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Two-Dimensional Vortex Crystals®

D.Z.JIN AND D. H. E. DUBIN
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ABSTRACT: Magnetically confined pure electron columns evolve as nearly inviscid, in-
compressible two-dimensional (2-D) fluids. Experiments on these columns have found that
the decay of 2-D turbulence leads to spontaneous formation of “vortex crystals,” which are
symmetric arrays of strong vortices within a background of lower vorticity. These vortex
crystals can be described as maximum fluid entropy states for a system with an ergodically
mixed background and a conserved number of strong vortices.

1. INTRODUCTION

The study of turbulence in inviscid, incompressible 2-D fluids is important for
understanding geophysical and astrophysical flows [1], [2]. The Great Red Spot of
Jupiter, for example, has been modeled in terms of inviscid 2-D Euler flow [3]. Mag-
netically confined pure electron columns are excellent systems for quantitative study
of the free relaxation of 2-D turbulence. In a recent experiment on such columns, the
vorticity @(r, 1) = V X v(r, t) of the turbulent flow relaxed from some initial condi-
tions to a “vortex crystal” equilibrium, which consists of small intense patches of
vorticity (strong vortices) forming a stable equilibrium pattern in a low vorticity
background [5]. These vortex crystal states have not been previously observed or
predicted to form from turbulent initial conditions. Recently, we have shown that the
vortex crystals can be described as the maximum fluid entropy states of a system
with an ergodically mixed background and a conserved number of strong vortices
[6]. In this paper we discuss the experiment and our theory for the vortex crystals.

2. THE EXPERIMENT

The experimental device is shown in FIG. 1. The electron columns are confined
radially by a uniform magnetic field, B,, and contained axially by voltage applied to
end sections of the cylindrical walls. The z-averaged electron density n(r, 6, t) is ac-
curately measured by dumping the column onto a phosphor screen imaged by a 512
%X 512 CCD camera. Time evolution is inferred from a sequence of shots with differ-
ing hold times. This is possible because the shot-to-shot variations in the initial pro-
files can be controlled within small error.
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FIGURE 1. The cylindrical experimental apparatus with phosphor screen/CCD camera
diagnostic.

In the experiment, the axial bounce frequency of an electron is large compared to
the E x B drift rotation frequency; therefore, the evolution of n(r, 6, t) is described
by the 2-D drift-Poisson equation, i.e.,

a—"+v-Vn=0, v=—SVdxz, V®=4nen. 1)
Jt B,

These equations are isomorphic to the Euler equations for an incompressible invis-
cid 2-D fluid. The measured electron density is proportional to the vorticity of the
flow, i.e., ® = 4me cn/B,, and the electrostatic potential is proportional to the stream
function V, i.e., ¥ = —c ®/B,. The nonzero 0®/dr at the wall gives a true free-slip
boundary condition.

Vortex crystals form from a highly filamented electron density distribution, as
shown in FIG. 2(a). Within one turnover time of the electron column (tg = 170 ps),
N, = 50—100 strong vortices of roughly equal circulation form due to Kelvin-Helm-
holtz instabilities, as shown in FIG. 2(b). Subsequently, the turbulent state evolves
and relaxes by chaotic vortex advection and mergers, as shown in FIG. 2(c). As a
consequence, the number of the strong vortices decreases as N, ~ £ >, with § = 1.
This relaxation is generally consistent with a dynamical scaling theory based on con-
served quantities in repeated vortex merger [7].

However, the chaotic vortex motions eventually “cool” down and the vortices no
longer merge. The strong vortices then relax into a lattice pattern, which rotates with
the background, as shown in FIGS. 2(d) and 2(e). Seemingly, the increase of the
number of strong vortices at 6007 (FIG. 2(e)) compared to that at 601tg (FIG. 2(d))
is because the initial conditions that lead to each image are sli §htly different owing
to the shot noise. The vortex crystal states survive for about 10™tg. After this period,
individual vortices decay away and the remaining strong vortices adjust to a new rig-
idly rotating symmetric pattern.
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Experimentally, the evolution conserves total circulation I', angular momentum
L, and energy H. Here

I =[dr*o, ()
L=-[dr’nr*2, 3)
H = [dr?|v]| 2p=] driyw/2. 4

3. MAXIMUM FLUID ENTROPY THEORY

After the chaotic vortex mergers stop, the flow continues to evolve. The random
motions of the strong vortices slowly “cool” as the vortices relax toward an equilib-
rium, and during this evolution the background also evolves. We have found that the
final equilibrium of flow, the vortex crystal, can be described as a maximum fluid
entropy state of a system with a low vorticity background and a conserved number
of strong vortices. Two properties of the final states of the system can be predicted
by the maximum fluid entropy theory: the distribution of the background vorticity
(1), and the positions of the strong vortices R;, i = 1, M. Comparison between the
theoretical predictions and the experimental data shows good agreement.

Maximization of the entropy of the system is constrained by the conservation of
the total circulation, angular momentum and energy. These constraints follow from
the dissipationless nature of ideal fluid flow, together with the cylindrical symmetry
and free-slip boundary conditions of the experimental geometry. Also, the incom-
pressibility of vorticity implies that infinitesimal vorticity elements can not overlap
during their mixing, which provides another constraint.

The entropy associated with a macroscopic coarse-grained background vorticity
distribution @,(r) can be calculated by counting the number of ways of arranging
microscopic vorticity elements to obtain the given coarse-grained vorticity. For the
simplest case of the microscopic vorticity elements having the same positive vortic-
ity @, the entropy is [8]:

Sloy(r)] = —Idrz{w”T(fr)lnm’;f;) + (1 - w”T(fr))m(l . m’;jfr))} : (5)

The second term is due to the incompressibility of the vorticity elements, and does
not appear in the usual (Boltzmann) expression of the entropy for a compressible
flow. The contribution to the entropy from the positions of the strong vortices is neg-
ligible because the background has an infinite number of degrees of freedom. There-
fore S is also the entropy of the entire (strong vortices + background) system.

The vorticity distribution of the strong vortices are assumed to be described by
fixed axially symmetric functions , ;(|r — R;]|). Since the vortices are quite intense
and small, it does not make a great deal of difference what functional form one

chooses for m, ; but we choose the (approximately Gaussian) form associated with
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observed vortices. The stream function W is related to the vorticity o of the flow via
Poisson’s equation

Vy = —o. (6)

The maximization of S while keeping H, L, and I" constant is done by the standard
technique of Lagrange multipliers: 8F = 0, where F =S — B(H — QL + uI'), and B,
Q, and u are Lagrange multipliers that can be interpreted as inverse temperature, ro-
tation frequency, and the chemical potential, respectively. Variation of F wnth re-
spect to vortex positions {R;} yields

aR S (H-QL) = 7

Since H — QL is the Hamiltonian of the system in the rotating frame of frequency Q,
the above equation shows that in the maximum entropy state, the velocity of the
strong vortices is zero in this rotating frame: in other words, the strong vortices are
in equilibrium, rotating rigidly at frequency €. Furthermore, since S is maximized,
this equilibrium must be stable.

Variation of F with respect to the background vorticity w,(r) yields the coarse-
grained background vorticity:

0y(r) = ®)
b(F) = ———>
eBw’q)+1

where ¢ = y + 1Qr? + U is the stream function in the rotating frame. This is very
similar to the Fermi distribution in quantum statistics. Equations (7) and (8) charac-
terize the maximum fluid entropy states of our system.

In order to test whether experimentally observed vortex crystal states can be ex-
plained by the maximum fluid entropy states, the predictions of the theory are com-
pared with the experimental data. The maximum fluid entropy states are calculated
by numerically solving Egs. (6) and (7). Since the vorticity in the background is giv-
en by Eq. (8), Eq. (6) is a 2-D nonlinear partial differential equation. Parameters f3,
Q, i, and {R;} are searched to obtain the maximum fluid entropy state for given con-
served quantities H, L, I, as well as the M vorticity distributions ®,, ; of the strong
vortices. In general, there may be several possible patterns of the strong vortices,
representing local maxima of the entropy. To obtain maximum entropy states close
to the experimental vortex crystals, we use the experimental positions of the strong
vortices as the initial values of the search. The procedure we employed to determine
M and w, ; from the experimental data is essentially that of McWilliams [9].

The complete specification of the problem requires the choice of a value for the
Fermi vorticity @y associated with the microscopic background vorticity elements.
Although in general wcan have a distribution of vorticity levels [8], a single value
is found to be sufficient to explain the experiments. The maximum of the measured
vorticity is taken as 5 This choice is based on the following considerations: @y must
be larger than or equal to the maximum observed background vorticity level, which
is coarse-grained by the experimental imaging system; since the observed vortex
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FIGURE 4. The 6-averaged vorticity profile from the five vortex state of FIG. 3(c).

crystal states appear to be nearly Fermi-degenerate, in some finite region of the
background the coarse-grained vorticity should approach . The following funda-
mental units are used to renormalize the physical quantities: length is r,, (radius of
the circular conducting boundary) and vorticity is ]“/rwz.

The theory agrees well with the experimental data. The calculation reproduces
the observed vortex crystal patterns, as shown in FIG. 3, in which selected experi-
mental images of vortex crystals and their corresponding maximum fluid entropy
states are displayed. Although there is a slight azimuthal asymmetry and some noise
in some experimental images, the observed background vorticity is close to the the-
ory, as shown in the 6-averaged vorticity profiles in FIG. 4. The background of the
finite temperature solutions has the following features: The edge falls off over a
scale related to the fluctuation energy 1/B of the vorticity elements near the edge, as
in FIG. 4; and near a strong vortex the background vorticity is slightly depressed,
since ¢ tends to increase due to the influence of the strong vortex, as observed
around the large central vortex in FIG. 3(d).

4. DISCUSSION

The maximum fluid entropy theory is successful in describing the vortex crystal
states. This provides us with an intuitive picture of vortex crystal formation after
strong vortices have formed: the turbulent evolution ergodically mixes certain re-
gions of the flow (the background) and this process causes the unmixed regions of
strong vorticity to relax to an observed equilibrium pattern (the crystal). The in-
crease in the order of the strong vortices during this process is offset by the increased
disorder in the background, as expected from the second law of thermodynamics.
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However, maximum fluid entropy theory does not answer many interesting ques-
tions related to the dynamics of vortex crystal formation. For example, the details of
the mixing process and the rate at which strong vortices relax to the equilibrium pat-
terns remain to be investigated. Also, experimentally, vortex crystals are not formed
from some initial conditions that are similar to those that do lead to the formation of
vortex crystals [5]. The characteristics of the initial conditions for vortex crystals is
still unknown.
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