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Polarization and Trapping of Weakly Bound Atoms in Penning Trap Fields
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The ATHENA and ATRAP groups at CERN recently reported the production of weakly bound
antihydrogen atoms in a non-neutral positron-antiproton plasma. This Letter derives an equation of
motion for weakly bound atoms in the electric and magnetic fields of the plasma and trap. The atoms are
polarized by the electric field and can be trapped radially in the edge region of the plasma where the
electric field is maximum.
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FIG. 1. Drawing of a guiding center atom. In order of de-
scending frequency, the positron executes cyclotron motion,
where the space charge electric field is purely radial, EE �
�̂�E����, and the magnetic field axial, ~BB � ẑzB. (This is a

oscillates back and forth along a field line in the Coulomb well
of the antiproton, and ~EE� ~BB drifts around the antiproton.
The ATHENA and ATRAP collaborations at CERN
have reported the production of antihydrogen atoms
[1,2]. The atoms are produced by recombination when
antiprotons are added to a cold (few degrees kelvin)
positron plasma. The ATRAP collaboration measured
atom binding energies in the range of a few meV [3],
and one expects that ATHENA also produced atoms with
binding energy in this range, although more deeply bound
atoms may have been produced as well. Here, we focus on
the weakly bound atoms.

Because the atoms are very weakly bound (few meV)
and reside in a strong magnetic field (3–5 T), the atoms
are very different from high-n Rydberg atoms with a
Kepler orbit. More properly these weakly bound and
strongly magnetized pairs are called guiding center drift
atoms [4–6]. The characteristic cyclotron radius for the
positron is much smaller than the separation between the
positron and the antiproton. Likewise, the cyclotron fre-
quency for the positron is much larger than the other
dynamical frequencies for the atom. Under these circum-
stances, the rapid cyclotron motion may be averaged out,
and the dynamics of the positron treated by guiding
center drift theory. The dynamics is quasiclassical be-
cause the characteristic binding energy is much smaller
than the Rydberg energy (typically 4 orders of magnitude
smaller). References [5,6] provide an analysis of the in-
ternal dynamics of these novel atoms. Figure 1 shows the
motion in the limit that is of interest here. The guiding
center positron oscillates back and forth along the mag-
netic field in the Coulomb well of the antiproton and more
slowly ~EE� ~BB drifts around the antiproton.

In this Letter, we discuss the motion of guiding center
drift atoms in the electric and magnetic field of the
plasma and trap. Starting with separate, but coupled,
equations of motion for the positron and antiproton, we
average over the rapid internal atom dynamics to obtain a
single simplified equation of motion for the atom as a
whole. This simplified equation represents a large reduc-
tion in the complexity of the dynamics.

We consider the simple case of a long positron plasma,
~
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good approximation for the ATHENA geometry but not
for the ATRAP geometry.) The simplified equation of
motion then admits three constants of the motion (axial
momentum, canonical angular momentum, and energy),
and the atom dynamics is integrable.

The main result is that the weakly bound atoms are
polarized by the electric field and can be trapped radially
in the region of large electric field near the edge of the
positron plasma. Recall that a polarizable material is
attracted to a region of large electric field. To understand
why the field is large near the plasma edge, recall that for
a long positron column the radial space charge field
increases linearly with radius � inside the plasma and
then falls off like 1=� outside the plasma.

We will find a well depth of order r3E2
�=2, where r is the

characteristic radius of the atom, and E� is the space
charge field. Thus, the well is deeper and the trapping
more effective for weakly bound atoms with relatively
large r. The weakly bound atoms are more likely to
emerge near the plasma ends, whereas the deeply bound
atoms will emerge radially all along the column.

For simplicity, we start by considering the case where
the amplitude of the field aligned oscillation is negligible
compared to the cross field separation of the two particles.
The cross field motion is then governed by the two
 2004 The American Physical Society 243401-1
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equations

m �pp
d ~vv �pp

dt
� �e

~vv �pp � ~BB

c
�

e2�~rr �pp � ~rr �ee�

j ~rr �pp � ~rr �eej3
� e ~EE�~rr �pp�;

0 � e
~vv �ee � ~BB

c
�

e2�~rr �ee � ~rr �pp�

j ~rr �ee � ~rr �ppj
3 � e ~EE�~rr �ee�; (1)

where the positron inertia is neglected in the second
equation as prescribed in the drift approximation.

It is convenient to introduce the transverse pseudomo-
mentum [5,7]

~PP � m �pp ~vv �pp �
e
c
~rr� ~BB; (2)

where ~rr � ~rr �ee � ~rr �pp is the relative position vector. The
vector ~rr is transverse to ~BB since we neglect the field
aligned motion of the positron relative to the antiproton.
Adding the two equations of motion and Taylor expand-
ing the electric field with respect to ~rr yields the equation

d ~PP
dt

� e� ~rr � ~rr� ~EE: (3)

We assume that the dimensions of the atom are
small compared to the gradient scale for the field (i.e.,
r=�0 
 1, where �0 is the radius of a plasma column),
and work only to first order in the gradient. In Eq. (3),
~EE � �̂�E���� is evaluated at an atom coordinate ~�� that

needs to be specified only to accuracy ���O�r�.
To obtain a simplified equation of motion, we average

Eq. (3) over the internal dynamics of the atom, obtaining
the result

dh ~PPi
dt

� � ~dd � ~rr� ~EE; (4)

where ~dd � he~rri is the time-averaged dipole moment.
Here, we assume that the period of the internal dynamics
of the atom is short compared to the time for the atom as a
whole to move a significant macroscopic distance. As we
will see, this assumption is very well satisfied.

Since the right-hand side of Eq. (4) is already first order
in the electric field gradient, we can evaluate ~dd to zero
order in the gradient. For a spatially uniform electric
field, the energy (or Hamiltonian) for the pair is

H �
m �ppv

2
�pp

2
�

e2

r
� e~rr � ~EE: (5)

Equation (3) implies that ~PP is a constant of the motion for
a uniform electric field, so we use Eq. (2) to eliminate ~vv �pp
in terms of ~PP, obtaining the result

H �
P2

2m �pp
�

e2

r
�

e2r2

2R3 � e~rr �
�
~EE�

~PP� ~BB
m �ppc

�
; (6)

where R3 � m �ppc2=B2. Setting ~PP � h ~PPi in Eq. (6), and
taking h ~PPi and H to be constant, yields an equation for
the cross field orbit, that is, for r � r���, where �r; �� are
polar coordinates and � � 0 corresponds to the direction
243401-2
of the effective electric field ~EEeff � ~EE� h ~PPi � ~BB=�m �ppc�.
When the effective field vanishes, which is the case for
the motion shown in Fig. 1, the orbit is circular. When the
field is nonzero, the orbit distorts in the direction of the
field, and a nonzero time-average dipole moment exists.
For a sufficiently small field, the distortion and dipole
moment are linear in the field, and we can define the
polarizability �, where ~dd � � ~EEeff .

In the linear regime the orbit is given by r �
r0 � �r���, where

�r��� � �
r30Eeff cos�

e�1� �r0=R�3�
: (7)

The time-average dipole moment is then given by

d �
e
R
2�
0

d�
_���r;��

r cos�R
2�
0

d�
_���r;��

; (8)

where _�� � c=�eBr�@H=@r is the angular drift velocity
associated with the relative motion, and r must be re-
placed by r0 � �r��� everywhere in the integral.
Linearizing in Eeff then yields the polarizability

� �
5

2
r30

1� 2
5 r

3
0=R

3

�1� r30=R
3�2

: (9)

The expression for the angular velocity of the orbit drift
motion, _�� � c=�eBr�@H=@r, requires some explanation.
Although expression (6) was written down as the energy
of the two particles, it can be derived as a Hamiltonian
for the relative motion [5]. From the Hamiltonian, one
finds, not surprisingly, that the relative coordinate ~rr
undergoes drift motion in the effective potential H=e
[i.e., d~rr=dt � c=�eB� ~rrrH� ẑz].

As discussed in Ref. [5], the nearly circular drift orbits
considered here and shown in Fig. 1 are not the only
possible motion for the pair. In a very weakly bound
configuration, the positron ~EE� ~BB drifts in the field of
the antiproton, and the antiproton ~EE� ~BB drifts in the field
of the positron. These states, often referred to as giant
dipole states [5,8,9], are not considered here. As men-
tioned in Ref. [5], an electric field gradient tends to
separate (field ionize) such weakly bound pairs.

The time average of Eq. (3) and the definition ~dd � he~rri
yields the relation h ~PPi � m �pph ~vv �ppi � ~dd� ~BB=c. Substituting
this expression into Eq. (4) and using the relation ~dd �
�� ~EE� h ~PPi � ~BB=�m �ppc�� yields the approximate equation
of motion:

m �pp
d ~vv
dt

� ~rr
�E2

2
� �� ~rr? � ~EE�

~vv� ~BB
c

; (10)

where ~vv ’ h ~vv �ppi is the time-average velocity of the atom.
Taking the dot product of Eq. (10) with respect to ~vv and

integrating over time yields an equation for conservation
of energy:

m �ppv2

2
� �

E2

2
� const: (11)
243401-2



0.1 0.2 0.3 0.4

5

10

15

20

25

30
E  (V/cm)ρ

ρ (cm)

FIG. 2. Radial profile of the space charge electric field.
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FIG. 3. Trapping of a rather tightly bound atom ejected
with small azimuthal velocity. The dashed curve is the solu-
tion of the coupled Eqs. (1), and the solid curve is the solution
of the approximate Eq. (10) using the polarizability � � 3:6�
10�14 cm3.

FIG. 4. Scaled polarizability versus electric field. Here �L is
given in Eq. (9) for r � 4:0� 10�5 cm.
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As one would expect, all of the Lorentz force terms drop
out of the equation for conservation of energy. For the
case where the electric field is radial, ~EE � �̂�E����,
Eq. (10) yields an equation for conservation of canonical
angular momentum

const � L �

�
m �ppv’��

B
c
��E�

��
1�

�B2

m �ppc2

�
�1
: (12)

Here, ��;’� are polar coordinates for the plasma column.
Using Eq. (12) to eliminate v’ in favor of the constant
L0 � L�1� �B2=�m �ppc

2�� in Eq. (11) yields the result

m �pp

2
v2
� �

1

2m �pp�2

�
L0 �

B
c
��E�

�
2
��

E2
�

2
� const: (13)

Next, we use the approximate equation of motion
to follow the orbit of a guiding center atom moving in
the positron plasma. We choose a plasma density n0 �
2:5� 108 cm�3 and plasma radius �0 � 0:2 cm in accord
with ATHENA parameters, and for convenience take
the (unknown) density profile to be simply n��� �
n0 exp����=�0�

4�. For a long column, the corresponding
space charge field is shown in Fig. 2. Also, in accord with
ATHENA parameters we choose the magnetic field
strength B � 3 T.

Figure 3 shows the orbit of a rather tightly bound
guiding center atom (r � 2:4� 10�5 cm, e2=r �
5:9 meV) ejected in the azimuthal direction with rather
small initial velocity v’ � 2:4� 103 cm=s. The figure
actually shows two nearly identical curves. The solid
curve is the solution to approximate Eq. (10) using the
polarizability � � 3:6� 10�14 cm3, and the dashed
curve is the ion orbit in the solution to coupled (exact)
Eqs. (1). This latter solution is difficult computationally
since about a million cycles of the internal dynamics
must be followed. The rapid internal dynamics has been
averaged out in approximate Eq. (10). For this case of
relatively tight binding and, consequently, shallow radial
well, only atoms with small initial velocity are trapped.
For example, had the atom been given initial velocity
1:6� 104 cm=s, it would have escaped.
243401-3
More shallowly bound atoms experience a deeper well
and are confined for larger initial velocity. However, the
more shallowly bound atoms are closer to field ionization,
and the dipole moment becomes a nonlinear function of
the electric field. Figure 4 shows a plot of ��E��=�L
versus E�, where the linear value, �L, is given by Eq. (9)
for the case of a circular orbit of radius r0 � 4:0�
10�5 cm. For small E� (less than 15 V=cm), � is constant,
indicating a linear relation between the polarization and
field. However, for large E�, ��E�� increases with E� as
field ionization is approached.

Figure 5 shows the orbit of a more loosely bound drift
atom (r � 4:0� 10�5 cm, e2=r � 3:6 meV) with a larger
243401-3
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FIG. 5. Trapping of guiding center atom with higher initial
velocity and shallower binding than in Fig. 3. The dashed curve
is the solution of coupled Eqs. (1). The continuous curve is the
solution of approximate Eqs. (10) with � � 1:18�L.
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initial velocity (v’ � 2:7� 104 cm=s). This velocity cor-
responds to initial antiproton kinetic energy m �ppv2

’=2 �
0:38 meV, as compared to a 1.3 meV temperature quoted
for some ATHENA experiments. In this case, the polar-
ization is in the nonlinear regime, and approximate
Eq. (10) was solved for the polarizability � � ��E ’
25 V=cm� � 1:18�L � 1:8� 10�13 cm3. Again the solid
curve is the solution to Eq. (10), and the dashed curve the
solution to coupled Eqs. (1). In this case, the two curves
are close, but can be distinguished, presumably because
the nonlinear polarizability function ��E� was approxi-
mated by a single value, ��25 V=cm� ’ 1:18�L. Both
curves show that the atom is confined radially.

Thus far, we considered the simple case where the
amplitude of the field aligned oscillations, z, is negligibly
small compared to r. For finite, but small z=r, Eq. (9) for
� is replaced by

� �
5

2
r3

1� 2
5
r3

R3 �
33
40

z2

r2

�1� r3

R3 �
3
4
z2

r2�
2
: (14)

The polarizability increases with z because a guiding
center atom is less tightly bound when the amplitude of
243401-4
the axial bounce motion increases. However, for fixed
binding energy � decreases as z increases, to keep the
binding energy fixed, and the net result is a decrease in �.

For sufficiently deep binding (i.e., r3 � R3m �ee=m �pp), the
drift approximation for the positron motion breaks down
[5]. The cyclotron frequency, frequency of field aligned
oscillations, and the ~EE� ~BB drift rotation frequency all
become comparable, and the internal dynamics of the
atom becomes chaotic [5,10]. Although our calculation
of � fails, one still expects the chaotic atom to be char-
acterized by a polarization of order �� r3, where r is the
characteristic radius of the atom, and the basic trapping
mechanism to be applicable.

Finally, we note that replacing the space charge field of
the other positrons by the mean field, ~EE � E����̂�, omits
important physics. The weakly bound atom occasionally
has a close collision with a positron, and the collision can
produce reionization or deeper binding. This is the subject
of three-body recombination and the collisional cascade
to deeper binding [4]. The analysis here follows the
motion of the weakly bound atom between the relatively
rare close collisions.
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