point 3, which is on the edge of the stabil
boundary. A slight increase inv l produces instability, and
the equilibrium jumps to equilibrium 4, the next stable eq
librium. This jump produces the nearly vertical section
→4) of the curve in Fig. 8. For further increase inv l , v
simply tracksv l as before the resonance. When the proc
is reversed by decreasingv l , only a small jump is encoun
tered. Note that for decreasingv l , equilibrium 4 evolves
into equilibrium 5, which is stable. For a sufficiently narro
resonance the small jump encountered for decreasingv l

would not be apparent in Fig. 8.

VII. ADDITIONAL CONSTANTS OF THE MOTION

For particular confinement configurations, the plas
dynamics is characterized by additional constants~or near
constants! of the motion. In a thermodynamic descriptio
these quantities become new thermodynamic variables,
as the original constants~E andL! become thermodynami
variables.

A. Center-of-mass motion for plasma confined in a
quadratic trap potential

As a first example, we consider a plasma that reside
a quadratic trap potential@see Eq.~16!# and is small com-
pared to the distance to the electrodes. We allow the ce
of mass of the plasma,Rcm5(R,Q,Z), to be displaced from
the bottom of the potential well but assume that the displa
ment is small compared to the distance to the electro
Image forces are then small~we assume negligible!, and the
center-of-mass motion decouples from the other degree
freedom.39 The total plasma energy and angular moment
of a single species plasma can be written as

Etotal5Ecm1E, ~200!

L total5Lcm1L, ~201!

where

Ecm5
Nm

2
~ Ż21R2Q̇21Ṙ2!1

Nm

2
vz

2S Z22
R2

2 D ~202!

and

Lcm5NmR2Q̇1
NeBR2

2c
~203!

are the center-of-mass energy and angular momentum aE
andL are the energy and angular momentum relative to
center of mass. In other words,E and L are obtained from
Eqs. ~2!–~5! by replacing the usual cylindrical coordinate
by cylindrical coordinates with an origin at the plasma cen
of mass and with az axis parallel to the trap axis, withou
changing the functional forms ofH, Pu , Au , or f trap. Ex-
cept for the use of coordinates and velocities relative to
center of mass,E and L are the same as the quantities th
e
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st
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ter

e-
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of

e
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e
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were calledE and L in the previous sections. Since th
center-of-mass motion decouples from the other degree
freedom,Etotal, L total, Ecm, andLcm are all conserved inde
pendently.

Furthermore, the center-of-mass motion parallel to
magnetic field decouples from the other two degrees of fr
dom for the center of mass, so there is another constan
the motion.39,17 By using the Hamilton–Jacobi equation,18

one can show that

Ecm5vzI z2vmLcm1v r I r , ~204!

where (I z ,Lcm,I r) are the three conserved actions associa
with the parallel motion, azimuthal~or magnetron! motion,
and radial motion of the center of mass. Herevz is the fre-
quency of the parallel motion of the center of mass, andv r

5AVc
222vz

2 is the frequency of the radial motion. Th
quantityvm5Vc/22A(Vc/2)22vz

2/2 is the magnetron fre-
quency, but, as is our custom for rotation frequencies, a
nus sign has been introduced so that2vm5]Ecm/]Lcm is
the rotation frequency associated with the angle varia
conjugate toLcm ~an azimuthal angle!. Here we have used
the fact thatEcm(I z ,Lcm,I r) is a Hamiltonian written in
terms of the canonical momenta (I z ,Lcm,I r). In relatingv r

to the effective cyclotron frequency, one must remember t
the radial oscillations are superimposed on the azimu
motion. The effective cyclotron frequency in the laborato
frame is vc5v r1vm5Vc/21A(Vc/2)22vz

2/2. Formally,
the parallel action is defined through the equationvzI z

5MŻ2/21Mvz
2Z2/2, and the angular momentumLcm is de-

fined in Eq.~203!, so Eq.~204! itself defines the actionI r .
An alternate discussion of these constants of the motion~us-
ing Newton’s second law, rather than the Hamilton–Jac
equation! can be found in the review article by Brown an
Gabrielse.17

Under ideal conditions,Etotal, L total, I z , Lcm, andI c are
all conserved exactly, but for a real plasma in a real t
these quantities evolve slowly in time. When the time sc
for this evolution is slow compared to the time for Coulom
collisions to bring the plasma particles into thermal equil
rium with each other, a thermodynamic description mak
sense. One should picture here a spheroidal plasma that
thermal equilibrium in terms of its coordinates and velocit
relative to the center of mass, but for which the center
mass is undergoing parallel, magnetron, and cyclotron m
tion.

The center-of-mass motion involves only three degr
of freedom and, consequently, makes negligible contri
tions to the entropy, that is,Stotal5S. HereS5S(E,L) is the
entropy of a plasma at rest with energyE and angular mo-
mentumL, that is,S(E,L) is the same entropy function tha
we considered previously. Combining the equationTdStotal

5TdSwith Eqs.~47!, ~200!, ~201!, and~204! yields the total
differential

TdStotal5dEtotal1vdLtotal2vzdIz1~vm2v!dLcm

2v rdIr , ~205!

where we have assumed that the trap parameters and pa
number are held fixed~i.e., dvz5dB5dN50!. The rotation
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frequency v5T]S/]L)E5T]Stotal/]L total)Etotal ,I z ,Lcm,I r
has

the same interpretation as in previous sections: it is the
quency at which the plasma rotates about the center of m
as seen from an inertial frame of reference. The total diff
entials for other thermodynamic potentials~e.g., F total

5Etotal2StotalT! are obtained by making Legendre transfo
mations.

As a simple application of Eq.~205!, suppose that weak
anharmonicity in the trap potential leads to slow change
I z , I m , and I r through weak coupling of the center-of-ma
motion to the many other degrees of freedom. The anhar
nicity does not break the cylindrical symmetry of the trap,
bothL total andEtotal are constant on the time scale of intere
Thus Eq.~205! plus the second law implies that

0<TdStotal52vzdIz2~v2vm!dLcm2v rdIr . ~206!

This is a constraint on the direction of evolution in the spa
of the actions (I z ,Lcm,I r). The evolution is such as to reduc
the center-of-mass energy as viewed in the rotating fram
the plasma@i.e., dEcm/dt1vdLcm/dt<0#. The other de-
grees of freedom impose a kind of ‘‘friction’’ on the cente
of-mass motion.

B. m 51 diocotron motion of a long, thin plasma in a
cylindrical trap

As another example, we consider a long, thin plas
that undergoesm51 diocotron motion in a trap of the form
shown in Fig. 1. The plasma radius and length are assu
to be ordered asRp!Rw! l p , whereRw is the radius of the
cylindrical wall. The cyclotron frequency is assumed to
sufficiently large~i.e., vp!Vc! that the center-of-mass mo
tion transverse to the magnetic field separates cleanly
drift and cyclotron motion. We suppose that external pert
bations of the plasma are slow compared toVc , so only the
drift motion is excited. In particular, when the plasma
displaced off the axis of the cylindrical trap, the plasma e
periences an electric field due to its image in the wall a
undergoesE3B drift motion around the center of the trap
This motion of the plasma center of mass is called diocot
motion; it is similar to the magnetron motion discuss
above, except that here the electric field causing the dri
an image field, rather than the trap field.

We assume that displacement of the center of mass
axis is small compared to the distance to the wall~i.e., R
!Rw!. This together with the orderingRp!Rw implies that
the image field is nearly uniform over the cross section of
plasma. The drift motion then translates the plasma a
whole with very little distortion, so the plasma can come t
state of thermal equilibrium~or near equilibrium! centered
on the moving center of mass.

The extra energy associated with the displacement is
electrostatic energy of interaction with the image40

Ecm5
~Ne!2

l p
lnS 12

R2

Rw
2 D . ~207!
e-
ss,
r-

in
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The kinetic energy associated with the center-of-mass
tion is negligible in the drift approximation. Likewise, th
canonical angular momentum is dominated by the vector
tential contribution

Lcm5
NeB

2c
R2. ~208!

By combining these two equations we obtainEcm(Lcm),
which can be thought of as the Hamiltonian for the cent
of-mass motion.40 Thus the center of mass moves around
center of the trap with the angular frequency

vD~R!52Q̇52
]Ecm

]Lcm
5

2Nec

l pBRw
2

1

~12R2/Rw
2 !

. ~209!

In the limit where R/Rw→0, this is the well-known fre-
quency of them51 diocotron mode, and the finiteR2/Rw

2

correction is simply the nonlinear frequency shift.
To develop a thermodynamic description, we again u

the equations

Etotal5Ecm1E, ~210!

L total5Lcm1L, ~211!

Stotal5S~E,L !. ~212!

Equation~47! then implies the total differential

TdStotal5dEtotal1vdLtotal1~vD2v!dLcm. ~213!

There is an effect called rotational pumping41,42 that
weakly couples the center-of-mass motion to the other
grees of freedom while conserving the total energy and
gular momentum. SettingdEtotal5dLtotal50 in Eq.~213! and
using the second law yields the result

0<TdStotal5~vD2v!dLcm. ~214!

WhenR/Rw!1 Eq. ~209! implies thatvD equals theE3B
rotation frequency due to the plasma space charge, meas
at the wall. Sincev is greater than or equal to theE3B
rotation frequency measured in the plasma~due to the addi-
tion of the diamagnetic drift! and the electric field in the
plasma is greater than the field at the wall, (vD2v) must be
negative whenR/Rw!1. It then follows from Eq.~214! that
dLcm5(eB/c)RdR is negative, that is, that the plasm
moves back toward the center of the trap. SettingdLtotal50
in Eq. ~211! then implies that 0<dL.m(Vc/2)Nd^r 2&, that
is, that the plasma expands in radius.

To make further progress, we must specify the mec
nism of rotational pumping in more detail. Consider
plasma that has been displaced off axis. Relative to an
through the plasma center of mass, the end confinement
tentials are azimuthally asymmetric.~Of course, these poten
tials are still symmetric relative to the trap axis.! As a plasma
filled flux tube rotates about the plasma axis, the tube
alternately compressed and expanded in length. This r
tional pumping alternately increases and decreasesTi , the
temperature for velocity components parallel toBz. How-
ever, collisions constantly try to maintain equipartition b
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tweenTi andT' , so there is dissipation of electrostatic e
ergy into heat. A simple estimate for the case where
Debye length is small yields the heating rate

3

2
NkṪ5n i ,'NkTk2S RpR

l pRw
D 2

, ~215!

where n i ,' is the collisional equipartition rate andk is a
numerical constant of order unity.41,42

Given this heating rate, thermodynamics can be use
determine the rate of plasma evolution@e.g.,Ṙ andv̇#. Since
rotational pumping conserves the total energy and ang
momentum, Eqs.~208!–~211! imply that

05Ėtotal5Ė2vDmVcNRṘ, ~216!

05L̇ total5L̇1mVcNRṘ. ~217!

Also, Ė and L̇ are still related toṪ andv̇ through evolution
equations~174! and ~175!, which for the case of weak cor
relation and low rotation frequency~i.e., v!vc! reduce to
the simple form

3

2
NkṪ5vL̇1Ė, ~218!

v̇
]L

]v
v5vL̇2NkṪ. ~219!

Combining Eqs.~216!–~218! yields the relation

3

2
NkṪ5~vD2v!mVcNRṘ, ~220!

and then using heating rate~215! to evaluateṪ provides the
rate at which the plasma center of mass moves back tow
the axis of the trap

Ṙ

R
[2g52

n i ,'kTk2Rp
2

mVc~v2vD!l p
2Rw

2 . ~221!

SinceR(t) can be thought of as the amplitude of anm51
diocotron mode that is excited on the plasma,g is the mode
damping decrement due to rotational pumping.41,42Substitut-
ing L̇.m(Vc/2)Nd^r 2&/dt into Eq. ~217! yields an expres-
sion for the plasma expansion rate

d^r 2&
dt

52gR2, ~222!

and combining Eqs.~141! and~217!–~221! yields the evolu-
tion rate of the plasma rotation frequency

v̇

v
52S 4

3
1

8

3

vD

v D R2

Rp
2 g. ~223!

A comparison between Eqs.~222! and~223! illustrates a
subtle point concerning the approximations used here. F
the relationsvp

2.2vVc andN5pnRp
2l p we obtain

Ṙp

Rp
52

1

2

ṅ

n
52

1

2

v̇

v
, ~224!
e

to

ar

rd

m

which would contradict Eq.~222! if we set d^r 2&/dt
5RpṘp . However, by referring to Eq.~148! and noting that
^r 2& (0)5Rp

2/2, one can see that

d

dt
^r 2&5RpṘp1

d

dt

kT

pne2 . ~225!

By usingṅ/n5v̇/v and Eqs.~220! and~223! to evaluate the
second turn on the right-hand side, Eqs.~225! and~224! are
seen to be consistent.

The mode damping rate~221! and expansion rate~222!
were derived earlier from a transport perspective,41 before
any connection to thermodynamics was realized. Also,
rates were found to be in good agreement with experimen42

In particular the temperature dependence ofg(T), which is
the same as that of heating rate~215!, was checked over
several decades variation inT.

Interestingly,g(T) is an increasing function ofT for low
T, which is the kind of temperature dependence in a hea
rate that can give rise to a temperature instability@see Eq.
~189!#. Qualitatively, the temperature dependence is eas
understand. For largeT, n i ,'T}T21/2 is a decreasing func
tion. However, for a temperature sufficiently low th
AkT/m/Vc5r c!b5e2/kT, the cyclotron adiabatic invari-
ant constrains the collisional dynamics andn i ,' becomes ex-
ponentially small.43 Thusg(T) is an increasing function for
low T reaching a peak near the temperature wherer c5b.

The temperature instability has been used to explai
limit cycle behavior that is observed withm51 diocotron
modes.13 Figure 10 shows the observed amplitude of t
mode and plasma radius versus time for an elapsed tim
300 s, which is about a million periods of the basic diocotr
motion. The sawtooth oscillations of the mode amplitude i
manifestation of the limit cycle.

In the experiments, the diocotron mode is made unsta
to the resistive wall instability by inserting resistors betwe
azimuthally separated sections of the conducting wall. Th
is a competition between resistive growth of the mode a
damping due to rotational pumping. Likewise, the tempe

FIG. 10. Measured evolution of the plasma radiusRp and displacement
off-axis R ~both scaled by the wall radiusRw!. Taken from Cluggishet al.
~Ref. 13!.
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ture evolution involves a competition between rotation
pumping, which transforms electrostatic energy into heat
cooling due to cyclotron radiation.

The resistors change the total angular momentum at
rate

L̇ total52bLcm52b
mVc

2
NR2, ~226!

whereb is a constant determined by the wall impedance13

Likewise, the resistors change the total energy at the
(]Ecm/]Lcm)2bLcm52vD2bLcm. Also taking into ac-
count the energy loss by cyclotron radiation yields the ra

Ėtotal522bvD

mVc

2
NR22

3

2
Nk

~T2Tw!

t rad
, ~227!

wheret rad is the radiative rate andTw is the temperature o
the wall. The cyclotron radiation makes negligible change
the angular momentum; for a single photon,dL5\ anddE
5\Vc sovdL/dE5v/Vc!1. For the conditions of the ex
periment,b.0.1 s21 andt rad.0.29 s.

Also, we know the rate at which rotational pumping a
cyclotron radiation change the plasma temperature. F
heating rate~215! and the definition ofg in Eq. ~221!, we
obtain

3

2
NkṪ52g~v2vD!

mVc

2
NR22

3

2
Nk

~T2Tw!

t rad
.

~228!

Equations~208!–~211! and ~218! imply that

Ėtotal1vL̇ total5
3

2
NkṪ1~v2vD!mVcNRṘ. ~229!

Using Eqs.~226!, ~227!, and ~228! to replaceĖtotal, L̇ total,
and Ṫ then yields the result

Ṙ5~b2g!R, ~230!

whereg5g(T,Rp) is given in Eq.~221!. Using this result
together with Eqs.~221! and~226! yields the expansion rat

d

dt
^r 2&52gR2, ~231!

or its integral equivalent

^r 2&~ t !5^r 2&~0!1E
0

6

2gR2dt. ~232!

If the cyclotron radiation maintains the temperature at a s
ficiently low level ~i.e., lD!Rp!, then we can approximat
^r 2&(t) by ^r 2& (0)(t)5Rp

2(t)/2 in this last relation. Further
more, the evolution ofRp is related to the evolution of the
rotation frequency through Eq.~224!.

Equations ~228!, ~230!, and ~232! are three coupled
equations that determine the evolution ofT, R, and Rp .
These equations were obtained earlier, but not put in a t
modynamics context. Numerical integration and analyti
analysis of the equations show that they explain the li
cycle behavior exhibited in Fig. 10.13

To understand the importance of the temperature in
bility in this behavior, we first note that for sufficiently sma
l
d

e

te

n

m

f-

r-
l

it

a-

R, Eq. ~232! describes a very gradual monotonic increase
Rp(t). This gradual increase can be seen in Fig. 10. Ove
single cycle, we can treatRp(t) as constant and conside
only the coupling betweenT andR through Eqs.~228! and
~230!.

Following the previous analysis, we write these equ
tions as

d

dt
T5g~T!R22

T

t rad
, ~233!

d

dt
R252@b2g~T!#R2, ~234!

where

T5
3k

2
~T2Tw! ~235!

and

R252~v2vD!
mVc

2
R2. ~236!

Note thatv is constant for constantRp and vD is constant
for sufficiently smallR.

For the conditions of the experiment~i.e., bt rad!1!, the
intrinsic evolution ofT is much faster than the evolution o
R, so for most of the timeT has relaxed to an equilibrium
T* (R) determined by

05g~T* !R22
T*

t rad
. ~237!

This temperature equilibrium is stable provided that

dg

dT*
R22

1

t rad
<0. ~238!

However, asR continues to evolve, a stability boundary
reached wheredg/dT* 21/t rad passes through zero.T then
evolves rapidly~jumps! to the next stable region. During thi
rapid evolution, the change inR is negligible.

FIG. 11. Changes inR andT during a limit cycle. The cooling rate~dashed
curve! depends only onT. The heating rate depends on bothT andR; the
solid curves show the heating rate at the maximum and minimum value
R during the limit cycle. Taken from Cluggishet al. ~Ref. 13!.
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A limit cycle @sawtooth oscillation in Fig. 10# is illus-
trated in Fig. 11. The two solid curves are plots ofg(T)R2

versusT for R5Rmax ~top of sawtooth! and R5Rmin ~bot-
tom of sawtooth!, and the dashed curve is simplyT/t rad.
The cycle starts at pointA, where bothT and R take their
minimum values. At this point, inequality~238! is satisfied
so T is in a stable equilibrium. However,b is larger than
g~T! so R grows. The equilibrium temperatureT5T* (R)
tracks the growth ofR according to Eq.~237!. During this
phase, the system evolves to pointB whereR5Rmax. At this
point, the temperature becomes unstable and evolves ra
up to pointC, the next stable equilibrium. The value ofR
does not change significantly during this phase of the ev
tion, that is,R5Rmax for both pointB and pointC. Now
g~T! is larger thanb, soR begins to decrease, and again t
stable temperature equilibriumT5T* (R) tracks the de-
crease according to Eq.~237!. During this phase the system
evolves to pointD, whereR5Rmin . Here the temperature
becomes unstable and evolves rapidly to the next stable e
librium at pointA, and that completes the cycle.

VIII. CONCLUSIONS

Plasmas that consist exclusively of particles with
single sign of charge can be confined by static electric
magnetic fields~in a Penning trap! and also be in a state o
global thermal equilibrium. The possibility of using the pow
erful techniques of thermal equilibrium statistical mechan
to describe the plasma state is a huge advantage. G
solves the complicated many body physics problem for
We began this paper with a brief review of the conditions
and structure of the thermal equilibrium states. The int
ested reader can find a more detailed description of th
states, including a discussion of microscopic order and
phase transitions, in the new review article: ‘‘Nonneut
plasmas, liquids, and crystals~The thermal equilibrium
states!.’’ 5

Next we developed a thermodynamic theory of t
trapped plasmas. The main advantage of such a theory is
it provides a large reduction in the level of complexity r
quired to specify the plasma state. Without loss of genera
the state is specified by any complete set of thermodyna
variables~a few numbers!. The theory provides many gen
eral relations~Maxwell relations! between partial derivative
of the thermodynamic variables with respect to one anot
Thermodynamic inequalities place useful and general bou
on certain partial derivatives. General and relatively sim
expressions are provided for fluctuations in the values of
thermodynamic variables. Often plasmas are made to ev
through a sequence of thermal equilibrium states by the s
addition ~or subtraction! of energy and angular momentum
for example, through the interaction with neutrals or delib
ately applied laser beams. A thermodynamic approach
vides a simple description of such evolution through t
coupled ordinary differential equations for the time depe
dence of the plasma temperature and rotation freque
These equations provide a theoretical basis for the late
dynamical control of trapped plasmas. Finally, for certa
special situations, there are extra constants of motion ass
dly
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ated with the plasma center-of-mass motion, and these e
the theory as additional thermodynamic variables. As
simple application, this extended theory was used to desc
a limit cycle behavior observed with pure electron plasm

In general, this whole subject is very large, and there
much room~and need! for future work. For example, only a
few of the hundreds of Maxwell relations have been e
plored. Only a reduced set of thermodynamic inequalit
was obtained, and only two of these@i.e., cL>0 and
]v/]L)T<0# were used in any serious way. The method
calculating fluctuations was illustrated with a couple of e
amples, but was not exploited, say, to discover new diagn
tics based on the measurement of fluctuations. Our w
should be thought of as simply a framework for future wo
Our hope is that the framework and the few applicatio
worked out will provide adequate guidance for other autho
particularly experimentalists, to develop the applicatio
they need.

We single out experimentalists here for special enco
agement because in other areas of research where therm
namics plays a prominent role~e.g., low-temperature con
densed matter physics! the experimentalists are often th
expert practitioners. For example, they use thermodynam
to guide ~or condition! their choice of measurement and
relate the measurement of one quantity to other quantitie
interest~through Maxwell relations!. A simple example from
transport illustrates how thermodynamics can help guide
choice of measurement. Suppose that a trapped plasm
slowly evolving ~through a sequence of thermal equilibriu
states! as a result of the interaction with a small static fie
error. Over the years, the non-neutral plasma community
investigated the influence of such a field asymmetry by m
suring various quantities: the time required for the plas
radius to double, the time for the central density to drop b
factor of 2, etc. However, a thermodynamic approach ma
it clear that the plasma evolution is controlled by the rate
change of the plasma energy and angular momentum~i.e., Ė
and L̇!. A static field asymmetry cannot change the plas
energy, so the only aspect of the field error that matters is
torque it applies on the plasma. The task of experiment i
measure the torque, and the task of theory is to calculate
torque. Simply by using a thermodynamic framework, w
are forced to focus on the important physical quantity.
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