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ABSTRACT

This paper discusses a novel parametric instability mechanism caused by particles that are weakly trapped in the potential wells of a
nonlinear “pump” wave. The pump wave is unstable to the growth of daughter waves with longer wavelength and nearly the same phase
velocity as the pump. This induces adjacent potential peaks in the wave to slowly approach one-another, receding from other pairs of peaks.
Particles that are weakly trapped between approaching peaks, with kinetic energies just below the potential maxima, are heated by compres-
sion and escape the well, and then become retrapped on the other side of the approaching peaks, where they amplify the compression by
pushing the peaks together. The mechanism applies to low-collisionality plasmas supporting waves with near-acoustic dispersion relations
such as ion sound waves, magnetized Langmuir waves, or Alfv�en waves. The theory is compared to particle in cell simulations of Trivelpiece-
Gould (TG) traveling waves, as well as to experiments on pure ion plasmas that observe parametric instability in TG standing waves.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5116376

I. INTRODUCTION

In this paper, we discuss a newly discovered parametric decay
instability mechanism1 that involves kinetic effects caused by a distri-
bution of particles trapped in the potential wells of a nonlinear pump
wave. The mechanism causes exponential growth of daughter waves
that deplete the pump, with similar features to those observed in recent
experiments.2 The mechanism differs from well-known kinetic pro-
cesses such as nonlinear Landau damping/growth,3 which involves a
nonlinear wave-particle resonance, or the sideband instability,4,5 which
involves a wave resonance with trapped particles. Here, no wave-
particle resonance condition needs to be met. This allows instability to
develop over a broad range of daughter wavenumbers and frequencies,
causing strong wave damping and plasma heating in the nonlinear
stage.

The linear theory of the instability is described here for waves
with nearly acoustic dispersion relations (such as Alfv�en or ion–acous-
tic waves), but the mechanism could contribute to wave instability
even if this is not the case. It should therefore be applicable to a range
of nonlinear plasma waves that involve trapped particles. Here, we
apply the theory to nonlinear electrostatic Trivelpiece-Gould (TG)
waves6,7 propagating along a plasma column.

In the kinetic decay instability discussed here, peaks in the wave
potential and density move with respect to one-another. Some peaks
move closer together, and others recede from their neighbors. This
motion is replicated along the wavetrain, creating a periodic structure.
(This structure is the growing daughter wave or waves.) Particles

trapped between approaching wave peaks are heated by compression,
while particles trapped between peaks receding from one-another are
cooled. This heating and cooling of the trapped particles would nor-
mally produce restoring pressure forces that push back against the
motion of the peaks.

However, particles that are “weakly trapped,” i.e., with energies
close to the wave potential maxima, can gain enough energy in the
compressional heating so as to become untrapped. These untrapped
particles are then immediately retrapped as they reflect from, and lose
energy to, a receding potential peak, and are then cooled between the
adjacent receding peaks. These weakly trapped particles have
“switched sides” and now help push the peaks further together. This
detrapping and retrapping of weakly trapped particles can change the
sign of the pressure force, causing it to amplify the motion of the
peaks. In effect, the weakly trapped particles have negative compress-
ibility, which destabilizes the nonlinear wave.

Other instabilities have also been identified that rely on or involve
trapped particles, such as the previously mentioned sideband instabil-
ity, as well as a negative mass instability that causes trapped particles
to bunch.8 In addition, other authors have noted the strong effects that
trapped particles can have on the effective compressibility associated
with nonlinear plasma waves.9 Perhaps the most important difference
with this previous work is the focus here on weakly trapped particles
that are exchanged between different trapping potential wells.

If the motion of the potential peaks is slow compared to the
bounce time of the weakly trapped particles, one can treat the heating,
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detrapping, retrapping, and cooling using adiabatic theory, which sim-
plifies the analysis. This adiabatic limit is a good approximation for a
nearly acoustic dispersion relation, where the phase velocity of the
growing daughter waves is nearly the same as that of the pump wave.

In Sec. II, we consider a simple model of the instability that
captures the basic mechanism. This “moving wall” model was first
introduced in Ref. 1 for daughter waves with twice the pump wave-
length, and is extended here to describe the instability for daughter
waves with arbitrary wavelength. We find that all wavelengths are
unstable, but the maximum growth rate occurs for daughter waves
with twice the pump wavelength.

In Sec. III, we briefly review the fluid theory of nonlinear TG
traveling waves, and discuss linear perturbations to the waves. We
focus on low-frequency perturbations, since these are most easily
driven unstable by the negative compressibility of weakly trapped
particles. We show that for large amplitude pump waves these low-
frequency eigenmodes correspond to the translational motions of the
potential peaks mentioned above.

In Sec. IV, we develop a kinetic theory of particles weakly trapped
in the pump wave potential and derive general expressions for the
growth rate of the resulting instability. We also consider a simpler ver-
sion of the general theory that applies to large amplitude sharply
peaked pump waves, eventually recovering the results of the moving
wall model as a limit.

In Sec. V, we compare these theory expressions to particle-in-cell
simulations of nonlinear TG waves, finding close agreement between
the measured growth rates in the simulations and the theoretical
predictions of the general theory. The results are also in fair agreement
with the simpler theory models in their applicable large amplitude
regimes.

In Sec. VI, we compare experimental results on the instability
observed in TG standing waves to full r-z particle simulations in realis-
tic geometry of the experiments. Growth rates in these simulations
have similar behavior compared to the experimental measurements
with regard to the amplitude dependence of the growth rate as well as
to the temperature dependence. Also, by removing trapped particles
from the simulations, we find that we can turn off the instability.

In Sec. VII, we briefly discuss the results and consider some open
questions.

II. MOVING WALL MODEL

A simple moving wall model for this instability mechanism eluci-
dates the rather counterintuitive “negative-compressibility” behavior
of weakly trapped particles under adiabatic compressions and expan-
sions.1 Consider the maximum growth-rate case for which adjacent
potential peaks, initially evenly spaced by 2p, move in opposite direc-
tions. When two such peaks, say n and n – 1, move toward one-
another by a distance dLðtÞ, the trapped distribution between them is
adiabatically compressed, and the next two peaks (n and nþ 1) recede
from one-another by the same distance, causing particles trapped
between them to be adiabatically expanded (see Fig. 1). The velocity
distribution for the compressed particles changes from fT0ðvÞ to

f1ðvÞ ¼ fT0ðvð1� kÞÞ; (1)

where k ¼ dL=ð2pÞ is the fractional change in the distance between
adjacent peaks. The change in density of the compressed trapped par-
ticles is then

dn1 ¼ 2
ðvmax

0
dvðf1ðvÞ � fT0ðvÞÞ

¼ �2k
ðvmax

0
dvðfT0ðvmaxÞ � fT0ðvÞÞ; (2)

where vmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2Umax
p

is the maximum speed of a trapped particle
(assumed to have unit mass) and Umax is the potential maximum. In
the second line, we Taylor-expanded to first order in k, and performed
an integration by parts. For a weakly trapped distribution with
fT0ðvmaxÞ > fT0ðvÞ in the integrand of Eq. (2), the density change on
compression is negative. This is because, on compression, weakly
trapped particles are heated until they become untrapped, lowering
the trapped particle density in the compressed well. These detrapped
particles do not, however, join the untrapped particle distribution.
They are instead immediately retrapped in an expanding potential
well as they lose energy on reflection from one of the receding peaks,
see Fig. 1. Images and an animation of the detrapping and retrapping,
taken from particle simulations of the process, can be found in Ref. 1
as well as in Sec. V of this paper.

For particles trapped in an expanding potential well, the distribu-
tion changes from fT0ðvÞ to f2ðvÞ where

FIG. 1. (a) Initial potential UðsÞ for a large amplitude wave, and the band of occu-
pied energies � ¼ v2=2þ UðsÞ in a distribution fT0 of weakly trapped particles.
Untrapped particles are not displayed as they play no role in the instability. (b)
Potential and particle energies after the peaks shift positions as the instability
grows. Weakly trapped particles are detrapped and retrapped as they undergo adi-
abatic compression and expansion.
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f2ðvÞ ¼
fT0ðvð1þ kÞÞ; 0 < v < vmax=ð1þ kÞ;
fT0ð2vmax � vð1þ kÞÞ; vmax

1þ k
< v < vmax:

8<
: (3)

The second form of f2ðvÞ comes from particles that were lost from a
compressed well and retrapped in the expanding well. Integrating Eq.
(3) over velocity one finds that the change in density dn2 for particles
in this expanding well is dn2 ¼ �dn1, which also follows directly from
particle conservation. In the expanding potential well, density
increases for a weakly trapped distribution because of the addition to
the well of particles retrapped from the compressed well.

To analyze instability of the pump wave in this process, we con-
sider the change in energy of the trapped particles in the two adjacent
potential wells during the motion of the potential peaks along the
chain. The total kinetic energy change dK of these trapped particles is

dKðtÞ ¼ 4p
ðvmax

0
dv

v2

2
ð1� kÞf1 þ ð1þ kÞf2 � 2fT0½ �

¼ �bdLðtÞ2; (4)

where in the second line we performed a Taylor expansion to second
order in k using Eqs. (1) and (3), and where the expansion coefficient
b is found to be given by

b ¼ 6
2p

ðvmax

0
dvv2ðfT0ðvmaxÞ � fT0ðvÞÞ: (5)

The energy change is second order in dL because reflection sym-
metry requires dK to be independent of the sign of dL. For a weakly
trapped particle distribution, b > 0 and this kinetic energy change is
negative, implying that the trapped particles give up energy that can
drive instability. The coefficient b can be thought of as a coefficient of
negative compressibility for these trapped particles.

The total fluid energy associated with motion of the two adjacent
peaks (which move by dL=2 and �dL=2 respectively) is dE
¼Mðd _L=2Þ2 þKdL2. The first term is the kinetic energy of the two
peaks, each with inertial massM associated with their translation, and
the second is potential energy associated with a nearest-neighbor
repulsive interaction of the peaks with those on either side (the wave
peaks of a TG wave are concentrations of like-sign charge, screened
from one-another by the surrounding electrode structure). A method
of determining the “spring constant” K and the inertial mass M will
be described later. By conservation of energy dE þ dK ¼ 0, which
implies the overall energy budget for the system has the harmonic
oscillator form

M

4
ddL
dt

� �2

þ ðK� bÞdL2 ¼ 0: (6)

Thus, the kinetic energy dK ¼ �bdL2 of the weakly trapped particles
acts as a negative potential energy contribution to the overall energy,
thanks to the adiabatic approximation whereby the trapped particle
kinetic energy is a reversible function of the configuration of the wave
system.

The differential equation (6) for dL has exponentially growing
and decaying solutions with growth rate,

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðb�KÞ

M

r
: (7)

Instability occurs provided b >K, so that the destabilizing negative
compressibility b of weakly trapped particles overcomes the repulsive
spring constant j between pump wave density peaks, changing the
sign of the potential energy term in Eq. (6).

This moving wall model can be easily modified to allow for gen-
eral motions of the potential peaks, for a particular choice of trapped
particle distribution function. As before we take peaks initially at
equally spaced positions sn ¼ 2pn, n an integer. Between each peak
there are trapped particles, and for simplicity, we assume that their dis-
tribution is a uniform phase space density fT0 for vmin < v < vmax ,
and is zero for lower speeds, as shown in Fig. 1(a). We allow each peak
to slowly vary from its initial position by a small amount dsn. As the
potential wells between peaks compress or expand and particles are
traded between wells through adiabatic detrapping and retrapping, the
phase-space density of trapped particles remains at the uniform equi-
librium value fT0, but over a new range of speeds vn < v < vmax [see
Fig. 1(b)], where vn ¼ vmin=ð1þ knÞ, and where kn ¼ ðdsn � dsn�1Þ=
ð2pÞ is the fractional change in displacement between adjacent poten-
tial peaks.

Now, consider the force dFn on peak n due to trapped particles
with speed v. This force is the momentum change per unit time caused
by trapped particle reflections from the peak. To evaluate this, the
momentum change per reflection, 2v, is multiplied by the phase-space
particle flux fT0v, and integrated over v, accounting for particles
reflecting from both sides of the peak

dFn ¼
ðvmax

vn

dvfT02v
2 �

ðvmax

vnþ1

dvfT02v
2

¼ 2fT0v
3
minðkn � knþ1Þ

¼ �2fT0v3min
dsnþ1 � 2dsn þ dsn�1

2p
; (8)

where the second line uses a Taylor expansion assuming small changes
in the peak position. To this force, we add the force due to repulsion
between adjacent peaks, dFRn ¼ �Kðdsn � dsn�1 � dsnþ1 þ dsnÞ.

We use this force to evaluate the acceleration of the nth peak via
Md€sn ¼ dFn þ dFRn. A dispersion relation can then be obtained by
assuming that dsn / exp ðilsn � ixtÞ for some wavevector l. When
used in Newton’s law, this yields

x2 ¼ 4
K� b
M

sin2ðlpÞ; (9)

where b ¼ fT0v3min=p, as expected from Eq. (5). This exhibits instabil-
ity for all wavenumbers l 6¼ 0 whenever b >K, with maximum
growth when l ¼ 1=2. This wavenumber corresponds to adjacent
peaks in the pump wave moving in opposite directions, the case con-
sidered in the discussion surrounding Eq. (7).

III. FLUID THEORY OF TG PUMP WAVES

In this section, we review some relevant characteristics of the
fluid theory of TG waves, which will be required for the general kinetic
theory of the trapped particle instability. TG waves are compressional
electrostatic traveling waves in a magnetically confined cylindrical
plasma column.10,11 Cylindrically symmetric TG waves that are with-
out radial nodes can be approximately described by coupled evolution
equations for the plasma density N(z, t), the fluid velocity Vðz; tÞ, and
the plasma potential Uðz; tÞ, where z is the axial position and t is
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time.6,12 These fluid functions have been averaged radially over the
plasma column to remove radial dependence and simplify the theory.
For a cold plasma, neglecting thermal effects and the trapped particles,
the evolution equations are the continuity, momentum, and Poisson
equations for the cold fluid

@N
@t
þ @

@z
VNð Þ ¼ 0; (10)

@V
@t
þ @

@z
1
2
V2 þ U

� �
¼ 0; (11)

@2U
@z2
� k2?U ¼ �N þ 1; (12)

where the perpendicular wavenumber k? is determined by the plasma
radius and radius of the surrounding cylindrical electrode structure.
Here, and throughout the paper, we employ dimensionless variables,
with density scaled by the equilibrium density n0, times scaled by the
equilibrium plasma frequency xp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pq2n0=m

p
, and distances

scaled by the wavenumber kf of the pump wave. The scaled potential
energyU is in units ofmx2

p=k
2
f .

As discussed in Refs. 1, 6, and 7, it is useful to work in the frame
of the traveling wave, and define the fluid velocity V � V� u with
respect to this wave frame, where u is the wave speed as seen from the
lab frame. In the wave frame, Eqs. (10)–(12) can be written as

@N
@t
þ @

@s
VNð Þ ¼ 0; (13)

@V
@t
þ @

@s
1
2
V2 þ U

� �
¼ 0; (14)

@2U
@s2
� k2?U ¼ �N þ 1; (15)

where s � z � ut is position measured in the wave frame. In this
frame, the traveling wave is stationary, with N ¼ N0ðsÞ;V ¼ V0ðsÞ,
and U ¼ U0ðsÞ where N0, V0, and U0 are solutions to the time-
independent versions of Eqs. (13)–(15)

@

@s
V0N0ð Þ ¼ 0; (16)

@

@s
1
2
V0

2 þ U0

� �
¼ 0; (17)

@2U0

@s2
� k2?U0 ¼ �N0 þ 1: (18)

These solutions are parametrized by the amplitude A of the wave,
defined here and in Refs. 1, 6, and 7 as the amplitude of the first
Fourier harmonic of the density,

A �
ð2p
0

ds
2p

N0ðsÞ exp ð�isÞ: (19)

The origin of the coordinate s is chosen at a maximum of the wave, so
that N0, V0, and U0 are even functions of s; and so A is real (and posi-
tive-definite).

The wave speed u is a monotonically increasing function of the
pump wave amplitude A, and also depends on k?, and is given by Eq.
(68) in Ref. 6. For small A, the wave is nearly a single Fourier mode
with wave speed u ¼ u1 þ 0ðA2Þ where

uk � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2?

q
(20)

is the linear phase speed of TG waves with wavenumber k (measured
in our dimensionless units). The density and velocity are, respectively,
N0ðsÞ ¼ 1þ 2A cos ðsÞþ 0ðA2Þ; V0ðsÞ ¼ �u1 þ 2Au1 cos ðsÞþ 0ðA2Þ.
This may be verified by substitution of these solutions into Eqs.
(13)–(15), keeping terms only up to first order in A. Higher order
terms in an expansion in small A for each of these quantities, and
numerical solutions for larger A values, can be found in Ref. 6.

As A or k? increases, it was found that the pump wave peaks
become higher and sharper, while the troughs become broader (see
Fig. 2, Fig. 5 in Ref. 6, or Fig. 1 in Ref. 7). This general behavior is com-
mon to many nonlinear wave systems, including k-dV, Boussinesq,
and Stokes waves. The steady solutions are a balance between disper-
sion (controlled by k?), which tends to broaden the wave peaks, and
nonlinearity, which tends to steepen the peaks. Smaller dispersion (i.e.,
larger k?) or larger amplitude A therefore causes more steepening of
the wave profile. When k? and A are both large, the wavetrain can be
characterized roughly as a chain of weakly interacting solitons; i.e., a
uniformly spaced sequence of sharp, well-separated, individual peaks.

A. Fluid stability of TG pump waves

The stability of small fluid perturbations to these steady pump
wave solutions has also been investigated, both analytically and
numerically.6,7 In the wave frame, the perturbations satisfy the linear-
ized fluid equations,

@dN
@t
þ @

@s
V0dN þ N0dVð Þ ¼ 0; (21)

@dV
@t
þ @

@s
V0dV þ dUð Þ ¼ 0; (22)

@2dU
@s2
� k2?dU ¼ �dN: (23)

We consider solutions of these equations using periodic bound-
ary conditions with period 2pM, M a positive integer. Because the
pump wave is a time-independent flow in the pump wave frame, the
perturbations to the pump wave take the form of a linear superposi-
tion of normal modes. Each mode has perturbed density dNðs; tÞ, fluid

FIG. 2. TG pump waves for perpendicular wavenumber k? ¼ 3, at three ampli-
tudes A.
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velocity dVðs; tÞ, and potential dUðs; tÞ. The time dependence of these
normal modes is of the form exp ð�ix0tÞ wherex0 is a (possibly com-
plex) mode frequency. Furthermore, since the pump wave is periodic
in s, Floquet theory implies that each normal mode is doubly periodic
in position with s dependence of the form exp ðilsÞf ðsÞ, where f is
some periodic function with the pump wave period 2p, and l is any
wavenumber that matches the boundary conditions, in the range
�1=2 < l � 1=2 [adding an integer to l merely redefines f(s)].7 For
periodicity 2pM, this implies that l takes the values l ¼ n=M for
integers n in the range ½�M=2;M=2�. For a given value of l in this
range, there is a countably infinite set of normal modes.

More progress can be made by writing the coupled mode equa-
tions (21)–(23) in vector form,1

ix0wðsÞ ¼ L̂ � wðsÞ � @

@s

V0ðsÞ N0ðsÞ
Ĝ V0ðsÞ

 !
� wðsÞ

¼ @

@s

V0dN þ N0dV

dUþ V0dV

 !
; (24)

where w ¼ ðdN; dVÞ is a vector normal mode, L̂ is the above-defined
matrix integrodifferential operator, and Ĝ is the Green’s function
operator for the linearized Poisson equation (23), defined by
ĜdN ¼ dU. These vector normal modes can be shown to form an
orthogonal set with respect to a generalized matrix inner product
defined by its action on any two vector functions w1ðsÞ andw2ðsÞ

w1;w2½ � � 1
4

ð
ds

2pM
w�1ðsÞ � Ĝ

†
V0ðsÞ

V0ðsÞ N0ðsÞ

 !
� w2ðsÞ; (25)

where Ĝ
†
is the left Green’s function operator, defined by dNĜ

†

¼ dU, and the integral over s runs over a displacement of 2pM.
The inner product of an eigenmode with itself is the energy dE

(per unit length) of that eigenmode

w;w½ � ¼ dE ¼ 1
4

ð
ds

2pM
N0ðsÞjdVðsÞj2
�

þ2V0ðsÞRe dNðsÞ�dVðsÞ
� �

þ dUðsÞ�dNðsÞg: (26)

Also, the matrix operator L̂ can be shown to be anti-Hermitian
with respect to this inner product

w1; L̂w2

� �
¼ � L̂w1;w2

� �
; (27)

and this leads to several results; in particular, a proof that x0 is real
provided that dE 6¼ 0, and that the eigenmodes form an orthogonal
set.

The frequency spectrum of these normal modes was examined
using analytical methods valid for small pump amplitude, and numeri-
cal methods based on Hill’s method13 for larger amplitudes.7 Modes
were shown to come in complex-conjugate pairs: for every mode with
frequency x0 and given perturbed density and velocity, there is a cor-
responding mode with frequency �x�0, and complex conjugate per-
turbed density and velocity (which implies that it has a l value of
opposite sign).

For low pump amplitudes, the eigenmodes have spatial form
close to exp ðiksÞ for given wavenumber k and frequencies close to the
frequency of linear TG modes as seen in the frame of the pump wave.

There are two branches corresponding to the two directions of
propagation

x6
0 ðkÞ ¼ �ku16kuk; A� 1: (28)

Using the numerical frequency spectra as well as analytical the-
ory, it was shown that for narrow ranges of the wavenumber k
(depending on k? and A) there are frequency degeneracies between
pairs of eigenmodes that cause the pump wave to become weakly
unstable to the growth of the degenerate modes.7 The superposition of
degenerate modes forms a perturbation with energy dE ¼ 0, allowing
x0 to be complex. However, it was found that the derived instability
growth rates are too small to explain observed growth in current
experiments.2

1. Fluid theory of low frequency perturbations to large
amplitude pump waves

Here, we will further examine the low frequency fluid eigemodes
on a pump wave of large amplitude, since it will turn out that these
low-frequency eigenmodes are the most easily driven unstable by the
presence of trapped particles in the pump waves.

In Fig. 3, we compare Eq. (28) to the numerically determined fre-
quencies from Hill’s method, focussing on the low-frequency regime.
The frequencies are plotted vs wavenumber l for the three pump
wave amplitudes shown in Fig. 2. For low amplitude, the frequencies
are close to xþ0 ðkÞ (the solid curves in the plot, plotted vs l ¼ k� n
where the integer n is chosen so that the result for l falls in the range
½�1=2; 1=2�).

At large amplitude, the low-frequency eigenmodes have frequen-
cies that are well-matched by the functional form x0 ¼ 6a sinpl,
with a a decreasing function of both pump amplitude A and k?. One
might recognize this type of dispersion relation from condensed-
matter physics: It is the dispersion relation obtained for a one-
dimensional chain of identical masses connected by springs. The low-
frequency eigenmodes of the pump wave obey this type of dispersion
relation because at large amplitudes the pump wave resembles a chain

FIG. 3. Eigenmode frequencies vs wavenumber l for the three pump waves shown
in Fig. 2 (dots), focusing on low frequency modes. For the small amplitude case
A¼ 0.02 these are close to the low-amplitude theory xþ0 ðkÞ (solid curves). For the
large ampliude case A¼ 0.13 a fit to the data of the form 6a sin ðpkÞ works well
(curves through the data, with a ¼ 1:33	 10�3).
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of weakly interacting solitons: a set of narrow well-separated peaks
(see Fig. 2) with density, potential, and velocity well-approximated by

N0ðsÞ ¼ N0ðpÞ þ
X
n

Nsðs� 2pnÞ;

U0ðsÞ ¼ U0ðpÞ þ
X
n

Usðs� 2pnÞ;

V0ðsÞ ¼ V0ðpÞ þ
X
n

Vsðs� 2pnÞ; (29)

where UsðxÞ; VsðxÞ and NsðxÞ are sharply peaked functions, symmet-
ric in x, approaching zero for jxj ! p.

The lowest frequency eigenmodes on this pump wave are long
wavelength perturbations that move the pump wave peaks with
respect to one another without changing the shape of the peaks very
much; for example, the potential in the mode can be approximately
represented as

Uðs; tÞ ¼ U0ðpÞ þ
X
n

Usðs� 2pn� dsnðtÞÞ; (30)

where dsnðtÞ is the change in position of the nth peak; and similarly
for the density and velocity. So Taylor expanding to first order in dsn,
the perturbed density, potential, and velocity in the normal mode have
the approximate form

dN ¼ �
X
n

dsnðtÞN 0sðs� 2pnÞ;

dU ¼ �
X
n

dsnðtÞU0sðs� 2pnÞ;

dV ¼ �
X
n

dsnðtÞV 0sðs� 2pnÞ:

(31)

An example of such a mode is displayed in Fig. 4, for l ¼ 1=8. As
shown in the figure, the change in density is well-represented by the

derivative of the pump wave peaks, with the amplitudes of each peak
multiplied by

dsn ¼ dsmax exp ðilsn � ix0tÞ; sn ¼ 2pn; (32)

where dsmax is the maximum displacement amplitude in the mode.
This form for dsn has a spatial dependence that is consistent with
Floquet’s theorem.

These types of modes are low frequency because there is little
restoring force to the motion of peaks with respect to one-another; the
near-solitons interact very weakly with one-another when they are far
apart compared to their width. If we posit the potential interaction
between peaks as nearest neighbor with a linear restoring force con-
stant K, we then obtain a spectrum given by the longitudinal modes
of wavenumber l on a chain of identical particles of mass M14 with
nearest-neighbor separation 2p,

x2
0ðlÞ ¼

4K
M

sin2ðplÞ: (33)

This simple model explains the observed frequency dependence on
wavenumber for the low-frequency modes, with the ratio a2 ¼
4K=M obtained from the fit to the frequency data.

The simple chain model also explains the energy of the low-
frequency modes found from the Hills method and Eq. (26). This
energy is plotted in Fig. 5 vs l for the large amplitude case A¼ 0.13,
k? ¼ 3. For a longitundinal normal mode with wavenumber l on a
chain of M particles (periodically replicated) with harmonic nearest-
neighbor interactions, the total energy is MMx2

0ðlÞds2max=2 and so
the energy per unit length is

dE0 ¼
1
4p

Mx2
0ðlÞds2max: (34)

The numerically determined energy for these low-frequency
modes is well-fit by Eq. (34), taking Eq. (33) for x0ðlÞ (see Fig. 5).
Now, the value of the mode normalization constant dsmax can be
determined independently by fitting the eigenmodes to the functional
forms given in Eq. (31), with N 0sðsÞ ¼ N 00ðsÞ;�p < s < p, and
N 0sðsÞ ¼ 0 otherwise; and similarly for Vs and Us. With dsmax known
from this fit, a fit of the energy to the form given in Eq. (34) deter-
mines the massM associated with each peak in the pump wave. This

FIG. 4. Real and imaginary parts of the perturbed density in the lowest-frequency
eigenmode for k? ¼ 3;A ¼ 0:13, and l ¼ 1=8, plotted over one wavelength of
the mode. Overlayed on this mode are cos ðlsÞ and sin ðlsÞ.

FIG. 5. Energy per unit length of the low-frequency modes vs wavenumber l for
the case of a pump wave with A¼ 0.13 and k? ¼ 3, determined from Hills method
(dots) and from a fit to Eq. (34) (curve). Here, we obtain from the fit that
M ¼ 1:92, having obtained dsmax from a separate fit described in the text.
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method of determining the mass is more accurate than the approxima-
tion for the mass based on soliton energy that was used in Ref. 1. Once
we know the mass and the mode frequency, we can also obtain the
spring constantK via x0ðl ¼ 1=2Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K=M

p
.

IV. KINETIC THEORY OF PUMP WAVE PARAMETRIC
INSTABILITY

We will now consider the destabilization of the low-frequency
eigenmodes to the pump wave caused by weakly trapped particles. We
add a particle “tail” distribution fTðs; v; tÞ to the cold plasma, making
an overall density of Nðs; tÞ þ NTðs; tÞ where NT ¼

Ð
dvfT is the den-

sity of tail particles. These tail particles model an energy spread to the
cold plasma distribution. The tail distribution can include particles
trapped in the pump wave potential wells. What follows is an
expanded and clarified version of the theory described in Ref. 1.

The tail particles couple to the fluid density N through their effect
on the plasma potential U. To determine this effect, we include the tail
density NTðs; tÞ in Eq. (15)

@2U
@s2
� k2?U ¼ �N � NT þ 1: (35)

The tail particles are assumed to satisfy the Vlasov equation,

@fT
@t
þ v

@fT
@s
� @U
@s
@fT
@v
¼ 0: (36)

The tail particles change both the pump wave solution and the
perturbations to the pump wave. In the stationary pump wave, the tail
particles form a Bernstein-Greene-Kruskal (BGK) state15 with a distri-
bution function depending only on particle energy � ¼ v2=2þ UðsÞ:
fT ¼ fT0ð�Þ. The cold plasma density and fluid velocity are then shifted
from N0ðsÞ and V0ðsÞ to N(s) and V(s), respectively, where these func-
tions satisfy the time-independent versions of Eqs. (13) and (14),

@

@s
VNð Þ ¼ 0; (37)

@

@s
1
2
V2 þ U

� �
¼ 0; (38)

along with Eq. (35).
Throughout we will assume that the tail particle density is small

and work to first order in this density. In this case, we can write
N ¼ N0 þ N1;V ¼ V0 þ V1;U ¼ U0 þ U1 where N1;V1;U1 are the
small corrections to the fluid pump wave density, velocity, and poten-
tial caused by the tail particles. These corrections satisfy linearized ver-
sions of Eqs. (35), (37), and (38),

@

@s
V0N1 þ N0V1ð Þ ¼ 0; (39)

@

@s
V0V1 þ U1 þ UT0ð Þ ¼ 0; (40)

@2U1

@s2
� k2?U1 ¼ �N1; (41)

@2UT0

@s2
� k2?UT0 ¼ �NT0; (42)

where NT0ðsÞ ¼
Ð
dvfT0ð�Þ is the equilibrium tail particle density in

the stationary pump wave (as seen in the wave frame), and UT0 is the
potential corresponding to this density.

Time-dependent small perturbations on this nonlinear pump
wave satisfy

@dN
@t
þ @

@s
VdN þ NdVð Þ ¼ 0; (43)

@dV
@t
þ @

@s
VdV þ dUð Þ ¼ 0; (44)

@2dU
@s2
� k2?dU ¼ �dN � dNT ; (45)

where the perturbed tail particle density dNT ¼
Ð
dvdfT , and the per-

turbed tail particle distribution dfT satisfies the linearized Vlasov
equation

@dfT
@t
þ v

@dfT
@s
� @U
@s
@dfT
@v
þ @dU

@s
@fT0
@v
¼ 0: (46)

We will simplify the Vlasov response of the tail particles by assuming
that the evolution of perturbations to the pump wave is slow com-
pared to the time scale associated with tail particle motion in the sta-
tionary pump wave, so that adiabatic theory is a good approximation.
Then, Eq. (46) can be integrated to obtain16

dfT ¼
@fT0
@�
ðdUðsÞ � hdUið�ÞÞ; (47)

where hdUið�Þ is the bounce-average of dUðsÞ around a particle orbit
of energy �

hdUið�Þ ¼ 1
sð�Þ

þ
ds

vð�; sÞ dUðsÞ; (48)

sð�Þ ¼
Þ
ds=vð�; sÞ is the period of the orbit, and vð�; sÞ is the particle

speed at energy �, satisfying v2=2þ UðsÞ ¼ �. The adiabatic approxi-
mation relies on the assumption that x0s� 1 where x0 is the fre-
quency of the fluid motions. The main effect of this approximation is
to neglect Landau resonances in the response of the tail particles to the
pump wave perturbations.

We consider the effect of the tail particles on a fluid eigenmode
w ¼ ðdN; dVÞ, keeping terms only to first order in the tail particle
density. We separate out all terms involving the tail density in Eqs.
(43)–(45), and use the matrix operator notation of Eq. (24), obtaining

ixw ¼ L̂ � wþ Ĉ � w; (49)

where x is the frequency of the eigenmode, shifted from x0 by the tail
particles, and the operator Ĉ involves the tail particle terms

Ĉ � w ¼ @

@s
V1dN þ N1dV
V1dV þ dUT

� �
; (50)

and dUT � ĜdNT is the perturbed potential due to the tail particles
only. The tail potential dUT depends implicitly on the perturbed fluid
density dN through Eq. (47), with dU ¼ ĜdN .

This expression for Ĉ differs from that found in Ref. 1 because
here we explicitly separate out the change to the equilibrium density N1

and velocity V1 of the pump wave caused by the tail particles, while in
Ref. 1 these terms were not separated out, and there L̂ was defined in
terms of N and V rather than the unperturbed cold fluid equilibrium
density and velocity N0 and V0. The results using either method are
equivalent, and the method used in Ref. 1 is more elegant, but it is useful
to explicitly write out all the tail particle dependencies as we do here.
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We solve Eq. (49) to first order in the tail density via perturbation
theory, writing

w ¼ A1w0 þ A2w
�
0 þ Dw; (51)

where A1 and A2 are constants to be determined, w0ðsÞ ¼ ðdNðsÞ;
dVðsÞÞ is the fluid vector eigenmode obtained for no tail particles, sat-
isfying ix0w0 ¼ L̂w0, while DwðsÞ is a small correction (of order the
tail particle density), chosen to be orthogonal to both w0 and w�0. We
will assume that x0 is real and dE0 ¼ ½w0;w0� is nonzero (i.e., that we
are not working with an unperturbed eigenmode for which there is a
degeneracy that causes fluid instability).

Now substitute Eq. (51) into Eq. (49), obtaining

ixðA1w0 þ A2w
�
0 þ DwÞ ¼ ix0ðA1w0 � A2w

�
0Þ þ L̂Dw

þA1Ĉw0 þ A2Ĉw�0 þ ĈDw: (52)

The last term ĈDw can be dropped because we are working only to
first order in the tail density. Now take an inner product of this equa-
tion with respect to first w0 and then w�0, giving two equations.
The first equation involves ½w0; L̂Dw� which by Eq. (27) equals
�½L̂w0;Dw� ¼ �½ix0w0;Dw� ¼ 0, since Dw is orthogonal to w0.
Similarly, in the second equation ½w�0; L̂Dw� ¼ 0. We are then left with
two equations in the two unknowns A1 and A2. In matrix form, these
equations are

x� x0 þ X Y
Y� xþ x0 � X�

� �
� A1

A2

� �
¼ 0

0

� �
; (53)

where we have divided through by the factor idE0 and have defined
X � i½w0; Ĉw0�=dE0 and Y � i½w�0; Ĉw0�=dE0.

In order for there to be a nontrivial solution to this matrix equa-
tion, the determinant of the coefficient matrix must vanish. This
implies that the eigenmode frequency x must satisfy

x2 þ xðX � X�Þ þ x0ðX þ X�Þ � x2
0 � jXj

2 � jY j2 ¼ 0: (54)

We will see in a moment that X is real, so the second term in this equa-
tion vanishes. Also, we are working only to first order in the tail den-
sity, so the X2 and Y2 terms can be dropped since they are second
order. This implies that, to first order, the eigenmode frequency is
given by x2 ¼ x2

0 � 2Xx0: This implies that instability occurs when
X > x0=2. Since X is of order the tail density, assumed small, the
mode frequency x0 must also be small for instability to occur. We are
therefore interested in the lowest-frequency fluid modes, as these will
be the most easily destabilized by trapped particles. It is therefore use-
ful to define the quantity �X ¼ 2X=x0. In terms of �X , the perturbed
wave frequency is given by

x2 ¼ x2
0ð1� �XÞ: (55)

Instability occurs when �X > 1.
The inner product required in �X can be evaluated with the aid of

Eqs. (25) and (50),

w0; Ĉw0

� �
¼ 1

8pM

ð
ds

dU� þ V0dV�

V0dV� þN0dV�

� �
� @
@s

N1dV þ V1dN
V1dV þ dUT

� �
:

(56)

This integral can be simplified by integrating by parts and applying
Eq. (24), which yields

�X ¼ � 1
4pMdE0

ð
ds

dV�

dN�

 !
�

N1dV þ V1dN

V1dV þ dUT

 !

¼ � 1
4pMdE0

ð
ds N1jdV j2 þ 2V1Re dNdV�ð Þ þ dN�dUT

� 	
:

(57)

Compared to Eq. (26), one can see that �X is simply the negative of the
extra fluid energy caused by the trapped particles, compared to half
the unperturbed eigenmode energy, dE0=2. The factor of two arises
because, for stability analysis, we compare the extra trapped particle
energy to the mean potential energy of the eigenmode, which is half
the total energy for any oscillator. Now that we have derived this, it is
not surprising in retrospect that this enters as it does into the fre-
quency shift in Eq. (55), since the square of the frequency of a linear
normal mode is proportional to mode energy in any linearized conser-
vative system; see Eq. (34), for example. In fact, we might have skipped
the theory leading to this altogether and simply written this expression
down directly. Note, by the way, that the signs are such that when �X is
positive, the trapped particle contribution to the eigenmode potential
energy is negative, destabilizing the wave by changing the sign of the
eigenmode potential energy when �X > 1.

The last term in Eq. (57) can be integrated by parts twice, using
Eq. (15) to obtain

Ð
dsdN�dUT ¼

Ð
dsdU�dNT . Then using Eq. (47)

to evaluate dNT we obtain

�X ¼ 1
2dE0

ð
dsdv
2pM

@fT0
@�

jhdUi �ð Þj2 � jdU sð Þj2

 �

� 1
2dE0

ð
ds

2pM
N1jdVj2 þ 2V1Re dNdV�ð Þ
� 	

: (58)

Here, we have used the following identity: for any function of particle
energy g �ð Þ;

Ð
dsdvg �ð ÞdU� sð Þ ¼

Ð
dsdvg �ð ÞhdUi� �ð Þ.

Equation (58) shows explicitly that the energy ratio �X is a real
quantity, so we were justified in setting X� ¼ X in Eq. (54).

The second line of Eq. (58) did not appear in Eq. (18) of Ref. 1
because there it was subsumed into a contribution to x2

0 of first order
in the tail density, through the use of N and V rather than N0 and V0

in the definition of the operator L̂. Here, we explicitly write out all
terms proportional to the tail density so that evaluations of their effect
on stability are easier to understand.

Equations (55) and (58) are the main theory results that we will
use to evaluate parametric instability due to weakly trapped particles.
In Sec. IVA, we will evaluate these expressions in various cases and
compare results to more intuitive approaches to the theory.

A. Instability of a chain of sharp peaks

We first consider the stability of a pump wave of large amplitude
with large k?, because we can then make some further analytical pro-
gress, and gain some intuition. As discussed in Sec. III, such pump
waves resemble a sequence of narrow isolated peaks separated by flat
potential sections; i.e., a chain of near-solitons. For simplicity in the
following analysis, we define the zero of the potential such that
U0 pð Þ ¼ 0 in Eq. (29). The low-frequency eigenmodes to the chain of
peaks consist of motions of the peaks by small distances dsn
/ exp ilsnð Þ; sn ¼ 2np, creating perturbations of the form given in
Eq. (31).
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Substituting these into Eq. (58), we first consider the bounce-
average of dU that appears in this equation, evaluated via Eq. (48). For
particles that are not trapped in the potential wells (i.e., with energy
� > �max where �max ¼ U0 0ð Þ is the height of the peaks in potential
energy), hdUi ¼ 0 because for each peak in the potential, U0s sð Þ in odd
in s, but v �; sð Þ is even in s. However, for particles trapped between the
n – 1st and nth potential peaks (i.e., 2 n� 1ð Þp < s < 2np), with
� < �max ,

hdUi �ð Þ ¼ � 2
s �ð Þ

ðs2
s1

ds
v �; sð Þ

	 dsn�1U
0
s s� 2 n� 1ð Þpð Þ þ dsnU

0
s s� 2npð Þ

� 	
: (59)

Here, s1 is the left turning point in the potential well created by the
two adjacent potential peaks, and s2 is the right turning point. This can
be broken into two integrals, the first integrand peaked near s1 and the
second integrand peaked near s2. By shifting the origin of coordinates
by 2 n� 1ð Þp in each integral, we obtain

hdUi �ð Þ ¼ � 2dsn�1
s �ð Þ

ð�s2

�s1

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �� Us sð Þð Þ

p U0s sð Þ

� 2dsn
s �ð Þ

ð�s2

�s1

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �� Us s� 2pð Þð Þ

p U0s s� 2pð Þ: (60)

where the shifted turning points are locations that satisfy � ¼ Us �s1ð Þ
(on the right side of the peak) and � ¼ Us �s2 � 2pð Þ (on the left side of
the peak). We have also used Eq. (29) with U0 pð Þ ¼ 0 to write v �; sð Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �� Us sð Þð Þ

p
for s near the peak of the first integrand, and v �; sð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �� Us s� 2pð Þð Þ

p
in the second integrand, which is peaked near

s ¼ 2p.
Each integrand can be written as a derivative with respect to s,

hdUi �ð Þ ¼ 2dsn�1
s �ð Þ

ð�s2

�s1

ds
@

@s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �� Us sð Þð Þ

p

þ 2dsn
s �ð Þ

ð�s2

�s1

ds
@

@s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �� Us s� 2pð Þð Þ

p
; (61)

which allows direct evaluation of the integrals, yielding, for trapped
particles,

hdUi �ð Þ ¼ 2
ffiffiffiffiffi
2�
p

s �ð Þ dsn�1 � dsnð Þ; � < �max

2p n� 1ð Þ < s < 2pn
(62)

where we have used Us �s2ð Þ ¼ 0 and Us �s1 � 2pð Þ¼ 0.
Substituting Eqs. (62) and (31) into Eq. (58), and using the non-

overlapping nature of the sharply peaked functions in the sums, and
the fact that fT0 is periodic in s with period 2p, we then obtain

�X ¼ 1
4pMdE0

XM
n¼1

jdsn�1 � dsnj2b�jdsnj2
ð
ds

�
N1 sð ÞV 0s sð Þ

2

 

þ2V1 sð ÞN 0s sð ÞV 0s sð Þ þ U0s sð Þ
2
ð
dv
@fT0
@�


!
; (63)

where b is a phase space integral over the trapped particle distribution
given by

b ¼
ð

� < �max
0 < s < 2p

dsdv
@fT0
@�

8�
s2 �ð Þ : (64)

We will soon see that this expression for b is a more general form of
the negative compressibility given by Eq. (5) in the moving wall
model.

Equation (63) can be simplified considerably. Consider the inte-
grals in the second and third lines,ð

ds N1 sð ÞV 0s sð Þ
2 þ 2V1 sð ÞN 0s sð ÞV 0s sð Þ þ U0s sð Þ

2
ð
dv
@fT0
@�

� 

: (65)

First, we note that @fT0 �ð Þ=@�
� 	

U0s sð Þ
2 ¼ @fT0 �ð Þ=@s

� 	
U0s sð Þ, since

� ¼ v2=2þ Us sð Þ wherever Us sð Þ is nonzero. The velocity integral of
this expression then yields N 0T0 sð ÞU0s sð Þ, where NT0 sð Þ is the equilib-
rium tail particle density. Since we must integrate this expression over
s in Eq. (65), we can integrate by parts twice to obtainð

ds N1 sð ÞV 0s sð Þ
2 þ 2V1 sð ÞN 0s sð ÞV 0s sð Þ þ U0T0 sð ÞN 0s sð Þ

� �
; (66)

where UT0 sð Þ is the equilibrium potential due to the tail particles.
However, according to Eq. (40), N 0s sð ÞU0T0 sð Þ ¼ �N 0s sð Þ @=@sð Þ
VsV1 þ U1ð Þ, where we replaced V0 by Vs since we require V0 only
near the peak in N 0s . (We will employ this trick several more times in
the following derivation.) Substituting this into Eq. (66) there is a can-
celation, and we obtainð

ds N1V
02
s þ V1N

0
sV
0
s � VsN

0
sV
0
1 � N 0sU

0
1

� �
: (67)

In the last term, we can integrate by parts twice, replacing N 0sU
0
1 with

N 01U
0
s. We can then use U0s ¼ �VsV 0s [since Us is an equilibrium fluid

potential; see Eq. (38)] to obtainð
ds N1V

02
s þ V1N

0
sV
0
s � VsN

0
sV
0
1 þ N 01VsV

0
s

� �
: (68)

By manipulating the derivatives, the middle two terms in
the square bracket can be recast, yielding V1N 0sV

0
s � VsN 0sV

0
1

¼ V1Nsð Þ0 Vsð Þ0�V 01 NsVsð Þ0. The second term vanishes for an equilib-
rium flow, see Eq. (37); the first term can be replaced by � N1Vsð Þ0V 0s ,
according to Eq. (39). This implies that Eq. (68) becomesð

ds N1V
02
s � N1Vsð Þ0V 0s þ N 01VsV

0
s

� �
: (69)

However, upon expanding the derivatives, this expression vanishes.
Therefore, only the first term in Eq. (63) survives, arising from the
bounce-average of the perturbed potential

�X ¼ b
4pMdE0

XM
n¼1
jdsn�1 � dsnj2: (70)

This shows that the energy ratio �X is nonzero only when there is
a distribution of trapped particles, since b¼ 0 otherwise. Using Eqs.
(32)–(34) and performing the sum, Eq. (70) simplifies to

�X ¼ b
K
: (71)

Thus, in the chain of sharp peaks model the energy ratio �X is the ratio
of the negative compressibility b to the spring constant K. The insta-
bility criterion �X > 1 is equivalent to b >K: the negative compress-
ibility is large enough to overcome repulsion between the density
peaks, changing the sign of the potential energy.
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Applying Eqs. (71) and (33) to Eq. (55) yields the perturbed
mode frequency

x2 ¼ 4
K� b
M

sin2 plð Þ: (72)

This dispersion relation recovers Eq. (9), but for a more general wave
potential structure and for a general trapped particle distribution.

For very narrow peaks, we can treat the peaks as moving walls as
was done in deriving Eq. (9), and then the negative compressibility b
given by Eq. (64) can be further simplified by noting that trapped par-
ticles in effect perform specular reflections off of the walls, with period
s �ð Þ ¼ 4p=v where v �ð Þ ¼

ffiffiffiffiffi
2�
p

is the speed of particles moving
between the walls. When this approximation is used in Eq. (64), and
an integration by parts is performed, the result can be expressed as

b ¼ 6
2p

ðvmax

0
dvv2 fT0 vmaxð Þ � fT0 vð Þ

� 	
: (73)

and where vmax ¼
ffiffiffiffiffiffiffiffiffiffiffi
2�max
p

is the speed of particles at the separatrix
between trapped and passing particles, and here, we consider the dis-
tributions to be functions of velocity rather than energy. This expres-
sion for b recovers the moving wall approximation Eq. (5).

V. PARTICLE IN CELL (PIC) SIMULATIONS COMPARED
TO THEORY

In this section, we describe particle in cell simulations of the
trapped-particle parametric instability, and comparison of the
observed instability growth rates to the theory. Simulations were per-
formed in the pump wave frame with periodic boundary conditions of
period 4p, i.e., twice the pump wavelength. This period allows eigenm-
odes with l¼ 0 or l ¼ 1=2. The total number Nsim of particles in
these simulations was 106. The particles were stepped forward in time
using the second-order leapfrog method with a time step Dt ¼ 0:04.
The potential was evaluated using a fast Fourier transform solution of
the Poisson equation on a 600 element uniform grid, with density
determined using standard linear interpolation to the grid. Most of the
particles were given initial velocities v ¼ V0 sð Þ and were randomly
distributed in s with density N0 sð Þ in such a way as to self-consistently
form a pump wave with wave potential U0 sð Þ. These particles consti-
tuted the cold fluid, all with equal particle energy �0 � V2

0=2þ U0.
A relatively small number NT of added particles formed the tail

distribution, making up the remainder of the 106 particles in the simu-
lation. We chose this distribution to be uniform in phase space
between some energy �min and the fluid energy �0, and zero otherwise.
Particles were therefore placed randomly within this phase space
region, with uniform weighting. An example of the resulting initial
velocity distribution is displayed in Fig. 6, and particle energies are dis-
played in Fig. 7, compared to the fluid potential energy U0 sð Þ. Only a
small fraction of the tail particles are trapped in the wave potential,
and one might think that the simulation could be run more efficiently
by adding only trapped particles in the tail, neglecting the untrapped
tail particles. However, it is well known that energy distributions with
gaps between filled energy surfaces are beam-unstable.17 These insta-
bilities are avoided for our uniform distribution, or for others with
monotonically increasing dependence on energy in the wave frame up
to the fluid energy �0. Such beam-stable BGK distributions are quite
commonly produced through excitation of large amplitude waves on a
collisionless plasma.18–21

Simulations were carried out for two values of k?; k? ¼ 2:5 and
k? ¼ 5, for various amplitudes A. In the first set of simulations, �min

was chosen to be �min ¼ 0:9�max , so that a given fraction of the tail
particles were trapped in the pump wave potential. Holding these
parameters fixed, the number of tail particles NT was then varied
from 0 up to 20 000. An instability was then observed to develop,
growing out of noise, with a growth rate depending on NT . The
instability growth rate was measured two ways: By evaluating the
time-dependent change in fractional displacement k tð Þ ¼ ds2 tð Þð
�ds1 tð ÞÞ= 2pð Þ between two adjacent peaks in the simulated wave
potential; and by evaluating a moment of the particle density which
has a strong overlap with the growing eigenmode. We chose the
moment mj tð Þ ¼ j

Ð 4p
0 dsn s; tð Þ exp ijs=2ð Þj, taking j¼ 1, where n(s, t)

is the total particle density observed in the simulation. A typical case is
shown in Figs. 8 and 9. An exponential fit to the growth was then
made in order to obtain the growth rate. The growth rates determined
with these two methods typically agreed to 10% or better.

FIG. 6. Initial distribution of particles in a PIC simulation for which k? ¼ 2:5,
A¼ 0.03. 993 000 particles have equal energies �0 forming a self-consistent pump
wave [the solid curve at the bottom of the figure, consisting of particles for which
v ¼ V0ðsÞ]. NT ¼ 7000 tail particles are distributed uniformly in phase space
between �min ¼ 0:9�max and �0. 427 of these particles are trapped, with energies
less than the separatrix energy �max. Separatrices are shown by the dashed
curves.

FIG. 7. Same as in Fig. 6 but energies are plotted rather than velocities.
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After the exponential growth phase, a complex nonlinear bounc-
ing of the density moments occurs, as shown in Fig. 9. This is an irre-
versible process, as trapped particles in the waves respond to the large
amplitude motions by beginning to fill in the phase-space holes in the
distribution function. This irreversible nonlinear process heats the
plasma. An animation of the instability is included with the online
materials, which clearly shows how trapped particles are passed from
one potential well to the other as the instability grows. Figure 10
(Multimedia view) is an image taken from this animation, showing the
phase-space in the nonlinear phase of the instability. Particles that
were initially trapped in the compressing well (green) have been forced
into the expanding well and have been cooled, leaving a beam-
unstable gap in the particle distribution function that will eventually
fill in as untrapped particles (blue) are drawn into the gap due to the
beam instability. Narrow cats eyes due to Landau resonances can also
be observed, causing more irreversibility.

Figures 11 and 12 display the growth rates determined in the lin-
ear phase of the instability, plotted as the number of tail particles is
varied, fixing the other parameters to the values shown. We compare
these simulation results to the theory predictions for the low-
frequency l ¼ 1=2 eigenmode discussed previously, for which adja-
cent peaks move in opposite directions. The solid lines in the figure
are the predictions of Eq. (55) with the energy ratio �X evaluated from
Eq. (58). For each theory curve, corresponding to given values of k?
and A, the equilibrium functions N0;V0;U0 are evaluated from solu-
tions to Eqs. (16)–(18). Corrections N1 and V1 to the equilibrium,

caused by the tail distribution, are then determined by solving Eqs.
(39)–(42), evaluated for the unit tail particle number. Since the equa-
tions are linear in the tail density, the results can be multiplied by NT .
The cold fluid l ¼ 1=2 low-frequency eigenmode is then evaluated
via Hills method, providing dN sð Þ; dV sð Þ; dU sð Þ;x0 and dE0. From
Eq. (58), the required phase space integral over the uniform tail distri-
bution can be carried out analytically, yielding

�X ¼ 1
2dE0

s �ð Þ
4p

fT02 jhdUi �ð Þj2 � hjdUj2i �ð Þ

 �

j�¼�min
�¼�0

� 1
2dE0

ð4p
0

ds
4p

N1jdVj2 þ 2V1Re dNdV�ð Þ
� 	

: (74)

The bounce period s �ð Þ and the bounce averages are each evaluated at
the required energies �min and �0 (noting that for untrapped particles

FIG. 9. Two density moments, plotted over a longer time than in Fig. 8, and a fit to
an exponential for the growing j¼ 1 moment. The j¼ 2 moment has a strong over-
lap with the initial pump wave.

FIG. 10. The nonlinear phase of the instability for A ¼ 0:078; k? ¼ 5;
�min ¼ 0:9�max . Particle energies and positions are plotted as well as the potential.
Green particles were initially trapped in the compressed well, but were detrapped
and retrapped in the expanding well, where they lay atop the trapped particles ini-
tialized in that well (red). This is a higher resoluion simulation than the others in the
paper, run with 107 particles and NT ¼ 20 000 (equivalent to the NT ¼ 2000;
Nsim ¼ 106 point in Fig. 12). Multimedia view: https://doi.org/10.1063/1.5116376.1

FIG. 11. Growth rates and oscillation frequencies for the trapped-particle parametric
instability vs the number NT of tail particles for the tail distribution discussed in the
text with �min ¼ 0:9�max , for k? ¼ 2:5 and for three amplitudes: A ¼ 0:03;
0:06; 0:09. Solid dots are instability growth rates determined from PIC simulations.
Open circles are stable oscillation frequencies. Curves are the theory predictions
for the three amplitudes, from Eqs. (55) and (74).

FIG. 8. Fractional change in distance between adjacent potential peaks vs time,
with a fit to an exponential.
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at � ¼ �0; hdUi ¼ 0). Note that the energy ratio �X is proportional to
tail particle number NT through its dependence on fT0 in the first line
of the equation and its dependence on N1 and V1 in the second line. In
particular, the constant fT0 ¼ 4pNT= NsimAð Þ whereA is the phase-
space area between the energy surfaces �0 and �min in the computation
region 0 < s < 4p. The factor of 4p=Nsim arises because

NT

Nsim
¼

ð4p
0
ds
ð
�min<�<�0

fT0dvð4p
0
dsN

¼ fT0A
4p

; (75)

where the denominator equals 4p because the mean value of the den-
sity is unity in our units.

The theory curves evaluated in this manner are in fairly close
agreement with the simulations for all cases; although at low wave
amplitudes the growth rates became more difficult to measure in the
simulations and there was more scatter in repeated measurements. For
the k? ¼ 2:5 cases, at low tail particle numbers �X was less than one,
insufficiently large to cause instability. The theory gives an imaginary
value of C in this regime (dashed curves in Fig. 11). Open circles in the
plot correspond to simulation results for which there was no observed
instability; rather, peaks in the pump wave oscillated around their
equilibrium locations. This caused the observed quantities k tð Þ and
m(t) to oscillate at the frequencies plotted in the figure. However, for
sufficiently large numbers of weakly trapped particles even the lowest-
amplitude wave with A¼ 0.03 was driven unstable (11 000 tail par-
ticles was sufficient, which is only about 700 trapped particles out of

the total of 106). For the k? ¼ 5;A ¼ 0:078 case, the mode frequency
x0 is small enough so that only one thousand tail particles (corre-
sponding to only 220 trapped particles) were sufficient to provoke a
measurable instability. Here, the instability growth rate is proportional
to the square root of the number of trapped particles.

This theory is also compared to the simpler versions of the theory,
in Table I. It is interesting to note that in the exact calculation of Eq.
(74), �X is dominated by the term in the equation proportional to
jhdUi �ð Þj2 in all but the lowest-amplitude wave given by the first line in
the table; the other terms in the equation cancel with one-another nearly
exactly, as expected in the simpler theories. For the simpler theories, the
energy ratio �X is evaluated using Eq. (71) with the negative compress-
ibility coefficient b evaluated in both the Eq. (64) “chain of sharp peaks”
approximation and the more extreme moving wall approximation, Eq.
(5). Under the first “chain of peaks” approximation, Eqs. (71), (64), and
(75) imply that, for our uniform tail phase-space density,

�X ¼ 32p�min

s �minð ÞKA

NT

Nsim
: (76)

For the moving wall approximation, taking �min ¼ v2min=2 and s �minð Þ
¼ 4p=vmin in Eq. (76),

�X ¼ 4v3min

KA

NT

Nsim
: (77)

In keeping with the moving wall approximation of very narrow poten-
tial peaks separated by regions with zero potential, we further simplify
here by takingA ¼ 8p v0 � vminð Þ in Eq. (75), where v0 ¼

ffiffiffiffiffiffiffi
2�0
p

.
For k? ¼ 5 and A¼ 0.078, Table I shows that the “sharp peaks

approximation,” Eq. (76), is within 15% of the full numerical calcula-
tion for �X given by Eq. (74), while the moving wall approximation,
Eq. (77), is within 40%. For lower amplitude A and lower k? the three
theories have the same general trends, but the approximate values for
�X fare less well compared to the exact result, as one would expect
given the approximations involved. The smallest amplitude and small-
est k? ¼ 2:5 case is not well-described by a chain of isolated peaks
since the pump wave is nearly a single Fourier mode at this low ampli-
tude [see the fluid velocity V0 sð Þ displayed in Fig. 6 and the fluid
potentialU0 sð Þ displayed in Fig. 7]. For this case, the fits used to obtain
M, based on Eqs. (31) and (34), are poor.

A second set of simulations was also carried out, taking
�min ¼ 1:2�max . In this case, there are no trapped particles in the pump
wave potential. In these simulations, no instability was observed, for
the values of A; k? and NT that resulted in instability in the previous

TABLE I. Parameters used in the PIC simulations, and corresponding theory predictions for the energy ratio �X , for �min ¼ 0:9�max. Instability requires �X > 1.

Fluid
energy

Separatrix
energy

Fluid
freq:

Peak
mass

Exact
theory

Sharp peaks
approximation

Moving wall
approximation

k? A �0 �max x0ðl ¼ 1=2Þ M �XNsim=NT Eq. (74) �XNsim=NT Eq. (76) �XNsim=NT Eq. (77)

2.5 0.03 0.0774 0.0167 9:764	 10�3 0.8 95 400 200
2.5 0.06 0.0866 0.0346 8:203	 10�3 1.4 365 670 630
2.5 0.09 0.0974 0.0546 6:427	 10�3 1.747 1230 1630 2110
5 0.04 0.0228 0.00742 3:676	 10�4 0.668 7:38	 104 1:76	 105 1:11	 105

5 0.078 0.0300 0.0206 3:916	 10�5 1.073 3:71	 107 4:26	 107 5:17	 107

FIG. 12. Same as for Fig. 11, but for k? ¼ 5 and for two amplitudes:
A ¼ 0:04; 0:078. Solid dots are instability growth rates determined from PIC simula-
tions. Curves are the theory predictions for the two amplitudes, from Eqs. (55) and (74).
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simulations. We take this as more strong evidence that the observed
instability is caused by trapped particles.

A third set of simulations took �min ¼ 0. In this case, the pump
wave potential wells are uniformly filled with trapped particles. In
almost all cases, no instability was observed in these simulations as
well, as expected from Eq. (76). This indicates that it is not enough to
have trapped particles; for this instability, the particles must be weakly
trapped, with more trapped particles near the separatrix energy �max

and fewer in the bottom of the potential wells.
However, in one case, A ¼ 0:078; k? ¼ 5, something like a weak

instability occurred. For this large amplitude and large k? case, the
theory predicts a (nearly) neutrally stable situation: Without trapped
particles, the oscillation frequency of the peaks is quite small (see
Table I); and �X vanishes [see, for example, Eq. (76)]. The fractional
displacement k tð Þ between adjacent peaks in the simulation is plotted
in Fig. 13. Initially, the distance k tð Þ increases slowly with time, which
one might expect: In a finite particle simulation, the potential fluctu-
ates slightly in time. if one peak happens to fluctuate to a slightly
higher value than the other, it will pickup speed (soliton speed depends
on the potential height) and eventually catch up to the next peak. This
is not unexpected, and is not an instability; it is merely a slow large
amplitude (but low energy) fluctuation of a (nearly) neutrally stable
mode, and is observed in the simulations even in the absence of
trapped particles. However, the peaks appear to accelerate as they
approach one-another more closely. This acceleration is likely a non-
linear trapped particle effect, since it is not predicted in linear theory
and does not occur without trapped particles. However, an explana-
tion will likely require a nonlinear theory of trapped particle effects
and so will be pursued in future work. In any case, the instability devel-
ops on a much longer time scale than occurs for the same pump wave
parameters but with a weakly trapped distribution [Fig. 8].

VI. r-z PIC SIMULATIONS COMPARED TO EXPERIMENT

Experiments have observed parametric instability of large ampli-
tude TG waves in a cylindrical non-neutral plasma column.2,22

However, the plasma column was of finite length Lp and consequently,
the pump waves were not traveling waves, but were instead nonlinear
standing waves. For low amplitudes, density perturbations in such a
wave are sinusoidal

dn r; z; tð Þ=n0 ¼ A tð ÞJ0 k?rð Þ cos x2tð Þ cos k2zð Þ; (78)

where kn 
 np=Lp is the parallel wavenumber of a standing wave with
mode number n, x2 is the pump wave frequency, A(t) is the wave
amplitude, and J0 is a Bessel function.

The standing wave was created by driving a sinusoidal voltage on
one of the confinement electrodes for several cycles at the n¼ 2 mode
frequency x2. This frequency was determined experimentally, but is
close to the cold-fluid prediction xn ¼ xpkn=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ k2n

p
with k?

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= ln re=rp

� 	q
=rp, where re is the electrode radius and rp is the

plasma radius. The resulting wave was detected by measuring image
charge fluctuations on a second confinement electrode. Details can be
found in Refs. 2 and 23. If the amplitude Awas large enough a growing
daughter wave with wavenumber k1 ¼ k2=2 and frequency x1


 x2=2 was observed. Four sets of experimental data are displayed in
Fig. 14 for four different plasma temperatures. Growth rates for the
instability are plotted vs the amplitude A. As one expects in a paramet-
ric instability, the growth rate depends on pump wave amplitude, but
it also depends on plasma temperature. Hotter plasmas are more easily
driven unstable. We believe that this is because hotter plasmas produce
more trapped particles in a wave of a given amplitude. However, the
trapped particles are too few in number to be experimentally observ-
able, even with LIF diagnostics available on the experiment that were
used to measure the velocity distribution function. Furthermore, the
theory in Secs. II–IV is applicable to traveling waves, but not directly
applicable to standing waves.

Therefore, in order to test the theory that the instability is caused
by trapped particles, we have carried out PIC simulations of these
experiments in cylindrical geometry with realistic plasma confinement
potentials. These simulations employed a similar driving potential to
that used to excite the pump wave in the experiments, on plasmas
with similar temperatures and densities to those used in the experi-
ments. Similar simulations have been compared to the experiments
previously,2,23 but the simulations performed for this paper are for a
finite length plasma confined in z by realistic end potentials, as
opposed to the infinite plasma cylinder with periodic boundary

FIG. 13. Fractional change in the displacement between adjacent peaks vs time,
for a tail distribution that completely and uniformly fills the potential wells. Note the
longer time scale compared to Fig. 8, which is for the same parameters but with
�min ¼ 0:9�max .

FIG. 14. Parametric instability growth rate in experiments, and in r–z PIC simula-
tions. Dots are experimental measurements vs pump amplitude A, for four different
plasma temperatures parameterized by the ratio of the wave phase velocity to the
thermal speed, v/=�v. Open symbols are results from PIC simulations at two differ-
ent temperatures. Here, Dx ¼ 2x1 � x2.
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conditions used previously. The PIC simulations used here solved for
the dynamics of charges moving only in the z direction, on a grid of
radii. A typical run used 106 particles moving through a computational
grid of 60 radial grid points out to the electrode radius re ¼ 2:86 cm,
and 320 grid points in the z direction over the computational length of
Lc ¼ 23:3 cm. Distances in the simulation were measured in units
of Lc and times were in units of the plasma frequency at a density of
106 cm�3. Timesteps in these units were taken as Dt ¼ 0:06, using the
leapfrog method. Densities at each radial gridpoint were referred to
the z grid using standard linear interpolation. The cylindrical geometry
Poisson equation was then solved on the r – z grid using the SLATEC
banded matrix solver SNBFS. As in the experiments, the plasma radius
was roughly 0:5 cm, the plasma length was roughly 14 cm, and the
central density was roughly 2	 107 cm�3. Results from two sets of
simulations are displayed, for two different plasma temperatures. The
coldest achievable temperature in the simulation was 0:1 eV, produc-
ing a pump wave with a phase velocity v/ ¼ x2=k2 compared to ther-
mal speed �v ¼

ffiffiffiffiffiffiffiffiffiffi
T=m

p
of roughly v/=�v 
 8:9.

For a low amplitude wave, there would be essentially no trapped
particles for such a low temperature plasma; but at large amplitudes
the wave potential is large enough to accelerate particles out of the
edges of the velocity distribution function, trapping them in the wave.
A snapshot of the particle locations in z � vz phase space at r¼ 0 is
shown in Fig. 15 (Mulitmedia view), for the simulation point farthest
to the right in Fig. 14. The snapshot is taken at time t¼ 400, after the
excitation of the pump wave to an amplitude A¼ 0.35, but before the
daughter wave has had a chance to grow up from noise. Two large hol-
low “cats eyes” consisting of weakly trapped particles can be observed
wrapping around the plasma periphery. The cats eyes are distorted,
narrowing as they fold around the plasma ends, and the x-points in
the cats eyes are substantially smeared, presumably by chaotic particle
orbits. An animation of the wave excitation and particle trapping is
available in the electronic materials accompanying the paper; it shows
that particles in the plasma ends are pulled out of the distribution as
the cats eyes travel clockwise around the periphery of the plasma in
phase space (the wave phase speed is v/ 
 0:1 in the units of the
simulation).

Parametric instability was observed in these simulations. The
instability was measured in a variety of ways, but in Fig. 16 we display
the results of a measurement method that is also used in the

experiments: We fit the image charge r tð Þ picked up on an electrode
at the wall radius to the functional form r tð Þ ¼ r0 þ a1 sin x1tð
þ/1Þ þ a2 sin x2t þ /2ð Þ, where the fit is performed in an overlap-
ping sequence of short time ranges of length dt ¼ 20, which is roughly
three oscillation periods of the pump wave. The fit parameters a1 and
a2 are displayed for each element of the sequence vs the center time at
which the fit is taken (i.e., the starting time of the fit plus dt=2). After
the drive was turned off, the amplitude a1 of the daughter wave grew
exponentially to about 20 times its original amplitude, and then dis-
played more complex nonlinear behavior not unlike that seen in the
1D simulations. In the animation accompanying Fig. 15, the growth of
the n¼ 1 daughter wave can be most easily observed by focussing on
the shape of the outer envelope of the cats-eye at late times; this enve-
lope becomes asymmetrical as particles slosh from end to end in the
growing n¼ 1 mode, and the cats eyes fill in.

The open symbols in Fig. 14 show the growth rates vs pump
amplitude observed in the simulations of the cold plasma, and also of
a warmer plasma with v/=�v ¼ 3:8. As expected, there are substantially
more trapped particles in the warmer plasma, for a given pump wave
amplitude. We observed higher growth rates in the warm plasma runs
for a given pump wave amplitude, and a longer period of exponential
growth, with the daughter waves growing by a factor of roughly 100
before nonlinear oscillations occurred. This is consistent with the the-
ory that instability is driven by trapped particles. The growth rates
measured in the simulations show quite similar dependence on pump
wave amplitude and on temperature compared to the experiments.

As a final test of the trapped particle mechanism, we artificially
removed trapped particles from the simulations at every time step
(identifying trapped particles as any particles with speed jvzj greater
than the phase velocity v/ ¼ 0:1), resetting their speeds below the
range necessary for trapping. We found that this turned off the unsta-
ble growth of the daughter wave (see Fig. 17).

VII. DISCUSSION

In this paper, we have seen that nonlinear waves can be destabi-
lized via collisionless adiabatic detrapping and retrapping of particles
that are weakly trapped in wave potential wells. Energy drawn from
the trapped particle distribution through this adiabatic mechanism
drives a parametric instability, with a maximum growth rate when the
daughter waves have twice the pump wavelength. For large amplitude

FIG. 15. Snapshot of particle z positions and z velocities at the r¼ 0 radial grid
point in a PIC simulation of a large amplitude TG standing wave. Multimedia view:
https://doi.org/10.1063/1.5116376.2

FIG. 16. Amplitudes of the pump wave and the daughter wave, a2 and a1 respec-
tively, measured from wall signals in the simulation, for the plasma mode whose
distribution is shown in Fig. 15. Also shown is the time over which the pump wave
is driven, and an exponential fit to the amplitude of the daughter wave.
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waves, the growth rate is roughly proportional to the square root of
the fraction of trapped particles, but the trapped particle distribution
must be weakly trapped, with more trapped particles near the pump
wave separatrices than in the bottom of the potential wells.

The theory presented here applies to nonlinear traveling waves,
but current experiments excite standing waves in plasma columns of
finite length. While simulations presented here show that trapped par-
ticles are implicated in the parametric instability observed in experi-
ments, the theory needs to be generalized to account for standing
waves. However, it might be possible in certain experimental geome-
tries24 to directly test the theory for traveling TG waves.

Detrapping and retrapping of weakly trapped particles have previ-
ously been connected to several important transport processes in
weakly collisional plasmas,16,25,26 such as super-banana transport.27,28

Collisional scattering of trapped particles across a separatrix has also
been predicted to either stabilize or destabilize linear trapped particle
modes.29,30 In this paper, the destabilizing mechanism is collisionless
and adiabatic, and is therefore reversible in the linear regime. However,
in the nonlinear regime irreversible processes set in through the onset
of secondary beam instabilities and through Landau resonances and
chaos at the wave separatrices, effects that are not included in the linear
analysis presented here but which can be observed in the simulations.
These irreversible processes eventually cause phase space holes in the
weakly trapped distribution to fill in, which may be an important non-
linear wave heating mechanism. This may be of some importance in
the context of Alfv�en waves in the solar corona. The instability mecha-
nism may also be active in other waves with near-acoustic dispersion
relations, such as in the parametric instabilities observed in electron
acoustic waves.31 These questions will be investigated in future work.
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