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Abstract of the Dissertation

Ultracold Plasmas and Guiding Center Drift Atoms

by

Stanislav Gennadyevich Kuzmin

Doctor of Philosophy in Physics

University of California, San Diego, 2004

Professor Thomas O’Neil, Chairman

This thesis discusses theory questions suggested by recent experiments with

ultracold plasmas. In one class of experiments, ultracold plasmas are produced by

abruptly photoionizing small clouds of laser cooled atoms, adjusting the photon en-

ergy to barely exceed the ionization energy of the cooled atoms. The thesis presents

molecular dynamics simulation for the early time evolution of such plasmas. Con-

trary to earlier speculation, no evidence of strong electron-electron correlations

is observed in the simulations even if the initial value of the coupling parameter

(Γe = e2/akTe) is much larger than unity. As electron-electron correlations begin

to develop, the correlation energy is released to heat the electrons, raising the elec-

tron temperature to the point where Γe ∼ 1 and limiting further development of

correlation. Further heating of the electrons occurs as a by-product of three-body

recombination. When a model of laser cooling is added to the simulation, the

formation of strong ion-ion correlation is observed. Contrary to earlier suggestion,

the rate of three-body recombination is observed to be in reasonable agreement

with the traditional formula, R = 3.9×10−9 sec−1[n (cm−3)]2 [Te(
◦K)]−9/2, but care

xv



must be taken to use the correct temporally evolving temperature, Te.

Also, the thesis describes the novel dynamics of “guiding center drift atoms”.

The weakly bound and strongly magnetized antihydrogen atoms recently produced

in ultracold plasmas at CERN are examples of such atoms. The atoms are quasi-

classical, and the dynamics of the positron is well described by guiding center drift

theory. Because of a frequency ordering, the dynamics is integrable, and the thesis

characterizes the possible motions of the weakly bound positron-antiproton pair as

a function of constants of the motion. Quantum numbers are assigned using the

Bohr-Sommerfeld prescription. The thesis also discusses the center of mass motion

of the atoms in an electric and magnetic field. The effective electric field in the

moving frame of the atom polarizes the atom, and the gradients in the field give

rise to a force on the atom. An approximate equation of motion for the atom cen-

ter of mass is obtained by averaging over the rapid internal dynamics of the atom.

Experimentally relevant applications of the equation of motion are discussed. Fi-

nally, the critical field for ionization is determined as an upper bound on the range

of applicability of the theory.

xvi



Chapter 1

General introduction

1.1 Unmagnetized Ultracold Neutral Plasmas

Shortlived, neutral, ultracold plasmas have been produced in recent exper-

iments, and these novel plasmas suggest interesting theory questions. This thesis

addresses some of these questions.

In a first class of experiments, neutral ultracold plasmas were produced

by abruptly photoionizing a laser cooled cloud of atoms. The frequency of the

ionizing radiation was carefully adjusted so that the photon energy barely exceeded

the ionization potential of the atoms [1, 2, 3, 4]. In closely related experiments,

the photon energy was just below the ionization potential, so a gas of high-n

Rydberg atoms was produced [5], and a plasma resulted from a collisional ionization

cascade [6, 7, 8]. My co-authors an I focused on questions suggested by the first set

of experiments where the plasma state is produced directly. From the perspective

of a plasma physicist, these experiments have the advantage of a well defined initial

plasma state.

In an early publication [1], the experimental team suggested that the ul-

tralow initial temperature implies a state of strong interparticle correlation, but

we doubted this claim. Our reason is easy to understand physically. For a plasma

1
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in thermal equilibrium, the strength of correlation is determined by the coupling

parameter Γ = e2/akT , where a is the Wigner-Seitz radius (i.e., 4πa3n/3 = 1) [9].

For the maximum density and lowest electron and ion temperatures reported in

the experiments [i.e., n ≃ 2× 109 cm−3, Te ≃ 0.1 K, and Ti = 10 µK], the electron

coupling parameter has the value Γe ≃ 30, and the ion coupling parameter is much

larger. Thus, one might expect the low temperatures to lead to strong correlation.

However, the plasma is not created in a state of thermal equilibrium. Be-

fore photoionization, the neutral atoms are uncorrelated, so immediately after pho-

toionization ion-ion and electron-electron correlations are negligible. There may be

some electron-ion correlation that remains as an artifact of the ionization process,

but this is not a thermal equilibrium correlation. For example, there is no long

range order. The temperatures reported are measures of particle kinetic energy,

but do not imply the degree of correlation that would exist for a true thermal

equilibrium.

Thermal equilibrium correlations can develop only through the action of

Coulomb interactions as the plasma evolves. However, as the correlations begin

to develop, the correlation energy is released to the electron plasma as heat, and

this limits the strength of correlation reached. To reach a correlation strength

corresponding to Γe ≃ 1, each electron picks up thermal energy kTe ≃ e2/a. At

this point the coupling parameter has the value

Γe = e2/akTe ≃ (e2/a)/(e2/a) = 1,

so further development of correlation ceases. Even if the initial electron tempera-

ture were zero, corresponding formally to infinite Γe, strong correlation would not

develop.

Another way to understand the electron heating is to note that electrons are
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born in a spatially varying potential, and immediately begin to move downhill. A

typical electron picks up kinetic energy e2/a while moving an interparticle spacing,

a. The time scale for this initial heating is approximately a/
√
e2/ame ∼ ω−1

pe ,

where ωpe is the electron plasma frequency. Similarly, release of ion-ion correlation

energy heats the the ions and limits the development of ion-ion correlation. The

time scale for the ion heating is ω−1
pi , where ωpi is the ion plasma frequency.

The electron heating is the beginning of the collisional process by which

the plasma approaches a state of thermal equilibrium. For the low temperatures

of these plasmas the thermal equilibrium state is a recombined neutral gas. The

collisional cascade of electrons to deeper and deeper binding in the Coulomb wells

of ions is called three-body recombination [10]. In this process, the recombination

energy is carried off by a second electron (rather than a photon) and enters the

plasma as heat. For these plasmas, three-body recombination is very rapid–much

faster than radiative recombination.

In a classic paper, Mansbach and Keck [10] argued that three-body recom-

bination proceeds at the rate R = 3.9 ·10−9 s−1[n(cm−3)]2[Te(K)]−9/2, which is very

large at low temperatures. However it was suggested that the Mansbach and Keck

formula would not apply at the low temperatures of these plasmas [1]. Indeed, the

formula does fail for Γe = e2/(akTe) > 1, but we argue that rapid electron heating

raises Te to the point where Γe ∼ 1, and the formula applies at least approximately.

These ideas were corroborated by molecular dynamics simulations of the

plasma early time evolution. The simulations were challenging because it was

necessary to follow the recombination into weakly bound (high-n) Rydberg states,

and the time-scale for an electron in such a state is much shorter than that for a

typical electron. For the three-body process, the initial recombination is into states

where the binding energy is of order kTe. Since kTe is orders of magnitude less than
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the Rydberg energy, even after the rapid heating from release of the correlation

energy, a simulation based on classical dynamics is adequate.

In plasma simulations of this kind some authors have used two time scales:

one for particles with near neighbors and another for the remaining particles [11].

Another variant is to use piecewise analytic solutions for Kepler orbits. We pre-

fer a treatment that doesn’t make special assumptions about particles with near

neighbors, but seamlessly encompasses the continuum of time scales required.

Fortunately, such a treatment was developed previously in computational

studies of binary star formation in globular clusters. The binary stars are the

analogue of the high-n Rydberg atoms, and the cluster is the analogue of the

plasma cloud. Following a suggestion from Professor Julius Kuti, we have adapted

a code developed originally by Aarseth [12] for the study of binary star formation.

The code is a molecular dynamics simulation in the sense that the force

on a given particle from each of the other particles is calculated directly. Time

integration is effected with a predictor-corrector scheme using a fourth-order poly-

nomial fit to the orbit. The crucial feature is that the time step for each particle

is adjusted independently depending on such factors as the rate of change of the

acceleration. Thus, a bound electron can have a much shorter time step than a

typical electron without slowing down the whole simulation. To keep all of the

particles moving in near synchrony, the code advances next the time step for the

particle that is furthest behind in absolute time. To evaluate the force on this par-

ticle, the other particle positions are extrapolated back in time to exact synchrony

using the polynomial fit to the orbits.

As one would expect, there are interesting parallels between the dynam-

ics of these plasmas and the dynamics of globular clusters. Indeed, the heating

that occurs as a byproduct of three-body recombination is similar to the heating
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of clusters that accompanies the “hardening” of binary stars. Through collisional

interactions the binary stars become more deeply bound, and the liberated grav-

itational energy enters the cluster as heat. This heating mechanism is thought

to be crucial in the support of clusters against gravothermal contraction and core

collapse [13].

Our simulation exhibited the expected rapid heating, with Γe dropping

to order unity on a time scale of one electron plasma period. We examined the

electron-electron correlation function G(|~r1 − ~r2|, t) at various times t in the simu-

lation. Here, |~r1 − ~r2| is the electron-electron separation. Initially, the correlation

function was uniformly zero [i.e., G(|~r1 − ~r2|, t = 0) = 0] corresponding to ran-

domly distributed electrons. After a few electron plasma periods, the correlation

function fell to −1 for small separation but remained zero for larger separation.

The −1 value reflects the fact that it is energetically unfavorable for two electrons

to be near one another. The observed functional form for the correlation function

confirms the the absence of long range order, and is consistent with correlation

strength Γe ≃ 1. Long range order is manifested by the appearance of spatial

oscillations in G(|~r1 − ~r2|) for larger |~r1 − ~r2|, indicating the presence of a local

lattice. No such oscillations were observed.

The ion-ion correlation function evolved on the time scale of few ion plasma

periods. Again the correlation function started out flat and then relaxed to the

same form as the electron-electron correlation function. The absence of oscillations

in the correlation function indicates no long-range order and the value of correlation

parameter Γi ∼ 1.

After the initial rapid heating due to the release of correlation energy,

the electrons continued to heat but at much slower rate. This long-term slower

heating is associated with three-body recombination. As pairs recombine, they
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release binding energy and heat free electrons. Contrary to earlier suggestion, we

found that the rate of three-body recombination is in reasonable agreement with

the traditional formula. Since the initial release of correlation energy reduces the

value of Γe to unity or less, the traditional formula applies at least approximately.

We found that the rate observed in the simulations is two to three times smaller

than the rate predicted by traditional formula. Since the rate strongly depends

on temperature (proportional to T
−9/2
e ), care must be taken to use the correct

temporally evolving temperature Te.

An unexpected by-product of three-body recombination was the produc-

tion of suprathermal electrons that were ejected from the plasma. A close collision

of a free thermal electron with a tightly bound pair often results in a more deeply

bound pair and a free electron with kinetic energy of order the binding energy of

the pair. This can be much larger than the thermal energy. Likewise, in globular

clusters binaries “harden” by giving kinetic energy to other stars through colli-

sional interactions, sometimes ejecting stars at high velocity from the core of the

cluster [14].

Killian noted that both Strontium (Sr) atoms and Sr+ ions can be laser

cooled and suggested that a strongly correlated ion plasma might be achieved by

laser cooling the ions shortly after the plasma is produced [15]. We have explored

this interesting suggestion using simulations, and found such correlations.

Our results were published in a Physical Review Letter [16] and a longer

Physics of Plasmas paper [17]. Chapter 2 of the thesis is largely a reproduction

of the longer paper. Other authors using different analysis independently con-

cluded that the development of electron-electron correlations in these plasmas is

self-limiting [18, 19]. Heating of ions associated with the liberation of correlation

energy also was considered by Murillo [20]. However, he treats the electrons only
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as a dielectric fluid that Debye shields the interaction between the ions. His anal-

ysis focuses on the liberation of correlation energy for a system of Debye shielded

ions. Unfortunately, this approach misses the electron heating that dominates the

early stages of the evolution, and the electron temperature determines the degree

of shielding.

1.2 Guiding Center Atoms in Magnetized Ultra-

cold Plasmas

The ATHENA and ATRAP collaborations at CERN have produced cold

antihydrogen atoms by adding cold antiprotons to a cryogenic positron plasma in

a Penning trap configuration [21, 22]. The sudden mixing of two cryogenic species

is another way of producing an ultracold plasma. The ATHENA and ATRAP

experiments have been a rich source of theory questions at the interface between

plasma physics and atomic physics. Chapters 3 and 4 of this thesis focus on the

dynamics of the weakly bound and strongly magnetized atoms produced in the

experiments.

Three-body recombination is thought to be the dominant recombination

process in these experiments and to produce very weakly bound atoms. The

ATRAP collaboration measured atom binding energies in the range of a few meV [23],

and one expects that ATHENA also produced atoms with binding energy in this

range, although more deeply bound atoms may have been produced as well. Here,

we focus on the weakly bound atoms. The magnetic field strength for the ATHENA

and ATRAP experiments were three and five Tesla, respectively.

The weakly bound and strongly magnetized atoms are very different from

high-n Rydberg atoms with a Kepler orbit. More properly these weakly bound

and strongly magnetized pairs are called guiding center drift atoms [24, 25]. The
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characteristic cyclotron radius for the positron is much smaller than the separation

between the positron and the antiproton. Likewise, the cyclotron frequency for the

positron is much larger than the other dynamical frequencies for the atom. Under

these circumstances the rapid cyclotron motion may be averaged out, and the

dynamics of the positron treated by guiding center drift theory. The dynamics is

quasi-classical because the characteristic binding energy is much smaller than the

Rydberg energy (typically four orders of magnitude smaller).

Various motions for such a bound pair are possible. In a particular simple

motion, the positron executes rapid and localized cyclotron motion, more slowly

oscillates back and forth along the magnetic field in the Coulomb well of the an-

tiproton, and more slowly still ~E × ~B drifts around the antiproton. In another

type of motion, the positron ~E × ~B drifts in the field of the antiproton, and the

antiproton ~E × ~B drifts in the field of the positron, the two traveling across the

magnetic field in parallel. In a third type of motion, the antiproton executes a

large cyclotron orbit around the positron which is effectively pinned to the mag-

netic field. In Chapter 3, we characterize and classify these motions as a function

of the parameters and constants of the motion for the coupled positron-antiproton

system.

Fortunately, a frequency ordering makes the dynamics integrable. The

positron-antiproton system has six degrees of freedom so six constants of the mo-

tion are required for integrability. Four are exact constants: the Hamiltonian and

the three components of total momentum. The remaining two are approximate con-

stants (adiabatic invariants) that result from two frequency separations. Because

the positron cyclotron frequency is much larger than other dynamical frequencies

the cyclotron action is a good adiabatic invariant. Use of guiding center drift vari-

ables automatically takes this constant into account and removes the cyclotron
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motion from the problem. Because the frequency of field aligned oscillations is

much larger than the remaining dynamical frequencies (associated with cross field

motion) the action associated with the field aligned motion is a good adiabatic

invariant.

There has been much previous work on the coupled electron-ion system

in a strong magnetic field. A difficulty is that a true separation of the center

of mass motion (transverse to the magnetic field) and the internal motion is not

possible. However, Avron, Herbst, and Simon [26] found an effective separation

by introducing the transverse pseudomomentum and showing that it is a constant

of motion. The influence of the transverse center of mass motion on the internal

motion is then accounted for by a pseudopotential that depends on the eigenvalue

of the pseudomomentum. More recently this effective separation was applied to

the hydrogen atom [27] and positronium [28].

In our classical analysis, the transverse components of pseudomomentum

arise as two new momenta in a canonical transformation, and the pseudopotential

enters the transformed Hamiltonian. Our analysis differs from the previous work

in that the Hamiltonian is simplified by the use of the frequency separation. Intro-

duction of the cyclotron action and the action for the field aligned bounce motion

effectively averages the Hamiltonian over the rapid cyclotron and bounce motions,

removing two degrees of freedom at the outset.

In the language of atomic physics, a double Born-Oppenheimer approxima-

tion is used. The remaining transverse dynamics is always integrable, and a trans-

verse action can be introduced. Since the Hamiltonian is expressed as a function

of the cyclotron action, bounce action, and transverse action, a general expression

for the quantum energy levels can be obtained using the Bohr-Sommerfeld quanti-

zation rules. Of course the assumption of weak binding justifies the quasi-classical
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approximation – with the possible exception of the cyclotron motion, as will be

discussed.

Chapter 4 discusses the motion of these weakly bound atoms in the mag-

netic and electric field of the trap. Because the binding is so weak, even a modest

electric field produces a significant polarization of an atom. A gradient in the

field then exerts a force on the atom, causing acceleration. Typically, the atom is

moving across the magnetic field, and it is the effective electric field in the mov-

ing frame of the atom that causes the polarization and the acceleration. In the

laboratory frame, both electric and magnetic forces must be taken into account.

In the experiments, the magnetic field is nearly uniform and the electric

field varies by only a small amount over the dimensions of the atom. Also, the time

scale for the internal dynamics of the atom is short compared to the time scale

for the atom to move a significant distance. Taking advantage of these orderings,

we obtain an approximate equation of motion for the atom center of mass. The

only remnant of the atom internal dynamics that enters the equation of motion

is the polarizability. The approximate equation of motion provides a substantial

simplification because it averages over the rapid internal dynamics of the atom.

The analysis divides naturally into two parts: the derivation of the equa-

tion of motion and the calculation of the polarizability. We derive an approximate

equation of motion for the expectation value of the atom center of mass coordi-

nates, 〈~Rcm〉(t) ≡ 〈Ψ|~Rcm|Ψ〉. The derivation of the equation of motion depends

on the spatial and temporal orderings mentioned above but otherwise is general.

On the other hand, determination of the polarizability requires a more detailed

specification of the internal dynamics for the atom. We evaluate the polarizability

for the special case of guiding center drift atom [24].

As a simple application we use the approximate equation of motion to dis-
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cuss the radial trapping of weakly bound atoms in the large space charge field of a

long positron column. The geometry and field strengths used are characteristic of

the ATHENA experiments. Orbits from the approximate equation of motion are

shown to be in good agreement with those from lengthy numerical solutions of the

coupled positron-antiproton equations of motion. These latter solutions involve

over a million cycles of the internal atom dynamics. The comparison demonstrates

the fidelity of the approximate equation of motion and also the substantial simpli-

fication it provides in averaging out the rapid internal dynamics.

The solution shows that the weakly bound atom can be trapped radially in

the large electric field region near the edge of a long cylindrical positron column.

The reason for the trapping is easy to understand physically. For a uniform density

unneutralized column of positrons, the radial space charge field increases linearly

with radius inside the column and falls off inversely with radius outside the column.

Thus, there is a region of large field near the plasma edge, and polarizable material

(the atom) is attracted to a region of maximum field.

We will find that the polarization forces create a potential well of approx-

imate depth αE2, where α is the polarizability of the atom and E is the electric

field strength. In Gaussian units, the polarizability has the dimensions length

cubed, and the polarizability for an atom of size ra is of order α ∼ r3
a. Since the

binding energy for an atom is of order e2/ra, the depth of the well scales inversely

with the cube of the binding energy. Thus, the effects discussed here are more

pronounced for weakly bound atoms. Of course, a weakly bound atom suffers field

ionization from a relatively weak field. The critical field for ionization is approx-

imately E ∼ e/r2
a. Using this field strength as an upper bound for E shows that
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the maximum well depth is the binding energy of the atom:

αE2 = (α/r3
a)r

3
a

(
E

e/r2
a

)2(
e

r2
a

)2

.
e2

ra

For the example discussed in the last paragraph, radial trapping is possible only

when the atom binding energy is larger than the kinetic energy of the atom center

of mass.

The ATRAP collaboration uses field ionization as a diagnostic, and the

ionization region is some distance from the plasma. As a second application of

the approximate equation of motion, we determine trajectories followed by weakly

bound atoms in moving from the recombination region (inside the positron plasma)

to the field ionization region. Depending on the parameters, a straight line orbit

may or may not be a good approximation. We will see that the polarization

forces produce a significant deflection of the atom when the binding energy is

larger than the center of mass kinetic energy. Knowledge of the trajectories is an

important input to estimates of antihydrogen production rates based on solid angle

considerations.

We also calculated the critical electric field for ionization as a function of the

actions (or quantum numbers) that define the atomic state. The atom is assumed

to start in a low field region and to move into a region of gradually increasing

electric field. As the electric field rises, the binding energy of the atom does not

stay constant. However since the electric field experienced by the atom changes

by only a small amount on the time scale of the atom internal motion, the actions

characterizing the internal motion are good adiabatic invariants until just before

field ionization. Thus, the critical field for ionization can be predicted as a function

of the actions, or equivalently as a function of the atom state in the low field region.

This work is discussed in a published Physics of Plasmas paper [25], a pub-
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lished Physical Review Letter [29], and a submitted Physics of Plasmas paper [30].

Chapter 3 is largely a reproduction of the published Physics of Plasmas paper and

Chapter 4 a reproduction of the submitted Physics of Plasmas paper. Another

group [31] independently obtained some results on the internal motion and field

ionization of guiding center atoms, but their work was numerical and did not ex-

plicitly take advantage of the frequency ordering and adiabatic invariants exploited

here.



Chapter 2

Numerical Simulation of

Ultracold Plasmas

2.1 Abstract

In recent experiments ultracold plasmas were produced by photoionizing

small clouds of laser cooled atoms. This paper presents the results of molecular

dynamic simulations for the early time evolution of such plasmas. Contrary to ear-

lier speculation, no evidence of strong electron-electron correlations is observed in

the simulations even if the initial value of the coupling parameter (Γe = e2/akTe)

is much larger than unity. As electron-electron correlations begin to develop, the

correlation energy is released to heat the electrons, raising the electron tempera-

ture to the point where Γe ∼ 1 and limiting further development of correlation.

Further heating of the electrons occurs as a by-product of three-body recombina-

tion. When a model of laser cooling is added to the simulation, the formation

of strong ion-ion correlation is observed. Contrary to earlier suggestion, the rate

of three-body recombination is observed to be in reasonable agreement with the

traditional formula, R = 3.9×10−9 sec−1[n (cm−3)]2 [Te(
◦K)]−9/2, but care must be

taken to use the correct temporally evolving temperature, Te. The simulations are

challenging because it is necessary to follow three-body recombination into weakly

14
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bound (high n quasi-classical) Rydberg states, and the time scale for such states

is short compared to that for the plasma dynamics. This kind of problem was

faced earlier in computational astrophysics when studying binary star formation

in globular clusters and the simulation method used here is adapted from such

studies.

2.2 Introduction

In recent experiments [1, 2, 3, 4], ultracold neutral plasmas were produced

by abruptly photoionizing small clouds of laser cooled Xenon atoms, carefully ad-

justing the energy of the ionizing photons to barely exceed the ionization potential.

Electron temperatures as low as Te ≃ 0.1 K were reported. The ions inherited the

even lower temperature of the laser cooled atoms (Ti ≃ 10 mK). In closely related

experiments [6, 7, 8], the cooled atoms were photoexcited to high-n Rydberg states,

and an ultracold plasma resulted from collisional processes. Here, we focus on the

plasmas that were produced directly by photoionization, since the initial conditions

for the plasma state are well defined.

These novel plasmas present interesting challenges to theory. For example,

it has been suggested that the initial low temperature of the plasmas implies strong

correlation [1]. Also, there has been a worry that the traditional theory of three-

body recombination is not applicable at the low temperatures of the plasmas [1, 3].

In contrast, we argue here that rapid intrinsic heating of the electrons raises the

temperature to the point where strong correlation cannot develop and where the

traditional theory of three-body recombination is approximately correct. These

arguments are substantiated by molecular dynamics simulations of the early time

plasma evolution. We also simulate a proposed experiment [15] in which the ions

that result from photoionization are themselves laser cooled, and in this simulation
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strong ion-ion correlation is observed.

At the low temperatures of these plasmas, three-body recombination is very

rapid–much faster than radiative recombination [10]. Three-body recombination

proceeds through a sequence of collisions, with the recombination energy carried

off by an electron, rather than a photon. One can think of the process as the

collisional approach to a state of thermal equilibrium, which is a neutral gas.

The rate of three-body recombination is controlled by a kinetic bottle-

neck [10] at a binding energy of a few kTe, where k is the Boltzmann constant and

Te is the electron temperature. For binding energies above the bottleneck, sub-

sequent collisions typically re-ionize an electron-ion pair. However, occasionally

a collision leaves a bound pair with energy below the bottleneck. Then subse-

quent collisions produce a cascade to ever deeper binding. Thus, a pair can be

declared recombined when it passes below the bottleneck. The simulations follow

many bound pairs as they cascade to energies below the bottleneck. Since the

critical range of binding energies scales like kTe and since kTe is orders of magni-

tude smaller than the Rydberg energy, the essential physics can be captured by a

classical molecular dynamics simulation.

The necessity of following the recombination into weakly bound (high-n)

Rydberg states is the main challenge to the simulation. The difficulty is that the

time scale for an electron orbit in such a state is much shorter than the time scale

for the orbit of a typical unbound electron. In plasma simulations of this kind

some authors have used two time scales: one for particles with near neighbors and

another for the remaining particles [11]. Another variant is to use piecewise ana-

lytic solutions for Kepler orbits. We prefer a treatment that doesn’t make special

assumptions about particles with near neighbors, but seamlessly encompasses the

continuum of time scales required.



17

Fortunately, such a treatment was developed previously in computational

studies of binary star formation in globular clusters. The binary stars are the

analog of the high-n Rydberg atoms and the cluster is the analog of the plasma

cloud. We have adapted a code developed by Aarseth [12] for the study of binary

star formation.

The code is a molecular dynamics simulation in the sense that the force

on a given particle from each of the other particles is calculated directly. Time

integration is effected with a predictor corrector scheme using a fourth order poly-

nomial fit to the orbit. The crucial feature is that the time step for each particle

is adjusted independently depending on such factors as the rate of change of the

acceleration. Thus, a bound electron can have a much shorter time step than a

typical electron without slowing down the whole simulation. To keep all of the

particles moving in near synchrony, the code advances next the time step for the

particle that is furthest behind in absolute time. To evaluate the force on this par-

ticle, the other particle positions are extrapolated back in time to exact synchrony

using the polynomial fit to the orbits.

As one would expect, there are interesting parallels between three-body

recombination in these plasmas and binary star formation in clusters. We will see

that a by-product of three-body recombination is heating of the unbound electrons

and even production of suprathermal electrons that are ejected from the plasma.

Likewise, binaries “harden” by giving kinetic energy to other stars through colli-

sional interactions, sometimes ejecting stars at high velocity from the core of the

cluster [14]. This heating mechanism is now thought to be the primary mecha-

nism for supporting globular clusters against gravothermal contraction and core

collapse [13].

Two recent papers [18, 19] have provided a good theoretical description of
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the long term evolution of ultracold plasma clouds. Our work is complementary in

that it focuses on the early time microscopic physics: the correlation physics and

the cascade process of three-body recombination. The Aarseth simulation method

is ideally suited to focus on this physics.

2.3 Correlation and Initial Heating

2.3.1 Theory Background

For a plasma in thermal equilibrium, the strength of correlation is deter-

mined by the coupling parameter Γ = e2/akT , where a is the Wigner-Seitz radius

(i.e., 4πa3n/3 = 1) [9]. We use cgs units throughout the paper. For the maximum

density and lowest temperatures reported in the experiments [i.e., n ≃ 2×109 cm−3,

Te ≃ 0.1 K, and Ti ≃ 10 µ/K], the electron coupling parameter has the value

Γe ≃ 30, and the ion coupling parameter is much larger. Thus, one might expect

the low temperatures to be associated with strong correlation.

However, the plasma is not created in a state of thermal equilibrium. Be-

fore photoionization, the neutral atoms are uncorrelated, so immediately after pho-

toionization ion-ion and electron-electron correlations are negligible. There may be

some electron-ion correlation that remains as an artifact of the ionization process,

but this is not a thermal equilibrium correlation. For example, there is no long

range order.

Thermal equilibrium correlations can develop only through the action of

Coulomb interactions as the plasma evolves. However, as the electron correlations

begin to develop, the correlation energy is released to the electron plasma as heat,

and this limits the strength of correlation reached. To reach a correlation strength

corresponding to Γe ≃ 1, each electron picks up thermal energy kTe ≃ e2/a. At
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this point the coupling parameter has the value

Γe = e2/akTe ≃ (e2/a)/(e2/a) = 1,

so further development of correlation ceases. Even if the initial electron tempera-

ture were zero, corresponding formally to infinite Γe, strong correlation would not

develop.

We hasten to add that the initial electron temperature would not be zero

even if the energy of the ionizing photons exactly matched the ionization poten-

tial (for a single isolated atom). Because of the Coulomb fields from neighboring

electrons and ions, the ionization potential for atoms in the plasma varies from

atom to atom by an amount of order e2/a, and this sets a minimum temperature

of order kTe ∼ e2/a [18]. The picture is further complicated by the fact the ion-

ization process takes place over a finite time. Typically, heating due to the release

of correlation energy is occuring while the plasma is being created.

In the following we ignore these complications and consider simulations

where the initial electron and ion temperatures (or more precisely, kinetic ener-

gies) are zero, corresponding formally to infinite initial values for Γe and Γi. This

gives correlations the best opportunity to develop. The observed failure of strong

correlations to develop then emerges as an intrinsic consequence of the dynamics.

The release of correlation energy as heat limits the development of correlation.

The time scale for this electron dynamics is of order ω−1
pe , where ωpe =

√
4πne2/me is the electron plasma frequency. On a longer time scale (i.e., ω−1

pi =
√
mi/me ω

−1
pe ), ion-ion correlations begin to develop and the released energy heats

the ions limiting the effective ion-ion correlation strength.

Murillo [20] considered ion heating by the release of correlation energy, but

he treated the electrons as a dielectric fluid, and focused on the liberation of cor-
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relation energy for a system of Debye shielded ions. Unfortunately, this approach

misses the electron heating that dominates the early stages of evolution, and the

degree of shielding depends through the Debye length on electron temperature [see

Section 2.3.3].

2.3.2 Simulation Results

By using properly scaled length and time, the number of parameters that

define a simulation was reduced to a minimum. Length was scaled by the Wigner-

Seitz radius a and time by the inverse of the electron plasma frequency ω−1
pe . With

these scalings, the equations of motion were specified by three parameters: the mass

ratio mi/me, the number of electrons (which was equal to the number of ions) N ,

and a rounding parameter ε for the Coulomb potential. To avoid singularities, the

Coulomb potential was rounded to the form

1/
√
|~r1 − ~r2|2/a2 + ε2 (2.1)

where ε ≪ 1. For this simulation, ε was chosen to have the value 1/31. This

value is small enough that the rounded potential was a good approximation to

the Coulomb potential for the vast majority of particles. For a few deeply bound

pairs, the approximation was marginal, but these deeply bound pairs were not the

focus of this simulation. A further decrease in the value of ε did not change the

temperature evolution or the correlation function. The mass ratio was chosen to

have the value mi/me = 100. This relatively low value insured that the ions had

time to participate in the correlation dynamics during the course of the simulation.

The electron-electron correlation function relaxed to a steady-state form in a few

scaled time units, and the ion-ion correlation function in a time that was longer

by
√
mi/me = 10. The simulation ran for tmaxωpe = 70.9 scaled time units, and
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energy was conserved to an accuracy of 10−5Ne2/a, where Ne2/a is the scale of

the total energy.

One might worry that the rapid heating is not resolved by the simulation

since the heating occurs in about one unit of time (i.e., ω−1
pe ). However, the unit

of time is not the time step. The time step is variable, but each particle has many

time steps (typically hundreds) in one unit of time, so that the heating dynamics

is adequately resolved.

So that the correlation function assumed the simple formG(~r1, ~r2) = G(|~r1−

~r2|), we arranged the initial and boundary conditions to insure uniform plasma den-

sity. Specifically, 4096 electrons and 4096 ions were distributed randomly inside

a spherical volume bounded by a reflecting wall. The correlation measurements

were made well away from the wall. In scaled units, the radius of the sphere was

determined by the number of electrons, (rs/a)
3 = N . As mentioned earlier, the

initial temperatures for both electrons and ions were chosen to be zero.

The initial density profiles for the experimentally produced plasma clouds

were Gaussian [1, 2, 3]. One should think of the uniform density spherical plasmas

as a small central section of a larger Gaussian cloud.

Figure 2.1 shows a plot of the scaled electron temperature [i.e., kTe(t)/(e
2/a) =

1/Γe(t)] versus the scaled time tωpe. To obtain this plot, histograms of electron

kinetic energy were made (excluding tightly bound electrons) and matched to

Maxwellians. Rapid heating to Γe ≃ 1 is clearly visible. The longer-term slower

heating is associated with three-body recombination.

Indeed, the heating from three-body recombination is slightly larger than

appears from this picture. The rate of increase in the electron temperature is

reduced somewhat by collisional cooling on the ions [see Section 2.3.3]. This effect

is exacerbated by the artificially low mass ratio mi/me = 100. By skipping ahead
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Figure 2.1: Scaled temperature versus scaled time. The insert shows change of
temperature during the time tωpe < 3 when rapid heating occurs.
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Figure 2.2: Electron-electron correlation function, averaged from tωpe = 3.5 to
tωpe = 7.1.

to Fig. 2.13, one can see the electron heating for the case of realistic mass ratio

(for Xe ions), where the electron-ion collisional energy transfer is negligibly small

over the duration of the simulation.

Figure 2.2 shows the electron-electron correlation function averaged over

the time interval tωpe = 3.5 to 7.1. The correlation function started out flat,

corresponding to randomly distributed electrons, but quickly relaxed to the form

shown in Fig. 2.2 and retained this form. The only change with increasing time

was in the width of the region near |~r1 − ~r2| = 0 where Gee ≃ −1. This value



23

 Γ = 1

 Γ = 10

 Γ = 20

 Γ = 40

0.5

0

-0.5

-1
0 1 2 3 4 5 6

|r - r |/a
1 2

G
  
(|

r 
- 

r 
|)

1
2

e
e

Figure 2.3: Correlation function for one component plasma.

for Gee reflects the fact that it is energetically unfavorable for two electrons to be

at the same location, and the width of the region is of order |~r1 − ~r2| ≃ e2/kTe.

In measurements of Gee at later times the width was observed to decrease as the

electron temperature slowly increased.

For comparison, Fig. 2.3 shows the correlation function for a one component

plasma (OCP) in thermal equilibrium at correlation strengths Γ = 1, 10, 20, and

40 [9, 32]. As expected, the correlation curve in Fig. 2.2 corresponds in shape

to the Γ = 1 curve in Fig. 2.3. The curves in Fig. 2.3 for Γ = 10, 20, and 40

exhibit oscillations indicating the presence of local order, that is, of a local lattice.

The lack of these oscillations in Fig. 2.2 shows that such order was missing in the

electron distribution for the ultracold plasma.

Figure 2.4 shows the ion-ion correlation function averaged over the time

interval tωpe = 67.4 to 70.9. Again the correlation function started out flat and

relaxed to the form shown, although the relaxation time was longer than for the

electrons. The absence of oscillations shows that local order was missing.

Figure 2.5 shows the electron-ion correlation function averaged over the

time interval tωpe = 3.5 to 7.1. In this case, Gei is positive near |~r1 − ~r2| = 0,

since it is energetically favorable for an electron to be near an ion. However, this
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Figure 2.4: Ion-ion correlation function averaged over the time interval
tωpe = 67.4 to tωpe = 70.9.
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Figure 2.5: Electron-ion correlation function averaged over the time interval
tωpe = 3.5 to 7.1.

positive electron-ion correlation is not an indication of the local order character-

istic of strong correlation; rather it reflects Debye shielding and the beginning of

recombination. This latter observation also was made in reference [18].

Finally, we note that the experiments themselves provide some evidence

against early strong correlation. The plasma expansion is driven by the elec-

tron pressure, but the effective pressure becomes negative for a strongly correlated

plasma. This effect is well known from the theory of one component plasmas [32],

and is easy to understand physically. Because of correlations, the electrostatic
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forces of interaction bind the plasma together giving rise to an effective pressure

that is negative. If there were no intrinsic heating and the cloud were strongly

correlated, the pressure would be negative and the cloud would not expand. Alter-

natively, one can rule out expansion on energetic grounds. The correlation energy

is negative [i.e., Ucorr ∼ −N(e2/a)], so plasma expansion can occur only by sup-

plying positive kinetic energy [i.e., (3/2)NkTe]. However, in the limit of strong

correlation, Γe = e2/akTe ≫ 1, there is not enough kinetic energy to drive the

expansion.

2.3.3 Ion-Ion Correlation in Laser Cooled Clouds

Killian noted that both Strontium (Sr) atoms and Sr+ ions can be laser

cooled and suggested that a strongly correlated ion plasma might be achieved by

laser cooling the ions shortly after the plasma is produced [15]. We have explored

this interesting suggestion using simulations.

The laser cooling was modeled in the simulations by periodically reducing

the speed of each ion by a small percent. Two simulations were carried out: one

for which the initial electron temperature was relatively high [i.e., kTe(0)/(e2/a) =

1/Γe(0) = 31] and another for which the initial temperature of both species was

zero. For both simulations, 2048 electrons and 2048 ions were followed for the time

tmaxωpe = 354, and total energy (plasma energy plus extracted energy) was con-

served to better than 6× 10−4Ne2/a. The mass ratio and the rounding parameter

had the values mi/me = 100 and ε = 1/62, and the particles initially were placed

randomly inside a spherical volume bounded by a reflecting wall.

For the case of high initial electron temperature, Figs. 2.6(a) and 2.6(b)

show the evolution of the ion and electron temperatures as a function of time.

The ion temperature increased initially as ion-ion correlations develop and the
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Figure 2.6: Evolution of temperature as a function of time for the case of laser
cooled ions and high initial electron temperature. (a) - ion temperature; (b) -
electron temperature.

correlation energy was released to heat the ions. The simulated laser cooling then

reduced the ion temperature to a steady state value given by the balance between

collisional heating from the electrons and ion cooling. Figure 2.6(b) shows that the

electron temperature gradually decreased, as the electrons heated the ions. For the

relatively high electron temperature in this simulation, three-body recombination

and the concomitant heating of electrons was negligible. Very few bound pairs

were observed.

Figure 2.7 shows the ion-ion correlation function averaged over the time

interval tωpe = 106 to 354, which is the time interval of steady state ion temper-

ature. The peak and the oscillations show the existence of order. Comparing to

Fig. 2.3 for an OCP suggests a correlation strength in the range Γi = 20, which
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Figure 2.7: Ion-ion correlation function averaged over time interval tωpe = 106
to 354 for the case of laser-cooled ions and high initial electron temperature.

is in good agreement with the steady state ion tmperature of Fig. 2.6(a) [i.e.,

kTi/(e
2/a) = 0.05 or Γi = 20].

To see how the steady state ion temperature would scale with the electron

to ion mass ratio and with the electron temperature, we note that weakly correlated

electrons heat cold ions collisionally at the rate [33]

(Heating)e,i =
√

32π
e4n√
mekTe

me

mi
ln

( √
3

Γ
3/2
e

)
. (2.2)

Up to a numerical factor this expression is simply νei(me/mi)kTe, where νei is the

usual electron-ion collision frequency. If the laser cooling rate is given by γcTi, then

the steady state ion temperature is given by power balance

γcTi =
√

32π
e4n√
mekTe

me

mi
ln

( √
3

Γ
3/2
e

)
. (2.3)

The steady state ion temperature in Fig. 2.6(a) is given by this relation to within a

factor of 2. To make Ti small, there is advantage in using heavy ions and hot elec-

trons, although this latter advantage doesn’t cut in until the scaled electron tem-

perature kTe/(e
2/a) = 1/Γe exceeds about 103. For scaled temperature between 1

and 103, the 1/
√
Te dependence and the ln(

√
3/Γ

3/2
e ) dependence compensate one

another leaving the heating rate nearly independent of Te.
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Figure 2.8: Evolution of temperature as a function of time in the case of laser–
cooled ions and zero initial electron temperature. (a) - ion temperature; (b) -
electron temperature.

More important reasons for using warm electrons are that the rate of three-

body recombination is greatly reduced and the ion-ion interactions are not shielded.

The reduction of the effective ion-ion coupling strength by electron shielding is illus-

trated by the simulations where both species were started with zero temperature.

Figures 2.8(a) and 2.8(b) show the ion and electron temperature as a function of

time. Initially both species are heated as correlation energy is released. Ion cooling

then reduces the ion temperature to a steady state value that is in accord with

Eq. (2.3). The electron temperature continues to rise gradually because heating

due to three-body recombination exceeds collisional cooling on the ions.

Figure 2.9 shows the ion-ion correlation function averaged over the time

interval tωpe = 106 to 354. In this case, the evidence of order is less pronounced
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Figure 2.9: Ion-ion correlation function averaged over the time interval tωpe = 106
to 354 for the case of laser-cooled ions and zero initial electron temperature.

than for the previous simulation [see Fig. 2.7]. Comparison to Fig. 2.3 for an OCP

suggests a coupling parameter of Γi < 10, which is lower than that for the previous

simulation, even though the two simulations have nearly the same steady state ion

temperatures.

Presumably, the reason for the difference is that the electrons shielded

the ion-ion interactions somewhat in the second simulation reducing the effective

coupling strength. For weakly correlated electrons, the Debye shielded ion-ion

interaction,

v =
e2

r
exp(−r/λD), (2.4)

suggests an effective ion coupling strength Γ′
i = Γiexp(−a/λD) [20]. Here, λD =

(kTe/4πne
2)1/2 is the electron Debye length. The ratio a/λD =

√
3Γe is small for

hot electrons (i.e., Γe ≪ 1), but is order unity for Γe ∼ 1 implying a significant

reduction in the effective correlation strength. For Γe > 1 the shielding is large

but is not correctly described by expression (2.4).

Another interesting effect is apparent in Fig. 2.9. Note that Gii(|~r1−~r2|/a)

increases for |~r1 − ~r2|/a . 1. We believe that weakly bound electron-ion pairs are

polarized by and attracted to neighboring ions, and this causes Gii(|~r1 − ~r2|/a) to
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turn upward at small |~r1 −~r2|/a. We checked this interpretation by removing ions

with bound electrons from the sample used to evaluate Gii, and found that Gii

goes to zero for |~r1 − ~r2|/a . 1.

Apparently, the upturn occurs only for simulations where both the electrons

and the ions are relatively cold. The electrons must be cold to have recombined

pairs, and kTi must be smaller than or comparable to the potential energy of

interaction between the ion and the induced dipole. Note that the upturn does not

occur in Fig. 2.7 or in Fig. 2.4.

2.4 Three-body Recombination

2.4.1 Theory Background

The traditional theory of three-body recombination, developed in a classic

paper by Mansbach and Keck [10], yields the following expression for the recom-

bination rate (per ion)

R = 3.9 × 10−9
[ n

cm−3

]2 [ Te

◦K

]−9/2

sec−1. (2.5)

The predicted rate is very large at low temperature because of the scaling T
−9/2
e .

However, the traditional theory assumes that Γe < 1, and rate expression (2.5) can

be trusted only in this regime. Recently, Hahn [34] extended the theory into the

regime where Γe > 1.

For the highest density and lowest initial electron temperature reported in

the experiments with ultracold plasma clouds, the initial value of Γe is larger than

unity [i.e., Γe(t = 0) ≃ 30], so one might worry that the traditional theory would

not be applicable. However, as we have seen, rapid initial heating reduces the value

of Γe to unity or less. Thus, the experiments are on the edge of the range where

the traditional theory is valid. The rate can be off by order unity, but not by the
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factor (30)9/2 that one might have expected.

A deeper understanding of rate expression (2.5) requires an understanding

of the kinetic bottleneck. To this end, consider a single ion at rest in a sea of

electrons (neutralized by a uniform background charge). Suppose further that the

Coulomb potential well for the ion is made flat at some relatively deep potential

(below the bottleneck). When the system is in a state of thermal equilibrium,

electrons are constantly going into and out of the well. The bottleneck can be

understood by calculating the one way thermal equilibria flux toward deeper bind-

ing. Using the Gibbs distribution and insight gained from a Monte Carlo analysis,

Mansbach and Keck [10] argued that the flux through a phase space surface char-

acterized by binding energy E is proportional to

(Flux)↓ ∼
1

E4
exp[−E/kTe]. (2.6)

The flux is the product of a phase space factor 1/E4 and a Boltzmann factor. For

small values of −E/kTe the flux is large because the phase space factor, 1/E4, is

large. For large −E/kTe, the flux is large because the Boltzmann factor is large.

The minimum at E = −4kTe is the kinetic bottleneck. Electrons come into and

out of the well many times before passing through the bottleneck. However, once

they have fallen below the bottleneck, they continue to ever deeper binding. With

this picture in mind, note that expression (2.5) is an evaluation of the one way flux

through the bottleneck.

The reason that a collision almost always removes energy from a deeply

bound pair can be understood dynamically. Consider an electron-ion pair with

binding energy |E| ≫ kTe. On the average, the kinetic energy of the bound

electron also is |E|. Consider a close collision with an electron that approaches

with kinetic energy kTe. Typically the collisional dynamics divides the kinetic
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energy more or less evenly between the two electrons, so one of the two leaves

with energy |E|/2 ≫ kTe. The remaining electron is then bound more deeply.

Incidentally, this simple picture shows how suprathermal electrons are produced

as a by-product of the cascade to deeper binding.

2.4.2 Simulation Results

Our most extensive simulation was used to study three-body recombina-

tion. The evolution of 4096 electrons and 4096 ions was followed for a scaled time

tmax ωpe = 354, which required a month run on an XP-1000 alpha workstation.

Energy was conserved to 2 × 10−4Ne2/a.

For this simulation, a realistic mass ratio was used (for Xe+ ions), and

the electrons and ions were distributed initially with a Gaussian density profile in

accord with experiment. In scaled units, the mean-square radius of the Gaussian is

specified by the number of electrons through 〈r2〉/a2 = (6/π)1/3N2/3. In potential

(2.1), the rounding parameter was chosen to have the value ε = 1/62, which is

small enough that the recombination dynamics (passage through the bottleneck)

was treated accurately. Specifically, the inverse 1/ε = 62 is much larger than

the scaled binding energy at the bottleneck [i.e., −Eb/(e
2/a) = 4/Γe . 7]. Since

1/ε = 62 is comparable to the scaled binding energy of the most tightly bound

pairs at the end of the simulation, the cascade rate to deeper binding for these pairs

may have been slightly suppressed. Since the focus of this simulation is three-body

recombination, rather than the rapid initial heating, the simulation started with a

small but finite initial electron temperature [i.e., kTe/(e
2/a) = 1/Γe = 0.31].

Figure 2.10 shows a picture of the cloud (red dots are electrons and blue

dots are ions) at the end of the run. Many of the electrons in the surrounding halo

were ejected from the cloud as suprathermal electrons produced as a by-product
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Figure 2.10: Cloud at the end of the run, tωpe = 354; red dots are electrons and
blue dots are ions. Part of the halo consists of suprathermal electrons that were
produced as a by-product of three-body recombination. Also shown is a plot of
the potential in the cloud at the end of the run.

of three-body recombination.

Figures 2.11(a), (b), (c), and (d) show binding energy histograms for the

four times tωpe = 0, 117, 234, and 354. For a bound electron, the binding energy

is the kinetic energy plus the potential energy in the field of the nearest ion. Each

figure displays the number of particles in bins of scaled binding energy ranging from

E/(e2/a) = −1 to -25. One can see the temporal progression to deeper binding.

Although the bound electrons were far from thermal equilibrium, the un-
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Figure 2.11: Binding energy histograms at (a) tωpe = 0, (b) tωpe = 117,
(c) tωpe = 234, (d) tωpe = 354. Each column shows the number of electrons in
that energy bin. The squiggle at the top of the column for the lowest energy bin
indicates that the number exceeds the range of the graph.
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Figure 2.12: Histogram of scaled kinetic energy for unbound electrons and a fit
to a Maxwellian.
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Figure 2.13: Evolution of temperature in the cloud versus time.

bound electrons were nearly in thermal equilibrium. Figure 2.12 shows a histogram

of scaled kinetic energy for unbound electrons and a fit to a Maxwellian. The fit

determines the temperature of the unbound electrons at a particular time. Fig-

ure 2.13 shows the evolution of the temperature versus time. The gradual heating

due to three-body recombination is apparent.

Figure 2.14 shows sample energy cascades to deeper binding. Each curve

is a plot of scaled binding energy versus scaled time for an ion and bound electron,

or sequence of electrons, since collisions can interchange bound and free electrons.
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Figure 2.14: Sample energy cascades to deeper binding.
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Figure 2.15: The solid curve is the fraction of bound pairs that reached a given
binding energy E, and then were reionized. The dashed curve is the fraction that
made it from energy E to a sink at E = −18e2/a. These two curves provide
evidence for the existence of the bottleneck.

Figure 2.15 provides evidence for the existence of the bottleneck. The

solid curve is the fraction of bound pairs that reached a given binding energy,

E, and then were reionized. The dashed curve is the fraction that made it from

energy E to a sink at E = −18(e2/a). Each atom that makes it to the sink is

declared permanently recombined and is no longer tracked in the cascade dynamics.

Taking the crossing point for the curves as the energy of the bottleneck yields

−Eb/(e
2/a) ≃ 8, which is close to four times the final temperature in Fig. 2.11
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Figure 2.16: Number of recombined pairs in the central region of the cloud.

[i.e., 4Te/(e
2/a) ≃ 7].

Figure 2.16 shows the number of recombined pairs in the central region of

the cloud (i.e., for r < rp) versus scaled time. Here, rp =
√

2/3 〈r2〉1/2 is the radius

where the density has fallen to 1/e of its maximum value. Recall that a pair is

defined to be recombined when its binding energy drops below the energy level of

the bottleneck, which in accord with Fig. 2.15 we take to be Eb = −8(e2/a).

The dashed line at the top end of Fig. 2.16 provides a smoothed slope for

Nrec(tωpe) at the end of the run. From this slope we obtain the recombination rate

for the particles in the central region, dNrec/dt ≃ (0.56)ωpe. For comparison the

theoretical prediction from Eq. (2.5) for this rate is

∫ rp

0

4πr2 dr nR(r, T ) = (1.09)ωpe, (2.7)

where n(r) is the density of unrecombined ions in the central region and the scaled

electron temperature 1/Γe = kTe/(e
2/a) = 1.7 has been used. Presumably, the

factor of two difference between the predicted and observed rates is due to the fact

that Γe is only slightly less than unity.

The solid curve in Fig. 2.17(a) shows the average energy of an electron as

it cascades to deeper binding versus the time since initial binding. The average
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Figure 2.17: (a). Average energy of an electron as it cascades to deeper binding.
Error bars show the standard deviation for the distribution. (b) Log-log plot of
the average energy.

was constructed using the collection of bound pairs that ultimately reached the

sink at E/(e2/a) = −12, and the error bars show the standard deviation for the

distribution. Figure 2.17(b) is a log-log plot of the curve, showing that the average

binding energy increased like t1/2.

This result is easy to understand physically. Consider an electron-ion pair

bound with energy |E| ≫ kTe. Typically the kinetic energy and the potential

energy of the electron are of order |E|, and the separation between the electron

and ion is of order d ∼ e2/|E|. The frequency at which other electrons approach

the pair within distance d is of order ν ∼ nv̄ed
2. In such a collision the two

electrons typically share their kinetic energy. One electron leaves the collision
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with kinetic energy of order |E| ≫ kTe, and the binding energy of the remaining

electron increases by order |E|. Thus, the rate of increase in the binding energy is

approximately

d|E|
dt

∼ ν|E| = nv̄eπ
e4

|E| . (2.8)

To the extent that nv̄e is approximately constant, we find that the binding energy

increases with time as

|E| ∼ [C + nv̄eπe
4t/2]1/2, (2.9)

which agrees with the t1/2 scaling in Fig. 2.17(b).

These ideas shed light on a recent experimental observation made with the

ultracold plasma clouds [3]. The number of recombined pairs was observed to be

a decreasing function of principle quantum number. Equivalently, the distribution

over the magnitude of the binding energy, N(|E|), was observed to be increasing

in |E| over a certain range below the bottleneck. For the histograms shown in

Fig. 2.11 this is not the case. However, we believe that dN/d|E| would become

positive over some range if the simulations were run longer.

The reason is easy to understand physically. In steady state, the flux of

bound pairs through any energy |E| must be independent of |E|, so we obtain the

equation

N(|E|)d|E|
dt

(|E|) = const. (2.10)

Since d|E|/dt ∝ 1/|E| decreases with increasing |E|, N(|E|) must increase.

This chapter has been published in Physics of Plasmas 9, 3743-3751 (2002),

S.G. Kuzmin, T.M. O’Neil. S.G. Kuzmin was the primary investigator and author

of this paper.



Chapter 3

Guiding Center Drift Atoms

3.1 Abstract

Very weakly bound electron-ion pairs in a strong magnetic field are called

guiding center drift atoms, since the electron dynamics can be treated by guiding

center drift theory. Over a wide range of weak binding, the coupled electron-ion

dynamics for these systems is integrable. This paper discusses the dynamics, in-

cluding the important cross magnetic field motion of an atom as a whole, in terms

of the system constants of the motion. Since the dynamics is quasi-classical quan-

tum numbers are assigned using the Bohr-Sommerfeld rules. Antimatter versions

of these guiding center drift atoms likely have been produced in recent experiments.

3.2 Introduction

This paper discusses the motion of a quasi-classical, weakly bound electron-

ion pair in a strong magnetic field. The field is sufficiently strong that the electron

cyclotron frequency is the largest of the dynamical frequencies and the cyclotron

radius is the smallest of the length scales. In this limit, the rapid cyclotron motion

can be averaged out, and the electron dynamics treated with guiding center drift

theory. These weakly bound and strongly magnetized pairs are called guiding

40
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Figure 3.1: Drawing of guiding center atom. In order of descending frequency,
electron executes cyclotron motion, oscillates back and forth along a field line in
the Coulomb well of the ion, ~E × ~B drifts around the ion.

center drift atoms [24].

Figure 3.1 shows a picture of the motion in a simple limit. The guiding

center electron oscillates back and forth along the magnetic field in the Coulomb

well of the ion, and more slowly ~E × ~B drifts around the ion. Let z = ze − zi be

the separation of the electron and ion along the direction of the magnetic field and

r =
√

(xe − xi)2 + (ye − yi)2 the separation transverse to the field. For the case

where the amplitude of the field aligned oscillations is not too large (i.e., zmax .

r), the frequency of field aligned oscillations is approximately ωz =
√
e2/(mer3)

and the frequency of the ~E × ~B drift rotation is approximately ωD = vD/r =

ce/(Br3). These two frequencies are related to the electron cyclotron frequency,

Ωce = eB/mec through the equation Ωce = ω2
z/ωD. Thus, the requirement that the

cyclotron frequency be larger than the other two frequencies imposes the ordering:

Ωce ≫ ωz ≫ ωD. (3.1)

The ordering is realized for sufficiently large separation (weak binding), that is, for

r ≫ r1 = (mec
2/B2)1/3. This inequality is required for validity of our analysis.

Note that the the inequality implies not only that that the electron cy-

clotron frequency is large, but also that the electron cyclotron radius is small. We
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have in mind cases where the electron kinetic energy is smaller than or of order

the electrostatic binding energy (i.e., mev
2
e/2 . e2/r). The inequality r ≫ r1 then

implies that rce ≡ ve/Ωce ≪ r.

For r comparable to r1 our guiding center analysis fails. All three frequen-

cies in Eq. (3.1) are comparable, and the electron motion is chaotic [35, 36]. For

r ≪ r1, the cyclotron frequency is small compared to the Kepler frequency, and

the electron motion is again integrable. In this case, one can think of the weakly

bound pair as a high-n Rydberg atom with a Zeeman perturbation [37].

The type of motion shown in Fig. 3.1, where the electron ~E× ~B drifts around

the ion, occurs when ωD > Ωci, vi/r. Here, Ωci is the ion cyclotron frequency and

vi is the initial velocity of the ion transverse to the magnetic field. For this type

of motion, the pair drifts across magnetic field with the transverse ion velocity ~vi

much like a neutral atom.

However, if the ion velocity is too large (i.e. vi/r ≫ ωD), the ~E× ~B drifting

electron cannot keep up with the ion. The ion runs off and leaves the electron,

which is effectively pinned to the magnetic field. More precisely, the ion moves in

a large cyclotron orbit near the electron, the cyclotron motion being modified by

electrostatic attraction to the electron. Of course, the electron oscillations back

and forth along the magnetic field can become unbounded during large transverse

excursions.

Figure 3.2 shows a kind of motion that can occur for relatively weak binding

(i.e., Ωci > ωD, or r > r2 = (mi/me)
1/3r1). The electron ~E × ~B drifts in the field

of the ion, and the ion ~E× ~B drifts in the field of the electron. Together they form

a so called ”drifting pair”. In a drifting pair, the electron and ion move together

across the magnetic field with the speed vD = ce/Br2.

The main purpose of this paper is to determine the character of the cou-



43

+

-

ion

electron

B

Figure 3.2: A kind of motion that occurs when electron and ion form a drifting
pair.

pled electron-ion motion as a function of the constants of the motion. Fortunately,

the Hamiltonian dynamics for the coupled system is integrable over a wide range

of weak binding. The electron-ion system has six degrees of freedom so six con-

stants of the motion are required for integrability. Four are exact constants: the

Hamiltonian and the three components of total momentum. The remaining two

are approximate constants (adiabatic invariants) that result from two frequency

separations. Because the electron cyclotron frequency is much larger than other

dynamical frequencies the cyclotron action is a good adiabatic invariant. Use of

guiding center drift variables automatically takes this constant into account and

removes the cyclotron motion from the problem. Because the frequency of field

aligned oscillations, ωz, is much larger than the remaining dynamical frequencies

(associated with cross field motion) the action associated with the field aligned

motion is a good adiabatic invariant.

Inequality (3.1), which follows from the weak binding condition r ≫ r1 =

(mec
2/B2)1/3, guarantees that the characteristic electron frequencies are ordered in

accord with the assumed frequency separations. The frequencies that characterize

the cross field ion motion (i.e., Ωci and vi/r) also must be small compared to ωz.

The full frequency ordering is then

Ωce ≫ ωz ≫ ωD,Ωci, vi/r. (3.2)

The relative size of ωD, Ωci and vi/r need not be specified; indeed, it is interplay



44

between these frequencies that gives rise to the different types of motion discussed

above. We will return to a detailed discussion of the frequency ordering later (see

Section 3.5).

The analysis is carried out in a reference frame where the electric field

vanishes. However, the effect of a uniform electric field directed transverse to the

magnetic field can be included simply by shifting the transverse ion velocity (i.e.,

~vi(0) −→ ~vi(0) − c ~E × ~B/B2).

Antimatter versions of these guiding center drift atoms have likely been

realized in recent experiments at the European Organization for Nuclear Research

(CERN). The ATHENA [21] and ATRAP [22] collaborations have both reported

success in producing cold antihydrogen atoms. The ATRAP collaboration mea-

sured binding energies of order meV, which corresponds to ē − p̄ separation of

order 10−4 cm [23]. The magnetic field strength is 5 Tesla, so the critical radius

is r1 ≡ (mec
2/B2)1/3 = 7 × 10−6 cm. Thus, the separation is much larger than r1,

and the weakly bound pairs are guiding center atoms. The cyclotron frequency for

the positron is about 100 times larger than the ~E × ~B drift frequency ωD, and the

cyclotron radius is about 100 times smaller than the separation. The ATHENA

group did not measure binding energies, but the theory of three-body recombina-

tion, expected to be the dominant recombination process, suggests binding energies

in the same range as those for ATRAP.

There has been much previous work on the coupled electron-ion system

in a strong magnetic field. A difficulty is that a true separation of the center

of mass motion (transverse to the magnetic field) and the internal motion is not

possible. However, Avron, Herbst, and Simon [26] found an effective separation

by introducing the transverse pseudomomentum and showing that it is a constant

of motion. The influence of the transverse center of mass motion on the internal
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motion in then accounted for by a pseudopotential that depends on the eigenvalue

of the pseudomomentum. More recently this effective separation was applied to

the hydrogen atom [27] and positronium [28].

In our classical analysis, the transverse pseudomomenta (PX , PY ) arise as

two new momenta in a canonical transformation, and the pseudopotential enters

the transformed Hamiltonian. Our analysis differs from the previous work in that

the Hamiltonian is simplified by the use of frequency ordering (3.2), which relies

on both strong magnetic field and weak binding. Introduction of the cyclotron

action and of the action for the field aligned bounce motion effectively averages

the Hamiltonian over the rapid cyclotron and bounce motions, removing two de-

grees of freedom at the outset. In the language of atomic physics, a double Born-

Oppenheimer approximation is used. The remaining transverse dynamics is always

integrable, and a transverse action can be introduced. Since the Hamiltonian is ex-

pressed as a function of the cyclotron action, bounce action, and transverse action,

a general expression for the quantum energy levels can be obtained using the Bohr-

Sommerfeld quantization rules. Of course the assumption of weak binding justifies

the quasi-classical approximation – with the possible exception of the cyclotron

motion, as will be discussed. We will compare general quasi-classical predictions

for energy levels to predictions from quantum calculations in limiting cases.

Much of the previous work has focused on an “outer well” that exists in

the pseudopotential for sufficiently large pseudomomentum and the consequent

“delocalized atomic states [26, 27]”. From the prospective of guiding center drift

theory, these delocalized states are simply an electron and ion ~E × ~B drifting in

each other’s field as shown in Fig. 3.2. The criterion for the existence of the outer

well in the exact pseudopotential is that the scaled pseudomomentum be larger

than a certain value, P̃ ≥ P̃c = 3/41/3 [27]. The reader may wish to skip ahead
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to Eq. (3.18) for the definition of P̃ . This is a necessary criterion for the existence

of the delocalized states. Working with the bounce averaged pseudopotential, we

find a necessary and sufficient criterion for the delocalized states, P̃ > P̃ (Ĩz), where

Ĩz is the scaled bounce action. As we will see, P̃c(Ĩz) reduces to P̃c = 3/41/3 for

Ĩz = 0.

The name “guiding center drift atom” was coined in Ref. [24]. Indeed, a

version of Fig. 3.1 appears in Ref. [24]. Likewise, the possibility of “ ~E× ~B drifting

pairs” and “runaway ions” was discussed. However, Ref. [24] did not exploit the

integrability of the Hamiltonian to discuss the atom dynamics as a function of

the constants of the motion, which is the principle focus of this paper. Rather,

anticipating the programs to produce antihydrogen [21, 22], Ref. [24] extended the

theory of three-body recombination to the case of guiding center drift atoms. The

theory treated the simple case where the ion (or antiproton) is stationary. The

general characterization of atom dynamics developed here is a prerequisite to an

analysis of three-body recombination that takes into account ion motion.

3.3 Hamiltonian and Constants of Motion

We consider a uniform magnetic field ~B = ẑB represented by the vector

potential ~A = Bxŷ. The external electric field is chosen to be zero. The Hamil-

tonian for a guiding center drift electron and an ion that interact electrostatically

and move in the magnetic field is given by

H = IceΩce +
1

2me
p2

ze +
1

2mi
p2

xi +
1

2mi

(
p2

yi −
e

c
Bxi

)2

+
1

2mi
p2

zi

− e2√(
xi + c

eB
pye

)2
+ (yi − ye)2 + (zi − ze)2

. (3.3)
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Here, the first two terms are the electron kinetic energy, where Ωce is the cyclotron

frequency and Ice is the cyclotron action. The product is the kinetic energy as-

sociated with velocity components transverse to the magnetic field. Since Ice is a

good adiabatic invariant and Ωce is constant (for a uniform magnetic field), the

product IceΩce is constant and does not influence the dynamics of the remaining

variables. The quantities xi, yi, zi, ye and ze are ion and electron coordinates; and

the momenta conjugate to these coordinates are given by

pxi = miẋi,

pyi = miẏi +
eB

c
xi,

pzi = miżi,

pye = −eB
c
xe,

pze = meże.

(3.4)

The electron position transverse to the field is specified by (ye, pye = −eBxe/c),

and xe, pxe = meẋe are removed from the dynamics. The removal of one degree of

freedom results from averaging out the rapid cyclotron motion.

Let us make a canonical transformation to a new set of variables

PX = pxi +
eB

c
(ye − yi), X =

c

eB
(pyi + pye) + xi,

PY = pyi + pye, Y =
c

eB
pxi + ye,

PZ = pzi + pze, Z =
mizi +meze

mi +me

, (3.5)

py =
eB

c
xi + pye, y =ye − yi,

pz =
mipze −mepzi

mi +me
, z =ze − zi.
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To verify that the transformation is canonical, one can check that Poisson brackets

are equal to unity for conjugate variables and vanish otherwise. The Hamiltonian

in the new variables has the form

H = IceΩce +
1

2mi

(
PX − eB

c
y

)2

+
1

2mi
(PY − py)

2 +

1

2M
P 2

Z +
1

2µ
p2

z −
e2√(

c
eB
py

)2
+ y2 + z2

, (3.6)

where M = mi + me, and µ = mime/(mi + me) are total and reduced mass,

respectively. Since the mass ratio is assumed to be small (me/mi ≪ 1), we set

M ≃ mi and µ ≃ me in the subsequent analysis. The Hamiltonian is independent

of t, X, Y , and Z, so H , PX , PY and PZ are constants of the motion. We work

in a frame where PZ is zero (the the center of mass frame), and we orient the

coordinates axis so that PX is zero. This involves no loss of generality. In the

Hamiltonian, the sum of the two terms that govern the z-motion are the binding

energy

Hz =
1

2µ
p2

z −
e2√

r2 + z2
, (3.7)

where

~r =
(
− c

eB
py, y, 0

)
≡ (xe − xi, ye − yi, 0) . (3.8)

The electron kinetic energy associated with velocity components transverse to the

magnetic field is bound up in the cyclotron action, Ice. For a bound electron-ion

pair, Hz is negative.

In previous work [26, 27, 28] the momentum ~P = (PX , PY ) is called the

pseudomomentum. Likewise, the second two terms in Hamiltonian (3.6), which

are the transverse kinetic energy of the ion, are thought of as a pseudopotential

for the transverse internal motion [i.e., for (y, py)].
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Figure 3.3: Graphical solution of equation (3.9). Knowing Iz and r, one can find
Hz(r, Iz).

One further constant is required for integrability, and it is given by the

bounce action for the z-motion,

Iz =
1

2π

∮
pzdz = e

√
µr Φ

(−Hzr

e2

)
, (3.9)

which is a good adiabatic invariant for sufficiently large bounce frequency. In

carrying out the integral, Hz and r are held constant. The function Φ(ξ) is given

by

Φ(ξ) =
2
√

2

π
√
ξ

1∫

ξ

√
q − q2

q2 − ξ2
dq =

2
√

2

πξ
√

1 + ξ

[
−ξ(ξ + 1)E

(
ξ − 1

ξ + 1

)
+

ξK

(
ξ − 1

ξ + 1

)
+ Π

(
ξ − 1

ξ
,
ξ − 1

ξ + 1

)]
. (3.10)

where E, K, and Π are the complete elliptic integrals and the argument of Φ is

ξ = −Hzr/e
2. For future reference we note that ξ = r/

√
z2

max + r2, where zmax is

the amplitude of the field aligned oscillations. Figure 3.3 shows a plot of Φ(ξ) on

the interval [0, 1]. The figure also shows a graphical inversion to obtain Hz as a

function of Iz and r. Formally, we write the inversion as

Hz(r, Iz) = −e
2

r
Φ−1

(
Iz

e
√
mer

)
. (3.11)
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When ξ = −Hzr/e
2 is close to 1, the amplitude of axial electron oscillations

in the Coulomb well is small compared to r, and the potential is approximately

harmonic. In this case Φ(ξ) can be approximated by linear dependence:

Φ(ξ) ≃ 1 − ξ, (3.12)

and Hz and Iz are related as

Hz(r, Iz) ≃ −e
2

r
+ Izωz, (3.13)

where ω2
z = e2/(µr3). As one expects, the Coulomb potential energy, −e2/r, is

corrected by the addition of a small term Izωz, the oscillation energy in a harmonic

well.

Analytic treatment also is possible when the amplitude of oscillation is near

the limit allowed by binding, (i.e., ξ = −Hzr/e
2 ≪ 1). One can approximate the

function Φ(ξ) with an asymptotic series

Φ(ξ) ≃
√

2

ξ
− 4

√
2

π
[E(−1) −K(−1)] − . . . (3.14)

Using the first two terms in this series yields the approximate expression

Hz(r, Iz) ≃ − 2µe4
(
Iz + 4

π
[E(−1) −K(−1)]e

√
2µr
)2 . (3.15)

We can see from (3.15) that for finite bounce oscillations (Iz 6= 0), the electron

binding energy Hz has the minimum possible valueHz = −2µe4/I2
z . If the electron-

ion transverse separation were slowly reduced, the binding energy would not go to

minus infinity. Note that expression (3.15) is only valid for Iz such that Iz ≫ e
√
µr.

Substituting Eqs. (3.7) and (3.11) plus the choices PX = PZ = 0 into

Hamiltonian (3.6) yields an implicit equation for the phase space trajectory (i.e.,

for py(y))

H = IceΩce +
1

2
miΩciy

2 +
1

2mi
(PY − py)

2 − e2

r
Φ−1

(
Iz

e
√
mer

)
, (3.16)
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where r is related to y and py through Eq. (3.8). The trajectory is specified by

the values of H , P and Iz. With the additional input of an initial point along the

trajectory (e.g., y(t = 0) or py(t = 0)), the Hamiltonian equations of motion can

be solved to find y(t) and py(t). Given this solution, the coordinates of the electron

and ion are determined separately by the equations

dxi

dt
= − eB

mic
y(t),

dyi

dt
=
PY

mi
− py(t)

mi
,

dpye

dt
= −∂Hz(r, Iz)

∂y
,
dye

dt
=
∂Hz(r, Iz)

∂py

.

(3.17)

These equations follow from Eqs. (3.4) and (3.5) and the choice PX = 0.

3.4 Phase Trajectories in Scaled Variables

The dependence of the phase trajectories on parameters such as e and B

can be buried in scaled variables. Using r2 = (mic
2/B2)1/3 = (mi/me)

1/3r1, Ω−1
ci

and mi as the units of length, time and mass yields the scaled variables

P̃ = PY /(miΩcir2),

ỹ = y/r2,

p̃y = py/(miΩcir2),

H̃ = H/(miΩ
2
cir

2
2),

H̃z = Hz/(miΩ
2
cir

2
2),

Ĩz = Iz/(miΩcir
2
2),

Ĩce = Ice/(miΩcir
2
2),

(3.18)

and the scaled Hamiltonian

H̃ =
mi

me

Ĩce +
1

2

(
P̃ − p̃y

)2

+
1

2
ỹ2 − 1

r̃
Φ−1

(√
mi

me

Ĩz√
r̃

)
, (3.19)
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where the r̃ = x̃2 + ỹ2 and x̃ = −p̃y. Likewise, Eqs. (3.17) take the scaled form

dx̃i

dt̃
= −ỹ(t̃), dỹi

dt̃
= P̃ − p̃y(t̃),

dp̃ye

dt̃
= −∂H̃z

∂ỹ
,
dỹe

dt̃
=
∂H̃z

∂p̃y

,

(3.20)

where H̃z is the last term in Hamiltonian (3.19) and the scaled time is t̃ = tΩci.

We have in mind cases where the scaled variables P̃ , ỹ and p̃y = −x̃ are all

of order unity, but Ĩz is of order
√
me/mi. The product

√
me/miĨz, which enters

the last term is then of order unity. In the following discussion of trajectories we

will specify the value of the product
√
mi/meĨz. The significance of the factor

√
mi/me will be apparent in the next section where we evaluate frequencies as

derivatives of H̃ with respect to actions.

For the simple case
√
mi/meĨz = 0, Hamiltonian (3.19) reduces to the form

H̃ =
1

2

(
P̃ − p̃y

)2

+
1

2
ỹ2 − 1√

p̃2
y + ỹ2

, (3.21)

where the constant term (mi/me)Ĩce has been dropped. Phase trajectories in this

case depend only on two parameters, H̃ and P̃ . Depending on the value of P̃ there

can be different types of phase portraits. Three different cases are presented in

Figs. 3.4-3.6.

Figure 3.4a shows the phase trajectories for the case where P̃ = 2.5 is

greater than a certain critical value, P̃c = 3/41/3. Fig 3.4b shows a plot of H̃(ỹ =

0, p̃y, P̃ ). One can see that H̃ has two minima, one at (ỹ, p̃y) = (0, 0) (where

H̃ −→ −∞), and another at ỹ = 0 and finite p̃y.

There are three classes of trajectories divided by the separatrix shown as

the dashed curve in Fig. 3.4a. For the first class, the trajectories encircle the

minimum at (ỹ, p̃y) = (0, 0). For the second class, the trajectories encircle the

minimum at ỹ = 0 and finite p̃y. For the third class, the trajectories encircle both
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Figure 3.4: (a) — Phase trajectories for the case when Ĩz = 0, P̃ = 2.5 > P̃c; (b)

— section of H̃(p̃y, ỹ, P̃ ) over the plane ỹ = 0.



54

0 1 2 3
-2

-1

0

1

2

 
 
      

1 2 3

-2

-1.5

-1

-0.5

0.5

1

1.5

(a)

(b)

2
/ )

(
r

y
y

y
i

e
=

~
-

 p y
~

H
~

2iey

~p =-(x - x )/r

Figure 3.5: Same as on Fig. 3.4 but P̃ = 3/41/3 = P̃c.

minima. We will now describe the prototypical motion for each class in an extreme

limit where the motion is simple. Of course, for a trajectory not near one of these

limits, say, a trajectory near the separatrix dividing two classes, the motion is a

complicated mix of the two limits.

For the trajectories that encircling the minimum at (ỹ, p̃y) = (0, 0) with

small r̃ =
√
ỹ2 + p̃2

y, the electron ~E× ~B drifts around the ion as shown in Fig. 3.1.

This kind of motion requires the electron ~E× ~B drift velocity to be large compared
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Figure 3.6: Same as on Fig. 3.4 but P̃ = 1.5 < P̃c.

to the ion velocity. From Eqs. (3.20), we see that for r̃ ≪ 1 and P̃ order unity or

larger, the ion velocity is approximately ṽi ≡
√

(dx̃i/dt̃)2 + (dỹi/dt̃)2 ≃ P̃ and the

velocity ṽe ≡
√

(dỹe/dt̃)2 + (dp̃ye/dt̃)2 ≃ 1/r̃2. Thus, the ratio

ṽi

ṽe
≃ P̃ r̃2 (3.22)

is small for sufficiently small r̃. The bound electron-ion pair moves across the
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magnetic field with a velocity that is nearly equal to the initial ion velocity

〈
dx̃i

dt̃

〉
= −〈ỹ〉 = 0

〈
dỹi

dt̃

〉
= P̃ − 〈p̃y〉 ≃ P̃ ≃ vyi(0)

r2Ωci

.

(3.23)

Here, the bracket indicates an average over the rapid ~E × ~B drift motion of the

electron.

For the trajectories that encircle the second minimum tightly, the electron

and ion ~E × ~B drift together as shown in Fig. 3.2. According to Eqs. (3.20) the

electron and ion velocities are given by

dỹe

dt̃
≃ p̃ym

|p̃ym|3
,

dỹi

dt̃
≃ P̃ − p̃ym, (3.24)

where p̃ym is the location of the minimum. Note that dx̃i/dt̃ and dp̃ye/dt̃ are both

nearly zero. The minimum is the root of the equation

0 =
dH̃

dp̃y
= −

(
P̃ − p̃y

)
+

p̃y

|p̃y|3
, (3.25)

so the electron and ion velocities are equal, both given by the ~E × ~B formula.

For the large circular trajectories (i.e., r̃ ≫ 1), the ion executes a cyclotron

orbit in the vicinity of the electron. The electron ~E × ~B drift velocity is small

compared to the ion velocity for these large r̃ trajectories.

If the value of the transverse momentum P̃ is decreased, the minimum at

ỹ = 0 and finite p̃y disappears. Figures 3.5a and 3.5b show the the trajectories

and Hamiltonian for the critical value P̃c = 3/41/3. Figures 3.6a and 3.6b show the

same for a sub-critical value, P̃ = 1.5 < P̃c. One can see that ~E × ~B drifting pairs

[see Fig. 3.2] are no longer possible.

For the general case where
√
mi/meĨz 6= 0, Hamiltonian (3.19) must be
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1:
√
mi/meĨz = 0 (in this case H̃z = −1/r̃); 2:

√
mi/meĨz = 0.3;
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√
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√
mi/meĨz = 0.9.
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Figure 3.8: Plot of P̃c(Ĩz).

used to plot the trajectories. An important difference is that the binding energy

H̃z = −1

r̃
Φ−1

(√
mi

me

Ĩz√
r̃

)
(3.26)

does not diverge at r̃ = 0 when
√
mi/meĨz is non-zero. This is to be expected

since the potential −1/
√
z̃2 + r̃2, does not diverge at r̃ = 0 for finite z̃. As men-

tioned earlier [see Eq. (3.15)], H̃z reaches the minimum value −2/(
√
mi/meĨz)

2 as

r̃ approaches zero. Plots of H̃z versus r̃ for various values of
√
mi/meĨz are shown

in Fig. 3.9.
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Figure 3.10: Phase portrait of the system for the case when P̃ = 1.5,√
mi/meĨz = 0.9; the radius of dashed circle in the center is equal to r̃1.
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The phase trajectories for non-zero
√
mi/meĨz are qualitatively like those

shown in Figs. 3.4, 3.5, 3.6. However, the critical value of P̃ , signifying the loss of

the separatrix, is a slowly decreasing function of
√
mi/meĨz. Figure 3.8 shows a

plot of P̃c(
√
mi/meĨz) for

√
mi/meĨz ranging from 0 to 1. As illustrations, Figs. 3.9

and 3.10 show phase space trajectories for the same values of P̃ [i.e., P̃ = 1.5]

but for different values of
√
mi/meĨz (i.e.,

√
mi/meĨz = 0.3 and

√
mi/meĨz =

0.9). In Fig. 3.9 there is no separatrix, since P̃ = 1.5 is below the critical value

P̃c(
√
mi/meĨz = 0.3) ≃ 1.64; whereas, in Fig. 3.10 there is a separatrix, since

P̃ = 1.5 is above the critical value P̃c(
√
mi/meĨz = 0.9) ≃ 1.15.

3.5 Frequency Separation and the Adiabatic In-

variants

In this section, we examine the frequency separation required for validity

of the adiabatic invariants. For a case where the separation is well satisfied, we

will see that a solution of the full equations of motion, including the electron

cyclotron motion, compares well to the corresponding trajectory obtained using

constancy of the adiabatic invariants. For a case where the separation is not

satisfied, the numerical solution of the full equations of motion exhibits breakdown

of the adiabatic invariants and apparent chaotic motion.

The frequency separation can be understood as a consequence of the large

mass ratio mi/me ≫ 1. In Hamiltonian (3.19), suppose that the cross field scaled

variables are all of order unity [i.e., P̃ , ỹ, p̃y ∼ O(1)] and that
√
mi/meĨz, (mi/me)Ĩc ∼

O(1). The scale cyclotron frequency is ∂H̃/∂Ĩc = mi/me, the scaled frequency of

field aligned oscillations is ∂H̃/∂Ĩz ∼ O(
√
mi/me) and the scaled cross field fre-

quencies are of order unity. Thus, the three classes of frequencies in inequality (3.2)

are ordered as mi/me ≫
√
mi/me ≫ 1.
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Let us look at the field aligned oscillations more closely. For arbitrary

ξ = r̃/
√
r̃2 + z̃2

max, the scaled frequency is given by

∂H̃z

∂Ĩz
=

√
mi

me

1

r̃3/2

1

−Φ′(ξ)
=

√
mi

me

(
ξ

r̃

)3/2

Θ(ξ), (3.27)

where the function Θ(ξ) is plotted in Fig. 3.11. Since Θ(ξ) is unity to within a

factor of
√

2 over the full range of ξ-values (i.e., 0 ≤ ξ ≤ 1), the scaled frequency

is approximately

∂H̃z

∂Ĩz
≃
√
mi

me

(
ξ

r̃

)3/2

=

√
mi

me

1

(r̃2 + z̃2
max)

3/4
(3.28)

for arbitrary z̃max. As expected, the maximum ∂H̃z/∂Ĩz|max =
√
mi/mer̃

−3/2,

occurs for zmax = 0.

In the introduction we required that

∂H̃z

∂Ĩc
=
mi

me
≫ ∂H̃z

∂Ĩz

∣∣∣∣∣
max

=

√
mi

me

1

r̃3/2
, (3.29)

which can be written as the requirement r ≫ r2(me/mi)
1/3 = r1. Since ∂H̃z/∂Ĩz

is much smaller than ∂H̃z/∂Ĩz|max for z̃max ≫ r̃, one might think that require-

ment (3.29) is overly restrictive. However, there are high frequency components

in the motion that are of order of
√
mi/mer̃

−3/2. These high frequency compo-

nents are associated with the passage of the electron near the ion (i.e., for z . r).
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In unscaled variables, the high frequency components are of order ve/r, where

mev
2
e ∼ e2/r, which when scaled is ve/(r2Ωci) =

√
mi/mer̃

−3/2. Thus, the criterion

used in the introduction is correct even for z̃max ≫ r̃.

Turning next to the requirement that the cross field motion be slow com-

pared to the field aligned oscillations, we note first that the cross field motion

affects the field aligned oscillations only through the time dependence in r2(t) [see

Eq. (3.7)]. Thus, we examine the Poisson bracket

dr̃2

dt̃
= [r̃2, H̃] = 2ỹ(t̃)P̃ (3.30)

where H̃ is the scaled Hamiltonian (3.19).

The different trajectories in the figures of Section 3.4 are characterized by

different time dependencies for ỹ(t̃). Consider, for example, the three classes of

trajectories in Fig. 3.4a. For the trajectories that encircle the minimum value of

H̃ at r̃ = 0, ỹ(t̃) oscillates at the rotation frequency of the vector ~̃r(t̃), which

when scaled is ωD/Ωci = 1/r̃3. Equivalently, from Hamilton’s equations we obtain

∂H̃/∂(r̃2/2) ≃ ∂/∂(r̃2/2)(−1/r̃) = 1/r̃3

Figure 3.4a is plotted for the case where zmax = 0 and H̃z = −1/r̃. For a

case where zmax ≫ r, such as the plots in Fig. 3.9, one can show that the rotation

frequency is approximately

∂H̃z

∂(r̃2/2)
≃ 1

r̃3
ξ3/2 =

1

r̃3/2(z2
max + r̃2)3/4

. (3.31)

For the trajectories in Fig. 3.4 that encircle the minimum in H̃ at finite p̃y,

the ion and electron ~E × ~B drift together, as shown in Fig. 3.2, but the ion also

executes cyclotron motion in the drift frame. In unscaled variables r(t) varies at

the frequency Ωci, which corresponds to the scaled frequency Ωci/Ωci = 1. One can

easily check this result using the scaled Hamiltonian directly.
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For the trajectories in Fig. 3.4 that encircle both minima, the scaled fre-

quency of the motion is approximately Ωci/Ωci = 1, but there can be high frequency

components associated with the close passage of the ion near the electron (i.e., for

small r̃). An estimate for the high frequency component is

1

r̃2

dr̃2

dt̃
=
ỹP̃

r̃2
.

(
vi

r2Ωci

)
1

r̃
.

1

r̃3/2
, (3.32)

where r̃ is the minimum value of the cross field separation and we have assumed

thatmiv
2
i . e2/r.The frequency of field aligned oscillations given in Eq. (3.27) must

be large compared to the cross field frequencies, so we obtain the requirement

√
mi

me

1

(r̃2 + z̃2)3/4
≫ 1

r̃3/2(r̃2 + z̃2)3/4
, 1,

1

r̃3/2
. (3.33)

The first term on the right is small compared to the term on the left provided

that r̃ ≫ (me/mi)
1/3, which is the same as inequality (3.29). This inequality (i.e.,

r ≫ r2(me/mi)
1/3 = r1) is the basic requirement that the the binding be sufficiently

weak.

The second term on the right is small compared to the term on the left pro-

vided that the binding is not too weak [i.e., (r̃2+z̃2)1/2 ≫ (mi/me)
1/3]. Thus, the al-

lowed electron-ion separations are bounded below and above [i.e., (me/mi)
1/3 ≪ r̃,

(r̃2 + z̃2)1/2 ≪ (mi/me)
1/3]. Even for an electron and proton, the ratio of the upper

to the lower bound is large, (mi/me)
2/3 ≃ 150. Finally, the third term on the right

is small compared to the term on the left provided the atom is not too elongated

[i.e., z̃max/r̃ ≪ (mi/me)
1/3]. For applications such as to the weakly bound pairs in

the ATRAP and ATHENA experiments the lower bound (i.e., (me/mi)
1/3 < r̃) is

the constraint of primary concern.

As examples, we now examine numerical solutions of the full equations of

motion for a case where the lower bound constraint is satisfied and a case where

it is not satisfied. In Fig. 3.9, the dashed circle indicates the lower bound (i.e.,
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Figure 3.12: Numerical solution of the equations of motion for the tra-
jectory starting at ~̃re = (0, 0, 0), ~̃ri = (0.7, 0, 0), ~̃ve = (0, 0,−39.297),
~̃vi = (0, 0.8, 0.0213919), mi/me = 1837; the electron is not treated in drift ap-
proximation (i.e., full dynamics in magnetic field for both particles).

r̃ = (me/mi)
1/3 ≃ 0.082) for the case of electron-proton mass ratio. The upper

bound is well outside the domain of the figure. The adiabatic invariants should be

conserved for trajectories that lie completely outside the dashed circle.

Figure 3.12 shows a trajectory obtained by numerically solving the full

equations of motion, including the cyclotron and z-bounce motion. As expected

for a case where the actions are good invariants, the trajectory differs only slightly

from the corresponding trajectory in Fig. 3.9. The small ripples on the trajectory

in Fig. 3.12 are caused by the change in the drift velocity as the electron oscillates

back and forth in z. Smaller and higher frequency oscillations caused by the

electron-cyclotron motion are not visible in the figure.

In Fig. 3.10, the dashed circle again is drawn to indicate the lower bound,

r̃ = (me/mi)
1/3. Figure 3.13 shows the result of a numerical solution of the full

equations of motion for a trajectory that starts at (p̃y, ỹ) = (0.26, 0) and has values

of
√
mi/meĨz and P̃Y corresponding to Fig. 3.10. For this trajectory zmax/r ∼

O(5 − 10) is rather large. The periodic helical excursions on the trajectory occur

when the electron is near a turning point for the field aligned oscillations. The

electron cyclotron motion combines with the slow ion velocity to produce the helical
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Figure 3.13: Numerical solution of the equations of motion for the tra-
jectory starting at ~̃re = (0, 0, 0), ~̃ri = (0.26, 0, 0), ~̃ve = (0, 0,−104.095),
~̃vi = (0, 1.24, 0.056666), mi/me = 1837; the electron is not treated in drift ap-
proximation (i.e., full dynamics in magnetic field for both particles).

excursion. When the field aligned oscillation brings the electron near the ion again,

the transverse electric field rises dramatically, and the electron steps to the next

helical excursion. The combination of the excursions and the periodic electron steps

produce a trajectory that loosely follows the trajectory in Fig. 3.10. However, the

rapid rise and fall of the transverse electric field breaks the adiabatic invariants,

mixing axial and transverse kinetic energies. One can see in Fig. 3.10 that the size

of the cyclotron radius varies from excursion to excursion gradually increasing.

3.6 Bohr-Sommerfeld Quantization

Since the motion is quasiclassical, we introduce quantum numbers by using

the Bohr-Sommerfeld rule, that is by quantizing the actions. Hamiltonian (3.16)

includes the the cyclotron action and the action for field aligned oscillations, but

the action for the cross field drift motion must still be introduced.

This action is obtained by solving Eq. (3.16) for py = py(H−IceΩce, PY , Iz, y)
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and evaluating the integral

ID =
1

2π

∮
py(H − IceΩce, PY , Iz, y)dy (3.34)

over a contour of constant H . ID is simply 1/(2π) times the phase space area

enclosed by the contour.

The quantization is effected by setting ID = ~nD, Iz = ~nz, and Ice =

~(nc + 1/2) in Eq. (3.34), where nD, nz, and nc are integers. The 1/2 is retained

in the quantization rule for the cyclotron motion since nc may relatively small. In

principle, Eq. (3.34) can be inverted to find the system energy as a function of

PY and the quantum numbers: H = H(PY , nc, nz, nD). the momentum PY is not

quantized.

Fortunately, this prescription is easy to carry out in the most important

limit: a guiding center drift atom with relatively tight binding. In this case the

drift motion corresponds to that shown in Fig. 3.1. Eq. (3.34) then reduces to the

simple form

ID =
1

2π

∮
pydy =

1

2π

eB

c

∮
xdy =

eB

2πc
πr2, (3.35)

where r is the radius of the nearly circular orbit. Quantizing the action ID then

yields the allowed radii

r(nD) =

√
2~nDc

eB
(3.36)

Substituting this expression and the quantized values of Ic and Iz into

Hamiltonian (3.16) yields the allowed energies

H =
P 2

Y

2mi
+ ~Ωce

(
nc +

1

2

)
− e2

r(nD)
Φ−1

[
~nz

e
√
mer(nD)

]
. (3.37)

In writing the kinetic energy for the ion as P 2
Y /(2mi), use was made of the fact that

r(nD) is small (relatively tight binding). For the case where Iz also is small (i.e.,
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zmax ≪ r(nD)), approximations (3.12) and (3.13) yield the further simplification

H =
P 2

Y

2mi

+ ~Ωce

(
nc +

1

2

)
− e2

r(nD)
+ ~ωz[r(nD)]nz, (3.38)

where ωz(r) =
√
e2/(mer3).

For small changes in the quantum numbers, the the change in the energy

is given by

∆H =
∂H

∂Ic
~∆nc +

∂H

∂Iz
~∆nz +

∂H

∂ID
~∆nD, (3.39)

where ∂H/∂Ic = Ωce, ∂H/∂Iz = ωz, and ∂H/∂ID = ωD. Thus, the energy level

spacings for single integer changes in the quantum numbers (∆nc, ∆nz, ∆nD = 1)

are ordered as the frequencies (see inequality (3.1)). Further, since the energies

associated with the cyclotron motion, field aligned oscillations, and Coulomb inter-

action are comparable, the corresponding quantum numbers are ordered inversely

to the frequencies (i.e., nc ≪ nz ≪ nD).

We note that a more accurate calculations would find corrections to ∂H/∂Ic

that are of order ∂H/∂ID = ωD. However, these corrections contribute negligibly

to the overall energy since nD ≫ nc.

Finally, for a drifting pair with an electron orbit near the bottom of the

outer well [see the small nearly circular orbit centered at (y = 0, py ≃ P ) in

Fig. 3.4]; the Hamiltonian may be Taylor expanded about the bottom of the well

to obtain

H ≃ ΩceIce + ωzIz +
1

2

∂2H

∂y2
y2 +

1

2

∂2H

∂p2
y

(py − p(0)
y )2 (3.40)

where

∂2H

∂y2
= miΩ

2
ci −

e5B3

c3(p
(0)
y )3

,

∂2H

∂p2
y

=
1

mi
− 2

e3B2

c(p
(0)
y )3

,

(3.41)
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and p
(0)
y ≃ P is the bottom of the well. Also, we have taken the simple case of

small axial bounce motion and used Eq. (3.13). In this case, the Bohr-Sommerfeld

quantization rules yield the energy levels

H ≃ ~Ωce

(
nc +

1

2

)
+ ~ωznz +

√
∂2H

∂y2

∂2H

∂p2
y

~nD. (3.42)

For our frequency ordering this expression reproduces results obtained previously

using a quantum treatment for a quadratic approximation to the outer well [27].

3.7 Field Ionization

Thus far, we have considered the case where the external electric field

vanishes in the laboratory frame. As was mentioned earlier, the case of a uniform

electric field directed transverse to the magnetic field is included implicitly through

a change of reference frame, that is, a shift in the initial ion velocities, ~vi(0) →

~vi(0)− c ~E × ~B/B2. However, such a shift cannot account for an electric field that

is parallel to the magnetic field or an electric field that is spatially varying.

In the ATRAP experiments [23], ionization of the guiding center drift atoms

by an electric field (field ionization) was used to measure binding energies. For

interpretation of such experiments, it would be useful to know the critical field for

ionization as a function of the quantum numbers (or actions) for the atomic state.

First consider the case where the electric field is parallel to the magnetic

field and the atom is moving slowly up a gradient in the field. The binding energy

in Eq. (3.7) is then replaced by

Hz =
p2

z

2µ
− e2√

r2 + z2
− eEz(t)z , (3.43)

where Ez(t) ≡ E[zatom(t)] is the electric field at the location of the atom, and we

have neglected the variation in the field over the dimensions of the atom. As the



68

atom moves up the gradient in the field, Hz is not constant in time. Rather, the

action,

Iz(Hz, Ez, r) =
1

2π

∮
pz[Hz, Ez, r, z]dz, (3.44)

is constant until just before ionization. For simplicity, we consider tightly bound

drift orbits with nearly circular orbits and neglect variation in r during the ioniza-

tion process.

The electric field cannot increase indefinitely. At a certain critical value

of Ez(t), one of the turning points for the integral in Eq. (3.44) ceases to exist,

the adiabatic invariant fails, and field ionization occurs. Implementing these ideas

numerically yields the solid curve in Fig. 3.14: a plot of the scaled critical field,

Ez/(H
2
z/e

3), versus the scaled radius, −Hzr/e
2. Here, Hz is the initial binding

energy, that is, the binding energy before the atom enters the electric field. Recall

that Hz is related to Iz and r (or, the drift action ID = eB r2/2c) through Eq. (3.7).

The limit −Hzr/e
2 = 1 corresponds to Iz = 0. In this limit, Ez/(H

2
z/e

3) reaches

the maximum value 2/3
√

3. Although the full curve in Fig. 3.14 was obtained

numerically, the maximum value can be obtained analytically. To check this theory,

Hamilton’s equations of motion were integrated forward in time through the field

ionization event for various initial conditions. The results are shown as the points

in Fig. 3.14. One can see that the theory based on constancy of Iz is accurate.

The scaling used in Fig. 3.14 provides a significant simplification. Without

the scaling, the critical field would have to be written as a two dimensional function,

Ez = f(Hz, r). The scaling results from the fact that the Coulomb interaction does

not introduce a separate length scale, so all lengths can be scaled in terms of e2/Hz.

Next consider the case where an atom moves up a gradient in a transverse

electric field. For a sufficiently weak gradient, the electric field can be treated as

uniform over the dimensions of the atom, but slowly varying in time because of the
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Figure 3.14: Ionization by an electric field parallel to the magnetic field. Ez is
the critical field for ionization, Hz is the initial binding energy before the atom
enters the electric field, and r is the radius of the nearly circular initial drift orbit.
The solid curve results from a theory based on constancy of Iz, and the points are
solutions of Hamilton’s equations of motion.

motion of the atom. As mentioned, a uniform transverse field can be accounted for

by a shift in ion velocity, or equivalently, a shift in the total transverse momentum

~P → ~Peff = ~P (t) − mic ~E(t) × ~B

B2
, (3.45)

where ~E(t) is the electric field at the location of the atom. We have also allowed for

a slow time dependence in the atom momentum, ~P (t). The electric field polarizes

the atom, and then the gradient in the field gives rise to a weak force on the atom

and a slow time variation in the atom momentum. We will discuss this point later.

Here, we need only realize that ~Peff(t) changes slowly in time because of the atom

motion.

Substituting ~Peff(t) for ~P in Eq. (3.16), with Px not set arbitrarily to zero,

yields a Hamiltonian for the relative electron-ion motion, ~r(t). To understand the

field ionization process, it is useful to refer again to Fig. 3.4b. The peak in the

effective potential separating the Coulomb well and the outer well moves to the left

as |~Peff(t)| increases. Correspondingly, in Fig. 3.4a the x-point in the separatrix

moves to the left. We imagine that the atom starts with a nearly circular guiding
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center drift orbit inside the Coulomb well. As the atom moves up the gradient

in the transverse electric field and |~Peff(t)| increases, the x-point moves toward

the orbit, and the orbit distorts from circularity. Eventually, the phase trajectory

crosses the separatrix to the outer well. The atom becomes a drifting pair and

is quickly ionized by the gradient. One can easily show that drifting pairs are

always separated by a field gradient. Effectively, field ionization occurs when the

trajectory crosses the separatrix.

During this process, the Hamiltonian is not a constant of the motion since

~Peff(t) depends explicitly on time. However, the transverse action

ID =
1

2π

∮
py [y,H, Iz, ~Peff(t)]dy (3.46)

is nearly constant up to the separatrix crossing. The characteristic time for a drift

cycle is small compared to the time scale on which ~Peff(t) changes. The constancy

of the actions, ID and Iz, allows us to determine the critical |~Peff | for field ionization

as a function of the initial values of the actions.

Figure 3.15 shows the result of a numerical implementation of these ideas for

the simple case where Iz = 0. The abscissa and ordinate are scaled as in Section 3.4.

The ordinate is the scaled drift action ĨD = ID/miΩcir
2
2 = r̃2/2, where r̃ = r/r2 is

the scaled radius of the nearly circular initial drift orbit. Rather than referring to

a critical effective momentum for ionization, we refer to a critical effective electric

field, Eeff ≡ |~Peff × ~B/mic|. The abscissa in Fig. 3.15 is the scaled critical field,

Ẽeff = Eeff/(e/r
2
2). The critical field is always larger than the momentum at which

the outer well disappears (i.e., Ẽeff = | ~̃P eff | > P̃c = 3/41/3, see Fig. 3.5). The

solid curve in Fig. 3.15 results from the theory based on constancy of the adiabatic

invariants, and the points are from numerical solutions of the coupled electron-ion

equations and equations of motion.
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Figure 3.15: Ionization by an effective electric field transverse to the magnetic
field for the simple case where the bounce action is zero (i.e., Iz = 0 ). The effective

field Ẽeff = Eeff/(e/r
2
2) and the drift action ĨD = r̃2/2 are scaled as in Section 3.4.

The solid curve results from a theory based on the constancy of ID and the points
from the solution of the coupled electron-ion equations of motion. The dashed
curve is an approximate analytic solution, Ẽeff ≃ χ/ĨD, that assumes tight binding

(r̃3 ≪ 1). The arrow at Ẽeff = P̃c ≡ 3/41/3 (see Fig. 3.5 for the definition of P̃c)
limits the range of possible field ionization.

For the case of sufficiently tight initial binding (i.e., r̃3 ≪ 1), an analytic

expression can be obtained for the scaled critical field

Ẽeff ≃ χ/ID = 2χ/r̃2, (3.47)

where

χ =
1

π

[√
2 + ln(2 + 23/2) − 2 ln(2 +

√
2)
]
≃ 0.17 . (3.48)

This approximate result is shown in the dashed curve in Fig. 3.15.

We emphasize that the effective electric field, ~̃Eeff = ~̃E(t) + ~̃P (t) × ẑ,

depends on both the lab-frame electric field and the atom momentum. Moreover,

a gradient in the electric field gives rise to a force on the polarized atom and

changes its momentum. In a subsequent paper we will discuss the motion of the

atom under this force. Here, we simply note that the change in the effective field

due to the change in the atom momentum is small for sufficiently tight binding

(i.e., for r̃3 ≪ 1).
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Chapter 4

Motion of Guiding Center Drift

Atoms in the Electric and

Magnetic Field of a Penning Trap

4.1 Abstract

The ATHENA and ATRAP collaborations have produced antihydrogen

atoms by recombination in a cryogenic antiproton-positron plasma. This paper

discusses the motion of the weakly bound atoms in the electric and magnetic field

of the plasma and trap. The effective electric field in the moving frame of the

atom polarizes the atom, and then gradients in the field exert a force on the atom.

An approximate equation of motion for the atom center of mass is obtained by

averaging over the rapid internal dynamics of the atom. The only remnant of the

atom internal dynamics that enters this equation is the polarizability for the atom.

This coefficient is evaluated for the weakly bound and strongly magnetized (guiding

center drift) atoms understood to be produced in the antihydrogen experiments.

Application of the approximate equation of motion shows that the atoms can be

trapped radially in the large space charge field near the edge of the positron column.

Also discussed are the curved trajectories followed by the atoms in moving from

the plasma to a field ionization diagnostic. Finally, the critical field for ionization

73
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is determined as an upper bound on the range of applicability of the theory.

4.2 Introduction

The ATHENA and ATRAP collaborations at CERN have reported the pro-

duction of cold antihydrogen atoms [21, 22]. The atoms result from recombination

when cold antiprotons are added to a cryogenic positron plasma in a Penning trap

configuration. The ATRAP collaboration measured binding energies in the range

of meV [23].

Here we discuss the motion of these weakly bound atoms in the magnetic

and electric field of the trap. Because the binding is so weak, even a modest electric

field produces a significant polarization of an atom. A gradient in the field then

exerts a force on the atom, causing acceleration. Typically, the atom is moving

across the magnetic field, and it is the effective electric field in the moving frame

of the atom that causes the polarization and the acceleration. In the laboratory

frame, both electric and magnetic forces must be taken into account.

In the experiments, the magnetic field is nearly uniform and the electric

field varies by only a small amount over the dimensions of the atom. Also, the time

scale for the internal dynamics of the atom is short compared to the time scale

for the atom to move a significant distance. Taking advantage of these orderings,

we obtain an approximate equation of motion for the atom center of mass. The

only remnant of the atom internal dynamics that enters the equation of motion

is the polarizability. The approximate equation of motion provides a substantial

simplification because it averages over the rapid internal dynamics of the atom.

An interesting implication of the equation of motion is that a weakly bound

atom can be trapped radially in the large electric field region near the edge of a

long cylindrical positron column. The reason for the trapping is easy to understand
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physically. For a uniform density unneutralized column of positrons, the radial

space charge field increases linearly with radius inside the column and falls off

inversely with radius outside the column. Thus, there is a region of large field near

the plasma edge, and polarizable material (the atom) is attracted to a region of

maximum field.

We will find that the polarization forces create a potential well of approx-

imate depth αE2, where α is the polarizability of the atom and E is the electric

field strength. In Gaussian units, the polarizability has the dimensions length

cubed, and the polarizability for an atom of size ra is of order α ∼ r3
a. Since the

binding energy for an atom is of order e2/ra, the depth of the well scales inversely

with the cube of the binding energy. Thus, the effects discussed here are more

pronounced for weakly bound atoms. Of course, a weakly bound atom suffers field

ionization from a relatively weak field. The critical field for ionization is approx-

imately E ∼ e/r2
a. Using this field strength as an upper bound for E shows that

the maximum well depth is the binding energy of the atom:

αE2 = (α/r3
a)r

3
a

(
E

e/r2
a

)2(
e

r2
a

)2

.
e2

ra
(4.1)

For the example discussed in the last paragraph, radial trapping is possible only

when the atom binding energy is larger than the kinetic energy of the atom center

of mass.

The ATRAP collaboration uses field ionization as a diagnostic, and the

ionization region is some distance from the plasma. As a second application of

the approximate equation of motion, we determine trajectories followed by weakly

bound atoms in moving from the recombination region (inside the positron plasma)

to the field ionization region. Depending on the parameters, a straight line orbit

may or may not be a good approximation. We will see that the polarization
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forces produce a significant deflection of the atom when the binding energy is

larger than the center of mass kinetic energy. Knowledge of the trajectories is an

important input to estimates of antihydrogen production rates based on solid angle

considerations.

The analysis divides naturally into two parts: the derivation of the equation

of motion and the calculation of the polarizability. In Section 4.3, we derive an

approximate equation of motion for the expectation value of the atom center of

mass coordinates, 〈~Rcm〉(t) ≡ 〈Ψ|~Rcm|Ψ〉. The derivation of the equation of motion

depends on the spatial and temporal orderings mentioned above but otherwise is

general. On the other hand, determination of the polarizability requires a more

detailed specification of the internal dynamics for the atom.

In Section 4.4, we evaluate the polarizability for the special case of guid-

ing center drift atom [24]. As discussed in recent literature [25, 31], these weakly

bound and strongly magnetized atoms are thought to be produced in the anti-

hydrogen experiments. For these novel atoms, the cyclotron frequency for the

positron is much larger than the other dynamical frequencies and the cyclotron

radius is much smaller than the separation between the positron and antiproton.

Under these circumstances, the rapid cyclotron motion can be averaged out and

the positron dynamics treated by guiding center drift theory. The dynamics is

quasi-classical, since the binding energy is much smaller than the Rydberg en-

ergy (four orders of magnitude smaller for the meV binding energies measured in

the ATRAP experiments). Fortunately, the dynamics for guiding center atoms is

integrable, and the polarizability can be evaluated with perturbation theory.

In Section 4.5, we use the approximate equation of motion and calculated

coefficient of polarizability to discuss the radial trapping of weakly bound atoms

in the large space charge field of a long positron column. The geometry and field
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strengths used are characteristic of the ATHENA experiments. Orbits from the

approximate equation of motion are shown to be in good agreement with those

from lengthy numerical solutions of the coupled positron-antiproton equations of

motion. These latter solutions involve over a million cycles of the internal atom

dynamics. The comparison demonstrates the fidelity of the approximate equation

of motion and also the substantial simplification it provides in averaging out the

rapid internal dynamics. In a second application, we discuss the curved trajectories

followed by weakly bound atoms in moving from the plasma to a field ionization

region. Here we use field strengths and geometry characteristic of ATRAP.

For the special case of a purely radial space charge field, the approximate

equation of motion was obtained previously [29]. The derivation here is more gen-

eral in that it allows all three components of the electric field. Also, the derivation

here is not based on classical mechanics and the guiding center drift approxima-

tion. This specialization is used here only to obtain the polarizability, not in the

derivation of the approximate equation of motion. The present discussion of the

polarizability tensor is more complete than in reference [29] and includes a discus-

sion of field ionization. Also, the determination of trajectories for atoms moving

from the plasma to the field ionization region is new.

4.3 Approximate Equation of Motion

We consider a positron (particle 1) and an antiproton (particle 2), although

the results apply equally to an electron and a singly ionized ion. The mass ratio

m1/m2 is assumed to be small, but is not specified to a specific value. The two

particles interact electrostatically and move in the uniform magnetic field ~B = ẑB

and the spatially varying electric field ~E = −~∇φ. For the choice of vector potential
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~A = Bxŷ, the Hamiltonian operator is given by

H =
p2

z1

2m1

+
p2

x1

2m1

+
(py1 − eB

c
x1)

2

2m1

+
p2

z2

2m2

+
p2

x2

2m2

+
(py2 + eB

c
x2)

2

2m2

− e2√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

+ eφ(x1, y1, z1) − eφ(x2, y2, z2). (4.2)

The effect of spin has been neglected, since the magnetic field is uniform and the

spin-field interaction does not couple the spin and orbital dynamics. The usual

spin-orbit interaction, which is smaller than the electrostatic interaction by order

(v/c)2, is very small for the small binding energies (and small velocities) considered

here.

It is useful to introduce relative coordinates through the transformation

x =x1 − x2, px =
m2px1 −m1px2

m1 +m2

y =y1 − y2, py =
m2(py1 − eB

c
x2) −m1(py2 + eB

c
x1)

m1 +m2

z =z1 − z2, pz =
m2pz1 −m1pz2

m1 +m2
(4.3)

X =
m1x1 +m2x2

m1 +m2
+

c

eB
(py1 + py2), PX =px1 + px2 −

eB

c
(y1 − y2)

Y =
(2m2 +m1)y2 −m2y1

m1 +m2
+

c

eB
(px1 + px2) PY =py1 + py2

Z =
m1z1 +m2z2
m1 +m2

PZ =pz1 + pz2.

Classically, this is a canonical transformation, as can be verified by observing that

the Poisson brackets for the new coordinates and momenta have the canonical

values (i.e., [Qi, Pj] = δij). Quantum mechanically, the commutators for the new

operations have the canonical values (i.e., [Qr, Ps] = δrsi~).
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The vector ~r = (x, y, z) is the relative coordinate between the positron

and antiproton. The momentum PZ is the total (or center of mass) momentum

along the magnetic field. The transverse components (PX , PY ) are often called

pseudomenta [26]. PY is the sum of the y-components of the canonical momentum

for the two particles; PX is the corresponding sum that would be obtained for the

x-components using a different choice of vector potential (i.e., ~A′ = −Byx̂). The

two choices ( ~A = Bxŷ and ~A′ = −Byx̂) are related by a gauge transformation

and both produce the given magnetic field (i.e., ~∇× ~A = ~∇× ~A′ = ẑB). We will

see that ~P = (PX , PY , PZ) are constants of the motion for the special case of a

spatially uniform electric field.

For future convenience, we note that the antiproton and positron coordi-

nates are given by

~r2 =

(
X − c

eB
PY − m1x

m1 +m2

, Y − c

eB
PX − m1y

m1 +m2

, Z − m1z

m1 +m2

)
, (4.4)

~r1 = ~r2 + ~r. (4.5)

Likewise, the center of mass coordinates are given by

~Rcm =
m1~r1 +m2~r2
m1 +m2

=
(
X − c

eB
PY , Y − c

eB
PX , Z

)
. (4.6)

In terms of the new operators, the Hamiltonian is given by

H =
|~P |2
2M

− eB

MC
(PY x− PXy) +

MΩ2
CM

2
(x2 + y2)

+
p2

x

2µ
+

(py −
√

1 − 4µ
M

eB
c
x)2

2µ
+
p2

z

2µ
− e2√

x2 + y2 + z2
+ eφ(~r1) − eφ(~r2), (4.7)

where M = m1 + m2 and µ = m1m2/(m1 + m2) are the total and reduced mass,

ΩCM ≡ eB/MC is the cyclotron frequency for the total mass, and ~r2 and ~r1 have

been introduced as shorthand for the variables in relations (4.4) and (4.5).
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Let 〈~P 〉 ≡ 〈Ψ|~P |Ψ〉 be the expectation value of the total momentum. The

rate of change of this quantity is given by

d

dt
〈~P 〉 = 〈Ψ| 1

i~
[~P ,H ]|Ψ〉. (4.8)

Using ~P = (~/i)(∂/∂X, ∂/∂Y, ∂/∂Z) to evaluate the commutator [~P ,H ] yields the

result

d〈~P 〉
dt

= 〈Ψ|[e ~E(~r1) − e ~E(~r2)]|Ψ〉 , (4.9)

where the electric field ~E = −~∇φ, has been introduced. As anticipated, ~P is a

constant of the motion for the case of a spatially uniform electric field.

We assume that the spatial gradient in the field is small and work only to

first order in the gradient. Let ℓ ∼ | ~E|/|~∇E| be the scale length of the field and

ra be the size of the atom. Formally, the wave function |Ψ〉 is negligibly small for

r = |~r1 − ~r2| larger than ra. We assume that ra ≪ ℓ, and work only to first order

in the small parameter ra/ℓ≪ 1. To this order, Eq. (4.9) can be rewritten as

d〈~P 〉
dt

≃ 〈Ψ|[e~r · ~∇ ~E(〈~Rcm〉)]|Ψ〉 , (4.10)

where 〈~Rcm〉 ≡ 〈Ψ|~Rcm|Ψ〉 is the expectation value of the center of mass position

operator [see Eq. (4.6)]. In terms of the expectation value 〈~r〉 ≡ 〈Φ|~r|Ψ〉, Eq. (4.10)

takes simple form

d〈~P 〉
dt

≃ e〈~r〉 · ~∇ ~E(〈~Rcm〉) . (4.11)

Likewise, the rate of change of 〈~Rcm〉 is given by

d〈~Rcm〉
dt

=

〈
Ψ

∣∣∣∣
1

i~
[~Rcm, H ]

∣∣∣∣Ψ
〉

=
〈~P 〉
M

+
e〈~r〉
MC

× ~B , (4.12)

where use has been made of definition (4.6), Hamiltonian (4.7) and the basic com-

mutator relations. Taking the time derivative of Eq. (4.12) and using Eq. (4.11)

to replace d〈~P 〉/dt yields the result

M
d2〈~Rcm〉
dt2

= ~d · ~∇ ~E(〈~Rcm〉) +
1

c

d

dt
~d× ~B , (4.13)
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where ~d ≡ e〈~r〉 is the dipole moment of the atom.

The next step is to find an expression for ~d in terms of fields and the center

of mass velocity [i.e., ~E(〈~Rcm〉), ~B, and d〈~Rcm〉/dt]. Equation (4.13) will then be

a proper equation of motion for the evolution of 〈~Rcm〉(t) in the given fields.

The first term on the right-hand side of Eq. (4.13) is obviously first order in

the spatial gradient of the electric field [i.e., O(1/ℓ)], and the second term is as well,

since d/dt turns out to be first order in the gradient. Thus, in Hamiltonian (4.7)

we set eφ(r1) − eφ(r2) = e ~E · ~r, where the field ~E is independent of ~r. To zero

order in ra/ℓ≪ 1, we set ~E = ~E(〈~Rcm〉).

There remains the question of the time dependence in ~E[〈~Rcm〉(t)]. We

assume that the time scale for the internal dynamics (relative motion) is short

compared to the time for the atom as a whole to move a distance ℓ. This latter

time is the time scale on which ~E[〈~Rcm〉(t)] changes significantly. Thus, we use

an adiabatic approximation and neglect the time-dependence in ~E[〈~Rcm〉(t)] when

solving for the internal motion (relative motion).

As mentioned earlier, ~P is a constant of the motion for a uniform electric

field. Thus, in Hamiltonian (4.7) we replace the operator ~P by the constant eigen-

value ~P and replace the potential difference [eφ(~r1) − eφ(~r2)] by −e ~E · ~r where ~E

is a constant field. This yields a Hamiltonian for the relative motion

H =
p2

x

2µ
+

(py −
√

1 − 4µ
M

eB
c
x)2

2µ
+
p2

z

2µ
− e2√

x2 + y2 + z2
+
M

2
Ω2

CM(x2+y2)−e~E ·~r,

(4.14)

where

~E = ~E +
~P × ~B

MC
(4.15)

is the effective field acting on the atom, and the constant term P 2/(2M) has been

dropped from the Hamiltonian.
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For the special case ~E = 0, H commutes with the parity operator, P. If

ψn1,n2,n3
(~r) is an eigenfunction of H corresponding to the eigenvalue H̄n1,n2,n3

, then

Pψn1,n2,n3
(~r) = ψn1,n2,n3

(−~r) is an eigenfunction for the same eigenvalue. Except

for very special cases (e.g., ~B = 0), one expects the energy levels H̄n1,n2,n3
to be

non-degenerate. Here, the integers (n1, n2, n3) specify the quantum state. For the

special case of guiding center drift dynamics, we will identify these integers in the

next section. Therefore, Pψn1,n2,n3
and ψn1,n2,n3

differ only by a constant; further,

that constant must be ±1, that is, ψn1,n2,n3
must have even or odd parity. Thus,

the dipole moment ~d = e〈Ψ|~r|Ψ〉 vanishes for ~E = 0.

For sufficiently small ~E , Taylor expansion suggests the linear relationship

~d = α̂ · ~E , where the polarizability matrix is given by

α̂ =




α⊥ 0 0
0 α⊥ 0
0 0 αz


 . (4.16)

Because of the magnetic field, the parallel and transverse polarizabilities are not

equal.

Combining Eqs. (4.12) and (4.16) with the relation ~d = α̂ · ~E yields the

expressions

dz = αzEz

(
1 − α⊥B

2

MC2

)
~d⊥ = α⊥

[
~E⊥ +

1

c

d〈~Rcm〉
dt

×B

]
.

(4.17)

Substituting these expressions into Eq. (4.13) yields the equation of motion

M

(
1 − α⊥B

2

MC2

)
dVz

dt
ẑ +M

d~V⊥
dt

=

1

2
~∇
[(

1 − α⊥B
2

MC2

)
αzE

2
z + α⊥E

2
⊥

]
+ α⊥

~V⊥ × ~B

c
· ~∇ ~E + α⊥

~V

c
· ~∇( ~E × ~B), (4.18)
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where ~V ≡ d〈~Rcm〉/dt, ~E is evaluated at 〈~Rcm〉, αz and α⊥ have been treated

as constants, and use has been made of ~∇ × ~E = 0. Taking the dot product

of Eq. (4.18) with respect to ~V and integrating over time yields an equation for

conservation of energy

(
1 − α⊥B

2

MC2

)
MV 2

z

2
+
MV 2

⊥

2
− α⊥E

2
⊥

2
− αz

(
1 − α⊥B

2

MC2

)
E2

z

2
= const, (4.19)

where again use has been made of ~∇× ~E = 0.

It is convenient to introduce cylindrical coordinates for the center of mass,

~Rcm = (R,Θ, Z). Typically, the electric potential has no dependence on the angle

Θ, and the azimuthal electric field vanishes. In this case, Eq. (4.18) yields an

equation for conservation of canonical angular momentum

(
1 − α⊥B

2

Mc2

)−1 [
MVθR +

α⊥B

c
RER(R,Z)

]
= const. (4.20)

Formal expressions for αz and α⊥ can be obtained in terms of the energy

levels for the relative motion, H̄n1,n2,n3
(Ez, E⊥). In the adiabatic approximation

considered here, the quantum numbers for the state (i.e., (n1, n2, n3)) remain fixed

but the energy levels evolve as a function of the slowly varying Ez and E⊥. From

the relations −ez = ∂H/∂Ez and 〈Ψ|∂H/∂Ez|Ψ〉 = ∂/∂Ez〈Ψ|H|Ψ〉, one finds that

dz ≡ 〈ez〉 = − ∂

∂Ez
H̄n1,n2,n3

(Ez, E⊥). (4.21)

Likewise, one finds that

~d⊥ ≡ 〈e~r⊥〉 = − ∂

∂~E⊥
H̄n1,n2,n3

(Ez, E⊥). (4.22)

The linear polarizabilities are then given by

αz = − ∂2H̄

∂2E2
z

∣∣∣∣
Ez ,E⊥=0

α⊥ = − ∂2H̄

∂2E2
⊥

∣∣∣∣
Ez ,E⊥=0

. (4.23)
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Figure 4.1: Drawing of a guiding center drift atom. In order of descending
frequency, the positron executes cyclotron motion, oscillates back and forth along
a field line in the Coulomb well of the antiproton, and ~E× ~B drifts around the ion.

4.4 Polarizability for Guiding Center Drift Atoms

In this section, we evaluate the polarizability for the weakly bound and

strongly magnetized atoms produced in the antihydrogen experiments. In recent

literature, these atoms are referred to as guiding center drift atoms [24, 25, 31]

The cyclotron frequency for the positron is much larger than the other frequencies

that characterize the dynamics, and the cyclotron radius much smaller than the

positron-antiproton separation. Under these circumstances, the rapid and highly

localized cyclotron motion can be averaged out and the positron dynamics treated

by guiding center drift theory. A quasi-classical treatment of the atoms is possible,

since the binding energy is much smaller (four orders of magnitude smaller) than

the Rydberg energy.

Figure 4.1 illustrates the internal dynamics (relative motion) of a guiding

center drift atom for the special case where the effective electric field vanishes (i.e.,

~E → 0). The positron executes very rapid cyclotron motion with a small cyclotron

radius. More slowly, the positron oscillates back and forth along the magnetic

field in the Coulomb well of the antiproton. More slowly still, the positron and

antiproton move in circular cross magnetic field orbits around a common point.
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The positron cross field motion is well described as the ~E × ~B drift velocity in the

electric field of the antiproton, but full dynamics must be retained to describe the

cross field motion of the antiproton. In Fig. 1, ~r = ~r1 − ~r2 is the relative position

so the motion is shown from the perspective of the antiproton.

The relative motion is described by Hamiltonian (4.14) with the effec-

tive electric field set equal to zero (i.e., ~E = 0). We will see that the first two

terms describe the rapid cyclotron motion, the next two the field aligned oscilla-

tions, and the third and fourth the cross field motion. The cyclotron frequency is
√

1 − 4µ/M eB/µc ≃ eB/mec ≡ Ωce. For the case where the amplitude of the field

aligned oscillations is not too large (i.e., zmax . r⊥ =
√
x2 + y2), the frequency of

these oscillations is approximately ωz =
√
e2/mer3

⊥. This estimate has used the

Taylor expansion e2/
√
z2 + r2

⊥ ≈ e2/r⊥ − e2z2/2r3
⊥. For this same case, we will

see that the frequency of the cross field motion is approximately ωD + ΩCM, where

ωD ≡ ce/Br3
⊥ is the ~E × ~B drift frequency of a positron in the Coulomb field of

a stationary antiproton. We will be interested in cases where ωD & ΩCM, so we

simply use ωD as the estimate of the frequency for cross field motion.

Since the positron cyclotron frequency, Ωce = eB/mec, is related to ωz =
√
e2/mer3

⊥ and ωD = ce/Br3
⊥ through the equation Ωce = ω2

z/ωD, the requirement

that Ωce be larger than the other two frequencies imposes the ordering

Ωce ≫ ωz ≫ ωD. (4.24)

The ordering is realized for sufficiently weak binding, that is, for r ≫ (mec
2/B2)1/3.

This inequality is required for validity of the analysis.

Note that the inequality implies not only that the positron cyclotron fre-

quency is large, but also that the positron cyclotron radius is small. We have in

mind cases where the positron kinetic energy is smaller than or of order of the elec-
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trostatic binding energy (i.e., mev
2
e/2 . e2/r). The inequality r ≫ (mec

2/B2)1/3

then implies that rce ≡ ve/Ωce ≪ r.

For r comparable to (mec
2/B2)1/3 our guiding center analysis fails. All

three frequencies in inequality (4.24) are comparable, and the positron motion

is chaotic [25, 35, 36]. For r ≪ (mec
2/B2)1/3, the cyclotron frequency is small

compared to the Kepler frequency, and the positron motion is again integrable.

In this case, one can think of the weakly bound pair as a high-n Rydberg atom

with a Zeeman perturbation [37]. For cases where r < (mec
2/B2)1/3, equation of

motion (4.18) remains valid, but the polarizability derived here does not apply.

As mentioned, the ATRAP collaboration measured binding energies of or-

der meV, which corresponds to ē−p̄ separation of order 10−4 cm [23]. The magnetic

field strength is 5 T, so the critical radius is (mec
2/B2)1/3 = 7 × 10−6 cm. Thus,

the separation is much larger than (mec
2/B2)1/3, and the weakly bound pairs are

guiding center atoms. The cyclotron frequency for the positron is about 100 times

larger than the ~E × ~B drift frequency ωD, and the cyclotron radius is about 100

times smaller than the separation.

The simple symmetry of the orbit shown in Fig. 4.1 is a consequence of the

choice ~E = 0. For non-zero ~E , the last term in Hamiltonian (4.14) modifies the

motion, but for sufficiently small ~E the modifications can be treated as a pertur-

bation. The term eEzz shifts the field aligned oscillations, destroying symmetry

of the orbit in ±z. Likewise, the term e~E⊥ · ~r⊥ destroys the circular symmetry of

the cross field orbit. Of course, these distortions give rise to the polarization of

interest.

Because the atom moves, the effective field ~E = ~E [〈~Rcm〉(t)] varies in time.

As mentioned earlier, we assume that the time scale for this motion (i.e., τ ∼ ℓ/Vcm)

is long compared to the time scale for the internal dynamics. Thus, frequency
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ordering (4.24) is extended to be

Ωce ≫ ωz ≫ ωD ≫ 1/τ . (4.25)

The frequency ordering then implies that the internal dynamics for the

atom is integrable. Because the positron cyclotron frequency is much larger than

the other frequencies, the cyclotron action is a good adiabatic invariant. Use of

guiding center drift dynamics automatically takes this invariant into account and

removes the rapid cyclotron motion from the problem. Because the frequency of

field aligned oscillations is larger than the remaining frequencies, the action for

the field aligned oscillations is a good adiabatic invariant. Introducing this action

and averaging over the field aligned oscillations then leaves the cross field drift

motion as the largest frequency motion. Thus, the drift action is a good adiabatic

invariant. The values of these three actions determine the internal state of the

atom. In reference [25], Bohr-Sommerfeld quantization rules are used to associate

a quantum number with each action. To the extent that 1/τ is small compared

to the frequencies for the internal dynamics [i.e., ordering (4.25)], the adiabatic

approximation implies that the actions (or quantum numbers) remain constant as

the atom moves through the external field. In the language of atomic physics, we

make a triple Born-Oppenheimer approximation.

Returning to Hamiltonian (4.14) with frequency ordering (4.25) in mind,

we first treat the cyclotron motion. The first two terms in Eq. (4.14) comprise the

cyclotron Hamiltonian

Hc =
p2

x

2µ
+

(py −
√

1 − 4µ
M

eBx
c

)2

2µ
, (4.26)

where py may be treated as a constant on the cyclotron time scale. The Hamiltonian

describes oscillations in x at the frequency eB/µc
√

1 − 4µ/M ≃ Ωce and centered
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about the guiding center position xg = py(c/eB)(1 − 4µ/M)1/2 ≃ cpy/eB. By

introducing the cyclotron action,

Ic =
1

2π

∮
dx px[H̄c, x] , (4.27)

one finds H̄c = IcΩce. Here, H̄c has the same value as Hc but a different functional

form. Making this replacement for the first two terms in Hamiltonian (4.14) and

replacing x by xg = cpy/eB in the remainder of the Hamiltonian yields the guiding

center drift Hamiltonian [25]

H = IcΩce +
p2

z

2µ
− e2√

r2
⊥ + z2

− eEzz +
MΩ2

CM

2
r2
⊥ − e~E⊥ · ~r⊥, (4.28)

where ~r⊥ = (cpy/eB, y). In drift dynamics, y and py = eB/cx are canonically con-

jugate coordinate and momentum [38]. The field aligned oscillations are governed

by the second, third, and fourth terms in Hamiltonian (4.28). We write the sum

of these terms as the Hamiltonian

Hz =
p2

z

2µ
− e2√

r2
⊥ + z2

− eEzz , (4.29)

where r⊥ can be treated as constant on the time scale of the field aligned oscilla-

tions. The action for the field aligned oscillations is given by

Iz =
1

2π

∮
dz
√

2µ

√
H̄z + e2/

√
r2
⊥ + z2 + eEzz, (4.30)

which can be inverted at least formally, to obtain H̄z = H̄z(r
2
⊥, Iz, Ez). Again, H̄z

has the same value as Hz but different functional form.

Substituting H̄z(r
2
⊥, Iz, Ez) into Eq. (4.28) yields a Hamiltonian for the cross

field motion

H = IceΩce + H̄z(r
2
⊥, Iz, Ez) +

MΩ2
CM

2
r2
⊥ − e~E⊥ · ~r⊥ . (4.31)
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For given values of H , Ice, Iz, Ez, and ~E⊥ this equation determines the cross field

orbit [i.e., py(y), where py = (eB/c)x]. It is useful to introduce the action for the

cross field motion (drift action)

ID =
1

2π

∮
dy py[y, H̄ − ΩceIc, Iz, Ez, E⊥], (4.32)

which can be inverted formally to obtain H̄ = H̄(Ic, Iz, ID, Ez, E⊥). Following

reference [25], the Bohr-Sommerfeld rules for quantization are used to set

H̄ = H̄ [Ic = ~nc, Iz = ~nz, ID = ~nD, Ez, E⊥] , (4.33)

where the integers nc, nz, nD remain fixed as ~E = ~E [〈~Rcm〉(t)] evolves slowly

in time. In expression (4.23) for the polarizability, the energy levels are simply

H̄n1,n2,n3
= H̄(~nc, ~nz, ~nD, Ez, E⊥), where (n1, n2, n3) = (nc, nz, nD).

For linear polarizability, αz = −∂2H̄/∂E2
z |Ez ,E⊥=0 can be evaluated setting

E⊥ = 0 at the outset. In this case the cross field orbit is circular and the drift

action is simply

ID =
1

2π

∮
pydy =

eB

2c
r2
⊥. (4.34)

Substituting this expression for r2
⊥ in Eq. (4.31) and setting ~E⊥ = 0 yields the

energy levels H̄ = H̄(Ic, Iz, ID, Ez, E⊥ = 0).

The partial derivative of this equation with respect to Ez yields the dipole

moment

dz = −∂H̄
∂Ez

= −∂H̄z

∂Ez

. (4.35)

By taking the derivative of Eq. (4.30) with respect to Ez holding Iz and r2
⊥ =

(2c/(eB))ID constant, we obtain the equation

0 =
1

2π

∮
dz

ż(z)

[
∂H̄z

∂Ez

+ ez

]
, (4.36)

where

ż = ±
√

2

µ

√
H̄z + e2/

√
r2
⊥ + z2 + eEzz. (4.37)
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Figure 4.2: The scaled polarizability αz|Hz|3/e6 versus the scaled radius
|Hz|r⊥/e2.

In Eq. (4.36) H̄z(Iz, r
2
⊥, Ez) is independent of z, so we obtain the result

dz = −∂Hz

∂Ez
=

∮
dz

ż(z)
ez

∮
dz

ż(z)

. (4.38)

Thus, the dipole moment is expressed as the time-average of (ez) over the semi-

classical orbit. In Section 4.3 [see Eq. (4.13)], the dipole moment was written as

the expectation value 〈e~r〉. Here, we see that the expectation value goes over to a

time average in the semi-classical limit.

To determine αz, we evaluate time-average (4.38) numerically with ż =

ż(z,Hz, r⊥, Ez) given by Eq. (4.37). For sufficiently small Ez, dz is linear in Ez and

αz = dz/Ez is independent of Ez. Removal of dependence on Ez allows the result

for the linear αz to be presented in a completely scaled form. Figure 4.2 shows the

scaled polarizability αz|Hz|3/e6 versus the scaled radius |Hz|r⊥/e2.

It is instructive to note alternate forms for these scaled variables. In Fig. 3

of reference [25] the scaled radius |Hz|r⊥/e2 is given as a function of the ratio

Iz/
√
r⊥, where Iz is the action for the field aligned oscillations. Large Iz cor-

responds to small |Hz|r⊥/e2, and Iz = 0 corresponds to |Hz|r⊥/e2 = 1. Also,

in the small field limit the magnitude of Hamiltonian (4.29) can be written as

|Hz| = e2/
√
r2
⊥ + z2

max, where zmax is the amplitude of the field aligned oscillations.
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Figure 4.3: Ionization by an electric field parallel to the magnetic field. Ez is the
critical field for ionization, Hz is the initial binding energy before the atom enters
the electric field, and r⊥ is the radius of the nearly circular initial drift orbit. The
solid curve results from a theory based on constancy of Iz , and the points are
numerical solutions of coupled positron-antiproton equations of motion.

Thus, the scaled polarizability can be written as αz|Hz|3/e6 = αz/(r
2
⊥ + z2

max)
3/2

and the scaled radius as |Hz|r⊥/e2 = r⊥/
√
r2
⊥ + z2

max.

Refering again to Fig. 4.2, we note that for |Hz|r⊥/e2 = r⊥/
√
r2
⊥ + z2

max

near unity (i.e., small zmax/r⊥), αz takes the value r3
⊥. For |Hz|r⊥/e2 near zero,

αz is given by (35/16)z3
max. Analytic solutions are possible at both end points.

To gain some idea of the range of Ez for which the linear theory is valid,

we first review previous results on field ionization. Clearly, the critical field for

ionization is an upper bound on the range of validity. Figure 4.3, which is taken

from reference [25] shows the scaled critical field Ez/(H
2
z/e

3) versus the scaled

radius |Hz|r⊥/e2. Here, the atom starts in a low field region and moves up a field

gradient until field ionization occurs. As the atom moves, the the action Iz is

conserved until just before ionization. In contrast, the value of Hz = Hz(Ez, r⊥, Iz)

is not conserved. In Fig. 4.3, the value of |Hz| that enters the scaled variables is

the value in the low field region. Thus, the scaled radius in Fig. 4.3 is the same

as that in Fig. 4.2. Also, note that the scaled field variable can be rewritten as
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Ez/(H
2
z/e

3) = Ez(r
2
⊥ + z2

max)/e, where zmax is the amplitude of the z-oscillations

in the low field region. At the end point |Hz|r⊥/e2 = 1 the critical field is Ez =

(2/(3
√

3))e/r2
⊥ ≃ 0.39e/r2

⊥, and at the end point |Hz|r⊥/e2 = 0 the critical field

Ez = 0.32e/z2
max.

The end point |Hz|r⊥/e2 = 1 corresponds to Iz = 0. For this limit, a

nonlinear expression for αz can be obtained analytically. The second two terms in

Hamiltonian (4.29) provide a potential well with the bottom shifted toward positive

z (for Ez > 0). For small Iz, the positron executes small amplitude oscillations near

the bottom of the well. The oscillations are symmetric about the bottom since the

well is approximately quadratic near the bottom. Thus, the time-average 〈z〉 is

simply the z-value of the shifted bottom.

Setting ∂Hz/∂z = 0 to determine the shifted bottom yields the result

αz =
dz

Ez

= r3
⊥g(Ẽz), (4.39)

where the scaled field is Ẽz = Ez/(e/r
2
⊥) and

g(Ẽz) =
1

Ẽz

{
2√
3

1

Ẽz

cos

[
1

3

(
π + arccos

(
3
√

3

2
Ẽz

))]
− 1

}1/2

≡ αz(Ẽz)

αz0
. (4.40)

Here αz0 = r3
⊥, the value of αz for Iz = 0 and Ez = 0. Function (4.40) is plotted in

Fig. 4.4. For small values of the scaled field, g(Ẽz) is near unity so that αz ≃ r3
⊥

in accord with the linear value in Fig. 4.2. g(Ẽz) rises to its maximum value of

3
√

3/(2
√

2) at Ẽz = 2/(3
√

3). At this upper limit, the well ceases to exist and the

atom undergoes field ionization. Note that the value Ẽz = 2/(3
√

3) is the critical

field predicted in Fig. 4.3 for end point |Hz|r⊥/e2 = 1.

To evaluate ~d⊥ and α⊥, we first make a canonical transformation from the

cross field variables [y, py = (eB/c)x] to [θ, pθ = eBr2
⊥/(2c)], where θ = 0 is in the
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direction ~E⊥. Hamiltonian (4.31) then takes the form

H = IcΩce + H̄z

[
2c

eB
pθ, Iz, Ez = 0

]
+
MΩ2

CM

2

(
2c

eB
pθ

)
− eE⊥

√
(2c/eB)pθcosθ ,

(4.41)

where Ez has been set equal to zero. For the circular orbits considered above, pθ

itself is the drift action, but for the non-circular orbits considered here the drift

action is given by

ID =
1

2π

∮
pθ[H̄ − ΩceIc, Iz, Ez = 0, E⊥, θ]dθ . (4.42)

Taking the derivative with respect to E⊥, holding the actions constant, yields the

relation

0 =
1

2π

∮ [
∂pθ

∂H

∂H̄

∂E⊥
+
∂pθ

∂E⊥

]
dθ . (4.43)

Using θ̇ = ∂H/∂pθ and ∂pθ/∂E⊥ = −∂H/∂E⊥/(∂H/∂pθ) = er⊥cosθ/θ̇ we again

find that the dipole moment is given by a time average over the semi-classical orbit

d⊥ = − ∂H

∂E⊥
=

∮
dθ

θ̇(θ)
r⊥(θ)cosθ
∮

dθ
θ̇(θ)

. (4.44)

To determine α⊥ we use time-average (4.44) together with Hamiltonian

(4.41). For small E⊥ and small Iz, a simple perturbation treatment yields an
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analytic expression for the linear α⊥. For small Iz, the term H̄z(r⊥, Iz) in Eq. (4.41)

can be approximated as [25]

H̄z(r⊥, Iz) ≃ − e2

r⊥
+ Izωz(r⊥), (4.45)

where ωz(r⊥) =
√
e2/(µr3

⊥) is the frequency of small amplitude field aligned os-

cillations and r⊥ is shorthand for
√

2cpθ/(eB). In the following, we use these

two expressions for r⊥ interchangebly, always being cautious to note that [θ, pθ =

eBr2
⊥/(2c)] are canonically conjugate variables.

In the small field limit, we set r⊥(θ) = r⊥ + δr⊥(θ) and solve for δr⊥(θ) to

first order in E⊥ using Hamiltonian (4.41) and approximation (4.45). The result is

δr⊥(θ) =
(E⊥/e)r3

⊥ cos θ

1 +B2r3
⊥/(Mc2) − 3Iz/(2

√
r⊥µe2)

. (4.46)

Substituting r⊥(θ) = r⊥ + δr⊥(θ) into each term of time-average (4.44), including

both the term r⊥(θ) cos θ and the term θ̇[θ, r⊥(θ)] = ∂H/∂pθ, and then linearizing

in E⊥ yields the polarizability

α⊥ =
d⊥
E⊥

=
5

2
r3
⊥

1 + 2
5

B2r3

⊥

Mc2
− 33

20
Iz√
µr⊥e2

(
1 +

B2r3

⊥

Mc2
− 3

2
Iz√
µr⊥e2

)2 . (4.47)

In this expression, the quantity Iz/
√
µr⊥e2 can be replaced by z2

max/(2r
2
⊥), since

Iz is small.

This small field (linear) calculation of α⊥ can be carried out numerically

for arbitrary Iz, that is, without invoking approximation (4.45). Figure 4.5 shows

plots of the scaled polarizability α⊥|Hz|3/e6 versus the scaled radius |Hz|r⊥/e2 for

several values of the parameter β = e6B2/(|Hz|3Mc2). These curves are analogous

to the curve in Fig. 4.2 for αz|Hz|3/e6 versus |Hz|r⊥/e2. Here, more than one curve

is required to present the results, since α⊥|Hz|3/e6 depends on two parameters:

|Hz|r⊥/e2 and β = e6B2/(|Hz|3Mc2). One can easily check that approximate
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Figure 4.5: Scaled polarizability α⊥|Hz|3/e6 versus the scaled radius |Hz|r⊥/e2.
The three curves correspond to the β-values: (1) β = 0.015625, (2) β = 0.125, (3)
β = 1.

expression (4.47) can be scaled with these variables. In this regard note that

Iz/
√
µr⊥e2 = 1 − |Hz|r⊥/e2 for small Iz.

Figure 4.6 shows the scaled critical field for ionization E⊥/(|Hz|3/e3) versus

the scaled radius |Hz|r⊥/e2 for same three values of parameter β as in Fig. 4.5. The

critical field is an upper limit on the range of validity for the small field (linear)

results displayed in Fig. 4.5. Curves in Fig. 4.6 are displayed for values of |Hz|r⊥/e2

such that inequality (4.24) holds. If the scaled radius |Hz|r⊥/e2 becomes of order of

(µ/(Mβ))1/3 (or equivalently, r⊥ becomes of order of (µc2/B2)1/3), the frequencies

in (4.24) become equal, and the guiding center drift approximation fails.

As the critical field is approached, the polarization becomes non-linear. Fig-

ure 4.7 shows a plot of α⊥/α⊥0 versus the scaled electric field Ẽ⊥ = E⊥/(|Hz|2/e3) =

E⊥r2
⊥/e for the case Iz = 0. For this plot we chose a particular value of β = 0.0383

that will be used in the next section. As in Fig. 4.4, α⊥(Ẽ⊥) is scaled by the linear

polarizability α⊥0. Using equation (4.47) to express α⊥0 in terms of r⊥ and β yields

the relation

α⊥(Ẽ⊥)

α⊥0

= α⊥(Ẽ⊥)r3
⊥

2

5

(1 + β)2

1 + (2/5)β
(4.48)
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Figure 4.6: Ionization by an electric field perpendicular to the magnetic field. E⊥
is the critical field for ionization, Hz is the initial binding energy before the atom
enters the electric field, and r⊥ is the radius of the nearly circular initial drift orbit.
The three curves correspond to the β-values: (1) β = 0.015625, (2) β = 0.125, (3)
β = 1.
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If the electric field is small (Er2
⊥/e < 0.15), the polarizability is nearly

constant indicating a linear relation between the polarization and electric field.

However for larger field, α⊥ increases with E⊥ as field ionization approached.

4.5 Motion of the Guiding Center Drift Atoms

in Penning Trap Fields

As a first application of approximate equation of motion (4.18), we consider

the radial trapping of weakly bound atoms in the large space charge field near the

edge of a long cylindrical positron column. Let (R,Θ, Z) be cylindrical coordinates

for the atom center of mass. The fields must be expressed in these coordinates for

use in Eq. (4.18). We choose a plasma density n0 = 2.5 · 108 cm−3 and plasma

radius Rp = 0.2 cm in accord with ATHENA parameters [21], and for convenience

take the (unknown) density profile to be simply n(R) = n0 exp[−(R/Rp)
4]. For a

long column, the corresponding space charge field is shown in Fig. 4.8. Also, in

accord with ATHENA parameters we choose the magnetic field strength B = 3 T.

Figure 4.9 shows the orbit of a rather tightly bound guiding center atom

(r⊥ = 2.4 · 10−5 cm, e2/r⊥ = 5.9 meV, Iz = 0) ejected in the azimuthal direction

with rather small initial velocity VΘ = 2.4 ·103 cm/s. The figure actually shows two
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Figure 4.9: Trapping of a rather tightly bound atom ejected with small azimuthal
velocity.

nearly identical curves. The solid curve is the solution of approximate equation

(4.18) using polarizability α⊥ = 3.6 · 10−14 cm3 calculated from Eq. (4.47). The

dashed curve is the antiproton orbit from the solution of the coupled positron-

antiproton equations of motion obtained from from Hamiltonian (4.7). This latter

solution is difficult computationally since a million cycles of the internal dynamics

must be followed. The rapid internal dynamics has been averaged out in Eq. (4.18).

For this case of relatively tight binding and, consequently, shallow radial well, only

atoms with small initial velocity are trapped. For example, the atom would have

escaped, had it been given initial velocity 1.6 · 104 cm/s.

More shallowly bound atoms experience a deeper radial well and are con-

fined for larger initial velocity. However, the polarizability can easily be in non-

linear regime for these atoms. In the previous section, we obtained the nonlinear

polarizability α⊥(Ẽ⊥) for an atom with parameters r⊥ = 4.0 · 10−5 cm and Iz = 0

(see Fig. 4.7). These parameters correspond to |Hz| = e2/r⊥ = 3.6 meV and
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Figure 4.10: Trapping of guiding center atom with higher initial velocity and
shallower binding than in Fig. 4.9. Dashed curve is the ion orbit for a solution of
the coupled positron-antiproton equations of motion. The continuous curve is the
solution of approximate equations (4.18) with α = 1.18α⊥0.

β = 0.0383 (for B = 3 T). We assume that such an atom moves in the radial

space charge field of Fig. 4.8. We anticipate that the trapped atom will sam-

ple a space charge field of E⊥ ≃ 25 V/cm, which corresponds to the scaled field

Ẽ⊥ = 0.27. One can see from Fig. 4.7 that the polarizability is in the nonlinear

regime for this field strength. We take the nonlinear value of the polarizability

α⊥(Ẽ⊥ = 0.27) ≃ 1.18α⊥0 ≃ 1.8 · 10−13 cm3, but treat the polarizability as con-

stant. This anticipates the fact that the trapped atom samples a nearly constant

field strength while moving in a nearly circular orbit.

Figure 4.10 shows the orbit of this guiding center drift atom launched with

initial velocity (VΘ = 2.7 · 104 cm/s). This velocity corresponds to initial kinetic

energy MV 2
Θ/2 = 0.38 meV, as compared to a 1.3 meV temperature quoted for

some ATHENA experiments. Again, the solid curve is the solution to Eq. (4.18),
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and the dashed curve is the solution to the coupled positron-antiproton equations

of motion derived from Hamiltonian (4.7). In this case, the two curves are close,

but can be distinguished, presumably because the nonlinear polarizability function

α⊥(E⊥) was approximated by a single value. Both curves show that the atom is

confined radially.

As a second application of approximate equation of motion (4.18) we con-

sider the curved trajectories followed by weakly bound atoms in moving from the

plasma to a field ionization region. Field ionization is the principle diagnostic used

in the ATRAP experiments, so we use field strengths and geometry characteristic

of ATRAP.

The space charge field is much smaller than the vacuum field used for field

ionization, so to a good approximation the electrostatic potential satisfies Laplace’s

equation. Using cylindrical coordinates (R,Θ, Z) and noting that the potential is

independent of Θ, we write the potential as a sum

Φ(R,Z) =
∑

n

[
an sin

(
2πnZ

L

)
+ bn cos

(
2πnZ

L

)]
I0

(
2πnR

L

)
, (4.49)

where I0 is a Bessel function of imaginary argument, and the coefficients an and

bn are chosen so that the field (ER, EZ) = (−∂Φ/∂R,−∂Φ/∂Z) provides a good

approximation to the ATRAP field. In Fig. 2 of reference [23], the ATRAP field

component EZ(R = 0, Z) was reported for the range of Z values L ≃ 11.5 cm.

Retaining terms up to n = 15 in the sum (4.49), we obtain the field components

in Fig. 4.11 which compare well with those in reference [23].

Figure 4.12 shows the trajectories of atoms launched from a point within

the positron plasma (Z = 5.5 cm, R = 0.2 cm) with three different center of mass

velocities: (1) VZ = 8.3 · 104 cm/s, (2) VZ = 1.2 · 105 cm/s, (3) VZ = 1.7 · 105 cm/s.

The initial transverse velocity is zero for all three trajectories. The three initial
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Figure 4.11: Axial electric field EZ(R = 0, Z) (solid line) and radial electric field
ER(R = 2mm, Z) (dashed line) versus Z. These plots correspond to those reported
in Fig. 2c of reference [23] for the ATRAP experiment.
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Figure 4.12: Trajectories of an atom with binding energy e2/r⊥ = 5.4 meV
and Iz = 0 launched in the axial direction towards the ionization region with
different initial velocities: (1) VZ = 8.3 · 104 cm/s, (2) VZ = 1.2 · 105 cm/s,
(3) VZ = 1.7 · 105 cm/s. The trajectories terminate at the point where Ez reaches
the critical value for field ionization, EZ = 80 V/cm.
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velocities correspond to center of mass kinetic energy MV 2
Z/2 = 3.6 meV, 8.1 meV

and 14.4 meV. Initially the internal state of the atoms is characterized by Iz = 0

and r⊥ = 2.6 · 10−5 cm, which corresponds to binding energy e2/r⊥ = 5.4 meV.

For this state, equations (4.39) and (4.47) imply the linear polarizabilities αz =

1.8 · 10−14 cm3 and α⊥ = 4.3 · 10−14 cm3. Shortly before field ionization, the

polarizability becomes nonlinear and somewhat larger than the linear values used

to calculate the trajectories. Thus, the trajectories slightly underestimate the

deflection. Each trajectory ends when the critical field for ionization is reached

[i.e., EZ = (2/(3
√

3))(e/r2
⊥) = 80 V/cm]. As one can see in Fig. 4.12, depending

on initial axial velocity, radial deflection of the atom can be substantial due to

polarization forces. The deflection is smaller for larger initial axial velocity because

the atom spends less time in the region of high electric field.

Figure 4.13 shows the final radial position of the atom (i.e., at the moment

of its field ionization) versus its initial radial position. As in Fig 4.12, the atom

was launched within the positron plasma at Z = 5.5 cm but with different initial

radial positions. The three curves in the figure correspond to the same three initial

center of mass velocities as in Fig. 4.12. One can see in Fig. 4.13 that the radial

deflection of the atom increases with increasing initial radial displacement. This is

due to the fact that the electric fields grow radially in the field ionization region,

so an atom launched at larger radius experiences larger electric field. Also, as in

Fig. 4.12, one can see that radial deflection is reduced with increasing initial center

of mass velocity.

A simple estimate of the deflection provides useful insight. The radial force

on an atom is of order F ≃ ∂/∂R[αE2(R,Z)]. For sufficiently small R, we can use

the Taylor expansion

F ≃ R
∂2

∂R2
[αE2(R,Z)]

∣∣∣∣
R=0

, (4.50)



103

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

R (cm)1

R (cm)2

1

2

3

Figure 4.13: Final radial position of the atom R2 (at the moment of field ion-
ization) versus its initial radial position R1. Curves 1, 2 and 3 correspond to the
same initial axial velocities as in Fig. 4.12. For reference, the dashed line shows
R1 = R2.

where the constant term (zero order term) vanishes by symmetry. The scale length

on which the field changes is RW , the radius of the wall (electrode structure),

so we set ∂2/∂R2[αE2(R,Z)] ≃ αE2/R2
W . Consider an atom that is born at

radius R = R0 with velocity ~V = VZ ẑ. The radial acceleration of the particle is

a = F/M = αR0E
2/(MR2

W ). The field E2 rises on a spatial scale ∆Z = RW in

the ionization region, so the approximate radial displacement is

∆R ≃ a

(
RW

VZ

)2

≃ R0
αE2

MV 2
Z

. (4.51)

The polarizability is of order α ∼ r3
a and the field strength before ionization of

order E ∼ e/r2
a, so the radial displacement is of order

∆R ≃ R0
e2/ra

MV 2
Z

. (4.52)

Thus, the deflection is substantial when the binding energy is comparable to the

center of mass kinetic energy. The fact that the displacement is an increasing
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function of R0 and a decreasing function of VZ also is apparent.

This chapter has been submitted to Physics of Plasmas, S.G. Kuzmin,

T.M. O’Neil (2004). S.G. Kuzmin was the primary investigator and author of this

paper.
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