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There is a theory which states that if ever anybody discovers exactly
what the Universe is for and why is is here, it will instantly disappear
and be replaced by something even more bizarre and inexplicable.

There is another theory which states that this has already happened.

- Douglas Adams
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Abstract of the Dissertation

Experimental Studies of Cross-Magnetic-Field Transport

in Nonneutral Plasmas

by

Eric Matthias Hollmann
Doctor of Philosophy in Physics

University of California, San Diego, 1999

Dr. C. Fred Driscoll, Chairman

Cross-magnetic-field transport is studied in pure electron and pure magne-
sium ion plasma columns confined in a Penning-Malmberg trap. The transport in
these systems can be classified as external transport or internal transport. Exter-
nal transport is a change in the plasma angular momentum or energy as a result
of an externally applied perturbation, while internal transport refers to an internal
rearrangement of particles and energy within the plasma. Internal transport tries to
bring these plasmas into thermal equilibrium, but does not change the total plasma
energy or angular momentum.

Measurements are presented of the external transport resulting from an ap-
plied rotating electric field, or “rotating wall” perturbation. The rotating wall is
found to allow control of the plasma angular momentum, enabling density compres-
sion and long-term (week-long) steady-state plasma confinement. It is shown that
the rotating wall couples to these plasmas through collective plasma modes.

The internal transport measurements presented are heat and test particle
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transport. Heat transport acts to smooth out temperature gradients in the plasma,
while test particle transport acts to mix test particles with non-test particles. Both
heat transport and test particle transport are found to be diffusive in nature and
are found to be dominated by collisions acting on scale lengths up to the plasma
shielding distance, or Debye length. These “long-range” collisions give a transport
rate which can be greatly enhanced over that expected from classical “short-range”
collisions acting on scale lengths up to the cyclotron radius. In the case of heat trans-
port, for example, measured heat conduction rates can be more than two orders of
magnitude larger than predictions due to classical short-range collisions. Measured
test particle diffusion rates are found to be approximately ten times larger than clas-
sical. The scaling of measured test particle diffusion rates with density and magnetic
field is the same as classical, while the measured thermal diffusion rates are found
to be independent of density and magnetic field. These observations are in good
agreement with theory predictions for long-range collisional transport. Independent
measurements of the short-range collision rate are also found to be well-predicted by

theory predictions.

XX



Chapter 1

Introduction and Overview

1.1 Introduction

Research on nonneutral plasmas effectively began with mode experiments in
electron beams in the 1960’s [14]. Since then, both untrapped (beam) and trapped
nonneutral plasmas have been studied, with motivation from basic plasma research,
astrophysics, and atomic physics. One of the fundamental questions of plasma
physics is how particles, energy, and angular momentum are transferred across mag-
netic field lines. Magnetic fusion and plasma processing, for example, depend cru-
cially on an understanding of cross-magnetic-field transport.

Here, results are presented for cross-magnetic-field transport in nonneutral
plasmas. The cylindrical column of charge is confined in the radial direction by
a uniform magnetic field and confined in the axial direction by applied voltages.
This confinement geometry is frequently referred to as a Penning-Malmberg trap,
after Penning, who first used a similar geometry to make a pressure gauge [49],
and Malmberg, who more recently pioneered the use of these traps for basic plasma
physics experiments [40].

Cross-magnetic-field transport in nonneutral plasmas can be broadly catego-
rized as external or internal transport. External transport arises from asymmetric

or time-dependent external fields acting on the plasma. In general, the total plasma



angular momentum can change as a result of an external field which has an angular
dependence, while the total plasma energy can change as a result of an external
field perturbation which has a time-dependence. This thesis presents the results of
external asymmetry-induced transport of electron plasmas and ion plasmas; and on
internal heat and test particle transport in ion plasmas.

The main external transport mechanism studied is the “rotating wall” per-
turbation, which is an azimuthally-rotating electric field that exerts a torque on
the plasma column, thus allowing manipulation of the plasma angular momentum.
The rotating wall technique enables arbitrary long-time confinement in these traps.
Also, understanding the rotating wall transport mechanism could help in under-
standing the inherent asymmetry-induced transport which degrades confinement in
these traps. Results are presented here for studies of rotating wall-induced trans-
port on both pure electron and pure ion plasmas. It is found that the rotating wall
perturbation produces a torque by driving azimuthally-dependent plasma modes.

Internal transport refers to transport due to the particles in the plasma in-
teracting with each other. In general, internal transport drives the plasma toward
a state of global thermal equilibrium, but cannot change the total plasma angular
momentum or total plasma energy. Internal transport can result from binary ion-ion
(or electron-electron) collisions, or from collective effects; in the work presented here,
only binary ion-ion collisions are important. In nonneutral plasmas, global thermal
equilibrium is characterized by radially uniform temperature and rotation frequency.
Internal heat transport will thus tend to smooth out temperature gradients and
internal viscous particle transport will tend to smooth out rotation frequency gradi-
ents. Additionally, if some ions are “tagged”, then these particles diffuse radially as
a result of “test particle transport™.

Results on internal heat and test particle transport are presented. The heat



transport in these plasmas is found to be diffusive in nature, and to be dominated
by long-range collisions with impact parameter up to a Debye length. Classical
heat transport theory considers only collisions with impact parameters up to the
ion cyclotron radius (gyroradius); however, these collisions give much smaller cross-
field heat transport. The test particle transport results presented here confirm the
existence of long-range collisions in these plasmas: this transport is also found to be
diffusive in nature, and is also found to be greatly enhanced by the effect of collisions
with impact parameter up to the Debye length.

The rate of short-range, velocity-scattering collisions was measured by ob-
serving the rate at which the temperature parallel to the magnetic field equilibrates
with the temperature perpendicular to the magnetic field; long-range collisions do
not contribute to this temperature relaxation rate. Measurements of this anisotropic
temperature relaxation rate for ion plasmas agree well with the predictions of clas-

sical collisional theory.

1.2 Overview of Dissertation

In Chapter 2, the experimental device on which this research was performed is
described. The basic confinement principles of Penning-Malmberg traps are reviewed
and the main diagnostics used (laser-induced fluorescence, charge collection, and im-
age charge measurement) are presented. Also, relevant plasma manipulation tech-
niques (laser heating/cooling, spin-state tagging, and electrostatic perturbations) are
outlined.

In Chapter 3, the manipulation technique of an applied rotating electric field,
or “rotating wall” is described. In these traps, the unneutralized plasma space charge
creates a radial electric field and corresponding plasma E x B rotation. Unavoid-

able trap construction asymmetries drag on the rotating plasma, causing plasma



expansion and eventual loss of particles. The rotating wall is an intentionally ap-
plied trap asymmetry rotating faster than the plasma, causing radial compression
of the plasma. Perturbations rotating faster than the plasma are found to give a
positive torque, while perturbations rotating slower than the plasma are found to
give a negative torque. The positive applied torque enables steady-state plasma con-
finement (where the rotating wall torque balances the background drag) or plasma
compression (where the rotating wall torque overcomes the background drag).

It is found that the rotating wall provides the strongest torque on these
plasmas when the applied frequency is chosen so that a plasma mode is excited. Ex-
periments are presented which unambiguously identify these modes in both electron
and ion plasmas. Modes without azimuthal dependence are found to cause plasma
heating but no torque, while modes with azimuthal dependence are found to cause
both plasma heating and torque. We find that the mode-plasma coupling becomes
nonlinear at very small drive amplitudes, although the observed mode frequencies
are well-predicted by linear theory.

In Chapter 4, measurements of collisional heat transport in ion plasmas are
presented. The plasmas are initially heated or cooled at a particular radius using
a manipulating laser, and the time evolution of the plasma temperature is then
measured to obtain the heat flux. The measured heat flux is found to be diffusive in
nature, and is accurately predicted by a new theory of transport due to long-range
collisions. The measurements are complicated by the presence of local heat sinks
resulting from collisions with neutral molecules, and heat sources due to interactions
between the plasma and trap asymmetries. Measurements of these background heat
sinks are presented; the measured values are found to agree reasonably well with the
predictions of a simple model.

Additionally, measurements of the anisotropic temperature relaxation rate



are presented. An initial condition is created where the temperature parallel to
the magnetic field is greater than the temperature perpendicular to the magnetic
field. The rate at which this temperature anisotropy relaxes due to short-range ion-
ion velocity-scattering collisions is measured, and is found to agree well with the
classical collision rate.

In Chapter 5, measurements of test-particle transport in ion plasmas are
presented. By spin-state tagging a localized group of ions and observing the radial
(cross-field) spreading of the tagged ions, the test-particle transport flux is obtained.
The test-particle flux is found to be diffusive in nature, and is also well-predicted
by a new theory of transport due to long-range collisions. As in the case of heat
transport, this analysis is complicated by the presence of background terms: here
the dominant background terms result from collisional depolarization of the ion spins.

Measurements of these terms are also presented.



Chapter 2

Experimental Setup

2.1 Overview

This chapter begins with a quick review of the basic geometry and con-
finement principles of Penning-Malmberg traps. The “IV” apparatus used for the
experiments discussed in this thesis is then described. The LIF (laser-induced fluo-
rescence) diagnostic is discussed, as well as the charge collection (collimator plate/
Faraday cup) diagnostic and the image charge (sector probe signal) diagnostic. Rel-
evant plasma manipulation techniques are then described. These are laser heating
and spin-state tagging, which are used on the ion plasmas, and electrostatic ma-
nipulations (in particular the launching and detection of electrostatic waves using

wall-sectors) which are used in both ion and electron plasmas.

2.2 Review of Penning-Malmberg Traps

Figure 2.1 shows a schematic of a Penning-Malmberg trap. The basic geom-
etry is a series of electrically isolated conducting cylinders aligned with a uniform
magnetic field B = Bz. The conducting cylinders are either grounded or biased to
a voltage V, so that particles with a single sign of charge are confined axially (posi-
tive magnesium ions are shown here); particles with the opposite sign of charge are

not confined and escape in the axial (2) direction. The unneutralized charge of the



Figure 2.1: Basic geometry of Penning-Malmberg trap.

trapped particles creates a radial electric field E which results in an E x B rotation
of the column at frequency fg. This rotational motion of the charge column provides
radial confinement against the radial electric field through the v x B term of the
Lorentz force.

Normally, singly-ionized magnesium, Mg*, is confined in the TV apparatus;
however, for the rotating wall studies presented here (Chapter 3), we also perform
experiments on electron plasmas.

The ion columns are typically confined at high enough densities n and low
enough temperatures T that they can be considered plasmas: the columns are many
Debye shielding lengths across, so collective interactions, rather than single particle
effects, generally dominate the dynamics of the system [9].

Nonneutral plasmas in Penning-Malmberg traps have exceptional confine-
ment properties. Axial confinement is assured energetically, presuming that the
end-confinement voltages are large compared to the plasma space-charge potential
plus the plasma temperature. For an ideal cylindrically symmetric trap, radial con-

finement is also guaranteed. This can be understood in terms of conservation of the



total angular momentum of the plasma:

P, = Z[mvg’jrj + ;Ag(r:j)r]‘] ~ (eB/QC)Zr? , (2.1)

i
where the sum is over the N,,; particles in the plasma, m is the particle mass, e
is the charge (which can be positive or negative), vg; is the 6 component of the
velocity of the jth particle, r; is the radial position of the jth particle, and Ay is
the 6 component of the vector potential. For a uniform magnetic field, this can be
written: Ag(r) = Br/2 (we define B to be negative, i.e. B = — BZ, for positive ions
and B to be positive, i.e. B = 4+ BZ, for electrons).

For the low energy plasmas considered here, the kinetic component of the
angular momentum, muyg, is negligible, so the plasma angular momentum is domi-
nated by the angular momentum stored in the fields, i.e. Py ~ (eB/2c)Y>; r?. For
the purposes of this work, the image charge contribution to P4 can be ignored. In
an ideal azimuthally symmetric trap, conservation of angular momentum thus im-
plies conservation of the mean-square radius of the plasma, so the plasma is confined
radially. In practice, collisions with neutral molecules and interactions with trap
asymmetries decrease the angular momentum of the plasma; this causes an increase
in the mean-square radius of the plasma and eventual particle loss to the trap walls
at radius R,,.

The experiments discussed here operate in an ultra-high vacuum (Py <
4 x 1072 Torr), so inherent electric or magnetic field errors are believed to be the
dominant source of drag on the plasmas. Measurements of inherent asymmetry-
induced transport on electron columns show that the plasma expansion rate scales
like (I.,/B)?, where L, is the length of the plasma [16]. Tmproved plasma confine-
ment is therefore obtained for shorter plasmas and for higher magnetic fields. In the
IV Penning-Malmberg trap, we routinely observe plasma lifetimes on time scales of

thousands of seconds for short (1, ~ 10 ¢cm) ion plasmas in a strong magnetic field



(B=4T).

This exceptional confinement is related to the ability of nonneutral plasmas to
be confined in a state of global thermal equilibrium; here, global thermal equilibrium
is characterized by a uniform temperature and constant rotation frequency. This
contrasts with neutral plasmas, which cannot be confined in a state of global thermal
equilibrium by static electric and magnetic fields.

Nonneutral plasmas cannot be confined in thermal equilibrium at densities
greater than the Brillouin limit, ng = B?/87mc? [8, 14]. The plasmas discussed
here are at densities small compared to this limit, i.e. n < ng. In this regime, the
plasma angular rotation frequency w;,; is small compared to the plasma frequency
w, = y/47ne?/m, which is small compared to the cyclotron frequency Q. = eB/mc;

that is, we have the frequency ordering w;,; < w, < (1.

2.3 Description of IV Apparatus

The basic schematic of the IV apparatus is shown in Figure 2.2. 1V was
designed and constructed by Francois Anderegg, who has written a more detailed
description of the apparatus[4]. The electrodes fit inside of the bore of a supercon-
ducting magnet, which provides a constant magnetic field of up to B = 4 T inside
the trap. The Mg™ plasma is trapped near the axial center of the hore, where the
field uniformity along the axis is better than 0.1% over a length of 30 cm (and better
than 2% over a length of 60 cm). The magnetic field is carefully aligned with the axis
of the electrode structure; this alignment is fine-tuned by using saddle-coil fields.

The electrode structure consists of isolated conducting cylinders with radius
R, = 2.86 cm and length I, = 5.84 ecm. These cylinders are biased or grounded
to create an axial potential well for the plasma. In a typical ion experiment, for

example, R4—R10 and R14 are bhiased to a confinement voltage V., = +200 V, while



10

< E> diagnostic Faaday

g beam

2 B ”_—y collimator
\ ' ) plate
electron/ion detection optics B
source 2 X

Figure 2.2: Schematic of the IV Penning-Malmberg trap. Source is actually located
about 1 meter from R4.

S11—R13 are grounded, so that the (positive) ions are trapped by the potential well
S11—R13. For these low-density plasmas, the plasma length is roughly the length
of the confining region minus one ring, that is L, ~ (N, — 1) x L,, so, for example,
a plasma trapped in the region S11—R13 would be about 2 x 5.84 ~ 12 c¢m long.
Two of the rings, labeled S5 and S11, are sectored azimuthally; S5 is divided into
4 sectors, labeled Sha, Shb, Shc, and SHd, while S11 is divided into eight sectors.
These sectors are isolated from each other by a conducting frame and can thus be
used to drive and measure azimuthally-dependent perturbations in the plasma. The
ring labeled 1.12 is perforated to allow the passage of UV light into and out of the
trap for the laser diagnostic.

The electrode structure is enclosed by an ultra-high vacuum chamber. After a
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vactuum bake, the pressure is typically 7 x 107" Torr. For most of the data presented
here, however, the apparatus was operated at a neutral pressure of 4 x 107 Torr.
The neutral gas composition is mostly Hy (97%) and CO (2.5%).

Referring to Figure 2.2, electrons or ions are created at the left (R4) end of
the trap. To trap a plasma, the cylinders R4—R10 are grounded, ions or electrons
which have been created to the left of R4 stream down the trap along the magnetic
field, and then cylinders R4—R10 are biased to V, to trap the particles. Typically,
about N,,; ~ 10? particles are trapped by this method. The ion and electron source
position is not shown to scale in Figure 2.2; for both ions and electrons, the source is
located about 1 meter to the left of R4, in the fringing field of the superconducting
coil (Bsouree /B =~ 1/90). A series of “inject electrodes” (not shown in Figure 2.2) are
located between the source and the confinement electrodes; these inject electrodes
are biased to form a potential well which draws the charges from the low- B region of
the source into the high-B region of the confinement electrodes. For ion experiments,
the source consists of a metal vacuum vapor arc (MEVVA), which can essentially he
thought of as a spark-plug with a magnesium electrode. For electron experiments, the
source consists of a hot tungsten filament, which creates electrons through thermionic
emission.

The MEVVA initially creates an ion plasma consisting of both Mg* and
Mgt*. Within several minutes of injection, however, the doubly-ionized magnesium
reacts with residual neutral gas in the trap to form impurity ions, such as magne-
sium hydrides, MgH}. The ion experiments presented here are performed long after
injection, at which point we find the plasmas to consist of about 70% Mg* and 30%

impurity ions.
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2.4 Plasma Diagnostics

2.4.1 LIF Diagnostic

The principal diagnostic for this experiment is laser induced fluorescence
(LTF) of singly-ionized magnesium ions, Mg*. This provides an essentially non-
perturbative measurement of the local ion velocity distribution, thus allowing in situ
determination of ion density, temperature, and rotation velocity.

The basic idea of the LIF diagnostic is to use a laser to drive an atomic transi-
tion in the Mg™ ions, and then detect the fluorescent photons. Magnesium ions were
chosen for this diagnostic because of the experimentally desirable characteristics of
the 35S — 3P transition in Mg*. This transition is excited out of the ground state,
so LIF can be performed on cold ions. The transition occurs at an experimentally
useable wavelength (Ag ~ 280 nm) and is an electric dipole transition, which gives a
large on-resonance scattering cross-section, small natural linewidth, and rapid spon-
taneous decay back to the ground state. Also, there are no branches to intermediary
states to slow down the decay from the excited (3P) state to the ground state.

To obtain tuneable laser light at a wavelength Aq ~ 280 nm, we use a
frequency-doubled dye laser. A continuous beam (cw) dye laser is used; this al-
lows for a narrow laser linewidth (about 0.5 MHz in the fundamental and about
1 MHz in the UV), giving good temperature resolution of the plasma. Typically, we
use laser powers of less than T mW to diagnose the plasma.

Two types of transitions are used here: cyclic transitions and optical pumping
transitions. The atomic level diagram for these transitions is shown in Figure 2.3.
The Mgt ions in these plasmas are normally found in the 35; ), ground state with

m; = —I—% or m; = —1. The Zeeman splitting between the 35y, m; = :E% ground

3
states is about (1.2 x 10°*eV) (B/1T). Thus, for typical operating conditions (B =

4T, T ~ .05eV), the two ground states are equally populated. The energy difference
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Figure 2.3: Level diagram of Mg™ ion illustrating cyclic and optical pumping tran-
sitions.

between the ground (35) and closest excited states (3P) is about 4.3 eV, so the
excited states are unpopulated for typical plasma temperatures.

In a cyclic transition, an ion in the (357 5, m; = —I—%) ground state is excited to
the (3F3)9,m; = —I—%) state after absorbing a 280 nm photon from the laser. The ion
then spontaneously decays back to the (35,2, m; = +7) state; the (359, m; = — 1)
state is inaccessible because of angular momentum conservation. A second cyclic

) and (3P5)9,m; = —%) states. Cyclic

transition exists between the (3572, m; = —15
transitions are used to diagnose the plasma, since the ion is unperturbed after the
absorption-emission process, aside from the small momentum kick received from the
photon.

In an optical pumping transition, the ion is placed into an excited state which
can decay to either ground state. In the transition shown in Figure 2.3, for example,
an ion in the (3572, m; = —15) ground state is excited to the (3P, m; = —I—%) state.
This state then decays to the (3572, m; = —I—%) ground state (with a 2/3 probability),

or the (359, m; = —1) ground state (with a 1/3 probability). Continued application
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of light at this frequency will therefore quickly drive any ions in the -1/2 ground state
into the +1/2 ground state. Optical pumping transitions are used for test-particle
transport, since the spin-alignment of the ion ground state can be used to spatially
“tag” a small group of ions. Including 3.5;,; — 3P, transitions at Aqg ~ 280.27 nm
(not shown in Figure 2.3), eight optical pumping 35 — 3P transitions are available;
here, we typically only use the (355, m; = +31) — (3P35.m; = — ) transition (to
pump ions into the -1/2 ground state) and the (35,5, m; = —15) — (3P3)9,m; = —I—%)
transition (to pump ions into the +1/2 ground state).

In the standard LIF diagnostic, the laser is scanned in frequency through the
(3512, m; = —I—%) — (3P3)0,mj = —I—;) cyclic transition. The resulting scattered light
is gathered and sent via an optical fiber to a photomultiplier tube/photon counter
setup to be recorded as a function of time (and laser frequency). The frequency scan
typically covers about 60 GHz and typically takes about 2 seconds to complete. The
intensity of the detected fluorescence during the frequency scan is usually recorded in
the photon counter in 10 ms bins with 2 ms dwell between each hin. Typically, these
plasmas E x B rotate on a time scale of about 1 ms. Also, thermal particles typically
bounce axially on a time scale of about 1 ms; thus the standard LIF measurement
is averaged both azimuthally (over #) and axially (over z).

The plasma temperature is obtained from the observed frequency-broadening
of the transition. The plasmas studied here are generally in local thermal equilib-
rium, so the Doppler-broadened transition has the shape of a Maxwellian for each
magnesium isotope (**Mg*, Mgt and *Mg*). The Doppler-broadening of the
Mgt peak is Av = ﬂyo(vm/c) ~ (10.1 GHz) (T'/1 eV)UQ, where vgg = /T /maqq4 is
the velocity of a thermal 2*Mg™* ion.

The laser beam can bhe shone through the plasma in the —g-direction (shown

in the Figure 2.2) or in the —Z-direction (with the source, collimator plate, and



Faraday cup removed). We designate the local plasma temperature parallel to the
magnetic field as 7| and the temperature perpendicular to the magnetic field as 7',
If the beam is used in the perpendicular direction, there is a frequency shift v,,; of
the measured signal due to the total plasma rotation velocity vy, Vegr = vo(vir/c) &
(0.2GHz) (r/1em) (fioe/1 kHz), where vq is the cyclic resonance frequency and v, =
277 fror-

Fitting the scattered photon count rate vp,.., as a function of the laser
detuning év = v — vy (for laser frequency v) to three shifted Maxwellians (one for
each isotope) gives the local magnesium density np, as well as the local plasma
temperature in the direction of beam propagation. For a perpendicular beam, the

form of the fit used is:

(SV — U 2
Vphoton =2 A1 {exp [ (TW‘)

+ g6 €XP [

25 (bv — v,y — Ovgs ?
T2 eXp oy Av

26 (v — v,y — Ov9g ’
24 Av

} + Ag. (2.2)

Here, Ay = (2.1 x 10° photons/s)(nar, /107 em™3)(Io /T mW)(T /1 eV)*”?, where [,
is the probe beam power. The coefficient A; depends primarily on the collection
efficiency of LIF diagnostic (see Appendix A). Aq is the measured background (off-
resonance) count rate. We assume that there is no centrifugal mass separation in
the plasma [45], so the magnesium isotopes are found in their natural abundance at
each radius (79% 2*Mg, 10% ?"Mg, and 11% **Mg); these relative abundances give
the constants ags = 0.13 and ags = 0.14. dvy5 and dvqe are the isotope frequency
shifts: duvgs ~ 2.28 GHz and dvyg ~ 3.08 GHz [17]. The same fit is used if the beam
is applied in the parallel direction, but v;,; = 0 is used and 7} is obtained instead of
T, .

The LIF diagnostic initially diagnoses only half of the Mg™ ions, that is, the

ions in either the +1/2 or -1/2 ground state, depending on which cyclic transition is
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being used. During normal operation, however, the Lorentzian wings of the applied
light will quickly (on the time scale of 1 second or so) optically pump the plasma
into the state which is being sampled. If the (3572, m; = —15) — (3P3)9,m; = —%)
cyclic transition is used, for example, the closest transition which can be driven
is the (3S1/2,m; = +1) — (3P3j9,m; = —1) optical pumping transition at §v ~

(9GHz) (B/1T); the opposing optical pumping transition, (359, m; = —

) —

N | =

(3P3j0,m; = +3), is at 6v ~ (—32GHz) (B/1 T) and is therefore not as strongly
driven by the laser frequency sidebands. As a result, the plasma will quickly become
spin-polarized into the state which is being probed (the -1/2 ground state) when
driving this cyclic transition. The spin-polarization of the plasma is long-lived (spin
polarization lifetimes are typically > 100 seconds), and all of the Mg*t ions are
diagnosed during normal operation.

A typical LIF frequency scan is shown in Figure 2.4: here, the photon count
rate Vypoon 18 plotted as a function of laser frequency detuning év. The mea-
sured count rate is normalized by the instantaneous laser power Iy ~ 0.5 mW.
The probe beam is shone perpendicularly across the plasma at radial position r =
—0.45 em. The beam is scanned through the cyclic transition frequency from offset
ov = —30 GHz to év = +30 GHz in about 2 seconds and the resulting scattered
photon count rate vpj,0n 1s recorded.

The solid line is a fit of Equation 2.2 to the data giving Av ~ 3.32 GHz
(corresponding to perpendicular temperature 7, ~ 0.11 eV), v,,; ~ 2.00 GHz (cor-
responding to rotation velocity v,y ~ 5.6 x 10* cm/s), magnesium density nas, ~
3.3x107em™?, and background count rate Ag ~ 3.5 x 10? /s. Tt can be seen that the
three-Maxwellian functional form of Equation 2.2 fits the data very well. In general,
we find that the ion plasmas discussed here have measured velocity distributions

which are well-described by Equation 2.2. The exception to this is very cold plasmas



17

,Uphoton/IO [1068_1mw_1]

~15 _10 -5 0 5 10 15

Figure 2.4: LIF frequency scan showing perpendicular velocity distribution and
three-Maxwellian fit.

(T <1077 eV), where centrifugal separation of the isotopes can occur and the finite
linewidth of the transition can become important; this is discussed in Appendix A.
In some experiments, such as some of the heat transport measurements of
Chapter 4, the plasma temperature 7" evolves on a time scale which is fast compared
with the 2 seconds required for a standard LIF frequency scan. On these time scales,
the density can be regarded as constant, so the rapid temperature evolution at each
radius T'(r,1) can be obtained from peak of the distribution function alone, i.e. we
obtain Tj(r,t) from f (v = 0,7,) and we obtain T\ (r,1) from fi(vi = vser,7,1).
By physically moving the probe beam and performing a LIF frequency scan at
each radial position, the radial profiles of magnesium density, temperature, and rota-
tion velocity can be obtained. Usually, ion plasmas are confined in rings S11—R13,

so this gives a radial profile across the axial center (z = [,/2) of the plasma. A
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Figure 2.5: Radial profile of plasma showing density n, temperature 7', and rotation
velocity v.
typical radial profile of an ion plasma is shown in Figure 2.5. Here, each radial
point represents a single perpendicular LIF frequency scan, such as Figure 2.4. The
plasma was prevented from expanding during this measurement by using a rotating
wall perturbation applied with the sectored ring S11.

Also plotted in Figure 2.5 is the total charge density n(r) which is calculated
from the measured quantities. The diamagnetic contribution to the total rotation

frequency is calculated as:

c 0
76B77,(7“)E(HTL> . (2.3)

Vaia (1) =

Since the laser measures v;,;, with v;,; = vg + v4,, we obtain the E x B rotation
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frequency fr = vg/2xr from

vp(r) = ck.(r)/B = vipu(r) — vaa(r) . (2.4)

For very cold plasmas, the diamagnetic term can be neglected. Otherwise, centrifugal
separation can be neglected, so the diamagnetic term can be calculated by using
(1/n)on/dr ~ (1/npr,)0nm,/0r. The radial electric field F, arises from the total

charge density n(r) through Poisson’s equation,
(1/r)(@)0r)(rk,) = —4xne, (2.5)

so the charge density is obtained by differentiating fr = vg/27r:

B 0

—I[r® fr(r)] . (2.6)

n(r) =  ecr Or

We typically find that about 70% of the ions in the trap are magnesium,i.e. nas,/n ~
0.7. The remainder of the ions, which we refer to as “dark matter” because they are
invisible to the LIF diagnostic, are believed to be dominantly hydrides of magnesium,
MgHt. We believe these dark matter ions to be in thermal equilibrium with the
magnesium ions, so the temperature and rotation velocity measured with the LIF
diagnostic is a good measurement of the total plasma temperature and rotation.

In Figure 2.5, it appears that n(r)/na,(r) # const. This is a result of error
introduced in the calculated n(r) when taking the derivative of the (noisy) data at
larger radii. Typically, we avoid this error with the approximation n(r) ~ C, nar,(r),

where (U, is a scale factor estimated from the rotation frequency near the center of

the plasma, C, = _fr(r=0)B _

" 27een Mg (r=0)

It can be seen that the plasma in Figure 2.5 is close to thermal equilibrium:
the temperature 7', is fairly constant as a function of radius, as is the rotation fre-
quency fior = vioe/2nr. The parallel temperature T) (not shown) is well-equilibrated

with T, i.e. T ~ T ~ T, where T = lTH + %71 is the average temperature. The
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solid line through the f;,, data corresponds to f,,; = 19.8 kHz. The diamagnetic
velocity vy, is small here, so the total plasma rotation and E x B rotation are about

the same: fg ~ f;,;. We find this to be true for most of the plasmas discussed here.

2.4.2 Charge Collection Diagnostic

The essential components of the charge collection diagnostic can be seen in
Figure 2.2. Initially, the plasma is confined at both ends by voltages V. ~ +200V
(+ for ions, - for e]ectrons). When the voltage at the collection end of the machine is
lowered (V. — 0), the charge is no longer confined in this direction and flows quickly
along B. Part of the charge, )., is collected by the collimator plate; the remainder,
Qr, passes through a small circular hole with diameter d. = 1 mm and is collected
by the Faraday cup. The total number of ions confined is then Ny, = (Q. 4+ Qr)/e.

The density at the radius of the collimator plate hole can be found from:

n(r) = 1Qr(r) (2.7)

9 b
med? L,

where the plasma length L, is estimated from the confinement geometry.

For ion plasmas, this destructive diagnostic is less desirable than the non-
destructive LIF diagnostic and is therefore primarily used to check the LIF calibra-
tion. For electron plasmas, however, the charge collection diagnostic is the principal
method by which the plasma density profile is measured.

A typical electron plasma radial density profile taken with the charge col-
lection diagnostic is shown in Figure 2.6. Here, an electron plasma is injected, held
for 5 seconds, and then dumped onto the collimator plate and Faraday cup. The
collimator plate hole is then translated slightly in radius and the measurement is
repeated, until the entire radial profile has been reconstructed. This diagnostic re-
quires good shot-to-shot repeatability of the initial conditions; we typically find good

repeatability, with shot-to-shot density variations én/n < .01 at r = 0.
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Figure 2.6: Radial density profile of electron plasma measured using collimator

hole.

In electron plasmas, we also use the charge collection diagnostic to measure
the parallel thermal energy 7. In this case, the collimator plate is removed, and the
confining voltage is lowered at a rate vgm, = —(dV./0t)/T which is slow compared
to the axial bounce frequency of a thermal particle but fast compared to the electron-

electron collision rate. For a typical electron plasma experiment, for example, we

[ 3

have n ~ 5 x 10%ecm™?, [, ~ 35 ¢cm, and T' ~ 1 eV, giving a thermal hounce
frequency f, = 21,/v ~ 6 x 10°s~" and an electron-electron collision rate v, =
2@ (nob?) In(r./b) = 6x10%s™" (where b = /T is the distance of closest approach
of a thermal particle and r. = v/, is the cyclotron radius). For these plasma
parameters, we typically lower the end confinement potential of V. = 200 V linearly
in 20 ms, giving Vaum, & 10*s7", so the condition v.. < vVjum, < fi is satisfied.

With this inequality satisfied, the parallel electron temperature near the center of
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the plasma 7j(r ~ 0) can be obtained from the measured collected charge as a
function of time, Qr(t), since this signal reflects a sampling of the Maxwellian tail
of the parallel thermal energy. This method of measuring electron temperature was

developed extensively in previous experiments [22, 5].

2.4.3 Image Charge Diagnostic

The third diagnostic used in these experiments is the measurement of voltages
induced on the conducting wall by the plasma. This is an essentially nondestructive
diagnostic, and is the dominant diagnostic used here for the detection of modes which
have been launched in the plasma.

The simplest example of an image charge diagnostic is the detection of the
my = 1 “diocotron” mode. This is the mode in which the entire plasma column is
translated off-axis and then E x B drifts about the trap axis under the influence
of the image charges induced on the conducting trap walls. The image charge can
be measured by “listening” to a wall sector (such as S11a on Figure 2.2, for exam-
ple) with an amplifier. For small off-axis displacements, the image charge voltage
oscillates at a frequency f; is given by:

N;  ec
© BR?

“

N, B\~
- ) () ()
(560 \forem—) \i1)

where the line charge density is Ny, = 27 [ n(r)rdr. Measurement of the my = 1

I (2.8)

diocotron frequency f; thus gives the value of the line charge density Nj. Here, we
use the measurement of this mode frequency primarily as a double-check of the other
diagnostics.

The my = 1 diocotron mode is found to self-excite and grow spontaneously
in our electron plasma experiments, often causing an electron plasma to be lost to

the wall on a time scale of several seconds. To avoid this, we generally measure
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and apply negative feedback to this mode using two wall sectors on ring S5. No

self-excitation of this mode is seen in our ion plasmas.

2.5 Plasma Manipulations

2.5.1 Laser Heating/Cooling

In addition to serving as a useful diagnostic tool, laser heams with sufficient
power can be used to manipulate the plasma temperature. Laser cooling was inde-
pendently developed for ions bound in an electromagnetic trap [63] and for a gas of
neutral atoms [26]. It has since become a standard technique in atomic physics, where
cooling is highly desirable for the minimization of Doppler-broadening of transitions
[65]. Here, we use laser cooling and laser heating as tools for increasing the temper-
ature range over which plasma effects can be studied, and for creating temperature
gradients in the plasma.

We use the simplest form of laser heating (or cooling) in our Mg* plasmas,
based on the first-order Doppler shift. This form of heating is usable for ions with
temperatures greater than ion-recoil limit, which is set by the linewidth Ayq of the
atomic transition used; here the limiting temperature is T = hAyy/2 ~ 1077 eV,
which is far below the temperature range discussed in this thesis, 107* < 7' < 10 eV.

[Laser heating or cooling occurs due to the small average change in ion energy
which occurs in the absorption/re-emission process. To perform laser heating or
cooling, we use a parallel (z-aligned) laser beam. Referring to Figure 2.7, an ion
absorbs a photon with momentum Ak = (h/Xg)Z and then immediately re-emits a
photon with momentum hk’. The emission process for the transitions used here
follows a 1(£) = 1+ cos? ¢ intensity distribution, where £ is the angle hetween k’ and
z. Thus, on average, no net momentum is lost in emission. The average momentum

change of the ion is then Ap = hk and the average energy change, ignoring the small
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Figure 2.7: ITllustration of photon absorption and re-emission, showing net momen-
tum transfer to ion in z-direction.

ion recoil energy, is ATy ~ hk - v, where v is the ion velocity vector. For a Mg*t
ion at 7' = 1 eV absorbing/re-emitting a Ay = ¢/vo ~ 280 nm photon, this gives
AT~ 3 x 1077 eV. Thus, of order 10° photon-ion collisions are necessary to cause
substantial change of the ion energy. It is apparent that a cyclic transition must be
used for useful laser heating or cooling of the ion.

To achieve laser heating of the plasma, the laser is detuned to the “blue” side
of a cyclic transition (év > 0); to achieve laser cooling, the laser is detuned to the
“red” (6v < 0) side of the transition frequency vg. In the case of laser heating (laser
frequency blue-shifted from resonance), ions moving away from the laser heam (in
direction k) are red-shifted back into resonance; so these ions absorb photons, giving
ATy~ hk-v >0, and the ions gain parallel energy. Conversely, in the case of laser
cooling, ions moving toward the laser beam are Doppler-shifted into resonance, so
AT < 0 and ions loose parallel energy. For a Maxwellian distribution of velocities,
the heating/cooling rate can be estimated to be proportional to §vexp|—(6v/Av)?],

so the most efficient heating/cooling is expected to occur around év ~ Av, i.e. if
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Figure 2.8: Experimental sequence used for test particle transport measurements.

the laser is detuned off resonance by the thermal broadening of the transition [64].
We observe this to be true in practice, so effective laser cooling/heating over a wide
range of temperatures often requires modification of the laser detuning év as the

plasma temperature changes.

2.5.2  Spin State Tagging

As described in Section 2.4.1, the ions in magnesium plasmas can be placed
into either the (357 )2, m; = +1/2) or the (3515, m; = —1/2) ground state by driving
an optical pumping transition with a laser. “Spin state tagging” refers to an exper-
iment where a localized group of ions is placed in the opposite spin state as the rest
of the plasma. These “test-particles” can then be observed with a diagnostic beam
as they mix with the other ions in the plasma. Tagging of ions in a plasma was first
demonstrated by Skiff et al. [56].

Spin state tagging typically requires very little laser power compared to laser
heating/cooling. As discussed in the previous section, 107 photon-ion interactions
are typically necessary to laser heat or cool a single ion in these experiments. By

comparison, only several collisions are necessary, on-average, to spin-polarize an ion.
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The tagged particles can be localized in either real-space or velocity-space;
here we are concerned with real-space test-particle transport. A schematic of a
spin state tagging sequence and test-particle transport experiment are shown in
Figure 2.8. Here, the plasma cylinder is illustrated end-on. Three steps are required:
in the first step (Reset), the plasma is completely spin-polarized into the -1/2 state hy
driving the peak of the (357,9,m; = +1/2) — (3P5)5,m; = —1/2) optical pumping
transition. The beam passes through the center of the plasma perpendicular to the
magnetic field. The beam is left on for a time (= 10 s) which is long compared
to the collision time, bounce time, and rotation time of the plasma; this ensures
that all the ions in the plasma have interacted with the beam. In the second step
(Tag), the spins of the particles at a chosen radial position r; are reversed using a
beam aligned parallel to the magnetic field. The beam is tuned to the peak of the
(3S1)2,mj = —1/2) — (3P5)5,m; = +1/2) optical pumping transition and is left on
for a time (typically 50 ms), which is long compared to the plasma rotation, bounce,
and collision time scales, but short compared to the radial diffusion and spontaneous
spin-depolarization times of the test particles. A large fraction (typically about 80%)
of the ions in a shell at r = r; are thus pumped into the +1/2 ground state. In the
third step (Search), the radial diffusion of this shell of test particles is monitored at
some radius r with a probe beam tuned to the peak of the (35,5, m; = +1/2) —

(3P3/2,m; = +3/2) cyclic transition.

2.5.3 Driving Electrostatic Modes

The third method of plasma manipulation used here is the launching of elec-
trostatic modes in the plasma. As a mode is damped, the mode transfers its energy
and angular momentum to the plasma, so driving electrostatic modes in the plasma
can be an efficient method for changing the plasma energy and angular momentum.

Modes in these plasmas generally have density perturbations én and po-
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tential perturbations é® which have the form én,6¢ x e*+%¢ , where k, ~
m,7[L,, with m,, mg being integers. Modes with azimuthal dependence (mg # 0)
are launched using the sectored rings S5 or S11; my = 0 modes can be launched
with any of the confinement rings. We refer to a rotating electrostatic perturbation
applied using the sectored rings as a “rotating wall”. We use positive my to describe
an applied perturbation which rotates in the same sense as the plasma rotation f;.;:
myg < (0 indicates a perturbation rotating in the opposite sense. To apply a myg = +2
perturbation to the plasma, for example, a voltage A, cosw,? is applied to sector
S1la and Slle, a voltage A, cos(wst — 7/2) is applied to S11b and S11f, a voltage
As cos(wst + m) is applied to ST1e and S11g, and a voltage A, cos(wst 4+ 7/2) is ap-
plied to S11d and S11h (referring to Figures 2.2 and 2.9). Using the angular size of
these sectors (Ag, ~ 29°), one finds that the resulting potential perturbation can

be Fourier-decomposed in the #-direction to give an applied potential 6® at the wall

r = R, of:

o00(t,r = R,,) ~ .31 A cos(20 — w,t — 37 /4) + .21 A; cos(66 4+ wst — 5 /4)

+.07TA cos(100 — wet — Tr/4)+ ... . (2.9)

The signal at r = R,, therefore consists of an amplitude .31 A, wave moving in the
f-direction (my = +2); the next largest component being a .21 A; wave moving in
the —@ direction (mg = —6). At the plasma radius r = R,, the relative magnitudes
of these two signals will be: 6®,,,— ¢(r = R,)/6Pmo—q2(r = R,) ~ .7(Rp/Rm)4.
Typically, we have R,/R, ~ .2, s0 §®,,,— ¢(r = R,)/6®,—42(r = R,) ~ 1077.
The plasma therefore sees an almost pure my = +2 perturbation. A similar method
can be used to create a my = +1 perturbation; in this case the largest harmonic is
mg = —5 (if 8 sectors are used), myg = —3 (if 4 sectors are used), or my = —1 (if 2

sectors are used ) .
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Figure 2.9: Schematic of my = +2 rotating wall setup for ions.

These applied perturbations rotate at a frequency f,, given by
fm — fs/7n9 ) (2]0)

so the my = 2 perturbation of Figure 2.9, for example, rotates at f,, = %fg

The modes which are used in this work are the nonneutral analog of Trivelpiece-
Gould modes [59]. Trivelpiece-Gould modes are electrostatic waves originally derived
to describe waves in a plasma-filled waveguide. They also occur in nonneutral plas-
mas, the primary difference being a Doppler-shift in the lab-frame mode frequency
due to the plasma rotation. For nonneutral plasmas far below the Brillouin limit,
these modes can be grouped into three categories: diocotron modes, plasma modes,
and cyclotron modes.

Diocotron modes are low-frequency (w ~ wg) modes. We use the my = 1

diocotron mode primarily as a method of obtaining the plasma line-charge density,
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as described in Section 2.4.3. Diocotron modes have been studied extensively in
previous experiments done in this group [24].

Plasma modes are intermediate-frequency (w ~ w,) modes. We launch
plasma modes in both electron and Mgt plasmas as a means of causing plasma
heating and as a way of changing the plasma angular momentum. As expected, the
mg = 0 plasma modes are found to cause heating but no change in the plasma an-
gular momentum, while my # 0 plasma modes are found to change both the plasma
temperature and the plasma angular momentum. We often refer to the use of a
mg = 0 perturbation to heat the plasma as “wiggle heating”. Since the plasma
modes are at a frequency small compared with the cyclotron frequency, we expect
heating from these modes to affect primarily the parallel plasma temperature. This is
observed experimentally: in general, plasmas with applied wiggle heating are found
to have a parallel temperature which is higher than the perpendicular temperature,
i.e. Ty > Ty. This anisotropy can he an undesirable characteristic of wiggle heating;
it is desirable, however, for measuring the relaxation rate of an anisotropy between
the parallel and perpendicular degrees of freedom, as is discussed in Chapter 4. The
use of driven my # 0 plasma modes to change the plasma angular momentum is
discussed in Chapter 3.

Cyclotron modes are high-frequency (w ~ €.) modes. Preliminary experi-
ments indicate strong heating and little or no compression from my = +1 cyclotron
modes and neither heating nor compression from my = —1 cyclotron modes. We
have used driven cyclotron modes as a tool for heating Mgt plasmas; we usually
refer to this as ion-cyclotron resonance heating (ICRH). These modes have also heen
used to perform cyclotron resonance spectroscopy, i.e. to determine the masses of

the ions present in the plasma [54].



Chapter 3

Rotating Wall Confinement
Technique

3.1 Overview

In this chapter, we demonstrate that the application of rotating electric fields
to these plasmas allows us to achieve density control and steady-state confinement.

As discussed in Section 2.2, background neutral gas and imperfections in
the trap symmetry exert a drag on nonneutral plasmas in Penning-Malmberg traps,
slowing the plasma rotation and causing radial expansion and particle loss. Two
methods which have been used in other experiments to counter this expansion are
laser torquing and “side-band cooling”. lLaser torquing uses a laser beam aimed
at the edge of the plasma in the direction of the plasma rotation to spin-up the
plasma through transfer of momentum from the laser beam to the plasma. This
method relies on the presence of an accessible atomic transition, thus being limited
to a small number of ion species. Also, fluctuations in laser power, frequency, and
pointing can make this method difficult to implement. Laser torquing has been used
to provide steady-state confinement of 10* to 10° Be*t ions in harmonic Penning
traps [27]. Side-band cooling uses an applied rf field to parametrically couple the
magnetron (rotation) motion with the collective axial bounce motion of a small

plasma in a harmonic Penning trap. The bounce motion is then resistively cooled,
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which results in cooling of the magnetron motion and suppressed radial expansion.
Side-band cooling has heen used to compress 107 to 10* electrons trapped in harmonic
wells [62]. This method becomes ineffective for large trapped plasmas, however, as
the magnetron motion and collective bounce motion become dominated by plasma
space-charge effects.

It has been found that the application of a rotating electric field, or “rotating
wall” can provide steady-state confinement for small (about 10% ions) spheroidal Be*
plasmas in harmonic traps [29]. In these experiments, the applied rotating electric
field has very little axial dependence, being nearly uniform over the entire length of
the plasma. These plasmas are cooled to a strongly-correlated state (7" ~ 10 mK)
and are found to rotate phase-locked to the applied drive.

It is well-known that plasma waves can greatly enhance particle transport.
Both spheroidal plasmas and long plasmas show strong confinement degradation
when applied perturbations coincide with a plasma mode [43, 23]. In a long electron
plasma at low magnetic field (B < 400 ), modest density and angular momentum
increases were reported when the applied perturbation excited a plasma mode, but a
large amount of heating was observed and background ionization made the technique
impractical [42]. Compression of small spheroidal plasmas has been performed by
driving plasma modes with an applied rotating electric field. This mode-enhanced
rotating wall drive is observed to cause a larger torque and larger heating than is
obtained with the phase-locked (non-modal) rotating wall mentioned in the previous
paragraph [41].

We have found that the application of rotating electric fields to long nonneu-
tral plasma columns can provide sufficient torque to provide density compression and
steady-state confinement at central densities of up to about 10 cm~? for electrons [1]

and 5 x 108 em™? for ions [28]. The torque is measured on electron plasmas ranging
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in temperature from 7'~ 0.2 to 2 eV and on ion plasmas ranging from 7'~ 107* to
4 eV. We find that a large enhancement in the torque is observed when the rotating
wall frequency is chosen such that a Trivelpiece-Gould mode with length dependence
(k, # 0) and with azimuthal dependence (my # 0) is excited in the plasma. As dis-
cussed in Section 2.5.3, these modes can be grouped into diocotron (low-frequency),
plasma (intermediate-frequency), and cyclotron (high-frequency modes); here, we
present results obtained for plasma (intermediate-frequency) modes.

In Section 3.2, frequency measurements of these plasma modes are obtained
from wall sector signals (mode transmission experiments). The observed mode fre-
quencies are found to be in reasonably good agreement with numerical predictions.
Next, in Section 3.3, measurements of the plasma density compression and expansion
resulting from these modes are presented. large peaks in the rotating wall torque
are observed at the mode frequencies; no significant torque is obtained off-resonance.
Modes rotating faster than the plasma are found to cause a positive torque, while
modes rotating slower than the plasma are found to cause a negative torque (drag) on
the plasma. The mode torque is found to scale linearly with applied drive amplitude,
indicating a nonlinear coupling.

In Section 3.4, measurements of the mode damping rate are presented; the
damping rate is found to be fairly constant as a function of temperature, in disagree-
ment with predictions of linear LLandau damping.

Section 3.5 shows measurements of the background expansion rate for these
plasmas. The background expansion rate represents the drag on these plasmas which
needs to be overcome by the rotating wall torque in order to provide compression
and steady-state plasma confinement. Here, we find an electron plasma background
expansion rate which scales like n3, where ng = n(r = 0), consistent with measure-

ments on previous machines. An ion plasma background expansion rate which is
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independent of density ng and temperature 7' is observed, which is not consistent

with observations on previous machines.

3.2 Measurement of Plasma Mode Frequencies
with Transmission Experiments

Azimuthally-dependent modes are driven and detected in these plasmas using
the azimuthally-sectored confinement rings S5 and S11, as described in Sections 2.4.3
and 2.5.3. Two typical mode transmission experiments are shown in Figure 3.1. In
Figure 3.1(a), my = 1 modes are launched in an electron plasma confined in the
region Sh—S11. A signal with frequency f, and amplitude A,, = 67 mV is applied
to sector S11a and a 180° phase-shifted signal with the same amplitude is applied to
Slle. This way, both forwards and backwards propagating harmonics (mg = +1) are
driven in the plasma. At the other end of the plasma, sector Sha is connected to a
spectrum analyzer with a bandwidth of 300 Hz, centered about the drive frequency,
fs. After an electron plasma is injected, the drive frequency is ramped in 100 seconds
from f, = 0.5 to 2.5 MHz and the received signal is monitored on the spectrum
analyzer.

We observe an enhancement in the signal transmission of up to about 40 dB
when the drive frequency corresponds to a plasma mode frequency. We have a
noise floor of about -130 dBm, corresponding to a noise signal of about 0.07 gV .
40 dB enhancement over the noise therefore corresponds to a received voltage A, . ~
7 tVims. The plasma used here had parameters L, ~ 35 ecm, R, ~ 0.25 ecm, ng ~
4x10%ecm ™ T ~ 0.1 eV, and Ny, ~ 2.7 x 10°. The plasma is expanding slowly
during this measurement, with the total number of particles remaining constant,
but this is not believed to affect the mode frequencies significantly since the plasma

rotation frequency fr ~ 140 kHz is small compared to the mode frequencies.
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Figure 3.1: Small amplitude my = +1 mode transmission experiment on electron
(a) and ion (b) plasmas.




Figure 3.1(b) shows a similar transmission experiment performed on a mag-
nesium ion plasma. Here, the plasma is kept from expanding by the application of a
fw=20kHz, A, = 0.4V, my = +1 rotating wall drive using the sectors on Sl11a, c,
e, and g; this balances the inherent asymmetry drag on the plasma by coupling to
the (1,1,1) mode, as will be described in the next section. A my = +1, A,, =25 mV
signal is applied using sectors S11b and f. This drive signal is ramped in frequency
from 0 to 100 kHz in 100 seconds while listening to sector S11d with the spectrum
analyzer. As for the electron plasma, strong enhancement in the received power
is observed when the drive frequency f; corresponds to a plasma mode. Addition-
ally, a strong peak is observed at f, = 20 kHz because of direct coupling between
sectors; this peak is observed even without a plasma, however, and is subtracted
from the data presented in Figure 3.1(b). The plasma used here had parameters
ng~43x10"em™?, L, ~ 145 cm, R, ~ 0.66 cm, and T ~ 0.1 eV.

The mode identifications in Figure 3.1 use the notation (mg, m,,m,). These
identifications are obtained from numerically predicted mode frequencies. A rein-

forcement of the numerically obtained mode identifications of Figure 3.1 is achieved

by performing several simple antenna configuration tests: the my = —1 modes are
no longer observable when a forwards-phased (my = +1) drive is used; similarly,
the my = +1 modes are no longer observed when a reverse-phased (mgy = —1) drive
is used. Also, these modes could not be excited by a mg = 0 or my = 2 drive.

These results are consistent with the my mode labels of Figure 3.1. For the long
electron plasma, Figure 3.1(a), when driving the my = 1 modes while listening with
two opposing sectors, Sha and She, connected together, no transmission peaks are
observed. This verifies that the modes observed in Figure 3.1(a) correspond to an
odd azimuthal mode number my. Additionally, when driving my = +1 modes and

listening with sectors S11f, S11g, and ShHd connected together, the mode peaks la-
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beled by odd m, numbers on Figure 3.1(a) are observed to drop by ahout 15 dB,
while the mode peaks labeled by even m, numbers where observed to rise by about
5 dB. Conversely, if sectors S11f, S11g, and S5b connected together are used for
listening to the modes, the mode peaks labeled by even m, numbers are observed
to drop by about 15 dB while the mode peaks labeled by odd m, numbers were
observed to rise by about 5 dB. Together with the knowledge that these modes have
odd azimuthal symmetry, this verifies that the modes in Figure 3.1(a) labeled with
odd m, are indeed odd in 7z, while the modes labeled with even m, are indeed even
in z. Additionally, for the ion plasma, Figure 3.1(b), coherent detection of the ion
fluorescence at a given mode frequency was used to verify the expected radial mode
shapes of the my = 0 and ms = 1 modes as well as the odd vs. even nature of the
m, =1, 2, and 3 modes.

The mg = 0 modes seen in Figure 3.1(b) are driven by small imbalances
in the nominally my = +1 applied signal; in general, my = 0, m, = 1 modes are
found to be very easily driven in these plasmas. The identification of these modes is
obtained from numerical predictions and by independent transmission experiments
using a mg = 0 drive. The associated modes with higher radial mode number, such
as (0,2,2) and (0,1,2), are more difficult to excite and are only observed here when a
strong my = 0 drive is applied to the plasma. In Figure 3.1(a), the (0,1,1) and (0,2,1)
modes are off the horizontal scale, occurring at about 5 and 10 MHz, respectively.

We find that the measured frequencies of myg = 0 and my = 1 modes are in
reasonable agreement (typically within about 10%) with numerical solutions based on
drift-kinetic theory (Equation B.3 of Appendix B). For my = 2 modes, the agreement
between observed and numerically calculated frequencies is not as good (typically
within 30%). The analytical solution of the mode dispersion relation for a top-hat

density profile and small wavenumber £, (Equation B.5) provides a good prediction
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of the mg = 0 modes (typically within 10%), but is not as reliable for predicting the
mg = 1 or 2 modes (often incorrect by 50% or more).

Equation B.5 predicts a scaling for the mode angular frequency w of:

w — mowg ~ + w,Ryk. | (3.1)

Jmegm.,
where 7,,,m, 1s the m,th zero of the mgth Bessel function, and we have ignored the
weak temperature dependence of these modes. Since w, R, k. N;‘/Q L;, we expect
the Doppler-shifted mode frequencies to be inversely proportional to plasma length
for fixed line density Ny,.

The scaling of Equation 3.1 is verified experimentally: in Figure 3.2, we plot
the mode frequencies f = w/27 observed in transmission experiments as a function of
the square root of the line density divided by the plasma length, N;I/Q L;. The drive
amplitude in these experiments is small (A,, < 25 mV), so the temperature remains
low (7'~ 0.1 eV). The symbols correspond to the measured mode frequencies. In
Figure 3.2(a), electron plasmas with lengths 1., ~ 17.5, 23.4, 35.0, and 40.9 cm were
used; the corresponding line-charge density was nearly constant: N ~ 10.0, 9.0,
8.3, and 7.6 x 107 cm~'. The E x B rotation frequency, fr ~ 150 kHz, was small for
the experiments of Figure 3.2(a). The lines through the data are numerical solutions
of Equation B.3; dashed lines represent even m, modes, while solid lines represent
odd m, modes. It can be seen that the observed modes are well-described by the
numerical solutions. Also, it is apparent that the approximation w—mywg o N;‘/Q L;
is reasonable for these plasmas.

Figure 3.2(b) shows that Equation 3.1 also holds for Mgt plasmas. Here,
ion plasma lengths of 1, ~ 84, 12,5, and 17.6 ¢cm were used. The corresponding
line-charge density values were Ny, ~ 3.4, 2.2, and 1.4 x 107" cm™', respectively. As

for the electron plasmas of Figure 3.2(a), it can be seen that the ohserved modes are

well-described by the numerical solutions and that the approximation w — mywg
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Figure 3.2: Observed mode frequencies f of msy = +1 modes as a function of plasma

length L.
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N;I/Q L; is reasonable for these plasmas. For the ion plasmas, the E x B rotation
frequency fr ~ 14 kHz is not negligible compared to the mode frequencies; this can
be seen from the fg offset of the predicted my = +1 modes at &k, = 0.

A slight upward shift in the mode frequencies is to be expected as the plasma
temperature increases (from the (v/v4)?* oc T term of the analytical solution, Equa-
tion B.5); this shift is expected to be more pronounced for modes with larger axial
phase velocity vy = (w—mygwg)/k,. Thisis found to be true in practice: the observed
mode frequencies are seen to shift upward with increasing 7T'. This shift is larger for
modes with smaller phase velocities; myg = 0 modes, for example, which tend to have
a larger phase velocity, are observed to shift only slightly with increasing tempera-
ture, while my = 1, m, = 2 modes, for example, which tend to have a lower phase
velocity, are observed to shift more with increasing temperature.

Figure 3.3 shows the observed frequencies f of three my = 1 modes as a
function of plasma temperature 7'. Aside from the temperature, the parameters are
the same as for the plasma used in Figure 3.1(a). Plasma heating was obtained hy
applying a sine wave signal on ring R10 at 0.8 MHz (far off my = 0 resonance) at an
amplitude of up to A,, = 1 V: this gave plasma temperatures ranging between 0.1
and 1.5 eV. This heating could result from weak excitation of my = 0 modes; similar
temperatures can he obtained by using a lower amplitude my = 0 drive on-resonance
(by driving the (0,1,1) mode at f ~ 5 MHz, for example), but the higher-amplitude,
off-resonance my = 0 heating was found to be more stable in practice. Presumably,
heating might also be occuring as a result of single-particle effects, such as adiabatic,
resonant particle, or stochiastic heating [10, 11].

In Figure 3.3, it can be seen that the my = 1 modes shift upwards slightly as
the plasma temperature is increased. As predicted by the analytical solution, this

shift is stronger for modes with lower phase velocity (m, = 2). The lines in Figure 3.3
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Figure 3.3: Dependence of my = 1 electron plasma mode frequencies on plasma
temperature T'.

are the numerical predictions of Equation B.3: it can be seen that the observed

temperature variation is captured reasonably well by the numerical solution.

3.3 Measurements of Torque from Driven Plasma

Modes

Since the plasma angular momentum is proportional to (r?) (Equation 2.1),
we can measure the torque on a plasma by measuring the rate of change of the mean-
square radius, i.e. <‘r.7>. For a plasma which evolves self-similarly, measurement of
the rate of change of the central density nq is sufficient, since, in this case, ng/ng =
—<r.2>/<r2>. In practice, we typically observe ng/ng = —<‘r.7>/<r2> to be satisfied

within a factor 3, so measuring the rate of change of central density can be expected
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to give a qualitative measure of the torque on the plasma.

Figure 3.4 shows examples of radial density profiles n(r) resulting from mode-
driven plasma expansion and compression. For each profile, the symbols indicate
actual data; the lines are smooth fits to the data. In Figure 3.4(a), profile B shows
a typical electron plasma (I, ~ 35 cm and Ny,; ~ 2.7 x 10%) measured 5 seconds
after injection. Profile A shows the same electron plasma after being expanded by
driving a backwards-rotating mode; and profile C shows the same electron plasma
after being compressed by a forwards-rotating mode.

In Figure 3.4(h), profile D shows an ion plasma (1, ~ 8 cm and Ny, ~ 2x10%)
held in steady-state equilibrium with a A, =1V, f;, = 15 kHz, my = 42 rotating
wall drive. Profile E shows the same plasma after being moderately compressed and
profile F shows the same plasma after being compressed by a factor of about 10 in
central density ng. The experimental conditions under which this data was measured
will be described in more detail later.

Figure 3.5 shows the normalized rate of change of central density, ng/nq.
measured on a typical electron plasma (profile B of Figure 3.4(a)) as a function of
drive frequency f,. The central density of the plasma is measured as a function of
time for a small amplitude (A,, = 25 mV), forwards-phased my = 1 rotating wall
drive turned on at ¢ = 5 seconds after inject. We obtain the initial compression rate
due to the rotating wall by calculating ng/nq at ¢ = 5 seconds. The entire process is
then repeated at a different f,. This small-amplitude drive creates very little heating,
so T'~ 0.1 eV. The measured background expansion rate of ng/ng = —3 x 107 s~"
of this plasma has been subtracted from the data, so the plot indicates compression
from the rotating wall alone.

The locations of the mode transmission peaks observed in this plasma are

shown as down arrows, while the numerically calculated values for the corresponding
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Figure 3.4: Measured radial density profiles for electron plasma (a) and ion plasma
(b) showing rotating wall compression and expansion.
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Figure 3.5: Measured central density compression rate, ng/ng, of an electron plasma
as a function of applied my = 1 perturbation frequency, f;, for a small applied signal,

Ay =25 mV.
modes are shown with up arrows. It is apparent that good quantitative agreement is
obtained between the predicted and observed mode frequencies for this plasma, and
that plasma compression is associated with each of these modes.

We find that significant plasma compression and long-term confinement is
only possible with larger-amplitude (A,, > 0.2 V) rotating wall drives. Figure 3.6(a)
shows the same experiment as Figure 3.5, but with a large (A, = 0.4 V) rotat-
ing wall drive. Figure 3.6(a) also includes data from reverse-phased (my = —1)
application of the rotating wall drive, which we have displayed here as negative val-
ues of f,. It is apparent that backwards-rotating modes cause enhanced expansion,
while forwards-rotating modes cause plasma compression; this is consistent with ba-

sic thermodynamic arguments [12]. It can also be seen that increasing the amplitude
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Figure 3.6: Measured central density compression rate ng/nqg of an electron plasma

as a function of applied my = 1 drive frequency f, for plasmas at three different
heating levels.



of the rotating wall drive has not only increased the magnitude of the torque on the
plasma, but has also resulted in frequency shifts and broadening of the mode peaks.
Corresponding broadening and shifts are observed in the transmission peaks at large
amplitudes; i.e. the small amplitude peaks of Figure 3.1, for example, are observed
to broaden and overlap at large A,,.

The correspondence between the observed torque peaks and the mode peaks
observed in the transmission experiments was verified by repeating the experiment
of Figure 3.6(a) with the plasma length changed from 35 to 17.5 em. The length
change moved the (1,1,2) transmission peak from 0.97 to 1.75 MHz; and the mea-
sured (1,1,2) torque peak followed, moving from 1.0 to 1.8 MHz. This shift is also
reasonably consistent with the numerical solution, which predicts a change from 1.04
to 1.98 MHz.

This larger-amplitude drive causes significant plasma heating. On the peak
of the (1,1,1) mode, for example, the rotating wall drive causes the plasma to heat
at a rate of about 4 eV /s to a maximum temperature of about 2 eV; while on the
peak of the (1,1,2) mode, the plasma heats at a rate of about 2 eV /s to a maximum
temperature of about 1 eV. Far away from the resonance peaks, that is, around
fs ~ 0, very little heating is observed, and 7' remains at about 0.1 eV. The upward
shift of the mode frequencies seen in Figure 3.6(a) is believed to result primarily from
this plasma heating; this is supported by numerical calculations and independent
transmission measurements such as shown in Figure 3.3. Also, further upward shifts
in the mode peaks can be observed if additional external heating is applied to the
plasma.

In Figure 3.6(h), the experiment shown in Figure 3.6(a) is repeated, but with
additional heating from an A,, = .12V, f, = 0.8 MHz, my = 0 drive on ring R10,

which heats the plasma to about 0.5 eV in the absence of the rotating wall drive.
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Figure 3.7: Measured central density compression rate, ng/ng, for electron plasma
as a function of applied my = 2 perturbation frequency, f.

The additional heating appears to cause further broadening of the modes. Also, the
(1,1,2) torque peak is seen to move up significantly in frequency; presumably the
(1,1,2) mode, because of its lower phase velocity, is more temperature sensitive than
the (1,1,1) mode. In Figure 3.6(c), the mgy = 0 heating drive amplitude is increased
to A, = .3 V, giving a minimum plasma temperature of 1.2 eV. Here, it can be seen
that the (1,1,2) mode peak has merged with the (1,1,1) peak, resulting in a single
broad compression peak.

Driven myg = 2 modes are also observed to torque on the plasma. The analog
of Figure 3.6(a), but using a my = 2 drive, is shown in Figure 3.7. As for my = 1, all
the modes observed in transmission also cause a measurable torque on the plasma.

Here, down arrows denote modes observed in transmission experiments, while up
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Figure 3.8: Measured central density compression rate, ng/ng, for Mg* plasma as
a function of applied my = 1 perturbation frequency, fs, with small applied signal,

Ap =25 mV.
arrows represent the numerical mode frequency predictions; the numerical prediction
tends to overestimate the observed my = 2 mode frequencies for this plasma. The
negative peaks in ng/ng for my = —2 (not shown) were not ohserved as clearly as
for my = —1, although a definite enhanced expansion rate was measured.
Comparison with Figure 3.6(a) shows that the torque due to the my = 2
modes is about half the magnitude of the torque due to my = 1 modes for the
same amplitude drive; presumably, this is a consequence of the r™ dependence of
the vacuum potentials. The heating rate resulting from driven my = 2 modes was

also about half as large as observed for a my = 1 drive of the same amplitude.
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As for electrons, azimuthally-dependent modes observed in ion plasma trans-
mission experiments are also observed to cause a torque on the plasma. This is
shown in Figure 3.8: here, a small amplitude (A, = 25 mV ) my = 41 rotating

wall drive is applied to a Mg® plasma with ng ~ 4.6 x 10"em ™2, I,

~ 12.2 ecm,
R, ~ 0.41 cm, and T' ~ 0.06 eV. We plot the measured compression rate ng/ng as
a function of applied frequency f,. The small measured background expansion rate,
no/no = 1.4 x 107%s7", is subtracted from the measured compression rate so that
the data represents the torque due to the rotating wall only. The my = 1 modes
observed in transmission experiments for this plasma are shown as down arrows.
It can be seen that, as for the electron plasmas, there is good agreement between
the observed transmission peaks and the observed plasma compression peaks. The
numerically calculated modes for this plasma are shown as up arrows. Here, the cal-
culated modes are observed to be somewhat lower than the measured modes. Only
very slight heating is observed due to this small-amplitude rotating perturbation:
the temperature of the plasma is observed to reach a maximum of about 0.08 eV
when driven on a resonance peak.

To obtain experimentally useful torques and long-term confinement of these
ion plasmas, larger rotating wall amplitudes (A, > 0.2 V) are necessary. Fig-
ure 3.9(a) shows an experiment similar to that of Figure 3.8, but using a large rotating
wall signal amplitude (A,, = 0.5 V) and a higher-density plasma (ng ~ 10%cm™?).
Here, we plot the measured total plasma compression —<rl2>/<r2> as a function of
applied rotating wall signal frequency f,. The arrows indicate calculated mode fre-
quencies for this plasma. The observed torque peaks are qualitatively consistent
with torque coupling through driven electrostatic modes, but the individual modes
are not well-resolved. Here, the higher axial wave numbers (m, > 4) are probably

not excited because the rotating wall ring S11 overlaps with about one-fourth of the
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Figure 3.9: Measured total compression rate,

—<‘r.7>/<‘r2>, as a function of my = 1
signal frequency f; with large applied signal (A,, = 0.5 V) for two Mgt plasmas
differing primarily in their temperature T.

length of the plasma.

Figure 3.9(b) shows compression data for an externally heated ion plasma
(T ~ 1.7 eV) with central density ng ~ 5.1 x 107 ecm~?. Again, the arrows indicate
calculated mode frequencies for this plasma. It can be seen that the calculated
mode locations are qualitatively consistent with the measured compression for this
plasma, although apparently an extreme broadening of the torque peaks has taken

place. Also, the magnitude of the torque obtained is about a factor of ten smaller

than in Figure 3.9(b).



Together with the drop in the magnitude of the torque, the upward shift of
the mode frequencies as the plasma is heated results in an increased “slip” between
the drive frequency and the rotation frequency of plasma held in equilibrium by
the rotating wall drive. For a given applied frequency f,, hotter plasmas will tend
to come to steady-state equilibrium, where the rotating wall torque balances the

background drag, at a lower rotation frequency fg, implying a larger slip frequency

A f defined by

Af=f/ms— fr. (3.2)

For the equilibrium plasmas used in Figure 3.9, for example, the slip frequency is
Af =9 kHz at T = .08 eV (Figure 3.9(a)) in contrast to a slip frequency Af =
32 kHz at T'= 1.7 eV (Figure 3.9(b)). This is qualitatively consistent with previous
measurements (Figure 3 of Reference [28]), which found that the equilibrium slip
frequency between an ion plasma and the rotating wall scaled approximately as the
square root of plasma temperature, i.e. Af oc T2,

As can be seen from Figures 3.5 through 3.9, these plasma modes provide
a large enhancement in the rotating wall torque. At the (mg,m.,m,) = (1,1,1)
mode, for example, when driven with a drive amplitude of A,, = 0.4 V, a central
density compression of ng/ng ~ 0.55s7" is observed for a typical electron plasma
(ng ~ 4 x 108cm™?), and ng/ng ~ .08s™ ' is observed for a typical ion plasma
(no ~ 4 x 107em™*). This is far larger in magnitude than the measured background
expansion rate resulting from inherent trap asymmetries acting on these plasmas:

(70/70) 4, = —3 x 1072571 for electrons and (n9/no),,, ~ —1.4 x 1077 57" for jons,

hkg
Far from the observed mode frequencies, the applied field does not create
an observable torque; the accuracy of this measurement is approximately ng/ng &

+107?s7", so we estimate an on-resonance improvement in plasma compression of

at least 500 for the electron plasma and at least 80 for the ion plasma.



We are only able to create a significant torque on long ion or electron plasma
columns when driving z-dependent (k. # 0), low frequency (w ~ w,) electrostatic
modes. We have not been able to measure a torque or achieve steady-state con-
finement in these plasmas with driven length-independent (£, = 0) modes. Also,
preliminary measurements show large heating (ion-cyclotron resonance heating) but
no torque as a result of driving high-frequency (w ~ €1..) electrostatic modes in a long
Mgt plasma. This is inconsistent with experiments on small, laser-cooled spheroidal
plasmas, which observe a large torque when driving £, = 0, high-frequency (w ~ ,)

electrostatic modes [41].

3.3.1 Density ramp using rotating wall

A ramped-frequency rotating wall drive can create a smooth increase of the
plasma density, as illustrated in Figure 3.10. Here, the squares show measured
central density and temperature of a typical electron plasma as a function of the
drive frequency f, for a slow ramp of a my = +1, A,, = 0.4 V rotating wall drive. f,
is ramped linearly from 0.5 to 2.13 MHz in 1000 seconds, starting from the injected
profile B of Figure 3.4(a). In the range 0.5 < f; < 0.7 MHz, there is no torque on the
plasma, and the plasma expands slowly. In the range 0.7 < f, < 1.4 MHz, the plasma
is being slowly compressed by the (1,1,2) mode. At each frequency, the plasma can
be thought of as being in an equilibrium state where the mode torque is balancing
the background drag on the plasma, i.e. (ng/ng),,, + (70/n0),,, = 0. At each of
these equilibrium points, the ramp in f; can be stopped and the plasma held in
steady-state confinement. The heating resulting from the increasing applied torque
causes the mode to shift upwards in frequency, as was demonstrated Figure 3.6, so
there is a relatively smooth transition to the region 1.4 < f; < 2 MHz, where the
plasma is being compressed by the both the (1,1,2) mode and the (1,1,1) mode.

For f; > 2 MHz, the rotating wall torque is not sufficiently strong to balance the
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Figure 3.10: Electron plasma compression using rotating wall frequency ramp.

background drag and the density rapidly decreases a factor of two until a different
equilibrium is reached; presumably the plasma is experiencing a torque from the
(1,2,2) mode at this point.

A similar electron plasma experiment but using a my = +2 drive is shown
by the circles in Figure 3.10. Here, the drive frequency ramp was begun from an
initially expanded plasma, corresponding to profile A of Figure 3.4(a); this was done
to illustrate a density compression of a factor of 20. This expanded plasma was
obtained from the injected profile B by applying a myg = —2 perturbation at 1 MHz
for 50 seconds. A mgyz = +2 drive was then ramped from 0.3 to 1.8 MHz in 415
seconds.

No compression is observed for the beginning of the frequency ramp (0.3 <

fs < 0.8 MHz), but compression occurs when the rotating wall ramp approaches
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Figure 3.11: Ton plasma compression using my = +2 rotating wall frequency ramp.

the frequency of the (2,1,2) mode (f; = 0.8 MHz). Profile C of Figure 3.4(a) was
measured after ramping to f, = 1.05 MHz. As in the my = 41 ramp, a fairly
smooth density compression is obtained. This smooth density compression despite
the distinct torque peaks observed in Figure 3.7 is a result of the torque peaks
widening, shifting upward, and merging together, as seen for the my = +1 drive in
Figure 3.6.

A ramp of ion plasma density is shown in Figure 3.11. Here, we plot central
density ng and temperature 7" measured during a slow upward frequency ramp of a
mg = +2 rotating wall perturbation. A short ion plasma was used here (1, ~ 8 cm).
The ramp begins with a typical ion plasma (profile D of Figure 3.4(b)) held with
applied frequency f; = 15 kHz. The frequency f; is then increased from 15 to 280 kHz

at a rate of about 20 seconds per kHz, and the rotating wall amplitude is increased



from A,, =1 to 2 to 3 V during the frequency ramp to maintain plasma compression.
The spikes in the temperature at lower f; are identified as resulting from mgy = 0
modes launched by small imbalances in the rotating wall drive. Profiles E and F of
Figure 3.4(b) are taken at f; = 100 and 200 kHz, respectively, of this ramp.

This ramp of f, is sufficiently slow that each point on the curve indicates
an equilibrium state where the rotating wall torque is balanced by the background
torque, so the ramp can be stopped and the plasma held in steady-state at any
point. This technique has been used to hold ion plasmas in a desired steady-state
equilibrium for periods of up to two weeks. Similar results to Figure 3.11 are obtained
using a my = +1 rotating wall on ion plasmas.

For both electron and ion plasmas, we find a maximum density ng to which a
given plasma can be compressed. This result seems to indicate that the rotating wall
torque increases more weakly with increasing density ng than does the background
drag. Measurements on electron plasmas are consistent with this model: we find
a rotating wall compression rate which decreases slightly as ng is increased; the
background expansion rate, however, is found to increase strongly with ng, scaling
as (no/nqg),, o ng. In the ion plasmas discussed here, however, no clear density
dependence was observed in mode-driven compression or in the background drag. It
is possible that the plasma heating associated with the rotating wall compression is
important in limiting the maximum compression of ion plasmas: measurements such
as Figure 3.9 indicate a decrease in mode-driven torque with increasing temperature
in ion plasmas, while no clear temperature dependence of the background drag is
found. Measurements of the background drag in these plasmas are presented in
Section 3.5. Normally, we attain central density compression of up to about 20%
of the Brillouin limit, ng, in ion plasmas; with the application of laser cooling,

ng ~ .25 ng was achieved.
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Figure 3.12: Peak density compression rate ng/ng and amplitude of signal received
in mode transmission A,.. as a function of drive amplitude A,, for electron plasma
(a) and ion plasma (b).

3.3.2 Mode torque scaling with drive amplitude

The mode-driven compression rate scales as the drive amplitude A,,, as op-
posed to the A% that might be expected from linear perturbation theory. This is
shown in Figure 3.12, where we plot the measured compression rate as a function of
drive amplitude when the rotating wall drive is applied on a mode peak. The scaling
of the rotating wall compression due to the (1,1,1) mode in a typical electron plasma
(profile B of Figure 3.4) is shown in Figure 3.12(a). Here, the solid diamonds indicate

measured compression ng/ng as a function of the applied mg = 1 drive amplitude



A,. The drive frequency f, is tuned to the peak of the mode, f; ~ 1.6 MHz. It
can be seen that the measured compression rate is approximately linear in applied
signal, i.e. ng/ng o« A,. For comparison, the amplitude of the signal received in
transmission experiments under the same experimental conditions is shown as hol-
low diamonds. The received signal is roughly proportional to the drive amplitude,
then saturates in the region of interest (A,, > 0.03V).

A similar amplitude dependence is found to occur in ion plasmas, as shown
in Figure 3.12(b). Here, we plot the measured compression rate at the peak of the
(1,3,1) mode as a function of the drive amplitude. It can be seen that the measured
compression rate (solid circles) is roughly linear in A,,; the received signal, however,
is linear in A,, at low drive amplitudes (A,, < 0.03 V), but constant at higher drive
amplitudes.

The results of Figure 3.12 suggest that at low drive amplitudes (A4,, < 0.02 V),
the mode compression would be linear, corresponding to a mode amplitude which
rises linearly with applied amplitude and a mode torque which is (presumably) pro-
portional to the applied amplitude squared (i.e. ng/ng oc A2). At higher drive

u

2 0.02 V), the mode becomes saturated, and the mode amplitude

N ~

amplitudes (A
no longer increases with drive amplitude; this results in a mode compression which
is linear with applied amplitude.

The mechanism for this mode saturation is not understood at present. It is
possible that the mode saturation occurs because the fractional perturbed density
is reaching order unity, i.e. |én/n| &~ 1. However, estimates of the mode amplitude
corresponding to maximum received signal, A,.. ~ 5 uV for the plasmas of Fig-
ure 3.12 give |6n/n| & 0.01 to 0.10; this calculation is complicated by the fact that
the mode shape at the end of the plasma is not well known. In ion plasmas, the

mode amplitude can also be estimated from the magnitude of the component of the



ILTF signal which oscillates coherently with the mode; these measurements give an
estimated fractional density perturbation |én/n| =~ 0.01. Thus, these preliminary
estimates indicate that the fractional perturbed density of the saturated modes is
much smaller than unity; i.e. [én/n| < 1.

Another possible explanation for the observed mode saturation is that the
mode has become nonlinearly Landau damped, resulting in a parallel distribution
function has become strongly perturbed in the region of the wave phase velocity.
Careful observation of the parallel distribution function of ion plasmas with the
LLTF diagnostic, however, has not revealed any measurable deviation from a parallel
Maxwellian for the range of plasma temperatures relevant to this paper. It is possible
that low density plasma at large radii, outside the bulk of the plasma and below the
noise level of the LIF diagnostic, plays an important role in the mode damping. Also,
finite-length effects might be significant in determining the mode damping in these

trapped plasmas.

3.4 Measurements of Plasma Mode Damping

In this section, we observe that the plasma mode damping in these plasmas
is not described by simple linear Landau damping. We present measurements of
the damping rate of the (mg, m,,m,) = (1,3,1) mode in a typical ion plasma (ng ~
3x107em™, [, ~ 12 em). The damping rate was obtained by driving the mode
on resonance with a mg = +1 drive for about 0.2 seconds; the received signal was
observed to increase then level off to a constant amplitude within 10 ms. The drive
was then turned off and the rate at which the received signal A,.. decreased was fit
to an exponential decay with rate v, i.e. A,..(t) = A,..(0)e "

In Figure 3.13, we plot the measured mode quality ) = w/2v as a function of

temperature T', where w ~ 27 (60kHz). In this experiment, the plasma temperature
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Figure 3.13: (1,3,1) mode damping vs. temperature.

Measured damping of (1,3,1) mode in Mg* plasma as a function of temperature.
was varied in two fashions: either by varying the amplitude of the mode drive A,,, or
by fixing A,, and applying varying levels of ion-cyclotron resonance heating (ICRH).
In the first method, the amplitude of the my = 1 drive was varied from A, = 1.4
to 335 mV to provide plasma temperatures ranging from 7' = 0.05 to 0.4 eV. In the
second method, the amplitude of the drive was fixed at A,, = 100 mV and a signal
at the ion cyclotron frequency €1, was applied to one sector on S11. The amplitude
of the cyclotron-frequency signal was varied from Ajory = 0 to 130 mV, giving
equilibrium temperatures ranging from .08 eV to 1.0 eV.

These measurements are relevant because predicting the torque resulting from
a driven mode requires an understanding of the mode damping rate. For comparison

to the data, the estimate of linear Landau damping (Equation B.6) for this mode



is plotted. It is apparent that the observed mode damping is not described by the
simple linear LLandau damping model. This disagreement is especially surprising for
T 2 0.4 eV, where Landan damping is predicted to hecome extremely strong for this
mode.

The results suggest that linear Landau damping theory cannot be applied to
these trapped particle distributions, where driven waves can cause arbitrarily large
variations in the particle distribution function. Preliminary damping experiments
done on the (1,1,1) and (1,1,2) modes in a typical electron plasma find a mode
guality @ ~ 2 x 10% to 6 x 10*, which is similar in magnitude to the values shown

here.

3.5 Measurements of Inherent Asymmetry Trans-
port in the IV Apparatus

In this section, we present measurements of the inherent asymmetry-induced
transport rate in the IV apparatus for electrons and ions. The plasmas discussed in
this thesis are typically observed to have an inherent background transport which
causes them to expand radially on a time scale of 7, ~ 100 to 1000 seconds, where
Tm 18 defined as the time required for the plasma central density to decrease by a
factor of two. This expansion is believed to occur as a result of small static magnetic
and electric field errors. These field errors break the azimuthal symmetry of the
confinement geometry, and can thus drag on the spinning plasma column, resulting
in spin-down and radial plasma expansion.

Extensive measurements of the inherent asymmetry transport rate have been
made for electron plasmas in other Penning-Malmberg traps. In general, these mea-
surements find that the plasmas expand radially at a rate 7,,' o (L,/B)* [16].

Thus, shorter plasmas with stronger magnetic fields are better confined than longer
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Figure 3.14: Measured free expansion of an ion cloud demonstrating radial trans-
port resulting from inherent trap asymmetries.

plasmas with weaker magnetic fields. A more general scaling consistent with many
measurements is 7" o R~? o nj L2/ B*T where R is the central plasma “rigidity”
R= fy(r = 0)/ fu(r = 0) [36].

A typical radial expansion measurement is shown in Figure 3.14. Here, an
ion plasma is initially held in the steady-state radial density profile labeled t = 0
with a f, =20 kHz, A, = 0.5 V, my = 41 rotating wall. At time ¢ = 0, the rotating
wall field is turned off, and the plasma begins to expand radially. The density and
temperature are measured every 5 seconds with the LIF diagnostic; here, we show
t =0 and t = 35 seconds.

The rate of change of central density of freely expanding electron plasmas was

measured at magnetic field B =4 T, temperature T' ~ (0.2 eV, and central densities
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Figure 3.15: Measured background expansion rate —ng/nq of electron plasmas as
a function of central density ng showing —ng/ng o n2 scaling.

j— . . . _ 71
ng ~ 10® to 10° em™. In Figure 3.15, the measured expansion rate —ng/ng = 7,,,

is plotted as a function of central density ng. The straight line is 7, = (5.7 x
107557 ") (n /107 em™*)?, which is seen to provide a good fit to the measured expansion
rate.

Background radial expansion measurements were performed on ion plasmas
at magnetic field B = 4 T, length L, ~ 12 e¢m, and background pressure Py ~
4 x 107 Torr. On average, we observe no clear temperature or density dependence
in the measured total expansion rate 7'(:;) = <‘r.2>/<‘r?>-

In Figure 3.16, the measured ion expansion rate T<;;) is displayed as a function

of temperature T for ion plasmas with central densities in the range 6 x 107 < n <
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Figure 3.16: Measured free expansion rate of <r.2>/<r2> of ion plasmas as a function
of temperature T', showing relatively weak temperature dependence.
1.4 x 108 ecm~?. The plasmas for this data have mean radii in the range 0.3 <
R, < 0.4 cm, except for the highest temperature point (7' = 3.9 eV), which has
R, ~ 0.9 cm. The temperature range covered by the data is 5 x 107% < T' < 4 eV,
despite this large (three orders of magnitude) variation in the temperature, only a
factor of ten variation is seen in the measured expansion rate; we thus conclude
that there is no strong temperature dependence to the expansion rate of ion plasmas
under these conditions.

In Figure 3.17, the measured expansion rate T<;;) is displayed as a function
of central density ng over a range 107 < n < 13.8 x 10" em 2. These plasmas have
mean radii in the range 0.3 < R, < 0.5 ecm and temperatures 0.1 < T < 1.9 eV. It

can be seen that the expansion rate does not display a significant trend in central
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Figure 3.17: Measured free expansion rate of <r.2>/<r2> of ion plasmas as a function
of central density ng, showing no clear density dependence.
density.

A summary of current data on the background expansion rate of plasmas
in these traps is shown in Figure 3.18. Here, we plot the measured background
expansion rate as a function of the plasma rigidity B. The expansion rate is scaled
by M'/? where M = m/m. is the particle-to-electron mass ratio; this scales out the
anticipated M'/? scaling for transport time scales in these plasmas [15].

The dashed line and solid line correspond to a fit to background expansion
data from two different Penning-Malmberg experiments, “V' 7 and “EV” [16]. The
ranges of the lines indicate the range of the data from the experiments; over this

range, the data is well-fit by the scaling 7' o« R~%. For the V' and EV data, the

variation in R was accomplished by varying magnetic field B and plasma length L,
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Figure 3.18: Measurements of free expansion rate 7' resulting from inherent trap

asymmetries as a function of plasma rigidity R.

so this data indicates a background expansion rate 7' o< (I,,/ B)?.

' measured on

The diamonds correspond to measured expansion rates 7.,
electron plasmas in a third Penning-Malmberg trap, “CV”. For the CV data, the
variation in R was accomplished by varying magnetic field B, temperature T', and
density ng. The data can be seen to be in rough agreement with a 7' oc B~2 scaling,
although there is some indication that this scaling is not obeyed for data with R < 1.

The stars in Figure 3.18 correspond to the IV machine electron data of Fig-
ure 3.15; here we plot the expansion rate 7,_} ~ 71 as a function of B. The squares
in Figure 3.18 correspond to Mg* ion data from the TV machine; here we plot the

—1 -1 1

scaled expansion rate /\//1/27'<T2) as a function of R, where M'/? = 210 and T2y ™ Ty -

For this data, the variation in R is achieved by varying the central density over the



range 107 < ng < 108 cm~? and the temperature over the range 107 < T' < 2 eV at
B=4Tand L, ~12 em.

For ions, we find no clear temperature or density scaling in the measured
T<;;); this contradicts the 7' oc R™? scaling indicated in the other experiments. A
possible reason for this discrepancy is the collisionality of the plasmas: the electron
experiments shown in Figure 3.18 tend to have electron-electron collision frequencies
which are low compared with the thermal bounce frequency, v../f, < 1; much of the

ion data, however, is in the opposite regime, i.e. v;/f, > 1.



Chapter 4

Measurement of Collisional Heat
Transport

4.1  Collisional Transport Background

Chapters 4 and 5 of this thesis discuss collisional transport measurements
in pure ion plasmas. Transport in plasmas can be broadly categorized as collisional
or turbulent. Collisional transport is driven by fluctuating fields from the thermal
motion of individual particles; whereas turbulent transport is driven by non-thermal
fluctuations such as unstable collective modes, and can therefore be much larger than
collisional transport. In neutral plasma experiments, transport is often turbulent in
nature because of the many instabilities which can lead to turbulence. Nonneutral
plasmas, on the other hand, are relatively stable, and can be confined in a quiescent,
near-thermal equilibrium state. This allows collisional transport to be observed
without being masked by turbulent transport.

In collisional transport, collisions can be categorized as binary (two-particle)
or wave-mediated collisions. In a binary collision, two particles interact directly
through their mutual electric field, resulting in an exchange of energy. In a plasma,
these direct binary collisions can occur over distances up to the Debye shielding
length Ap = 1/T/47ne?. In a wave-mediated collision, a particle’s thermal motion

excites a plasma wave (or phonon) which is absorbed by a particle at a different

66



67

location. This allows a transfer of energy and angular momentum over distances
up to the plasma dimensions, provided that the wave is not strongly damped. For
heat transport, for example, wave-mediated collisions are believed to be important,
in sufficiently large plasmas (with thermal gradient scale length Ly > 100 Ap) and
in strongly-correlated plasmas.

The nature of binary collisions between particles depends on the impact pa-
rameter p compared with the cyclotron radius r.. Classical transport theory analyzes
collisions with p < r., which cause a scattering between the perpendicular and par-
allel velocities of the particles. These “short-range” collisions, which occur in all
plasmas, cause thermalization of the parallel and perpendicular velocity distribu-
tions. They also cause a random cross-field step of the particle guiding centers by
a distance of order r., resulting in cross-field diffusion of particles, momentum, and
heat.

In a plasma with Ap > r., particles can also interact via “long-range” col-
lisions with impact parameters r. < p < Ap. In a long-range collision, a particle
traveling along one magnetic field line interacts with a particle on a different field
line separated by a distance p. These collisions can result in an exchange of parallel
velocities, which gives rise to a heat flux in the presence of a temperature gradient.
Also, the particles can E x B drift in each other’s electric fields; this produces neg-
ligible heat transport, but is important for particle transport (as will be discussed
in Chapter 5) and angular momentum transport [36]. These long-range collisions
have very little effect on the perpendicular velocities of the particles: the collisions
occur on a time scale which is long compared with the cyclotron orbit time, so the
cyclotron action .JJ; = mv? /B remains a good adiabatic invariant.

Figure 4.1 illustrates the fundamental differences between short-range and

long-range collisions. In the top half of the figure, showing a short-range collision,
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Figure 4.1: Illustration of short-range vs. long-range collisions.

a white particle, with small perpendicular temperature (small cyclotron radius),
collides with a shaded particle, with large perpendicular temperature (large cyclotron
radius). As a result of the 3-D velocity-scattering collision, the white particle gains
perpendicular or parallel energy and steps radially, as the dotted guiding-center line
indicates; the shaded particle loses the same energy and also steps radially.

In the lower half of the figure, showing a long-range collision, a white particle
with small parallel energy interacts with a distant shaded particle with large parallel
energy. As a result of the interaction, both particles drift across the field lines and
the white particle gains parallel energy at the expense of the shaded particle.

Both short-range and long-range collisions cause cross-field transport; the
dominant transport mechanisms for different plasma regimes are summarized in Ta-
ble 4.1. Here, we display the test particle diffusion coefficient D, the thermal diffu-

sivity v, the kinematic viscosity n/nm, and appropriate references. For plasmas with
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Table 4.1: Transport coefficients for collisional cross-magnetic-field transport.

Ap K 1., no long-range collisions can occur, and collisional transport occurs as a
result of short-range collisions only: the predicted transport coefficients are displayed
in row 1 of Table 4.1. For plasmas with Ap > r., both long-range and short-range
collisions can occur; and in general long-range collisions dominate the transport, with
the transport coefficients displayed in row 2. In plasmas where the axial bounce fre-
quency is large compared with the rotation frequency, i.e. f, > fg, the long-range
collisional transport becomes essentially 2-1) in nature; and the resulting transport
coefficients are shown in the last row. The term d,.. of Table 4.1 is the maximum
distance over which the charge rods can remain in rotational resonance; this is set

by the level of rotational shear in the plasma [21].

4.1.1 Anisotropic Temperature Relaxation

In Section 4.2, we provide measurements of the classical ion-ion collision
frequency in Mgt plasmas. Often, the rate at which these collisions occur is char-

acterized by the ion-ion “momentum transfer” collision rate v; (v.. for electrons)
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The numerical form given in the second line of Equation 4.1 is appropriate for 2*Mg*

ions. We have used the value of v;; calculated for a neutral plasma in a magnetic field
[33] but with the Coulomb logarithm In(r./b) appropriate for the ordering Ap > r.
[44]; for neutral plasmas with Ap < r., the standard Coulomb logarithm In(A;/b)
would be used. Also, we have taken the limit of small anisotropy, 7)) ~ T, and have
neglected the lower impact parameter multiplier in the Coulomb logarithm (that is,
we assume In(Ar./b) ~ In(r./b), where we typically have r./b ~ 10° and numerical
estimates give A ~ 2.1 [25]).

As can be seen from the first row of Table 4.1, classical short-range collisions

2
e

result in transport coefficients which are proportional to v; r7. In the plasmas studied
here, the resulting classical transport is small compared with the transport resulting
from long-range collisions (second row of Table 4.1); this will he verified in the
present chapter for heat transport and in Chapter 5 for test particle transport. The
measurements of the ion-ion collision frequency v;; presented in Section 4.2 thus
represent our best test of classical transport in these plasmas; the cross-field transport
measurements of Section 4.2 and Chapter 5 essentially provide tests of the second
row of Table 4.1.

To measure the short-range velocity-scattering collision rate v;;, we measure
the rate at which the temperature parallel to the magnetic field 7}, becomes equili-
brated with the temperature perpendicular to the magnetic field 7';. This anisotropic
temperature relaxation rate is also referred to as the “equipartition rate”. In non-

neutral plasmas at sufficiently low neutral gas pressures, the equipartition rate is

dominated by short-range collisions. Because they act on a time scale which is long
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compared with the cyclotron motion, long-range collisions with impact parameters
r. < p < Ap are not expected to contribute to these measurements. Thus, the
equipartition rate provides a measurement of the short-range ion-ion collision rate
v;; in these systems.

The equipartition rate has been measured previously in pure electron plasmas
over a wide range of temperatures, densities, and magnetic fields [6, 5, 31, 30]. Good
agreement was found between the observed rate and the rate predicted for short-
range electron-electron collisions [44, 33].

The equipartition experiments are performed by heating 7}, alone and mea-
suring the relaxation back to 7)) = 7. To do this, a my = 0 signal is applied to
one end of the plasma. As described in Section 2.5.3 and in Chapter 3, this “wiggle
heating” deposits energy primarily into the parallel degree of freedom. This parallel
heating is balanced by cooling from ion-neutral collisions, which act on both the
parallel and perpendicular degrees of freedom. As a result, plasmas heated in this
manner come to a equilibrium state in which the parallel temperature is larger than
the perpendicular temperature. The rate at which the temperatures are observed to
relax to a common value upon removing the wiggle heating gives the equipartition
rate. The measured relaxation rate is found to agree well with the rate predicted for

classical, short-range ion-ion collisions, v;;.

4.1.2 Collisional Cross-Magnetic-Field Heat Transport

The study of heat transport in plasmas is an area of research relevant to a
wide variety of fields. For example, heat transport can be important in modeling
the formation and dynamics of astrophysical ohjects, such as galactic clusters [50] or
neutron stars [32]. In plasma processing, understanding of heat and particle trans-
port is important in the design of plasma sources which are effective in etching small

features on chips [60]. Heat and particle transport play a crucial role in magnetic
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fusion plasmas [61], where it is desirable to have good thermal confinement to gen-
erate fusion power, yet have imperfect particle confinement so that helium ash can
be removed from the plasma.

Here, we present measurements of collisional heat transport in pure ion plas-
mas. As discussed in the previous sections, collisions in these plasmas can be grouped
into classical short-range collisions and long-range collisions. Classical collisions are
velocity-scattering collisions with impact parameter p < r.. In the presence of a

temperature gradient, short-range collisions result in a classical cross-field heat flux
Iy =—(5/2)nx. VT, (4.2)
where y. is the classical thermal diffusivity of Table 4.1:

Xe = Vil (4.3)

TN "B\ n
- e () () (e
(25510 em’s ) {7y 17/ \107em2

Lo [ (5) 1)

We will show in Section 4.3 that a larger heat transport can result from long-

X

range collisions. In plasmas with Ap > r., for sufficiently gradual thermal gradient

length scales (i.e. Ly > Ap), we expect a diffusive heat flux due to these collisions of
Uor=—(5/2)nx. VT . (4.4)

The thermal diffusivity resulting from long-range collisions, x7, can be es-
timated as follows: particles on separate field lines can exchange energy up to a
distance Ap, so we take a step size for the diffusion process of Ar ~ Ap. Interacting
particles with very different velocities will not exchange energy: a very fast particle
on field line 1 passing by a stationary particle on field line 2 at Ar ~ Ap will push the
particle forward as it approaches, then push the particle backward as recedes, result-

ing in no net transfer of energy. Of course, this does not apply for head-on collisions,
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but since Ap > b, head-on collisions can be neglected here. Significant exchange of
energy will occur if the relative kinetic energy of the particles is comparable to the
mutual electrostatic energy, i.e. mA(v?) ~ e*/Ap, so we expect the transport to be
dominated by particles with Av ~ e?/(mvAp) = v (b/Ap). The number of particles
satisfying this velocity difference are: An ~ n(Av/v) ~ n(b/Ap). The estimated
thermal diffusivity is then: x7, ~ (AnAvA}) A}, ~ (nvb?) A}, A more detailed calcu-
lation of the long-range thermal diffusivity gives the thermal diffusivity of Table 4.1

[20]:

xr, = 0.49 <m)1)2) )\% (4.5)

T —-1/2
1.1 x 10 em?s™! < ) .
( X cm’s ) TV

Q

Thus, we expect to observe a total cross-field heat flux I', given hy:
5
T, = —571(X7,VT|| +x.VTY+Tnp (4.6)

where V = d/0r. We have separately identified 7}, to emphasize the unusnal nature
of xr,, but for the data presented here we can approximate T, ~ T), ~ T to adequate
accuracy. The term I'yp represents a possible heat flux due to non-diffusive effects
such as waves or convection. In general, we observe no consistent signature of these
effects, so we take I'yp = 0.

Comparing Equations 4.3 and 4.5 suggests that the collisional heat transport

> Tr.. Nonneutral

~

will be dominated by long-range collisions in plasmas with Ap
plasmas are commonly in this regime due to the Brillouin density limit [8, 14] and
electrons in some neutral plasmas are in this regime,i.e. Ap 2 7r...

Here, heat transport measurements are made on plasmas consisting of un-
correlated Mg™ ions with temperatures 5 x 107 < T' < 0.5 eV, densities 2 x 107 <
n < 108 em 2, and magnetic fields 1 < B < 4 T. The thermal gradient length scales

for these measurements are in the range A\p < Ly < 100Ap. These parameters
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correspond to the regime in which the heat transport is predicted to be diffusive and
dominated by long-range collisions, i.e. we expect xy ~ x5, > x. and I'yp = 0; for
Ly > 100 Ap, wave (non-diffusive) transport is predicted to become important [20],
but this has not been observed here.

These measurements are complicated by the presence of small heat sources,
which can change the plasma temperature at a given radius even in the abhsence of
radial heat flow. In these experiments, the dominant sources of heat are believed to
be Joule heating, rotating wall heating, and collisions with neutral molecules. Joule
heating results from plasma expansion, in which electrostatic energy is converted
into kinetic energy. As discussed in Chapter 3, the radial expansion of plasmas con-
fined in these traps is believed to be dominated by trap asymmetries which drag
on the plasma. This radial expansion can be counteracted by applying a rotating
wall field to the plasma; in this case Joule heating from the plasma expansion is
replaced by (generally slightly stronger) heating from the rotating wall drive. Col-
lisions with background (Hjy) neutral molecules will tend to bring the plasma into
thermal equilibrium with the room-temperature walls, so we expect plasma heating
for temperatures 7' < 0.03 eV and plasma cooling for 7" 2 0.03 eV.

We represent these small heat sources by a term ¢.,.; added to the conservation

of energy equation:

d = -V rq + demt ) (47)

where the kinetic energy density ¢ is:

3
q= 577,T . (4.8)

In the heat transport experiments presented here, the particle density n is essentially
constant with time, so ¢ = d/dt(3nT) ~ 3n dT/dt.
Two different methods of measuring and analyzing the heat transport are

presented here, which we will designate as “large temperature gradient method” and



“small temperature gradient method”. The fundamental difference between the two
methods is the way in which the external heating correction ¢.,; is removed from
the measured ¢. In both methods, a plasma is initially prevented from expanding
by applying a rotating wall field. Both the large temperature gradient and small
temperature gradient methods give a radial heat flux which is diffusive in nature
and dominated by long-range collisions; that is, we measure a thermal diffusivity
Y = xr, and a non-diffusive contribution I'np ~ 0.

For the large temperature gradient method, the plasma is initially cooled
or heated by a strong, narrow manipulating beam passed along the central axis
(r = 0) of the plasma. In general, this creates a large radial temperature gradient in
the plasma; for some initial conditions, the central plasma temperature is less than
1072 eV, while the edges of the plasma are at about 0.05 eV (corresponding to a radial
temperature variation of more than a factor 50 across the plasma). At timet = 0, the
manipulating beam and rotating wall are switched off; the plasma is then observed
to evolve toward a flat radial temperature profile. This temperature evolution occurs
dominantly as a result of radial heat flux driven by the large temperature gradient.
The heat sources are a small contribution to the temperature evolution; these terms
are obtained from independent measurements and subtracted from the data to obtain
the heat flux.

For the small temperature gradient method, the plasma is uniformly heated
or cooled by a strong, wide manipulating beam passed at an angle through the
plasma. This wide manipulating beam continuously illuminates a large area of the
ion cloud and is used to create an initial equilibrium state characterized by a flat
radial temperature profile. To create a temperature gradient in the plasma, a weaker,
narrow manipulating beam is then passed along the central axis (r = 0) of the plasma.

This results in a second equilibrium state characterized by a small temperature
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gradient (typically a factor of 2 or less variation in temperature across the plasma).
At time t = 0, the narrow manipulating beam is switched off; the plasma is then
observed to evolve from the second (small temperature gradient) equilibrium to the
first (no temperature gradient) equilibrium. Here, the background heating terms
are estimated by linearizing about the first equilibrium state, where it is know that
the external heating terms sum to zero at each radius. Conservation of energy is
then used to calculated the magnitude of the external terms from the measurements.
The background heating terms are assumed to depend only weakly on radius, but
otherwise no knowledge of these terms is presumed.

In the final section of this chapter, measurements of the background heat
sources resulting from Joule heating and neutral collisions are presented. The mea-
surements are found to be in reasonable agreement with a simple model of Joule
heating based on an empirical fit to observed plasma expansion rates plus neutral
heating based on the known polarizability of Hy molecules. These results are used to
estimate the small corrections used in the large temperature gradient heat transport

measurements.

4.2 Equipartition Rate Measurements

A typical initial condition used for measuring the equipartition rate is shown
in Figure 4.2. Here, a magnesium ion plasma of length L, ~ 12 ¢m is trapped in
the region S11—R13 in a magnetic field B =4 T. Radial expansion is counteracted
by a mg = +1, f, = 10 kHz, A,, = 1 V rotating wall field applied using ring
S11. The plasma is heated by applying a my = 0, f, = 15 kHz, A,, = 1 V signal
on ring R13. This “wiggle heating” heats the parallel degree of freedom, resulting
in an initial condition with parallel temperature 7)) ~ 1.6 eV and perpendicular

temperature T ~ 1.1 eV. Both parallel and perpendicular degrees of freedom are
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Figure 4.2: Radial profile with wiggle heating showing anisotropy 7}, > T, between
parallel and perpendicular temperatures.

cooled through collisions with the room-temperature background neutrals. Aside
from chemical reactions which occur on a very slow (~ 1 day) time scale, the plasma
is in steady-state equilibrium. The radial temperature gradients in the plasma are
gradual, so we expect radial heat transport to be small here.

The parallel and perpendicular temperatures at each radial position are ex-

pected to evolve as:

2
dly/dt = —gvio(Ty = To) = vin(T) = Tw) + vwig T
1
(]TL/(H = *gl/LQ(TL - TH) - ViN(TL - TN> . (49)

Here, we neglect radial heat flow and the small heating terms resulting from the
rotating wall field and/or the plasma expansion. The term vy Tj in Equation 4.9

represents the wiggle heating of the parallel degree of freedom; the precise form of this
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term is not important here. v;n is the ion-neutral collision frequency, Ty = 0.026 eV
is the temperature of the neutral atoms, and v, is the equipartition rate resulting
from short-range ion-ion collisions. This equipartition rate can also be characterized
by vy, where viq = 1.5v; = 3vy,.

The collisional equipartition rate v is measured by turning off the wiggle
heating and rotating wall at time f = 0 and measuring the resulting time evolution
of Ty and T). All the temperature evolution measurements discussed here are taken
at the center of the plasma, r = 0.

For times ¢ > 0 the wiggle heating is turned off, so vwiz = 0. Equation 4.9
then gives:

AT(t) = AT(0)e w27 (4.10)

where AT(t) = Ty(t) — T'.(t) is the temperature anisotropy and v., = vig + vin is
the total equipartition rate. In the initial (# < 0) steady-state condition, we have

d/dt =0, so v;n is known from Equation 4.8:

AT(0)
3(T.(0) — Tw)

(4.11)

ViN = Vo

The equipartition rate v o can thus he obtained from the total (measured) equipar-
tition rate v.,, the known neutral temperature Ty, and the known initial plasma

temperature T'(t = 0):
(TL(0) = Tn)
(7(0) = Tw)

Here, we have approximated v g and v;ny as being constant over the range of tem-

(4.12)

Vig = Veg

peratures covered in the experiment.
Figure 4.3 shows the measured central (r = 0) temperature relaxation of the
initial condition shown in Figure 4.2. The measured time evolution of the tempera-

tures 7j,(1) and T'L(t) is plotted, as well as the difference, AT(t). Tt can be seen that

the temperatures are constant for the initial condition ¢+ < 0. After the rotating wall
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Figure 4.3: Relaxation of the initial temperature anisotropy measured at r = 0.

and wiggle heating are turned off (at ¢ = 0), the temperatures are seen to equilibrate
within about 2 seconds as a result of ion-ion collisions. A slow cooling of the plasma
toward T' ~ Ty ~ 0.026 eV as a result of ion-neutral collisions then dominates the
temperature evolution. The solid curve is a fit to AT'(#) of the form given in Equa-
tion 4.10 using the adjustable parameter v, = 1.295™ ' and the measured quantity
AT(t = 0) = 0.51 eV. It can be seen that the measured temperature evolution is
well-described by the expected exponential relaxation of Equation 4.10. The colli-
sional equipartition rate is then obtained from Equation 4.12, giving v ~ 1.1s7"
at an average temperature 7'~ 1.3 eV and a density n ~ 7.0 x 10 cm™7.

The equipartition rate was measured for initial conditions with average tem-

peratures 0.6 < 7' < 2.0 eV, densities 5 x 10 < n < 5 x 107 cm~?, and magnetic field

B =4 T. The value of v, obtained from the measurements is plotted in Figure 4.4
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Figure 4.4: Measured collisional relaxation rate v o as a function of scaled density
n7 and temperature 7.

as a function of ‘77,77”3/2]11(7“0/6), where n; = n/107 cm ™ and T is in eV.

The expected value for the equipartition rate resulting from ion-ion collisions
s Vg = %1/7;7;, where v;; is the short-range (momentum-transfer) collision rate of
Equation 4.1. The solid line in Figure 4.4 corresponds to the prediction of Equa-
tion 4.1. It can be seen that the observed temperature relaxation rate is well-fit by
the classical prediction. Based on these measurements, we believe that the classical
description of short-range ion-ion collisions at rate v;; is correct for the ion plasmas

discussed here. These short-range collisions are expected to give classical cross-field

transport coefficients described by the first row of Table 4.1.
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Figure 4.5: Measured thermal diffusion starting with large temperature gradient
created by local cooling at r = 0. Data points at £ = 0, 0.1, and 1 are smoothed
radially; data at f = oo is unsmoothed and shows the characteristic level of scatter
in the data.

4.3 Measurements of Cross-Magnetic-Field Heat
Transport

4.3.1 Large Temperature Gradient Method

“lLarge temperature gradient” heat transport experiments are performed by
locally heating or cooling along the r = 0 axis of the plasma with a strong (= 1 mW),
narrow manipulating beam, thus creating an initial condition with a strong radial
temperature gradient. The manipulating beam is then blocked with the shutter, and
the resulting rapid time evolution of the plasma temperatures T (r,t) and T(r,t)

is measured using a weak (= 10uW) probe heam. For the data discussed here,

71 BTH ~T.
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A typical heat flux experiment is shown in Figure 4.5. Here, a length L, ~
12 em plasma in a vacuum of Py ~ 4 x 1077 Torr is initially held in steady-state
at n.~ 5 x 107" cm™? through application of a f, = 20 kHz, A,, = 0.5 V., ms = +1
rotating wall field. The plasma is cooled at r = 0 to an initial steady-state central
temperature of T'(r = 0,t = 0) ~ 3 x 10°? eV. At # = 0, the manipulating beam
and the rotating wall field are turned off and the plasma temperature is observed
to flatten and move toward the normal (unperturbed) equilibrium temperature of
T ~0.05 eV.

The temperature evolution seen in Figure 4.5 is measured using a single weak
probe beam. The time evolution of the temperature can only be measured one radius
at a time; repeating the heat flux experiment is thus necessary to reconstruct 7'(r, 1),
the time evolution of the entire radial temperature profile. The initial (1 < 0) steady-
state density and temperature profiles and the subsequent time evolution of the
temperature T'(r, t) are measured using the LIF technique described in section 2.4.1.
For clarity, only times ¢+ = 0, 0.1, 1 second, and the final equilibrium state t — oc
are shown; actually, the temperature evolution is measured with 100 time steps over
0 < t < 4 sec for each radial position. The # — oo data is measured separately when
the plasma has reached steady-state (¢ 2 50s). The data points plotted at ¢t =0, 0.1,
and 1 correspond to smoothed curves with forced radial symmetry: the points on the
t — oo curve are actual data and show the level of scatter in T' characteristic to this
measurement. The manipulating beam is chopped for these experiments (typically
at 50 Hz) and the scattered photons from the probe heam are counted synchronously
with the chopper to avoid counting photons from the manipulating beam.

The temperature evolution of Figure 4.5 results from radial heat flux plus

small external heating terms. The radial heat flux I, is obtained from the measured
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Figure 4.6: Measured normalized radial heat flux vs. temperature gradient for
experiment shown in Figure 4.5, demonstrating diffusive heat transport. Error bars
are characteristic for all data points.

change in local temperature T(r,t) by integrating Equation 4.7:

1 7
T, (r 1) = f—/ e [i(r 1) — Gent(r',1)] (4.13)
r.Jo
where ¢ = %nT and the weak external heating or cooling term ¢.,; is known from

measurements described in Section 4.3. An improved estimate of ¢.,; is obtained for
each time step by normalizing ¢.,; to maintain energy conservation in the evolution:
that is, we require fOR“’ rdrq = fOR““ rdrq..;. Typically, we find a normalization factor
between 1 and 3, consistent with the factor-of-two uncertainty in the model. For the
heat transport data presented here, the correction to I', due to the external heating

terms is small, since ¢../¢ ~ 0.1 in the regions with a large temperature gradient.
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In Figure 4.6, we plot the measured radial heat flux ', as a function of the
temperature gradient VT obtained from the data of Figure 4.5. We plot the heat
flux measured at radii r = 0.1, 0.15, and 0.2 ecm, and at times ¢t = 0.1 to 1.9 sec;
these radii were chosen here because they have a strong gradient and strong signal,
i.€. G >> Gept- 1t can be seen that the gradients and fluxes are largest at early times,
and decrease as the temperature profile relaxes toward equilibrium. Classical theory
predicts a heat flux

I', . xny. VT 2T 2vT (4.14)
while long-range theory predicts
Iy oxnyr, VT nT~VYT (4.15)

Here, we anticipate that long-range collisions will dominate, so we divide the dis-
played T', by nT~'/2 to better illustrate the proportionality of flux with V7. Typi-
cally, the density n does not vary significantly over the region of valid data and the
temperature T varies by about a factor 2, so this normalization does not significantly
effect the results shown here. The dashed line shown in Figure 4.6 is an unconstrained
(arbitrary offset, error-weighted) linear fit to the data. The small non-zero intercept
could represent a non-diffusive flux; but here it seems to be insignificant, arising from
uncertainties in the data or imperfect corrections ¢.,+; thus, Figure 4.6 demonstrates
diffusive heat transport.

We calculate the local thermal diffusivity y for each data point of Figure 4.6

using

2
x(n, B, T) = ——

()n

(T,/vT) . (4.16)
Values of x(n, B, T") were ohtained for different equilibrium plasmas covering a range
of 50 in density, 10? in temperature, and 4 in magnetic field.

In Figure 4.7, we plot the measured y as a function of temperature T'. Here,

to reduce the number of data points displayed, we plot a single average y of each evo-
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Figure 4.7: Measured cross-magnetic-field thermal diffusivity y plotted as a func-
tion of temperature T for large temperature gradient data. Hollow points label theory
curves; each solid point corresponds to the average measured y from an experiment
such as Figure 4.5.

lution such as Figure 4.6; that is, we plot y ~ %(qu”?/n,VT){T)*”? as a function
of T' ~ (T') where the brackets () represent an error-weighted average over the data
points of the evolution. This averaging, which is introduced to reduce the number
of data points displayed, is of little consequence since the ranges of n, T, and x in
a single evolution are small. The dashed curves in Figure 4.7 show the predicted
classical thermal diffusivities y,. for the 5 densities and magnetic fields used. The
solid line shows the predicted long-range thermal diffusivity yy,, which depends only
on temperature.

The measured thermal diffusivities are up to 100 times larger than the clas-
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sical prediction, and are independent of B and n. The T1/? scaling is ohserved over
3 decades in T', and extends into the low-temperature regime where r. &= b. A fit
to Figure 4.7 with y oc 772 gives y = [(1.924+ 1) x 1072 em?s '] (T/1eV)~/2 =
(0.84 4+ .5) vA}, . We therefore measure a thermal diffusivity x ~ 1.7y, which we
take to be a reasonable agreement with the expected value x = x. + xr, ~ xr,, given

the scatter in the data of Figure 4.7.

4.3.2 Small Temperature Gradient Method

In this section, cross-field heat transport results are presented for plasmas
which have been perturbed with two manipulating beams: a strong (= 1 mW)
wide, angled beam is used to uniformly heat or cool the entire plasma, and a strong
(= 1 mW) narrow, aligned beam is used to create a small additional localized tem-
perature perturbation along the central axis of the plasma. The narrow cooling
beam is then blocked with a shutter, and the subsequent temperature evolution is
measured using a weak (= 10 W) probe beam. The rotating wall is left on dur-
ing this process, so these experiments can be thought of as perturbations about a
known equilibrium. The measurement method used is the same as described in the
previous section; that is, standard frequency-scan LIF is used to obtain the density
and temperature profiles of the equilibrium states, while the peaks of the velocity
distribution functions are probed to obtain the rapid temperature evolutions.

A typical small temperature gradient heat transport experiment is shown in
Figure 4.8. Here, the ion plasma is prevented from expanding radially by applying
a f, = 10 kHz, A, = 1 V, my = +1 rotating wall field. The plasma is cooled
uniformly to a temperature 7'~ 7 x 107* eV with a wide manipulating heam which
passes through the spinning ion cloud at an angle; the resulting equilibrium state is
shown by the temperature curve t = oc. Initially, additional cooling is provided at

r = 0 by applying a narrow manipulating beam which passes along the axis of the
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Figure 4.8: Measured thermal diffusion in a globally cooled plasma starting with a
small temperature gradient created by additional local cooling at » = 0. Data points
at t = 0 and 0.02 are smoothed radially; data at # = oo is unsmoothed and shows
the characteristic level of scatter in the data.

plasma; this results in a central temperature of 7' ~ 4 x 10™* eV, as seen on the
curve labeled ¢ = 0.

At time t = 0, the narrow manipulating beam is turned off and the plasma
temperature relaxes toward the ¢ = oo equilibrium state. Here, for clarity, we show
only the time steps ¢t = 0 and 0.02 seconds of this temperature evolution in Fig-
ure 4.8(b). The data points marked on the t = 0 and ¢ = 0.02 line are smoothed,
interpolated values with forced radial symmetry. The points on the { = oo curve are
actual data and are displayed to show the level of scatter in the data.

The radial heat flux T', for this experiment is obtained from the measured
temperature evolution T'(r, t) using Equation 4.13, as was done for the large temper-

ature gradient experiments. Here, however, we will not assume the external source
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term ¢..; to be known from separate measurements; instead we linearize the source

terms about the final equilibrium condition Ty, = T'(t = co):

. . a .
Gert (1, T) 2 Gea (1, Too) + 6T a—T(qﬁm(r, Ty)) s (4.17)

where 6T =T — T,.. We know that the final equilibrium condition is steady-state,
i.e. Geri(r, Too) =~ 0. We assume that the radial variation of %((}mt(r, Ts)) is small

over the region where 67 is large. We can then approximate the external heating as:
Gert (1, T) = 36T (1, 1), (4.18)

where 3 = %(]wf(’roc) is known from energy conservation: 3 = ([ grdr)/([ 6Trdr).

In Figure 4.9, we plot the measured radial heat flux ', as a function of the
temperature gradient VT obtained from the data of Figure 4.8 using 3 to correct
for external heating terms. We plot the heat flux measured at radii r = 0.05, 0.1,
and 0.15 ¢m, and at times ¢ = 0.01 to 0.05 sec. Again, we divide the displayed
I', by nT~'/% to better illustrate the proportionality of flux with V7. The dashed
line shown in Figure 4.9 is an unconstrained fit to the data. A larger non-zero
intercept is seen than was observed in Figure 4.6; but this offset is believed to arise
from uncertainties in the data or imperfect corrections ¢.,;. We thus calculate the
thermal diffusivity y for each point of Figure 4.9 from a straight line fit passing
through the origin (Equation 4.16).

The small temperature gradient method was used to obtain the thermal dif-

fusivity y for plasmas with densities n ~ 5 x 10% and 2.4 x 107 em 3

, magnetic field
B =1 and 4 Tesla, and temperatures 5 x 107* < 7' < 0.2 eV. The resulting values of
y are displayed in Figure 4.10; again, as in Figure 4.7, we display an average y for
each temperature evolution such as Figure 4.8. A fit to Figure 4.10 with y oc 77 1/2
gives x = ((1.61 +0.8) x 1077 em?s™ ") (T/1 eV)q/2 = (0.70 + .4) vA}, . We thus

obtain y ~ 1.4 yy,, which is in reasonable agreement with the result of the previous

section y ~ 1.7 x7, and with the expected value y = x. 4+ x1, ™~ x7.-
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Figure 4.9: Measured normalized radial heat flux vs. temperature gradient for
experiment shown in Figure 4.8, demonstrating diffusive heat transport. Error bars
are characteristic for all data points.

4.3.3 Background Heating Corrections

In this section, models are presented to predict the ion plasma heating re-
sulting from plasma expansion and the heating or cooling resulting from collisions
with neutrals. Measurements of the heating and cooling rates of ion plasmas are pre-
sented: the measurements are found to be in reasonable agreement with the predicted

rates.
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Figure 4.10: Measured thermal diffusivity y for data taken with small temperature

gradient method. Hollow points label theory curves; each solid point corresponds to
the average measured y from an experiment such as Figure 4.8.

Joule Heating Rate

The radial expansion of these plasmas as a result of coupling to inherent trap
asymmetries converts electrostatic energy into kinetic energy: this is referred to as
“Joule heating”. In Appendix D, an empirical model for the radial particle flux T',,
of a radially-expanding ion plasma is presented (Equation 1.3). If we assume that
the radial transport results from static field errors, then the energy of the plasma in
the lab frame is conserved. Converting the loss of electrostatic energy at each radius

into local heating gives:

- B
G; = J-E=c¢env, F, = P—Qm‘_fp/rrm (4.19)
c
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where ¢ 1s the local change of kinetic energy density resulting from Joule heating.

Averaging the Joule heating over the plasma gives:

O, = oL, / Grdr (4.20)

B fE B -1 L 2
8.6 x 10 %eV/:s : <—> ( 2 ) Niot
(8.6 >107eV/s) <1kHz 11) \10em/) "

where QJ is the total Joule heating of the plasma.

Q

Neutral Heating Rate

Collisions between ions and neutrals can result in plasma heating or cooling.
Typically, the experiments discussed here operate in a vacuum of Py ~ 4x 107 Torr.
This corresponds to a neutral density of ny ~ 1.3x 10® em™?, which is comparable to
the plasma densities under consideration. Also, the masses of the neutral particles
(dominantly hydrogen Hjy) have a mass which is comparable to the ions, so it is
not unreasonable to expect significant cooling or heating to result from ion-neutral
collisions. For typical operating parameters, the neutral atoms have a mean free
path which is large compared with the trap dimensions, so the neutrals bounce off
the trap walls many times before colliding with an ion. The neutrals can therefore
be expected to be in thermal equilibrium with the room-temperature trap walls, i.e.
T ~ 0.026 eV.

The heating rate 7' /0t of an ion plasma immersed in a bath of neutrals at
temperature Ty is estimated in Equation C.12 of Appendix C. The resulting rate of

change of the plasma kinetic energy density ¢ is:

12

15 - m
(}‘N *?)7717,77,]\]6’ (}/ILL(W]&(T - TN,eff) (42])

m 4+ my)?

Py n
— (8.8 % 10 em™s™") (T' = Ty, ( >< )
( X cm s )( Noeis) 10-9 Torr 107e¢cm=—3/

0%
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where Ty ¢ &= Tn is given by Equation C.13. Equation 4.21 can be integrated over
the plasma to give the average expected total heating rate resulting from ion-neutral

collisions:

On = QWLp/(}NTdT (4.22)

PN
~ —3.1 _ S
~ (881071 (T TN)(m—gTorr) Ny, .

Measurement of Background Heating Terms

The background heat sources are measured by uniformly heating or cooling
the plasma with a manipulating beam, then measuring the subsequent temperature
evolution after the cooling heam is turned off. Here, we use a wide manipulating
beam which is shone through the ion plasma at an angle (see Figure 2.2) so most of
the ions in the cloud rotate through the beam. This allows an initial condition to be
created where the temperature is flat as a function of radius. The time-evolution of
this initial condition is then measured after blocking the manipulating beam.

A typical external heating measurement is shown in Figure 4.11. Here, a
length 7., ~ 13.5 cm plasma in a vacuum of Py ~ 4 x 1077 Torr is initially held in
steady-state at n ~ 5.4 x 107 cm ™ through application of a f, = 20 kHz, A, = 0.5 V,
mg = +1 rotating wall field. The plasma is uniformly cooled to a steady-state initial
temperature of T'(r,t = 0) ~ 3 x 107? eV with a wide, angled manipulating beam.

The rate of change of temperature of Figure 4.11 gives the background heating
terms qe.;, since we expect radial heat flow to be small in the absence of temperature
gradients; that is, I'y = 0 in Equation 4.6, so ¢ = ¢err. Our model for ¢.,; 18 Gz =
G7+ gy where ¢y is estimated in Equation 4.19 and ¢y is estimated in Equation 4.21.
Our model for the total heating rate Q is given by Q = QJ + QN, where Q,; is
estimated in Equation 4.20 and QN is estimated in Equation 4.22.

The measured heating ¢ at ¢ = 0.15 sec of Figure 4.11(h) is plotted in Fig-
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Figure 4.11: Measured plasma heating starting from uniformly cooled initial con-
dition. Data points at ¢ = 0, 1, and 2 are smoothed radially; data at + = oc is
unsmoothed and shows the characteristic level of scatter in the data.

ure 4.12(b). The measured heating is slightly larger at the edges of the plasma
than on center. The dashed curve of Figure 4.12 is the external heating expected
from the model ¢y = G5 + gn, giving ey =~ (10°eVem ™ ?s) [5.4 (r/1 Crn)2 + 0.]}
(n/107ecm™*). Tt can be seen that the model is smaller than the data; typically, we
find rough qualitative agreement (i.e. within about a factor of two) between this
model and measurements.

It is interesting to note that the uniformly-cooled data of Figure 4.11 cor-
responds to the same central (r = 0) initial condition (n ~ 5 x 107 em ™3, T ~
3x107% eV) as the strong-gradient data of Figure 4.5. However, the measured initial
(t = 0.1 sec) heating of Figure 4.11 (¢ ~ 4x10° eVem ?s™ ') is about 10 times smaller

that the measured initial (1 = 0.1 sec) heating of Figure 4.5 (¢ ~ 5 x 10 eVem s ).
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Figure 4.12: Measured heating rate ¢ for uniformly-cooled initial condition.

Thus, the we have a clear signature of radial heat flow in the data of Figure 4.5.
Experiments similar to the one described above were performed on plasmas
at neutral pressures Py ~ 3 x 107" and 4 x 1072 Torr, densities 107 < n < 108 cm 3,
and temperatures 107° < 7' < 2 eV. Typically, we find that the heating/cooling as
a function of radius is relatively flat, as in Figure 4.12. Typically, we find that the
magnitude of the predicted heating QJ + QN is within a factor of 2 of the measured
total heating Q) = 2L, [ grdr. On average, we obtain ‘(Q; + QN)/Q‘ ~ 1.3, so the

model predicts an average total heating magnitude which is about 30% larger than

the data.



Chapter 5

Measurement of Cross-Field Test
Particle Transport

5.1 Overview

Cross-field test particle transport refers to the internal transport of particles
across the magnetic field. Even in an ideal trap with no bulk plasma expansion, col-
lisions between the charges will cause a continuous cross-field diffusion of individual
charges. That is, the local density of test particles ni(r) can change as a function
of time even though the total density n(r) remains constant. In Chapter 4, it was
demonstrated that long-range collisions with impact parameter p < A dominate
the internal transport of heat across the magnetic field. We find here that these
long-range collisions also give enhanced test particle transport. The measured test
particle diffusion obeys the same density, temperature, and magnetic field scaling
as predicted by the classical theory; but is larger by about an order of magnitude,
consistent with the theory prediction for long-range plus short-range collisions.

The classical theory of test particle transport was derived for neutral plasmas
with r. > Ap. It was presumed that the transport results from steps of the particle
guiding-centers by a distance of order r,. as a result of short-range velocity-scattering
collisions with impact parameter p < r.. Thus, we expect a classical diffusion coef-

ficient D, ~ (nvb*)r?. A more rigorous analysis gives a classical diffusion coefficient



96

of [39, 58]:

D. =

%

(1% 10 e ) (o )‘” (3)2 -
' ) 1eV 1T 107 cm—3

from ()" ()]}

where v;; is the “momentum transfer” rate resulting from ion-ion collisions (Equa-

X

tion 4.1).

If the Debye shielding length is sufficiently large, i.e. Ap > r., then the
particles can also interact via long-range collisions with impact parameter r. < p <
Ap. The cross-field particle diffusion resulting from these collisions can be estimated
as follows: two guiding centers separated by a distance of order Ap will E x B drift
in each others’ electric fields, resulting in a cross-field step Ar ~ ¢cKAt/ B, where At
is the interaction time. The collision frequency of these collisions is expected to be
of order nvA},. Using the estimates I ~ e/A\}, and At ~ Ap /v, one then obtains
Ar ~ b(r./Ap), and an estimated diffusion coefficient due to long-range collisions
Dy, ~ nvA4Ar® ~ nob?r?. Thus, the diffusion coefficient due to long-range collisions
is expected to have the same scaling as the classical coefficient D, [38]. A more

detailed calculation of the long-range diffusion coefficient gives [19]:

1/3
Dr, = 67 (77,7)62) r? In(Ap/r.) In lv/ (yiiq)g\/)\nrc> ] (5.2)

TN/ B2 n
- o) (15 () (e
(86510 em’s ) {7y 17/ \107cm?

{1 +0.6 In [(m*ﬁ)w (%)H .

It is interesting to note that the diffusion coefficient Dj, in Equation 5.2

X

contains a factor three enhancement because of the effectively one-dimensional nature
of the collisional dynamics: velocity diffusion caused by collisions with surrounding

particles can reverse a particle’s axial velocity and lead to multiple collisions between
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the same pair of particles. This “velocity caging” is a novel effect in kinetic theory:
it is present even in the limit of weak one-dimensional collisions, yet it cannot be
obtained using the traditional approach of integration along unperturbed orbits.

Test particle transport measurements require that a group of particles be
made distinguishable from the other particles in the plasma. We accomplish this
“tagging” of the test particles by uniformly spin-polarizing a Mg* ion plasma relative
to the magnetic field B and then reverse spin-polarizing a small sample of ions.
The LIF diagnostic allows the selective measurement of the tagged ions, so that
their diffusion into the bulk of the plasma can be observed. The results of these
measurements are presented in Section 5.2.

As in the heat transport measurements, small source terms can affect these
experiments. Here, test particle “sources” result from collisions, which can cause
spin depolarization. The corrections used to account for this effect are discussed in

Section 5.3.

5.2 Test Particle Transport Results

To measure test particle transport in Mgt plasmas, optical pumping tran-
sitions are used to spin-state “tag” a cylindrical shell at some radius r;; the radial
diffusion of this cylindrical shell is then monitored at each radius r using a cyclic
transition, as described in Section 2.5.2 (see Figure 2.8).

A typical test particle transport experiment [3, 2] is shown in Figure 5.1.
Here, test particle diffusion is measured for a plasma with density n ~ 7 x 10% em ™7,
temperature T' ~ 0.2 eV, and magnetic field strength B = 4 T. Initially, the entire
plasma is spin-polarized into the -1/2 ground state. Then, more than 80% of the

ions are locally pumped into the +1/2 state at radius r;, = 0.5 c¢cm; the rest of

the plasma remains in the -1/2 state. The time-evolution of the test particles is
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Figure 5.1: Measured radial diffusion of test particle density n; toward
ny/n = const.

measured at 29 radial positions from r = —0.85 to r = 0.85 ¢cm and at 15 time
steps from ¢ = 0.05 to ¢ ~ 15 sec; in Figure 5.1(b), ns(r,t) is shown only at time
steps t = 0.05, 6, and 15 seconds. Also shown in Figure 5.1(a) are the total ion
density n(r) and temperature T'(r); these quantities are constant since the plasma
is generally kept in a steady-state equilibrium by applying a rotating wall field, as
described in Chapter 3.

The evolution of test particles ny(r,t) of Figure 5.1 results from radial dif-
fusion of test particles as well as from local sources (or sinks) of test particles. In
these experiments, spontaneous spin flip is the dominant source of test particles. As
will be shown in Section 5.3, sideband optical pumping from the probe beam can be

neglected for these experiments, and the local spontaneous spin flip rate vg(r) can
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be obtained from independent measurements. The measured flux of test particles T';

is then:

e R e e ] (]| | BRCYS

Here, dn,(r,t)/0t is the time derivative of the measured test particle evolution n,(r, 1)
and vss(r)[n(r)/2 — ny(r,t)] is the expected contribution to dny(r,t)/dt from spon-
taneous spin depolarization, described in Section 5.3.

The test particle flux I'; is expected to have a form:

ny(r,t)
n(r)

where D(r) is the measured test particle diffusion coefficient, V, represents a possible

Iy(r,t) = —D(r)n(r)V ( ) + V.(r)ni(r,t), (5.4)

radial convective velocity, and V = d/dr. The test particle diffusion of Equation 5.4
is driven by gradients in the relative concentration of test particles n;/n. The test
particle flux will thus drive the test particle radial distribution toward an equilibrium
where the concentration of test particles relative to total particles is a constant, that
is, ny(r)/n(r) = const. This form of the diffusion term can be obtained from a two-
species particle diffusion calculation [39]. It is important to note that Equation 5.4
describes diffusion in which the test particles diffuse radially as a result of collisions
with either test particles or normal particles; tagged particles and untagged particles
are indistinguishable as far as the diffusion process is concerned. The analysis is
therefore valid for arbitrary relative concentrations n;/n; a small relative concentra-
tion n;/n < 1 is not required for these measurements.

We find that the test particle flux is diffusive in nature. This can be seen
qualitatively in Figure 5.2, where the measured test particle flux I'; is plotted as a
function of radius at £ = 3 sec for the experiment shown in Figure 5.1. Also plotted is
the expected driving term for test particle diffusion, —n(r)V [n:(r)/n(r)]. Tt can be
seen that I'; oc —n(r)V [ny(r)/n(r)], consistent with Equation 5.4 with D(r) ~ const.

and V(r) ~ 0.
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Figure 5.2: Radial test particle flux T'; and test particle concentration gradient
V(n:/n) as a function of radius, showing flux proportional to gradient.

This “Fick’s Law” proportionality between flux and gradient is also found
to apply as a function of time. This is shown in Figure 5.3, where the test particle
flux Ty is plotted as a function of the gradient n(r)V [ni(r)/n(r)] at radius r =
0.32 e¢m; here, the different points represent different time steps in the evolution.
The solid line is a fit to the data; it can be seen that the expected proportionality
I'y < —n(r)V [n(r)/n(r)] is well-satisfied. The slope of the line gives a measured
diffusion coefficient D(r) = 3.3 x 107% ecm?/sec.

A mnonzero radial convective velocity V,(r) would be expected to manifest
itself as a vertical offset in the fit through the data in Figure 5.3. Here, we obtain a
negligible y-axis intercept V,(r) = —1.4 x 10°% ecm/s. In general, we find V,(r) ~ 0
within experimental accuracy. One might expect a nonzero V. as a result of slow

azimuthally-asymmetric convection cells or from incorrect removal of source terms.
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Figure 5.3: Test particle flux T'; as a function of test particle concentration gradient
V(n;/n), demonstrating flux proportional to gradient.

These results indicate that plasma convection is not a significant source of cross-field
particle transport in these plasmas.

Test particle transport measurements were performed on plasmas with den-
sities 10 < n < 4 x 107 cm ™2, temperatures 0.05 < 7' < 3 eV, and magnetic fields
0.8 < B <4 T. The background neutral pressure was Py ~ 4 x 1072 Torr. Temper-
atures higher than 0.05 eV were obtained by using either an my = 1 drive to launch
cyclotron modes (ion cyclotron resonance heating) or by using an mgy = 0 drive to
launch plasma modes in the system; both heating methods were used in the data
presented here with no noticeable difference in the results.

The measured test particle diffusion coefficient 1) is displayed in Figure 5.4

as a function of temperature 7. The measured D is divided by n; B ?In(Ap/r.)
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Figure 5.4: Measured test particle diffusion coefficient D as a function of temper-
ature T'.

(with B in Tesla), since this is the expected dominant density and magnetic field
dependence of the long-range theory (Equation 5.2). This enables the entire range
of B and n covered in the experiments to be displayed. In Figure 5.4, each point
corresponds to a diffusion coefficient obtained at a single radius using a linear fit as
a function of time as described above; several values of 1) are therefore obtained for
each transport experiment.

It can be seen that the data is about ten times larger than expected for
classical test particle diffusion 1, alone (dashed curves), but is in excellent agreement
with the predictions of classical diffusion plus diffusion due to long-range collisions,
D.+ Dy, (solid curves). The range of the curves is due to the In(Ap/r.) normalization,

which is not contained in the classical diffusion coefficient . of Equation 5.1.
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It is expected that collisions with the background neutral gas will also cause
radial diffusion of the ions; however, this is negligible for the data presented here.
We can approximate the diffusion coefficient resulting from ion-neutral collisions as
Dy ~ v;nr?. Here, we use Equation C.3 of Appendix C to estimate ;5. The

resulting ion-neutral collisional diffusion Dy is:

Dy ~ vy’ ~2rnyey/a/p (5.5)

B2 Py T
~ (8.3 %10 °cm’s! <_) ( > ( ) .
(8.3 x 107" em™s ™) 1T 1072 Torr/ \1eV

This estimate for Dy is plotted in Figure 5.4 as the pair of dotted curves. It can be

seen that the expected contribution from ion-neutral collisions is much too small to
describe the observed diffusion. Also, Dy has a different temperature scaling than
the observed diffusion and does not depend on ion density.

Similarly, the effect of the rotating wall drive used to hold the plasma in
steady-state during these experiments is not responsible for the observed enhanced
transport. The rotating wall drive counteracts the slow bulk plasma expansion which
occurs on a time scale of 7,, ~ 1000 sec. This is much slower than 10 sec, the time
scale on which the test particles are typically observed to diffuse across the plasma.
To verity this, the solid symbols of Figure 5.4 were measured at 7' ~ 0.05eV with
the rotating wall turned off during the test particle diffusion measurement; it can be
seen that the ahsence of the rotating wall field does not affect the diffusion rate.

The 2-D bounce-averaged contribution to the test particle diffusion (from the
last row of Table 4.1) is believed to be negligible here. This is verified experimentally
by measuring the test particle diffusion for short (1, ~ 6 cm) ion plasmas. As seen
in Figure 5.4, the observed diffusion in these short plasmas did not differ noticeably
from that of the longer (1, ~ 12cm) plasmas.

In conclusion, measurements of test particle transport in magnesium plas-

mas have heen performed over a range of 50 in temperature, 40 in density, and 5 in
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magnetic field. The measured diffusion coefficients are about ten times greater than
predicted by classical theory alone, but agree closely with the prediction for both
long-range collisions and classical, short-range collisions. These results, together
with the heat transport measurements of the previous chapter, provide an incisive
demonstration of long-range collisional transport in these plasmas. Also, the test
particle transport measurements provide support for a novel effect in kinetic the-
ory, “velocity caging”, which provides a factor of three enhancement in the particle

diffusion rate for one-dimensional E x B collisions [19].

5.3 Background Corrections

The two background terms which can affect the test particle transport mea-
surements are sideband optical pumping from the diagnostic heam and collisional
depolarization of the spin-tagged ions, or “spontaneous spin-flip”. We will show in
this section that the sideband pumping can be made negligibly small by operating
the diagnostic beam at low power and low duty cycle. The spontaneous spin flip is
shown to be a small correction which can be measured and subtracted off from the
test particle transport measurements.

A typical measurement of these background corrections is shown in Fig-
ure 5.5 for an ion plasma with central density ng = 6.5 x 107 cm™ and temperature
T = 0.25 eV. Here, the entire ion cloud is spin-polarized into the m; = —1/2 state by
10 seconds of illumination with a perpendicular beam passing through r = 0. This
polarizing beam is tuned to the peak of an optical pumping transition. The popu-
lation of the m; = +1/2 state is then probed by using a diagnostic beam passing
through r = (0 parallel to B and tuned to the peak of a cyclic transition. This diag-
nostic beam is blocked most of the time with a shutter. Every 2 seconds, the shutter

is opened for 40 ms and the resulting photon count rate is measured. This count
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Figure 5.5: Measurement of the central density of ions in the m; = +1/2 state,
ni(r = 0,t), starting with a plasma completely spin polarized into the m; = —1/2
state.

rate gives n,(0,1), the density of magnesium ions in the +1/2 state at r = 0. The
plasma temperature is known and is constant during this measurement. The diag-
nostic beam power for this experiment was Iy ~ 0.29 mW, so the average diagnostic
beam power was only (/y) = /5 (.04/2) = 5.8 x 107* mW.

The time evolution n,(0,1) measured in Figure 5.5 can be used to obtain the
sideband optical pumping rate v,, and the spontaneous spin-flip rate v5. Both rates
can be obtained from a single measurement, since the optical pumping will tend
to drive the all the ions into the +1/2 state, while the spontaneous spin-flip would

asymptote to a final equilibrium with only half the ions in the 4+1/2 state. The time
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evolution of ny(r,#) can thus be written as:

%nf,(r,t) = Vop [n(1) — ns(r, 1)] + vy l@ — ny(r, 7‘)] . (5.6)
Note that the total particle density n(r) is not a function of time. We expect the
rates in Equation 5.6 to be slow compared with the rate at which ions diffuse across
the field lines, so the fractional polarization will be uniform across the plasma, i.e.
ni(r,t)/n(r) ~ const. Also, it is reasonable to expect that the spin-flip rate will
be proportional to the ion density, vs¢(r) o n(r). Averaging Equation 5.6 over the

entire plasma and using the initial condition n,(r,# = 0) = 0 then gives:
774,(7“ = UYL) = N final (] _ e—f/’rr,) + Nk : (57)

where 73 = 1/(Vop + Vst )y Dinat = no(Vop +Vs1/2) ] (Vop +vss), vsg = vsg(r)n/n(r), and
n = [n?rdr/ [ nrdr. ny allows for an offset in the measured signal; this can occur
as a result of background scattering of photons or from amplifier offsets. The solid
line in Figure 5.5 is a fit to the data of the form of Equation 5.7 with the adjustable
parameters nyina = 4.18 X 107 em™?, 7, = 786 sec, and np,ep = —1.6 x 10° em™7.
It can be seen that this functional form provides an excellent fit to the measured
signal. The optical pumping rate v,, and average spin flip rate vss are then obtained
from the fit parameters: v,, = (20 fina/no — 1)/7 ~ 3.7 x 1077s " and v,y =
2(1 = nfinar/n0)/7 =~ 9.0 x 107451

The measurement method demonstrated by Figure 5.5 was used to measure
the sideband pumping rate and spontaneous spin-flip rate as a function of average
diagnostic beam power (/g), plasma temperature 7', and plasma density n. These
results are described in Subsections 5.3.1 and 5.3.2. It is found that sideband optical

pumping is negligible and that spontaneous spin flip is a small correction for the test

particle transport data presented in Section 5.1

5.3.1 Sideband Optical Pumping
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Figure 5.6: Measured sideband optical pumping rate v,, as a function of average
UV power (/q).

For the range of UV power [y used here, we expect the sideband pumping
rate to be linear in UV power. Additionally, the sideband pumping rate should be
proportional to the number of ions illuminated by the beam divided by the total
number of ions in the cloud (assuming fast radial mixing). For a parallel diagnostic
beam at r = (), the number of ions illuminated goes like the central density ng times
the plasma length I,, so we expect v,, o< (Io)nol,/Niot = (Io)no /Ny, where Ny, is
the mean line charge density. We do not expect a strong temperature dependence
for typical operating conditions, since the frequency shift between the cyclic and
optical pumping transitions is large compared to the average Doppler shift in the
transitions: Av = 2 ue(v/e¢) ~ (10.1 GHz) (T/1eV)'/? < 6u,, ~ 37.4 GHz(B/4T).

Figure 5.6 shows the measured sideband optical pumping rate v,, as a func-
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tion of averaged diagnostic beam power (Iy). The sideband pumping rate is dis-
played multiplied by Ny, /ng for each data set to remove this anticipated dependence
from the data. The data was taken at magnetic field strength B = 4 T and cov-
ers a central density range 6 x 10° < n < 6.5 x 107ecm 2, a line density range

0.2x 10" < N, <1.2x107em ', and a temperature range 0.07 < 7' < 1.0 eV. The

data can be reasonably well-fit by a straight line, corresponding to:

3 _ , Ny, ! (1o)
= (8 m-"ﬂ( & )( ) . 5.8
Vop = (8 X ) 107 cm—3 107 cm 1 1TmW (5-8)

Our test particle transport experiments are performed with a low average

search beam power (/g), so sideband pumping can in general be neglected. For the
experiment shown in Figure 5.1, for example, the probe beam was used at power
Ion ~ 0.5 mW and at a duty cycle (0.04sec/0.5sec) ~ 8 x 1072, corresponding to an
average power (Ig) ~ 4 x 1072 mW. Using the line-charge density N;, ~ 2x 107 cm™'
and density ng ~ 6 x 10°cm 2, the sideband optical pumping rate estimated from
Equation 5.8 is v,, ~ 107 sec™". The sideband pumping thus causes n, to evolve on
a time scale of about 10* seconds, which is clearly negligible compared to the 1 to

30 second time scale for particle diffusion.

5.3.2 Spontaneous Spin Flip

The plasma-averaged spontaneous spin-flip rate v,y was measured at mag-
netic field strength B = 4 T, neutral pressures Py = 7 x 107"" and 4 x 107 Torr,
temperatures 7' = .06 to 4.4 eV, and average ion densities n = 10% to 10¥ ecm™?. In
Figure 5.7, the measured spin-flip rate is plotted as a function of the plasma temper-
ature at neutral pressures Py = 7 x 107" and 4 x 107 Torr and at an average ion
density ranging from n = 3 x 10° to 11 x 10cm . It can be seen that the spin-flip
rate rises strongly with increasing temperature for the low neutral pressure data. For

the high neutral pressure data, the temperature dependence is not as pronounced;
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Figure 5.7: Spontaneous spin-flip rate measured as a function of temperature, show-
ing strong temperature dependence at low neutral pressure and weak temperature
dependence at high neutral pressure.

the spin-flip rate appears to be almost independent of temperature.

In Figure 5.8, the measured spin-flip rate vz; is plotted as a function of
average density n for plasmas at temperatures 7'~ 1.8 to 2 eV at a neutral pressure
of Ph = 7 x 107" Torr. Here, the spin-flip rate appears to be essentially linear
in the average plasma density n. Also, v,y vs. n is plotted at 7' ~ 0.1 to 0.2 eV
and Py = 4 x 107® Torr. For these parameters, the spin-flip rate is independent of
average density.

Based on the data of Figures 5.7 and 5.8, it appears likely that ion spin
depolarization occurs as a result of both ion-ion collisions, which depend strongly
on ion temperature, and ion-neutral collisions, which have a weaker temperature

dependence. At low neutral pressures, the ion-ion collisions dominate, and the spin-



110

O v, = const
— 1ol | - — - — = - — e
‘T' [ O ]
d"m <>
| ~
o ~ ©
~
A o O~
100 b = E -7 -
| “ : Vel
< P0e o Py = 7x10"" Torr, T = 2 eV
O Py = 4x107° Torr, T = .1 eV
1 5 10 50

n [10° em™]

Figure 5.8: Spontaneous spin-flip rate measured as a function of density showing
linear dependence at low neutral pressure and no clear dependence at high neutral
pressure.

flip rate is linear in ion density; whereas at higher neutral pressures, the ion-neutral
collisions dominate and the spin-flip rate does not depend on the plasma density.
In either parameter regime, the maximum spontaneous spin flip rate observed is
approximately v,y ~ 10725 ", corresponding to a time scale of about 100 seconds
for the depolarization of the spin-polarized plasma.

The spontaneous spin-flip is incorporated as a small correction to the test
particle transport measurements. Prior to every test particle transport experiment,
the average spontaneous spin-flip rate vss is measured. The local spontaneous spin-
flip rate vs¢(r) used in Equation 5.3 is then estimated using vs4(r) ~ n(r)vss/n. This

is not always a valid approximation, i.e. at high neutral pressures, we do not expect
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vss x n. However, the test particle transport data used here is typically taken from
the bulk of the plasma, where n(r) ~ n within a factor of 2, so this approximation
is not expected to introduce errors greater than a factor of 2 into the estimated
value of the local spin-flip rate ve¢(r). With the inclusion of the spin-flip term in
Equation 5.3, the total number of tagged particles is typically conserved within 10%
in the test particle transport measurements. In any case, the spontaneous spin flip
term constitutes a small correction to the measured ny(r, ¢). For the plasma shown in
Figure 5.1, for example, the average spontaneous spin-flip rate was measured to be
v =5 x 107 %s7", which is clearly a small correction to the observed time evolution,

which occurs on a time scale of about 10 seconds.



Appendix A

Corrections to LIF Diagnostic for

Very Cold Plasmas

For most of the experiments described here, the three-Maxwellian fit given
by Equation 2.2 is sufficiently accurate for the purposes of determining the plasma
magnesium density nas,, temperature T', and rotation velocity v;,, from the scattered
photon count rate as a function of laser detuning v,p,10,(6v). For very cold plasmas
(T <1077 eV), we find that corrections due to the finite linewidth of the transition
begin to become important, so the measured v,p,,, needs to bhe fit to a Voigt, rather
than Maxwellian, function. Also, centrifugal separation of the plasma species can
become significant, so the assumption of Equation 2.2 that the magnesium isotopes
are distributed according to their natural abundances is not always valid. Addition-
ally, if the perpendicular LIF diagnostic is used, the plasma rotation can cause an
apparent broadening of the observed transition due to the finite probe beam diame-
ter. Here, a more detailed form of Equation 2.2 is derived which accounts for these
corrections.

Figure A.1 provides a schematic of the basic detection scheme viewed axi-
ally along the —2z-direction. A perpendicular probe beam at position = is shown.
The diagnosed volume has a height H ~ 4 mm determined by the detection optics

geometry. The plasma is rotating at an angular frequency w;,; = 27 f;,;.
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Figure A.1: Geometry of LIF diagnostic showing perpendicular probe beam. Com-
ponents are not shown to scale; for example, the lens and mirror are much larger
and farther from the plasma than indicated in the figure.

volume to be independent of position. At the powers used here, saturation of the
transition and the resulting “power broadening” of the transition can be ignored.

The measured photon count rate is then:

Voo (80) = L / da'dv 1 (z')o (v, 50) f(v) | (A1)

h 140}

where € is the collection efficiency of UV photons scattered in the diagnosed volume,
o is the scattering cross-section, hvg is the photon energy, and f(v) is the lab-frame

distribution function of ion velocities v:

n 1
f(v) = mexp {ﬁ [(w + ywior) + (v, — Twi)” + vﬂ } : (A.2)

Neglecting ion recoil and relativistic corrections, the scattering cross-section
is [64]:
aq (Al/(}/?)2
(v —k-v)’ + (Anp/2)*’

o(v,év) = (A.3)
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where oq is the total scattering cross-section, Ayy ~ 43 MHz is the linewidth of
the transition, v = v — g is the laser detuning off-resonance, and k- v = v(v,/¢)
is Doppler shift of the ion in the laser (g) direction. In the work discussed here,
where the laser light is polarized perpendicular to the magnetic field, we expect
oo = 3X2/27 ~ 1.8 x 10°A” [34].

Direct measurements have found the probe beam intensity distribution to be

well-described by a Gaussian about the beam position x:

(') = —20 e lims)/sr (A.4)

- ﬁAme ’

with Az ~ 0.5 mm.

Equation A.1 then becomes:

Vel JANZY K <5V — Vot AI/O’) | (A

l/phm‘.(m == nig0og AI/’ I QAV

2 hyg Av’

where v, = vg (2w /c) and AV = \/51/0(7)’/C) with v2 = 02, + %wfotAmQ and
vgs = 1/ T /ma4. K is the Voigt function, which is the convolution of a Gaussian and

*—dt. Since the convolution of a Voigt function

a Lorentzian: K(z,y) =¥ [ m

of linewidth y with a Lorentzian of linewidth g’ is a Voigt function of linewidth
y + y', we can include the effect of the laser linewidth (about 1 MHz) by using

Avg — 43MHz + 1 MHz = 44 MHz.

Equation A.5 can be modified to include all three magnesium isotopes:

N, v —v,, — O0vs A
oLon - A : K b
Vphot Z: AV, ( AV, QAV’S)

where Av’, is the same as Av’ but using the mass m, with s = 5, or 26. n, is
h AV, is th Av' but th . with 24, 25, 26. ng,

(A.6)

the density of species s and A = 5@ an lo 09 Avg. Our best theoretical estimate for e,

b
based on the light collection geometry and the efficiencies of the optical components,

is € ~ 3 x 107", In practice, we use the calibrated value ¢ = 6 x 107", which is

obtained by comparing LLIF measurements with charge collection measurements and
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Figure A.2: Measured scattered photons for a laser-cooled plasma, showing
three-Voigt fit with variable isotope abundances (solid line) and three-Maxwellian
fit with natural isotope abundances (dashed line).

image charge measurements; this value of € gives a peak LIF signal from Equation A.6
of An/Av ~ (2.1 x 10° photons/s) (n/107em=)(Io/1 mW)(T /1eV)~1/2,

Figure A.2 shows a LIF frequency scan for a laser-cooled plasma taken at
radial position r ~ 0.2 em. Here, a weak (/5 ~ 60 yW) probe beam is scanned
through a cyclic transition of the three 2*Mg™ isotoptes; the scan goes from frequency
detuning év = —10 GHz to év = +10 GHz in a time of about 6 seconds. We plot the
measured scattered photon count rate vypa0n as a function of laser detuning év. The
photon count rate is normalized by the measured laser power Iy during the frequency
scan to account for small fluctuations in the probe heam power. The dashed line
is a fit to the data of the form given by Equation 2.2; i.e. a three-Maxwellian fit

assuming natural abundances of the magnesium isotopes. This fit gives a total
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magnesium density na, = 7.35 x 107 em™? and temperature T = 1.29 x 107* eV.
The solid line is a fit to the data of the form given by Equation A.6; i.e. a three-
Voigt fit with variable abundances of the magnesium isotopes. This fit gives a total
magnesium density na, = 7.52 x 107 em™? and temperature T = 0.93 x 107* eV.
It can be seen that the three-Voigt fit better describes the data; the height of the
26Mg peak and the shape of the base of the **Mg peak, for example, are hetter fit
by the three-Voigt fit. Here, the three-Maxwellian fit overestimates the temperature
by about 40% and underestimates the density by about 3%. In general, we find that
the three-Maxwellian fit slightly overestimates the temperature (up to a factor of
2) in very cold (T' ~ 10~* eV) magnesium plasmas. Unless the plasma is strongly
centrifugally separated (very cold, high density plasmas), reasonable agreement is

found between the densities obtained from the two fits.



Appendix B

Plasma Modes in a Long
Cylindrical Plasma

The electrostatic modes in cylindrical nonneutral plasmas can be obtained
from the collisionless drift-kinetic equation. This derivation assumes a guiding-center

E x B drift motion in the azimuthal () direction, but keeps the normal kinematics

in the axial (2) direction. The ion distribution function f(r,z,v,v,,t) evolves as

af af e d® df

_ -V i ———— = B.1

ot VL uf 4w dz m 0z Ov, (B.1)
where v, = —% and B = 4+ Bz for electrons and B = — Bz for ions. Equa-

tion B.1 can be linearized around the unperturbed distribution function f,, assum-

ing that f = f, +6f and ® = &, 4+ 6P, where 6f and 6P are small perturbations

kaztmef-wl) Thig gives:

oscillating like el

mgcdf, k.edf,
kz - m ;— (S = - —_— 6‘1) RQ
(k.v, + mywp UJ) f (rB Ir + m v, ( )
where wp(r) = i% is the local unperturbed E x B rotation frequency. Using

2
_ sson’” on (12,2 " 1) §¢ — i
én = [6fdv,, Poisson’s Equation (T ST kz) 00 = —4rebdn, and assuming

that f, is Maxwellian with no radial dependence in T gives:

{] ad 0 B ﬁ N drmegec On, [VV <%) - ]]

?ETE r? rB  Or W — MWwg
2 J—
Yy (W) §® = 0 (B.3)
v? kv
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2
re—T /2

where W(z) = 712_#]1); #——dx is the Ichimaru W-function. This differential equa-

tion in é® can be solved numerically given an unperturbed density profile n(r), a
wave number k., and an azimuthal mode number my [57]. Smooth, physical solu-
tions only exist for discrete values of w, corresponding to the mode frequencies for
different radial mode numbers m,. We use k, = m.x /L, for the wave number, where
L, is the length of the plasma. This is believed to be a reasonable estimate since,
for the plasmas used here, R,,/L, < 1 and numerical simulations of these modes in
finite-length geometries find &k, ~ (m,x/L)[1 — O(R,,/I,)] [35].

In Chapter 3, the numerical solution of Equation B.3 was used to estimate
the mode frequencies. Often, however, it is also useful to have a simple analytical

approximation for the mode frequencies. If we assume a top-hat density profile:

const. ., r<R
n(r) = { 0 . Bp ) (B.4)
, p

take the limits 7" — 0 and R, k, — 0, and assume that w — mgwr — 0 in this limit,

then Equation B.3 gives the dispersion relation:

3
w—mgwg ~ Cw, Rk, [] + 5(7)/%)2} (B.5)
where C = %]n (B ) s ms =0
+1/7mgm, , mg > 0
with damping
o~ —\/ﬁ (w — mywr) (?)é/?))gef%(“"’/”) , (B.6)

where v is the small imaginary component of w. Here, 7,,,m, is the m,th zero of the
myth Bessel function and v, = (w — mywg) /k. is the axial mode phase velocity in
the rotating frame. In these equations, my is assumed to be positive; however, the
short-hand notation —my is used to denote the backwards rotating branch of the my
mode, which corresponds to the — sign on the coefficient C.

It is of interest to note in Equation B.5 that w —mgwr o« w, Rk, N;I/Q L;,

where Nj, is the line-charge density. Thus, the mode frequencies in this limit are
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independent of plasma radius R, (aside from the logarithmic correction in the myz=0
case). More detailed analytical calculations of these modes have heen made for

finite-length geometries [51].



Appendix C

Cooling of an Ion Plasma due to
Collisions with Neutrals

The potential describing the interaction between a charged particle and a

neutral atom can be approximated:

V(r) = Vis(r) — M , (C.1)

r

1
2

where Vig is the short-range, repulsive “hard-sphere” potential, and —>ae?/r? is
the long-range attractive potential resulting from the induced dipole moment of the
neutral atom, where a ~ 0.7 A’ is the mean polarizability of Hy [13].

We expect Vg to have a range corresponding to the molecular dimensions.

The radius of an Hy molecule is approximately 1.4 A [7], while the radius of a Mg™*

molecule is about 1.0 A [48], so the range of Vgg is expected to be approximately

Tgs =~ 2.4 A
The range of the dipole interaction is approximately r, = (ae?/uw?)'/4,
where u = mmy/(m + my) is the reduced mass and w = |w| is the magnitude of

the relative velocity of the particles. For thermal particles with m = 24, my = 2,
and Ty = .026 eV, we find r, ~ 2.6 A [(T/1 eV)—I—.QQ]_”“, sor, >rggifT < 1.1eV.
That is, for higher temperatures (7' 2 1 eV), we expect the hard-sphere potential to
dominate, giving a constant scattering cross-section opgs = nri;q ~ 18 AQ; while for

lower temperatures (7' S 1 eV), we expect the dipole potential to dominate.

120



121

Figure C.1: Qualitative illustration of scattering off attractive dipole potential.

The ion data presented in this thesis covers a temperature range 5 x 107* <
T < 5 eV, so the dipole interaction is expected to be dominant.

A qualitative picture of the scattering as seen in the center-of-mass frame
is shown in Figure C.1. For r > rgg, the potential is dominated by the dipole

interaction, so the equation of motion of the particles is approximately:
P dr
o) ()

where r is the relative position vector and p is the impact parameter.

(C.2)

For impact parameters p < v/2r,, the relative radius r passes within the
angular momentum barrier r = r, and spirals into the force center, where the particle
is eventually scattered by the hard-sphere potential. The resulting scattering angle
O depends on the precise form of the close-range interaction between the Hy molecule

and the Mg* ion. Presumably, however, these collisions result in strong scattering,
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so a simple estimate for the total collision cross-section is given by the Langevin

cross-section, oran, = 7(V271,)? = 27(e/w)\/a/p [37], which gives an estimated

ion-neutral collision frequency

N ~ 2mnyey/a/p (C.3)

Pn
~ (2.5 x 107 %! (—) i
( i S ) 10 °Torr/

with a corresponding estimated heating rate

oT
rn ~ —un (T —Tn) = 2rnyey/afu (T —Ty) . (C.4)

For impact parameters p > \/57“(,, r never reaches r = r,. The Langevin
cross-section ignores these collisions, so the actual cross-section should be somewhat
larger, i.e. o ~ wpli, with p s > V2r,. The energy transfered in a collision with

scattering angle O goes like 1 — cos O, so p.ss can be approximated as:

prf ~ 2/ 1~ cos®)pdp . (C.5)

To evaluate Equation C.5, we assume that collisions with p < /27, are strongly

scattered, so O(p < \/57“(,) ~ 7 /2. For p > \/2r,, the final scattering angle is given

by:
pdr
p>\/§r =2 - = — T, (C.6)
Srew v\ [1— (pfr) + (ra /1)
where 72 . = <] + \/] (V2r./p) )/2 Equation C.5 can then be evaluated

numerically, giving psz ~ 1.2 (\/57“(,)2 with a corresponding approximate differential
scattering cross-section o (@) ~ p?; /4.

Given a differential scattering cross-section (@) for ion-neutral collisions,
the evolution of ions at temperature 7' in a bath of neutrals at fixed temperature Ty

can be estimated with the Boltzman collision integral:

8_T

= [udvu v [ d96(0) [f(vgu) - fV)e)] . ()
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before collision after collision

Figure C.2: Geometry of scattering in center-of-mass frame.

where u and v are the neutral and ion velocities prior to a collision, u’ and v’
are the corresponding velocities after the collision, and [ df) is the integral over
scattering angles. The ions and neutrals are presumed to remain close to thermal
equilibrium during the heating process, so the neutral and ion distribution functions
1 2 1 2
. . . o n — 5 [(n—110) /2] — . n_ —5(v/v)
in the rotating frame are: g(u) = —N—(%WE“Se 3 and f(v) = 2 .

Here, uq is the average velocity of the neutral molecules in the rotating frame of the

plasma, and the thermal velocities are u = /Tn/my and v = /T /m.

Plugging ¢g(u), f(v), and ¢(0) into Equation C.7 and going to the center-of-

mass coordinate system w = u — v and V = myu + mv, where my = ﬁ% and
m = 777+m7;7.N gives:
T 1T m nn
— = ——————e\/a C.8
ot 5 (277)3 7/,37)3€ ofu (C.8)
y /d3wd3V7)2 /dQ {e—;-(w/af6—15[(11—110)/77}2 B 6—15(1)'/77)26—15[(11'—110)/77}2} .

The integrals in Equation C.8 can be evaluated using the coordinate system
shown in Figure C.2. After the collision, the relative velocity vector w changes

orientation, but not magnitude, so w’ = w, but w’ # w. The center-of-mass vector
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V is unchanged, so V' = V. The scattering angle 0 of Figure C.1 is related to these

quantities through w - w' = ww' cos . From Figure C.2, one finds the relations
2 2 29
u' =V 4+ 2mwV cos + m-w* | (C.Q)

v’ =V’ — 2mywV cos § + miyw® (C.10)

and

(u — uo)2 = Viiemiut+ u?] + 29mwV cos 6

— 2mwug(sin fcos gsinf + cos feosb) — 2ugV cos p (C.11)

with dQ) = sin #'df’d¢’. Equation C.8 can then be evaluated to give:

aT mmy
— ~ Srnyey/o)p——————(T — Tnoss) , C.12
5 rnney/ af (m +7nN)2( Noeff) ( )
where
T = Ty f sl = Ty omri?
Neff = N+ (}7777\7“'0 = 1IN+ ?mNT Lrot (C_]S)
2/ ¥ 2-I
~ 0.026eV {1 1.1 % 1073 ( r > Jiol .
)€ [ + % 1em 1kHz J

This is the same result as was obtained from the Langevin cross section (Equa-
tion C.4) with the addition of a mass-ratio factor ﬁ#, a factor 1.2 from the

estimated contribution of the p > /21, collisions, and using the effective neutral

temperature in the rotating frame, T ¢y, instead of Th.



Appendix D

Estimating the Radial-Expansion
Flux of Ion Plasmas

In order to estimate the Joule heating resulting from ion plasma expansion
(for Section 4.3.3), it is necessary to have a model for the radial particle flux of ion
plasmas. In a radial-expansion experiment, the radial particle flux T',, is obtained

from the measured density n(r,t) by conservation of particles:

T g an(r') , ,
rmiir./n T r'dr’ . (D.1)

The expansion rate of the plasma can be obtained by integrating over the radial flux:

9

T2y = E<T2>/<T2> = 2/ TmTQd‘r/./ nridr . (D.2)

In Figure D.1, we plot the measured radial particle flux T',, for the ex-
periment shown in Figure 3.14. In general, we observe a radial flux of the ap-
proximate shape I',, o nr; in Figure D.1, the dashed line corresponds to I',, =
1.3x10*em 257" (n/107 em~?)(r /1 cm), demonstrating that this functional form de-
scribes the radial shape of the data reasonably well.

As discussed in Section 3.4, we do not observe a clear density or temper-
ature dependence in the measured free expansion rate T<;;) of ion plasmas. These

measurements were taken at magnetic field B = 4 T and length L, ~ 12 cm and

find an average expansion rate of T<;;) ~ (1.7+1.3) x 107*s~'. For the same data,
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Figure D.1: Radial flux obtained from free-expansion experiment of Figure 3.14.

we find the relative scatter in the unnormalized expansion rate to be smaller, i.e.
(r?) = (2.4 +1.3) x 10 *cm?s ",

In the absense of a clear density or temperature scaling, we will assume
<7“.2> x n?T° However, we will assume the standard inherent asymmetry transport
scaling with magnetic field and plasma length, <7“.2> o L2B~%. Although a rigorous
study of the magnetic field and length dependence of expansion rate in ion plasmas
has not been performed, this scaling appears to apply to our ion plasmas on a
qualitative level, i.e. shorter ion plasmas in stronger magnetic fields are observed to
expand radially much more slowly than longer ion plasmas in weaker magnetic fields.

Our estimate for the radial expansion rate of IV ion plasmas is then: <‘r.2> ~
(2.7 x 10 %s ") (B/1T) 2(L,/10cm)?  Assuming T',, o« nr, Equation D.2 can he

used to estimate an empirical form for the radial flux of radially-expanding ion
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plasmas in the IV apparatus:

B\ 2 I 2 n r R, \ 2
oo ) () () () () ()
: ( cm s ) 1T 10 ecm 107 cm—3 1em 1em ( )

The B and I, scalings of this model agree with those observed in other

experiments, but the n and T scalings differ. That is, experiments in electron plas-
mas (Figure 3.18) generally find a free expansion rate 7' o« R°% oc B2 f,;nQTq,

which gives a radial flux scaling T',, oc B2 f,;n‘?Tq, in contrast to the scaling of

Equation D.3, T, oc B2 LZnTO.



Appendix E

Symbols and Notations

This appendix compiles the symbols and notations commonly used in this

work. Whenever necessary, a definition of a symbol or the equation number where

it is first introduced is given. All equations are in the cgs convention. In general, a

subscript “e” refers to a quantity applied to electrons; a subscript “24” applies to a

quantities applied to 2*Mg*; e.g. “m.” is the electron mass, while “mg,” is the 2*Mg*

mass. The subscript “N” refers to neutral gas, e.g. Ty is the neutral temperature,

while the subscript “t” refers to spin-tagged test particles, e.g. n; is the density of

test particles.

fakdckrack* . Fundamental Quantities *Ffaksokick

(z,y,2)

Particle charge (e < 0 for electrons)

Particle mass

Time

Cartesian coordinates centered on the trap axis
Cylindrical coordinates centered on the trap axis
Magnetic field

Electrostatic potential

Electric field

Density

Speed of light in vacuum

Planck’s constant
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qﬁﬂ?f

q7
gN

Vdia
VE
Vtat

Ve

A~

oo~
=

=

A;Z@

)

Kok ok ok ok ok ok Rk ok Energies and Velocities 3K ok ok ok ok ok Kok ok

Temperature perpendicular to B

Temperature parallel to B

%Tll + %71 Average temperature

Ty — Ty Temperature anisotropy

Tt — o) Equilibrium temperature

T — T, Perturbation about equilibrium temperature
T /m Thermal velocity

n'T Pressure

3 .

cn'T Energy density

dq /ot Rate of change of plasma energy density

Egn. (5.9)

Component of ¢ from external perturbations

Component of ¢.,; resulting from plasma expan-
sion (Joule heating)

Egn. (5.9) Component of ¢.,; resulting from ion-neutral
collisions

Egn. (2.3) Diamagnetic rotation velocity of plasma

Egn. (2.4) E x B rotation velocity of plasma

Vgia + UE Total rotation velocity

(w — mowr)/k. Azimuthal phase velocity of mode

3K ok ok koK Kok ok ok Lengths Kok ok sk ok ok ok ok 3k ok

Length of Plasma

Radius of Plasma

5 em—h0 cm

0.2 cm—1 ecm

2.86 ¢cm Radius of trap wall

5.84 ¢m Length of trap rings

1T mm Diameter of collimator plate hole
~ 4 mm Height of LLIF-diagnosed volume
\/m Debye length

v/Q. Cyclotron radius

c/vo Wavelength of atomic resonance
~ R, Length of thermal gradient

e?/T Distance of closest approach

Impact parameter of a collision

129



Vphoton

ZXVO

Veot

Thek

FakdckkxE* Times and Frequencies

\/4rne?/m

eB/mc
vg/27r

fs/7n9

~ Nrec/n BR?

K

V2u0(v/c)

~ 43 MH~

vo(Via/ )
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>3k ok sk ok ok Kok ok ok

Plasma frequency

Cyclotron frequency

E x B rotation frequency of plasma
Thermal bounce frequency

Ton-ion collision rate
Electron-electron collision rate
lon-neutral collision rate

Anisotropic temperature relaxation rate resulting
from ion-ion collisions

Total anisotropic temperature relaxation rate
Electrostatic mode frequency
Frequency of a signal applied to a ring or sector

Rotation frequency of an applied signal with az-
imuthal dependence

mg = 1 diocotron mode frequency

Mode damping rate

Frequency of laser light

Resonance frequency of Mgt atomic transition
Laser detuning off-resonance

Count rate of scattered photons

Doppler broadening of atomic transition
Linewidth of atomic transition

Doppler shift of atomic transition due to plasma
rotation

Time for radially-expanding plasma to decrease
its central density by a factor of 2

Central density expansion rate of radially-
expanding plasma nq

mean-square radius expansion rate of plasma
Spontaneous spin-flip rate

Spontaneous spin-flip rate averaged over plasma
Optical pumping rate from laser sidebands

total rate of test-particle spin-flip

Rate at which confinement potential is dropped

Plasma heating rate from applied “wiggle”
perturbation

Note that w = 27 f for all frequencies.



n

>3k ok sk ok ok Kok ook ok Integrals >3k ok sk ok ok ok ok 3k ok

Egn. (2.1) Plasma angular momentum

27 [ nrdr Iiine charge density of plasma

L,Nr, Total number of particles in plasma

2x L, [ grdr Total plasma heating rate

2x L, [ gyrdr Component of Q resulting from plasma expansion

2n L, [ gnrdr Component  of Q resulting from ion-neutral
collisions

[ n?rdr/ [ nrdr Average plasma density

Fakdcktkxkx Fluxes and Transport Coefficients  Frfssokdosss

Eqgn. (5.5) Radial heat flux

Egn. (5.6) Measured thermal diffusivity

Egn. (5.1) Classical thermal diffusivity

Egn. (5.2) Long-range thermal diffusivity

Eqn. (6.3) Flux of test particles

Egn. (6.4) Measured test-particle diffusion coefficient

Egn. (6.1) Classical test-particle diffusion coefficient

Egn. (6.2) Long-range test-particle diffusion coefficient

Egn. (6.5) Test-particle diffusion coefficient for ion-neutral
collisions

Egn. (D.1) Radial particle flux of radially-expanding plasma

131



Nng

ny

npg

TNess

N final

Npack

k
P

a

(mg,m,,m.)

Q= &> =

D

n OO
bl
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>3k ok sk ok Kok ok ok Misce]laneous >3k ok ok ook ok ook ok

n(r =0)
n/107cm™?

B?/8rmc?

0.7 A3

mmpy/(m + my)

Egn. (C.10)

ni(t — oc)

27 /A
hk

fol fr

~m,x/l,

~ 4200 V
w/2y

~ 107"

Central plasma density

Normalized plasma density

Brillouin density

Intensity of laser beam

Time-averaged intensity of laser beam

Average polarizability of Hy molecule

Reduced mass for ion-neutral collisions
Temperature derivative of external heating term
Spin state of Mg* valence electron relative to B

Effective temperature of neutrals in rotating
frame of plasma

Measured final test particle density

Background (noise) density measured by LIF
diagnostic

Photon wavenumber

Photon momentum vector

Scattering cross-section

Azimuthal, radial, and axial mode numbers for
plasma modes

Plasma rigidity

Axial wave number of a plasma mode
Amplitude of a signal applied to a ring or sector
End-confinement potential

Mode quality

Charge collected on collimator plate

Charge collected on Faraday cup

efficiency of LIF detection optics
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