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ABSTRACT

Arguments based on energy conservation are used to evaluate the fluid theory of stability of nonlinear traveling waves (pump waves) in an
ideal plasma system. Instabilities growing on the pump wave are associated with wave degeneracies. The relative signs of the energies of
degenerate waves, as seen in the frame of the pump wave, determine whether their amplitudes grow exponentially or merely oscillate
through resonant energy exchange. This energy analysis is carried out in detail for Trivelpiece-Gould (TG) waves and is compared to numer-
ical calculations. It is verified that nonlinear TG waves are stable with respect to 3 wave processes, but weaker 4 wave, 5 wave, and higher
order wave processes cause instability over narrow wavenumber bands. A modulational instability is also identified.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5116375

I. INTRODUCTION

In this paper, we consider stability with respect to small per-
turbations of finite amplitude traveling waves (pump waves) in an
ideal (i.e., dissipationless) fluid. This is a subject that has received
considerable attention in several fields of physics. A range of theo-
retical approaches have been applied to the problem, with results
growing up around seemingly disparate instability mechanisms
such as parametric decay instability, modulational instability, and
more general 3-wave, 4-wave, and even higher-order multiwave
processes.

For example, in fluid mechanics, the stability of cnoidal waves in
shallow water, and of Stokes waves in deeper water, is quite well devel-
oped.1–7 The theory of modulational instability benefited greatly from
wave-averaged Lagrangian techniques developed over this period.8,9

Higher order resonant processes leading to instability were also
uncovered.10,11 In plasma physics, early theory work described para-
metric and modulational processes, leading to instability in various
nonlinear plasma waves.12–14 Many such plasma instabilities have
been studied over the years15–20 in relation to fusion plasmas, astro-
physical plasmas, and laser-plasma interactions.

The nonlinear stability of waves is often described in terms of
multiwave processes. For a 3-wave process on a nonlinear wave, three
interacting waves, one of which is the nonlinear pump wave, satisfy
resonance conditions for both the frequency and wavenumber, which
allow resonant energy and momentum exchange, leading to decay of
the pump wave amplitude and exponential growth of the other two
waves (termed daughter waves)

x1 ¼ x2 þ x3;

k1 ¼ k2 þ k3: (1)

These resonance conditions can be justified using arguments based on
energy and momentum conservation in the exchange of wave
quanta.12 The instability growth rate is then typically connected via a
two-time scale analysis to the theory of resonance in the parametric
oscillator12 or the Van der Pol equation.13 For a higher-order “p-wave”
process such as modulational instability (a 4-wave process), p waves
are involved in the two resonance conditions.

In this paper, we employ a somewhat different approach, along
the lines of arguments based on energy conservation.21,22 There is a
long history of using energy arguments in understanding plasma
and fluid stability.23–25 For our purposes, the general idea is accessi-
bly discussed in broad terms in Ref. 26. We take advantage of the
following observation: in the frame of an isolated pump wave, the
fluid is a time-independent flow. This implies that the energy of
small perturbations to the flow, when viewed in this stationary
wave frame, is a conserved quantity (in the idealized dissipationless
limit). By considering this energy, we are able to formulate a unified
picture of the fluid instabilities on a pump wave: parametric,
modulational, or other multiwave instabilities are all the result of a
resonant interaction (degeneracy) between two daughter waves.
Because the frequency of the pump wave is zero in the wave frame,
and only the pump is treated as being nonlinear, the resonance
conditions for a p wave process, with p � jmj þ 2 (m an integer),
simplify to
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x1 ¼ x2;

k1 ¼ k2 þmkf ; (2)

where kf > 0 is the fundamental wavenumber of the pump wave and
subscripts 1 and 2 label wavenumbers and frequencies in each daugh-
ter wave [which may be positive or negative, indicating the sign (direc-
tion) of the wave phase velocities]. In this picture, however, the
daughter waves are not single spatial Fourier modes, except at very
small pump wave amplitudes. The daughter waves generally consist of
many spatial Fourier harmonics due to the spatial nonuniformity of
the plasma caused by the pump wave. However, all harmonics are sep-
arated by multiples of the pump wavenumber kf, because the pump
wave modulates the plasma at this wavenumber and its harmonics.
The condition on wavenumbers in Eq. (2) then implies that the spatial
Fourier harmonics of the two daughter waves occur for the same set of
wavenumbers, albeit with different amplitudes and phases. Thus, label-
ing an instability as a p-wave process is rigorous only at small pump
amplitudes, where the daughter waves are nearly single Fourier modes.
However, we find that our numerical solutions for instability growth
rates are well described by our small amplitude theory expressions
involving p-wave processes, even at quite large amplitudes.

It is well known that the term mkf in Eq. (2) arises from various
types of mode coupling between the daughter waves and the pump
wave. For example, the nonlinearity in the fluid equations directly cou-
ples two daughter wave Fourier amplitudes through the mth Fourier
harmonic of the nonlinear pump wave. Another process couples the
m–1st pump wave harmonic to a daughter wave harmonic, producing
a perturbation that then couples the first harmonic of the pump to the
second daughter wave and so on. For small pump amplitudes, these
processes can be elegantly analyzed using jmjth-order degenerate per-
turbation theory for the resonant daughter waves, rather than through
high-order two-time scale analysis or wave-averaged Lagrangians. For
larger amplitudes, we solve for the full spectrum of linear daughter
wave perturbations using a numerical method based on the Hills
method.27

However, the satisfaction of the resonance conditions (2) does
not necessarily cause instability of the pump wave. This is, perhaps,
not well known. The energy approach to instability provides an extra
insight, leading to a simple and general instability condition.21,22,26 If
the energies of the resonant daughter waves (as seen in the moving
frame of the pump wave) are of the same sign, their resonant interac-
tion leads only to a frequency shift with no instability (this is the case
of an “avoided crossing” in degenerate perturbation theory). However,
if the daughter wave energies are of opposite sign, then instability can
occur. Physically, the negative energy daughter wave resonantly trans-
fers energy to the positive energy daughter wave, allowing the positive
energy wave to grow. As the energy of the negative energy wave
decreases in this transfer, its amplitude also increases, allowing both
waves to grow exponentially in a feedback loop. (If the energy transfer
is in the opposite direction, the daughter waves are instead exponen-
tially damped. The direction of energy transfer depends on the relative
phase of the daughter waves, and a general initial condition can be
decomposed into both a growing and a damped response.) Under
more general conditions where the daughter waves and the pump
have similar initial amplitudes, “explosive” instability leading to finite-
time singularity can occur if two of the waves have energies of opposite
signs.13 In our analysis, the daughter waves are treated as linear

perturbations of the finite-amplitude pump, so the instability is expo-
nential, not explosive.

We carry out the energy analysis in detail for a particular system,
nonlinear Trivelpiece–Gould (TG) plasma waves in one spatial dimen-
sion, in order to make contact with some past and current experi-
ments.28,29 However, the wave energy formalism is general and can be
applied to a range of ideal fluid traveling waves.26 Using this approach,
we are able to derive analytic expressions for the growth rate of the
fluid instabilities on the pump wave. We compare these theory predic-
tions to numerical evaluations of the spectrum of perturbations on a
pump wave. A previously undescribed modulational instability of the
TG system is found, which has properties similar to the analogous
instability observed in Stokes waves.7 Weak instabilities associated
p-wave processes with p� 4 are also found, over narrow wavenumber
bands for the daughter waves.

The energy approach to instability can also be fruitfully applied to
analyze other nonlinear wave effects, the theory of which cannot be
included in this paper (mainly for the sake of brevity), such as convec-
tive vs absolute instability associated with plasma inhomogeneity and
finite wavetrain length, nonlinear evolution of instability, weak or
strong wave turbulence, or the effects of wave-particle interactions.
Wave-particle interactions, and in particular, a new mechanism for
parametric decay due to trapped particles,29,30 will be considered in the
following paper.42

In Sec. II, we briefly review the theory of nonlinear TG waves. In
Sec. III, the stability of these waves is considered, and in Sec. IV, con-
clusions and open questions are discussed. Appendix A contains
details of the degenerate perturbation theory used in the stability
analysis.

II. NONLINEAR TRAVELING WAVES

Trivelpiece-Gould waves are electrostatic compressional plasma
waves, excited in a cylindrical plasma column to which a confining
magnetic field has been applied along the direction of the column axis
(taken here to be the z direction).31,32 Here, we consider the linear sta-
bility of finite-amplitude cylindrically symmetric traveling wave solu-
tions (pump waves) propagating in one-dimension z, which are
periodic in z, with fundamental wave period kf. While the pump waves
are periodic with period kf, perturbations on the pump wave are
assumed to be periodic with periodMkf, for any positive integer value
of M. The case M¼ 2 was covered in a previous publication,33 but
here we consider all values of M in order to search for more general
instabilities.

As discussed in previous publications,33,34 cylindrically symmet-
ric TG waves that are without radial nodes can be approximately
described by a coupled set of three partial differential equations in z
and time t which evolve the plasma density N(z, t), the fluid velocity
V(z,t), and the plasma potential U(z,t). These functions have been
averaged radially over the plasma column to remove the radial depen-
dence and simplify the theory.

Throughout this paper, we work in scaled units, with distances
scaled to the fundamental wavenumber kf ¼ 2p=kf of the pump
wave, density scaled to the equilibrium density n0, times scaled to the
plasma frequency xp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2n0=mp

p
, velocity scaled to xp/kf, and

potential scaled to ðmp=eÞx2
p=k

2
f , where mp and e are particle mass

and charge, respectively. In these units, the governing equations are
the scaled continuity, momentum, and Poisson equations
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@N
@t
þ @

@z
VNð Þ ¼ 0;

@V
@t
þ @

@z
1
2
V2 þ U

� �
¼ 0;

@2U
@z2
� k2?U ¼ �N þ 1: (3)

Here, k? is a dimensionless parameter, the scaled perpendicular wave-
number for the waves, determined in experiments by the plasma
radius rp and the radius rc of the surrounding confinement electrode,

with k? �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðk2f r2p ln ðrc=rpÞÞ

q
(assuming that kf rc � 1).35 For typi-

cal experiments, k?� 1� 10, and several previous publications28,29,33

focussed on this regime, although k? < 1 is achievable.32 Here, we
make no assumptions about the size of k?.

These equations admit an infinite number of integral invariants.
The most important of these for our purposes are total particle
numberN, total momentumP, and total energyE

N ¼
ð1
�1

dzNðz; tÞ; (4)

P ¼
ð1
�1

dzNðz; tÞVðz; tÞ; (5)

E ¼ 1
2

ð1
�1

dzNðz; tÞ Vðz; tÞ2 þ Uðz; tÞ
� �

: (6)

We describe a finite amplitude pump wave as a steady solution to
Eq. (3). Steady traveling wave solutions to Eq. (3) depend on z and t
only through the combination s � z � ut, where u is the wave phase
velocity and s is the position measured in the wave frame. For these
steady solutions, Eq. (3) simplify to

@

@s
VNð Þ ¼ 0;

@

@s
1
2
V2 þ U

� �
¼ 0;

@2U
@s2
� k2?U ¼ �N þ 1; (7)

where VðsÞ � VðsÞ � u is the fluid velocity measured in the wave
frame. These coupled ordinary differential equations (ODEs) can be
solved in various ways. Here, we briefly review the Fourier method,
whereby we impose the 2p periodicity required by our choice of units
by writing the solutions as Fourier series

NðsÞ ¼
X1

m¼�1
Nm exp ðimsÞ;

VðsÞ ¼
X1

m¼�1
Vm exp ðimsÞ;

UðsÞ ¼
X1

m¼�1
Um exp ðimsÞ:

(8)

For simplicity, we choose the origin of s so that the solutions are even
in s, implying that Fourier coefficients satisfy N�m ¼ Nm and similarly
for Vm and Um. Since N, V, and U are real functions, this choice
implies that the Fourier coefficients are also real.

Applying these Fourier expansions to Eq. (7) yields the following
coupled equations for the Fourier coefficients:

m
X
n

Vm�nNn ¼ 0;

mUm þm
X
n

1
2
Vm�nVn ¼ 0;

Um ¼
Nm � dm;0
m2 þ k2?

: (9)

Nontrivial solutions to these equations are then found by
imposing the following three conditions. First, the amplitude A of the
pump wave is defined by setting

N1 ¼ N�1 ¼ A: (10)

Next, the conservation of particle number N implies that the per-
turbed density averaged over a wave period must equal the equilibrium
density. Thus, them¼ 0 Fourier coefficient of the density is

N0 ¼ 1: (11)

Finally, we define the lab frame as the frame in which there is no net
momentum in the fluid (P ¼ 0), so

Ð 2p
0 NðsÞVðsÞds ¼ 0. Using Eq.

(11) and VðsÞ ¼ VðsÞ � u, this impliesX
m

NmV�m ¼ �u:

If we define

V0 � �u0 (12)

and apply Eq. (11), this can be rewritten as

u ¼ u0 �
X
m6¼0

NmV�m: (13)

Then, Eq. (9) are solved numerically for a given wave amplitude A.
The equations are solved for the unknowns u0 and a finite number of
Fourier coefficients Nm;m ¼ 2;…; P, and Vm and Um; m ¼ 1;…;P
(making 3P unknowns) for the given values of k? and A, keeping a
sufficient number P of Fourier harmonics to achieve convergence.
Note that since the m¼ 0 equations are trivial, and m< 0 gives no
extra information, there are then 3P independent equations for the 3P
unknowns.

A few examples of these solutions are shown in Fig. 1. Note that
the fluid velocity V(s) is negative (for rightward wave propagation)
because we work in the wave frame where the fluid flows through the
wave from right to left (in the � s direction). For small A, the pump
wave is essentially a single Fourier mode with the linear phase velocity
uk of TG waves with wavenumber k¼ 1 (in our scaled units). For
general wavenumber k

uk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ k2?
p ; (14)

and so, the pump wave phase velocity is u1 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2?

p
when

A� 1. (There is a second solution with u ¼ �u1, a wave propagating
in the� z direction. Throughout this paper, we assume that the pump
wave propagates in the þz direction.) Expansions in small A have
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been carried out,33 where it has been shown that the finite amplitude
corrections to u0 and u take the form of a power series in A2

u0=u1 ¼ 1þ 1
4
A2ð8þ 3k2?Þ

þ 1
64

A4ð128þ 208k2? þ 65k4? þ 3k6?Þ þ OðA6Þ; (15)

u=u1 ¼ 1þ 3
4
A2k2? þ

3
64

A4k2?ð16þ 11k2? þ k4?Þ þ OðA6Þ: (16)

The coefficients in the power series for these first terms are positive,
implying an increasing phase speed with increasing pump wave
amplitude.

It was also shown that the Fourier coefficients of density and
velocity obey the ordering

Nm;Vm � OðAjmjÞ (17)

for small A, which follows from the simple quadratic nonlinearities in
Eq. (7). For example, for a rightward propagating pump wave,

V1 ¼ Au1 þ OðA3Þ; (18)

N2 ¼
3
2
A2 u21

u21 � u22
þ OðA4Þ; (19)

V2 ¼
u1
2
A2 u

2
1 þ 2u22
u21 � u22

þ OðA4Þ: (20)

The pump wave becomes more sharply peaked with increasing
amplitude, as its Fourier harmonics with jmj > 1 become appreciable.
For given k?, there is a maximum possible value of A, Amaxðk?Þ, cor-
responding to a wave for which the maximum value of V(s)
approaches zero from below, a stagnation point in the wave [see Fig.
1(b)]. At this amplitude, the cold fluid theory breaks down: the density
is singular at this point, and both the fluid velocity and potential have
a slope discontinuity. Kinetic effects such as particle trapping in the
wave potential then become important.30 As k? increases, Amaxðk?Þ
decreases (Fig. 2). This is because increasing k? makes the linear wave
dispersion relation more acoustic (i.e., less dispersive): see Eq. (14),
which approaches constant phase speed uk ¼ 1=k? for large k?.
These nonlinear wave equilibria exist through a balance between non-
linearity (which would cause the waves to steepen) and dispersive
spreading. In order for this balance to be maintained for a less-
dispersive (larger k?) wave, the wave must be less nonlinear, so the
maximum pump amplitude must be smaller.

III. FLUID STABILITY
A. General Considerations

In this section, we consider the stability with respect to small per-
turbations of a nonlinear pump wave with given amplitude A and fun-
damental wavenumber k¼ 1 in our scaled units. We will consider
stability using fluid theory. We will work in the frame of the pump
wave and consider small perturbations to the density, fluid velocity,
and potential of the form Nðz; tÞ ¼ NðsÞ þ dNðs; tÞ; Vðz; tÞ ¼ VðsÞ
þuþ dVðs; tÞ, and Uðz; tÞ ¼ UðsÞ þ dUðs; tÞ. Linearizing Eq. (3) in
the perturbations yields

@dN
@t
þ @

@s
VðsÞdN þ NðsÞdV½ � ¼ 0; (21)

@dV
@t
þ @

@s
VðsÞdV þ dU½ � ¼ 0; (22)

@2dU
@s2
� k2?dU ¼ �dN: (23)

FIG. 1. Plots over one wavelength in position s of (a) the pump wave potential
UðsÞ, (b) fluid velocity in the wave frame V(s), and (c) density N(s), taking k? ¼ 3,
and for 3 different wave amplitudes: A ¼ 0:05; 0:1, and Amax ¼ 0:2094, the maxi-
mum amplitude at this k? value.

FIG. 2. Maximum amplitude A of the first Fourier coefficient of the density in a TG
traveling pump wave vs perpendicular wavenumber k?.
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We solve these equations assuming periodic boundary conditions
for the perturbed quantities, with a period that is some integer multi-
pleM of the pump wavelength. In a previous publication,33 we consid-
ered only M¼ 2 (a case of importance in the parametric decay
instability), but here we generalize to any M � 1. In the limit
M !1, perturbations with any functional form are allowed.

The energy of a perturbation on the pump wave is a conserved
quantity (i.e., time-independent), since the total energy (6) is con-
served. The consideration of this energy integral is quite useful in sta-
bility analysis. Working in the frame of the pump wave, the wave
energy is37

E� uP ¼ 1
2

ð
dsNðs; tÞ Vðs; tÞ2 þ Uðs; tÞ

� �
� 1
2
u2N: (24)

Using the assumed periodic nature of the system, we consider the
perturbed energy E per unit length

E ¼ 1
4pM

ð2pM
0

ds 2NðsÞVðsÞdVðs; tÞ þ dNðs; tÞVðsÞ2
�

þdNðs; tÞUðsÞ þ NðsÞdUðs; tÞ � u2dNðs; tÞ
�

þ 1
4pM

ð2pM
0

ds NðsÞ dVðs; tÞ½ �2 þ 2VðsÞdNðs; tÞdVðs; tÞ
�

þ dUðs; tÞdNðs; tÞg: (25)

The terms that are linear in the perturbations can all be dropped
thanks to Eqs. (7) and (21)–(23). For example, the first term in E
involves NðsÞVðsÞ, but Eq. (7) imply that this combination is constant,
so the term is proportional to the spatial average of dVðs; tÞ. However,
this average is time-independent according to the integral over s of
Eq. (22). In fact, since we work in the frame of the pump wave, the
average value of dV vanishes, so the first term in E is zero. The other
linear perturbation terms in E can also be shown to vanish, because
the spatial average of dN vanishes due to the conservation of the
particle number. This leaves the quadratic terms in E

E ¼ 1
4pM

ð2pM
0

ds NðsÞ dVðs; tÞ½ �2
�

þ 2VðsÞdNðs; tÞdVðs; tÞ þ dUðs; tÞdNðs; tÞg: (26)

The first and second terms in the integrand are perturbations to the
kinetic energy, and the last term is the perturbed electrostatic potential
energy. Using Eq. (23), one can show that the last term is non-negative
and so is the first term. However, the second kinetic energy term can
be either positive or negative. Thus, perturbations, as seen in the wave
frame, can have positive energy, negative energy, or even zero energy.

In fact, it is the zero energy perturbations which are most inter-
esting from the standpoint of instability, for the following simple rea-
son: energy conservation implies that only zero energy perturbations
can be unstable. Equation (26) shows that E is proportional to the
square of the amplitude of a given perturbation. An unstable growing
perturbation, with exponentially increasing amplitude, must then have
increasing energy magnitude, an impossibility unless the perturbation
has zero energy.

Zero-energy excitations are often linked to instability. One famil-
iar situation where they occur in fluids is in the growth of a perturba-
tion on a gravitationally unstable fluid interface (the Rayleigh-Taylor

instability36) where kinetic energy of a perturbation grows at the
expense of reduced potential energy, such that the total energy is con-
served. For nonlinear TG waves with non-negative perturbed potential
energy, we will find that zero-energy excitations occur instead over
fairly narrow wavenumber ranges associated with the occurrence of
wave degeneracies. Rather than trading kinetics for potential energy in
a single growing wave, the instability trades energy between two reso-
nant waves whose energies are of opposite sign.

We will now examine the stability of the solutions to Eqs.
(21)–(23) by considering complex eigenmodes of the equations, for
which the time dependence of perturbed quantities is of the form
exp ð�ixtÞ, where x is a (possibly complex) eigenfrequency. A more
general perturbation can be written as a sum of these eigenmodes, and
the real part is then taken to obtain physically relevant results. The
complex eigenmode equations can be elegantly written as a single
vector equation30

ixwðsÞ ¼ L̂ � wðsÞ; (27)

where the vector eigenmode wðsÞ � ðdNðsÞ; dVðsÞÞ; dNðsÞ and
dVðsÞ are the spatial form of the density and velocity perturbations,
respectively, associated with the eigenmode, and the linear matrix
operator L̂ðsÞ is defined as

L̂ ¼ @

@s

VðsÞ NðsÞ
Ĝ VðsÞ

 !
: (28)

Here, Ĝ is the Green function operator for the solution to the Poisson
equation, Eq. (23), defined as

ĜdNðsÞ ¼
ð2pM
0

d�sgðs;�sÞdNð�sÞ ¼ dUðsÞ; (29)

where the Green function gðs;�sÞ satisfies

@2gðs;�sÞ
@s2

� k2?gðs;�sÞ ¼ �dðs��sÞ (30)

solved with periodic boundary conditions of period 2pM.
The matrix operator L̂ has some important features that deter-

mine the properties of its eigenmodes. First, the operator is real-
valued: L̂ ¼ L̂

	
. This implies that, if wðsÞ is a vector eigenfuction of L̂,

with frequency x, then w	ðsÞ is also an eigenfunction, with frequency
�x	. This follows by taking the complex conjugate of Eq. (27). Thus,
eigenmodes come in complex-conjugate pairs.

Next, the operator L̂ is periodic in s, with period 2p (the pump
wavelength in our scaled units). Floquet’s theorem38 can therefore be
applied to the eigenmodes arising from the solution of Eq. (27), imply-
ing that the general spatial form of an eigenmode is a doubly periodic
function: a product of some periodic vector function with period 2p
(written below as a Fourier series with vector coefficients vm) and
exp ðiksÞ

wðsÞ ¼ exp ðiksÞ
X1

m¼�1
vm exp ðimsÞ; (31)

for any value of the wavenumber k that matches the boundary condi-
tions: k ¼ n=M for integer n. (Floquet’s theorem also allows the possi-
bility of exponentially growing and decaying solutions in s, but these
are disallowed by the periodic boundary conditions.) Physically, this
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form of the eigenmode arises because a Fourier component of the
eigenmode with the wavenumber k mode couples to component
kþm, for integer m, through the mth Fourier component of the
pump wave.

Finally, the operator L̂ can be shown to be anti-Hermitian (also
often referred to as skew-Hermitian) with respect to vector functions
w that satisfy the periodic boundary conditions of period 2pM and
with respect to a generalized matrix inner product defined by its action
on any two such functions w1 ¼ ðdN1; dV1Þ and w2 ¼ ðdN2; dV2Þ

w1;w2½ � � 1
8pM

ð2pM
0

dsw	1ðsÞ � Ĝ
†

VðsÞ
VðsÞ NðsÞ

 !
� w2ðsÞ; (32)

where Ĝ
†
is the left Green function operator, which defined as

dNĜ
†ðsÞ ¼

ð2pM
0

d�sgðs;�sÞdNð�sÞ ¼ dUðsÞ; (33)

with gðs;�sÞ the same Green function as in Eq. (30). This inner product
differs by a normalization factor compared to that used in Ref. 30, for
notational convenience.

The anti-Hermitian property of L̂, defined by the expression

w1; L̂ � w2

� �
¼ � w2; L̂ � w1

� �	
; (34)

can be proven by using integration by parts, with boundary terms can-
celing due to the periodic boundary conditions.

It is also useful to note that this anti-Hermitian property of L̂ is
equivalent to the statement that the operator �iL̂ is pseudo-
Hermitian39 with respect to the above generalized matrix inner
product.

This anti-Hermitian (or pseudo-Hermitian) property has several
well-known implications for the eigenmodes of the operator. Let us
assume that w1 and w2 in Eq. (34) are any two vector eigenfunctions
with frequencies x1 and x2, respectively. Then, Eqs. (34) and (27)
yield

ix2 w1;w2½ � ¼ ix	1 w2;w1½ �	: (35)

However, inner products have the property that ½w2;w1�
	

¼ ½w1;w2�. [For our inner product, this identity relies on the symme-
try propertyð2pM

0
dsdU	1ðsÞdN2ðsÞ ¼

ð2pM
0

dsdU2ðsÞdN	1 ðsÞ; (36)

which can be proven through integration by parts, using Eq. (23).]
Applying this identity to Eq. (35) implies that

iðx2 � x	1Þ w1;w2½ � ¼ 0: (37)

Thus, if x2 6¼ x	1, w1, and w2 are orthogonal with respect to the inner
product. For example, if we take w2 ¼ w	1 so that x2 ¼ �x	1, Eq. (37)
implies x	1½w1;w

	
1� ¼ 0. Thus, w1 is orthogonal to its complex conju-

gate eigenmode w	1 for all eigenmodes, except possibly for any that
happen to have zero frequency.

Now, consider another case where we take w1 ¼ w2 in Eq. (37)
(and sox1 ¼ x2). Then, the equation reduces to

ðx1 � x	1Þ w1;w1½ � ¼ 0: (38)

Thus, x1 ¼ x	1, or in other words x1 is real, provided that
½w1;w1� 6¼ 0. This important caveat was left out of the discussion in
Ref. 30. Therefore, all eigenmodes w1 for which ½w1;w1� 6¼ 0 are
stable.

However, while standard inner products have the property that
½f ; f � > 0 for any nontrivial function f, our generalized inner product
does not have this property. Equation (32) implies that

w1;w1½ � ¼ 1
8pM

ð2pM
0

ds NðsÞjdV1ðsÞj2
�

þVðsÞ dN1ðsÞ	dV1ðsÞ þ dV1ðsÞ	dN1ðsÞ
� �

þdU1ðsÞdN1ðsÞ	g: (39)

Although this inner product must be real [the potential energy term is
real because of Eq. (36)], its sign is indeterminate: it can be negative,
positive, or zero. The sign of such generalized inner products is often
referred to as the “Krein sign.”40 In fact, compared to Eq. (26), one can
see that

w1;w1½ � ¼ E1; (40)

where E1 is the energy change associated with the eigenmode pertur-
bation Rew1 exp ð�ix1tÞ. As discussed previously, this energy change
can be positive, negative, or zero. Equations (38) and (40) show again
that only E1 ¼ 0 allows the possibility of growing (or decaying)
modes. All the other eigenmodes, with nonzero energy, are stable.

B. Small Amplitudes and the Conditions for Instability

While zero energy eigenmodes allow the possibility of instability,
not all such eigenmodes are unstable. One zero energy eigenmode is a
simple shift of the pump wave in position by the infinitesimal amount
ds: w ¼ dsð@N=@s; @V=@sÞ. This eigenmode clearly has zero fre-
quency as well as zero energy and so is not unstable.

Under the right circumstances, other zero-energy eigenmodes
can occur. To see how this happens, consider the case of a small ampli-
tude pump, A� 1, and takeM !1. Then, to zeroth order in A, the
eigenmodes are linear waves with s dependence exp ðiksÞ for some
wavenumber k 2 Re, propagating in a uniform density plasma that
moves in the �z direction with speed u ¼ u1 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2?

p
as seen

in the frame of the infinitesimal pump wave [see Eq. (14)]. The
zeroth-order eigenmode frequency for given wavenumber k is found
by Fourier transforming Eq. (27), yielding

x ¼ x6
k � �ku1 6 kuk; (41)

where uk is the linear phase speed as seen in the lab frame, given by
Eq. (14).

For a given wavenumber k, there are two eigenmodes wþk and
w�k , with frequencies x6

k corresponding to the two signs in Eq. (41).
These are waves propagating to the right or to the left when viewed in
the lab frame, having the lowest-order form

w6
k ðsÞ ¼ exp ðiksÞð 1

6uk
Þ: (42)

The energies E6
k associated with these zeroth-order eigenmodes

follow from Eqs. (42), (39), and (40) and the Fourier transform of Eq.
(23),
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E6
k ¼

1
2

u2k 7 u1uk
	 


: (43)

The energy E�k is positive for any k, but Eþk can be positive or negative
Eþk > ð<Þ0 if uk > ð<Þu1.

For k ¼ 61, theþmode has zero energy, so one might expect an
instability here. However, the component of either the k¼ 1 or the
k¼�1 þ mode that is 90
 out of phase with the pump is simply the
translation of the pump wave discussed previously; it is not unstable.
The in-phase component produces a change in the amplitude of the
pump wave, but this is also not an instability. The energy shift due to
amplitude change is not really zero, and it is just higher order in A
than Eq. (43).

Now, we are in a position to understand how instability can
develop in this system. As discussed in relation to Eq. (31), the pump
wave causes mode-coupling between these zeroth-order eigenmodes.
For small but finite A, the mode coupling changes the form of a given
eigenmode wa

k (where a ¼ þ or � labels the branches of the disper-
sion relation), but the eigenmode (usually) remains close to wa

k . Then,
we can write Eq. (31) in the form

wðsÞ ¼ wa
k þ ca

†

0 wa†

k þ
X
m 6¼0
ðcþmwþkþm þ c�mw�kþmÞ; (44)

where a† is the opposite branch of the dispersion relation to a; i.e., if
a ¼ þ, then a† ¼ � and vice versa. The coefficient ca

†

0 multiplying
the second term arises from the reflection of the wave off of the pump
and into the other branch of the dispersion relation (reversing its
phase velocity as seen in the lab frame) and is small, typically of order
A2. The other coefficients cam arise from mode-coupling with the mth
Fourier harmonic of the pump wave and are also typically small, of
order Ajmj, because of Eq. (17). The mode frequency is also shifted
from xa

k by a small amount, typically by order A2, and the energy is
also shifted by a small amount, leaving it nonzero (except for the case
k ’ 61 for which Eþk ’ 0, which will be considered below in the dis-
cussion of modulational instability). Since the eigenmode energy is
nonzero, the system remains stable. These scalings can be obtained by
applying nondegenerate perturbation theory to Eq. (27).

However, an exception to these scalings occurs when a degener-
acy occurs between the zeroth-order mode frequency xa

k and one of
the other coupled modes in Eq. (44) with frequency xb

kþm. These two
degenerate modes are the “daughter waves” mentioned previously. For
any particular wavenumber k where

xa
k ¼ xb

kþm; (45)

there is a resonant interaction between wa
k and wb

kþm, moderated by
the pump wave, which allows energy to be traded between these two
components of the eigenmode. Then, cbm is no-longer small. The eigen-
mode is now given by

wðsÞ ¼ C1w
a
k þ C2w

b
kþm þ Dw; (46)

with Dw small (of order A) and C1 and C2 of order unity.
The degeneracy is not in itself enough to cause instability in the

system. However, if daughter wave wa
k has energy E

a
k that is opposite in

sign to that of the other wave, Eb
kþm, instability occurs. The positive

energy daughter wave gains energy resonantly from the negative
energy wave, allowing it to grow in amplitude. Loss of energy from the

negative energy wave increases the amplitude of this wave as well, and
the amplitude of both daughter waves can then continue to grow
exponentially, in a feedback loop.

To show mathematically that an instability arises from degener-
ate daughter waves with energies of opposite signs, we use the fact that
an unstable perturbation must have zero energy [see Eqs. (38) and
(40)]. When Eq. (46) is used in Eqs. (26), (38), and (40), and only
zeroth-order terms in A are kept, we obtain the following energy rela-
tion for the unstable daughter waves:

E ¼ Ea
k jC1j2 þ Eb

kþmjC2j2 ¼ 0: (47)

For nonzero daughter wave amplitudes and energies, this equation can
only be satisfied when their energies are opposite in sign. This proves
that growth (or decay) only occurs if the resonant daughter waves
have energies of opposite sign, as seen in the pump wave frame.

These energy arguments are general, relying only on the qua-
dratic form of the energy integral at small amplitude. They apply to
the instability of a pump wave in any ideal fluid system.

Let us now consider the degeneracy condition, Eq. (45), for TG
modes, using the linear dispersion relation Eq. (41) for the daughter
wave frequencies. There are three separate cases: xþk ¼ xþkþm; x�k
¼ xþkþm, and x�k ¼ x�kþm, shown in Figs. 3–5. Figure 4 shows that
x�k ¼ x�kþm has no solutions and need not be considered further.
Also, for the other two cases, degeneracies occur at k ¼ 61 and k¼ 0.
Waves with k¼ 0 correspond to changes in the background plasma
parameters and do not by themselves lead to instability. On the other
hand, the degeneracies at k ¼ 61 contribute to the modulational
instability, considered later.

The only case to give degeneracies at k 6¼ 0 or 61 is the case
x�k ¼ xþkþm. Figure 5 shows that for given m, a single degeneracy
occurs at a value of k depending on k? that we refer to as k0ðk?Þ, pro-
vided that m is not too much larger than k?. For sufficiently large m,
there are no solutions. Figure 6 shows how k0ðk?Þ behaves for a few
different values ofm. In the large k? limit, an asymptotic expansion of
the dispersion relations yields

FIG. 3. A plot of xþk (dashed) and xþkþm vs wavenumber k, for several values of
m, with the curves labeled by m, and for k? ¼ 3=2. Degeneracies occur where
the dashed curve crosses one of the other curves. The only degeneracies occur
at k¼ 0 and k ¼ 61. The k ¼ 61 degeneracies result in modulational
instability.
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lim
k?!1

k0ðk?Þ ¼
mðm2 � 1Þ

4k2?
; (48)

and for small k?, the only degeneracy of this type occurs for jmj ¼ 2,
at jk0j ¼

ffiffiffi
3
p
� 1 as k? ! 0.

We will find that there are very narrow regions of k around these
degeneracies over which the pump wave is unstable. Note that if M is
not too large, it is somewhat unlikely that any of these unstable regions
intersect with the quantized k values k ¼ n=M. Intersections will
occur only for small ranges of k? (that also depend on amplitude A,
since the degeneracies are shifted by nonlinearity). Thus, in Ref. 33
where only M¼ 2 was considered, no traveling wave instabilities were
found for the k? values tested.

Expressions for the growth rate can be obtained using degenerate
perturbation theory. We first examine the case for which m¼ 1 or �1
in Eq. (45), which can be handled with first-order degenerate perturba-
tion theory. This is the case which leads to three-wave instability and
the parametric decay instability, a type of 3-wave instability where the
wavenumbers k and k61 have magnitudes that add to 1 (for instance,

k ¼ �1=2 and kþ 1 ¼ 1=2), so that the pump wave decays into two
daughter waves of longer wavelength. However, for TG waves, Eqs.
(41) and (14) imply that xa

k ¼ xb
k61 “only” at k¼ 0, 1, or �1

(depending on a, b, and the 6 sign; see Figs. 3 and 5), and the mode
coupling at these degeneracies is such that the TG system is not 3-
wave unstable.

Nevertheless, this m ¼ 61 case is the easiest case to analyze and
applies to many systems other than TGmodes, so we will analyze it first,
leaving the form of the dispersion relation general, allowing the possibil-
ity of 3 wave resonances to occur for values of k other than 0, 1, or �1.
We take the case m¼ 1 (the m¼�1 case can be obtained from the
m¼ 1 case by interchanging indices and redefining k) and assume that
there is a degeneracy that occurs for wavenumber k¼ k0, at which point

xa
k0 ¼ xb

k0þ1 � x0: (49)

To analyze the stability near this degeneracy in first-order pertur-
bation theory, we break L̂ into an equilibrium portion L̂0 and a por-
tion of order A due to the pump wave: L̂ ¼ L̂0 þ DL̂, where

L̂0 ¼
@

@s
�u1 1
Ĝ �u1

� �
(50)

and

DL̂ ¼ 2A
@

@s
cos s

u1 1
0 u1

� �
þ OðA2Þ: (51)

These expressions follow from the Fourier expansions of the
pump wave given in Eqs. (8), (10)–(12), (15), and (18). We then sub-
stitute Eq. (46) into Eq. (27), noting that the zeroth-order eigenmodes
wa
k satisfy the zeroth order eigenvalue problem ixa

kw
a
k ¼ L̂0w

a
k

ixðC1w
a
kþC2w

b
kþ1þDwÞ¼ iC1x

a
kw

a
kþ iC2x

b
kþ1w

b
kþ1

þDL̂ðC1w
a
kþC2w

b
kþ1ÞþðL̂0þDL̂ÞDw:

(52)

We drop the DL̂Dw term since we work only to first order in A.
Noting that the zeroth order eigenmodes are orthogonal with respect
to the zeroth order inner product

FIG. 4. A plot of x�k (dashed) and x�kþm for several values of m, with the curves
labeled by m, and for k? ¼ 3=2. There are no degeneracies.

FIG. 6. The nontrivial degeneracies found from the solution of x�k ¼ xþkþm, plotted
vs k? for 4 values of m.

FIG. 5. A plot of x�k (dashed) and xþkþm for several values of m, with the curves
labeled by m, and for k? ¼ 3=2. Degeneracies occur where the dashed curve
crosses one of the other curves. Four k 6¼ 0 degeneracies occur, for
m ¼ �3;�2; 2, and 3.
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w1;w2½ �0 �
1

8pM

ð2pM
0

dsw	1ðsÞ � Ĝ
† �u1

�u1 1

 !
� w2ðsÞ (53)

and that the operator L̂0 is anti-Hermitian with respect to this inner
product, we take an inner product of Eq. (52) with wa

k , which removes
terms involving Dw (since Dw is orthogonal to the two daughter
waves, by construction). The result is

ixC1 wa
k;w

a
k

� �
0
¼ ixa

kC1 wa
k;w

a
k

� �
0

þC1 wa
k;DL̂wa

k

� �
0 þ C2 wa

k;DL̂wb
kþ1

h i
0
: (54)

The inner products can then be evaluated using Eqs. (53), (51), and
(42). We obtain ½wa

k ;w
a
k�0 ¼ Ea

k . Also, we only need to work to first-
order in A to obtain nontrivial results, and we find that ½wa

k;DL̂wa
k �0

¼ OðA2Þ, so this term can be dropped. The other DL̂ term yields

wa
k;DL̂wb

kþ1

h i
0
¼ iA

xa
k

4
u1ðauk þ bukþ1Þ þ abukukþ1
� �

� iALa;b
k;kþ1; (55)

where we employ the notational convenience that multiplication by
a ¼ þ or�means multiplication byþ 1 or�1, respectively, and sim-
ilarly for b. Then, applying an inner product to Eq. (52) with respect
to wb

kþ1, the same procedure yields a second equation, which when
combined with Eq. (54) results in the following matrix equation for C1

and C2:

Ea
kðx� xa

kÞ �ALa;b
k;kþ1

�ALb;a
kþ1;k Eb

kþ1 x� xb
kþ1

� �
0
B@

1
CA � C1

C2

 !
¼ 0: (56)

The off-diagonal matrix coefficients are produced by mode cou-
pling between the two daughter waves in the eigenmode, induced
by the pump wave. The coefficient Lb;a

kþ1;k can be obtained by inter-
changing indices in Eq. (55). In this equation, the expression inside
the braces is symmetric under this interchange, and this implies
that on resonance, where k¼ k0 and Eq. (49) is satisfied, the two
off-diagonal matrix components are identical, so the matrix in Eq.
(56) is Hermitian. On resonance, setting the matrix determinant to
zero gives

Ea
k0E

b
k0þ1ðx� x0Þ2 � ALb;a

k0þ1;k0

� �2
¼ 0; (57)

yielding

x ¼ x06jAj
Lb;a
k0þ1;k0




 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ea
k0
Eb
k0þ1

q : (58)

We can see here that growth (or decay) occurs only when the energies
of the daughter waves have opposite signs so that the square root
yields an imaginary number. Note also that the ratio of jC1j2 to jC2j2
implied by Eqs. (58) and (56) agrees with Eq. (47), so the total energy
of the eigenmode is indeed zero.

There is a small range of k values around k¼ k0 which allows
growth or decay. Writing k ¼ k0 þ Dk and x ¼ x0 þ Dx where
both Dk and Dx are of order A, a Taylor expansion of Eq. (56) in Dk
gives

Ea
k0
ðDx� va

k0
DkÞ ALb;a

k0þ1;k0
ALb;a

k0þ1;k0 Eb
k0þ1ðDx� vb

k0þ1DkÞ

 !
� C1

C2

� �
¼ 0; (59)

where

va
k ¼ @xa

k=@k (60)

is the daughter wave group velocity. The matrix determinant now
yields

Dx ¼
va
k0
þ vb

k0þ1
2

Dk

6
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
va
k0
� vb

k0þ1

� �2
Dk2 þ 4A2

Lb;a
k0þ1;k0

� �2
Ea
k0
Eb
k0þ1

vuuut ; (61)

so the eigenmode is stabilized when Dk is sufficiently large, of order A
or larger.

Finally, we note that for the TG wave system, the three-wave res-
onance condition (49) can occur only for x0 ¼ 0, with wavenumber
k0 ¼ 0 and b ¼ þ; a ¼ þ or – or k0 ¼ �1; a ¼ þ and b ¼ þ or �
(see Figs. 3 and 5). However, in each case, one can check that Eq. (59)
gives no growth or decay because Eþ61 ¼ 0 and the off-diagonal ele-
ments also vanish (i.e., no mode coupling of zero-frequency modes),
but Ea

0 6¼ 0. Thus, 3-wave instability does not occur in the TG wave
system.

This result is consistent with the numerical investigations for
M¼ 2 performed in Ref. 33, where no parametric instability was
observed in the TG system. This paper focussed on the large k? regime
for which the wave dispersion is nearly acoustic and considered the
apparent near-degeneracy between waves with k ¼ �1=2; a ¼ þ and
k ¼ 1=2; b ¼ þ. The frequencies of these waves are of equal magni-
tude and opposite sign, given by xþ1=2 ¼ �xþ�1=2 ¼ ðu1=2 � u1Þ=2
� DX=2, where DX is the difference between the two daughter wave
frequencies, referred to as the “frequency detuning” in Refs. 33 and 29.
The detuning is small for a near-acoustic dispersion relation for which
waves have nearly the same phase speed, and consequently, there is an
apparent near-degeneracy between the daughter waves. One might
therefore attempt to apply Eq. (56) taking k0 ¼ �1=2 and a ¼ b¼ þ.
In this case, the daughter wave energies are not of opposite sign; in
fact, they are equal: Eþ�1=2 ¼ Eþ1=2 ¼ u1=2DX=2. However, now, the
“off-diagonal” terms in Eq. (56) are of opposite sign:
Lþ;þk;kþ1 ¼ �L

þ;þ
kþ1;k ¼ Au1=2DXðu1 þ u1=2=2Þ=4 � ð3=8ÞAu1=2u1DX.

Applying these results to Eq. (56) and taking the determinant yield

x ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DX2 � 9

4
A2u21

r
; (62)

which exhibits instability for sufficiently small detuning or sufficiently
large wave amplitude. However, as pointed out in Ref. 33, for a nearly
acoustic dispersion relation, many waves are nearly degenerate and
can also couple to the two daughter waves. If A is sufficiently large in
Eq. (62) to overcome detuning and produce an apparent instability,
then other near-degenerate harmonics of the two daughter waves
cannot be neglected, i.e., Dw cannot be neglected in Eq. (46) and first-
order degenerate perturbation theory is not valid. When the harmon-
ics are kept (via a numerical evaluation of the eigenmodes), the above
k ¼ 61=2 daughter waves are not unstable form ¼ 61.
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However, higher-order (jmj > 1) instabilities can occur for a
TG pump wave, caused by the true degeneracies apparent in Figs. 3
and 5. These instabilities were not considered in Ref. 33, where the
focus was on parametric instability. For jmj > 1, the general reso-
nance condition Eq. (45) results in instability with a growth rate
scaling like Ajmj, provided that the resonant daughter waves have
energies of opposite sign. The mode coupling equations involve
higher-order degenerate perturbation theory, and the details
quickly become rather complex, but we will see that the resulting
equations can be reduced to a two-by-two matrix equation whose
form is analogous to Eq. (56)

Ea
k x�xa

kð Þ�A2La
k �AjmjLa;b

k;kþm

�AjmjLb;a
kþm;k Eb

kþm x�xb
kþm

� �
�A2L

b
kþm

0
@

1
A � C1

C2

� �
¼0;

(63)

where La
k and L

a;b
k;�k

are real-valued mode-coupling coefficients, with
their order in A given explicitly in the matrix. Expressions for these
coefficients are derived in Appendix A. As in the three-wave analysis,
the off-diagonal coefficients become equal for k on-resonance. The
diagonal mode-coupling coefficients La

k;L
b
kþm induce nonlinear fre-

quency shifts that change the location of degeneracy by order A2 to
the shifted resonance location k ¼ �k0, where

xa
�k0
þ A2La

�k0
=Ea

�k0
¼ xb

�k0þm
þ A2L

b
�k0þm

=Eb
�k0þm

� �x0: (64)

This equation can be solved for �k0 to the lowest order in A, yielding

�k0 � k0 ¼ A2
L

b
k0þmE

a
k0
�La

k0E
b
k0þm

Ea
k0
Eb
k0þm va

k0
� vb

k0þm

� � : (65)

On resonance, at k ¼ �k0, the mode frequency is

x ¼ �x06jAjjmj
La;b

�k0;�k0þm




 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ea

�k0
Eb

�k0þm

q ; (66)

which implies a maximum growth rate Cmax of

Cmax ¼ jAjjmj
L

a;b
�k0;�k0þm




 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Ea

�k0
Eb

�k0þm

q ; (67)

provided as always that the daughter wave energies are of opposite

sign so that Ea
�k0
Eb

�k0þm
< 0. Growth can occur for a range of k values

around k ¼ �k0. Taking k ¼ �k0 þ Dk, and expanding the reduced
matrix in small Dk, we obtain

x� �x0 ¼
va

�k0
þ vb

�k0þm
2

Dk

6
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
va

�k0
� vb

�k0þm

� �2
Dk2 þ 4

AjmjLa;b
�k0;�k0þm

� �2
Ea

�k0
Eb

�k0þm

vuuut : (68)

This shows that instability occurs for a range of wavenumbers
given by

jDkj < 2Cmax

jva
�k0
� vb

�k0þm
j
: (69)

Equations (66)–(68) describe the growth rate expected at the
degeneracies for TG waves shown in Figs. 5 and 6, between theþ and
� branches of the dispersion relation. Since E�k is greater than zero for
all k 6¼ 0, and since Eq. (43) predicts that Eþkþm < 0 at each degener-
acy, the daughter wave energies are opposite in sign and the pump
wave can be unstable provided that Dk is small enough.

C. Modulational instability

There is one special case which must be separately consid-
ered: The case of modulational instability. Modulational instabil-
ity occurs for an m¼ 2 degeneracy (a 4 wave interaction) for
which a ¼ b ¼ þ. To zeroth order in A, the eigenmode consists of
two near-degenerate daughter waves traveling in the same direc-
tion as the pump (as seen in the lab frame), with wavenumbers
k ¼ �1þ Dk and kþm ¼ 1 þDk and with Dk of order A.
According to Eq. (14), one wave has phase speed greater than u1
and the other has phase speed less than u1, so Eq. (43) implies that
the daughter wave energies are opposite in sign. However, as
Dk! 0, the daughter wave energies and frequencies vanish and
consequently so do the mode coupling coefficients. Growth occurs
only for jDkj > 0, and Eq. (66) does not apply.

However, Eq. (63) can still be used to analyze the instability. As
described in Appendix A, this reduced matrix equation must be
Taylor-expanded about Dk ¼ 0 and takes the form

�Dxþ a� bj2 a
a ��Dxþ a� bj2

� �
� C1

C2

� �
¼ 0; (70)

where j � Dk=A is scaled wavenumber, A2Dx ¼ x� Avþ1 j is the
second order eigenmode frequency shift,

� ¼ 1

2 1þ k2?
	 
2 ; (71)

a ¼ k2?

8 1þ k2?
	 
5=2 1� 3k2? � 9k4?

1þ 3k2? þ 3k4?
; (72)

and

b ¼ 3k2?

4 1þ k2?
	 
9=2 : (73)

The term a arises from nonlinear mode coupling, while � is
related to mode energy and b is related to linear wave dispersion. The
diagonal and off-diagonal mode coupling coefficients in Eq. (70) are
identically given by a because, while there is mode coupling giving off-
diagonal terms in the matrix, and a nonlinear frequency shift giving
diagonal terms, these two effects must be in balance so that Dx ¼ 0 as
j! 0. As we discussed previously, when the daughter waves have the
same wavelength as the pump, they are not unstable: they merely
translate the pump and/or change its amplitude slightly, depending on
their phase.

The second-order wavenumber-dependent frequency shift aris-
ing from Eq. (70) is
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Dx ¼ 6j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2j2 � 2ab
p

�
: (74)

This implies that modulational instability occurs for wavenum-
bers in the range 0 < j2 < 2a=b, provided that ab > 0. However,

Eqs. (72) and (73) imply that ab > 0 only for 0 < k? <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
p
� 1

	 

=6

q
¼ 0:45389…., because the mode coupling coefficient

a passes through zero at this value of k?. This range of k? has not
been examined in our current experiments on nonlinear TG modes,
which have focussed on the more easily accessible range k? > 1.

When ab > 0, themaximum growth rate occurs for daughter waves
with the wavenumber given by jjj ¼

ffiffiffiffiffiffiffiffi
a=b

p
, implying a growth rate

Cmax ¼ A2a=� (where we have added in the scaling with pump wave
amplitude A). This maximum growth rate is plotted vs k? in Fig. 7, over
the range of k? where growth occurs. Given that there is a maximum
possible pump wave amplitude A that is less than roughly 0.4 (see Fig. 2),
the growth rate in this instability for TG waves is rather small.

The special features arising from the symmetry of the modula-
tional instability for TG waves are quite similar to the features seen in
the modulational instability of Stokes waves.1,2,8,10 In Stokes waves,
there is also a change from instability to stability as a system parameter
is varied (in the case of the Stokes waves, the ratio of the fluid depth to
the pump wavelength).

D. Numerical evaluation of eigenmodes

Equation (27) can be solved numerically for the frequency and
eigenfunction of eigenmodes in a variety of ways. We have done so
here using a Fourier method (a variant of Hill’s method27) based on
Eq. (31). We decompose a given eigenmode in terms of the zeroth
order modes wa

k , which is equivalent to the Fourier expansion used in
Eq. (31)

w sð Þ ¼
X

a¼þ;�

XP
n¼�P

canw
a
lþn sð Þ; (75)

where l is a given wavenumber taking the place of k in Eq. (31), can are
Fourier coefficients, and the integer P is chosen to be sufficiently large
so that the resulting eigenmode is well represented by the sum over n.

Then, by using the inner product method outlined in Appendix A, we
obtain a matrix eigenvalue problem for the frequency x and the
Fourier coefficients can

xcan ¼
X

b

XP
m¼�P

Ka;b
n;m

Ea
nþl

cbm; (76)

where the K coefficients are given by Eq. (A3). The eigenvalues x and
eigenvectors can yield 2P þ 1 eigenfrequencies and eigenfunctions that
include Fourier harmonics with wavenumbers k ¼ nþ l; n
¼ �P;…; P. We repeat this evaluation for a set of l values,
�1=2 � l < 1=2, in order to build up a set of eigenmodes. The values
of l beyond this range merely repeat the set of eigenmodes; the set is
periodic in l with a unit period since an integer added to l can be
removed by redefining n in the sum in Eq. (75) (assuming that P is
sufficiently large so that the redefinition of the limits on the sum has
no effect).

For large amplitude pump waves, the eigenmodes have many
Fourier harmonics and P must be taken to be as large as possible.
Eigenmodes dominated by wavenumbers approaching P are not very
well converged. As a rule of thumb, eigenmodes with the P=2 lowest
eigenfrequency magnitudes (since frequency is an increasing function
of the wavenumber) are reasonably well converged. We take P values
up to 60 and test for convergence in the eigenfrequencies as P is
increased, keeping only those eigenfrequencies that exhibit good con-
vergence (which always fall in the aforementioned lowest eigenfre-
quency grouping).

Calculated eigenfrequencies for a range of the low frequency
well-converged modes are displayed in Fig. 8 vs l, for a given pump
amplitude A and k? ¼ 3=2, the same value as in Figs. 3–5. The lines
visible in the figure are a superposition of the two dispersion relations
xþk and x�k shown in Figs. 3–5, shifted by nonlinear mode coupling
effects. Since k ¼ lþ n for some integer n, a given branch of the dis-
persion relation can be followed vs k out one side of the plot and into
the other side, increasing or decreasing k by unity along that branch.

The locations of the four k 6¼ 0 degeneracies in Fig. 5 are shown
as dots in Fig. 8, but with the k values shifted by an integer from those
in Fig. 5 to values in the range �1=2; 1=2ð Þ using k ¼ nþ l. A careful

FIG. 7. Maximum growth rate Cmax for the modulational instability in TG waves,
plotted vs perpendicular wavenumber k?.

FIG. 8. Real part of the eigenmode frequencies vs wavenumber l for pump ampli-
tude A¼ 0.1 and k? ¼ 3=2. Dots are nontrivial degeneracy locations for A� 1
(see Figs. 5 and 6).
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examination of the figure shows that the degeneracy locations are
slightly changed by nonlinear effects. A scan of l values performed
around the predicted locations of degeneracies shows small instability
regions, as expected from the theory. The imaginary part of x is
shown in Fig. 9 for A¼ 0.05, for wavenumbers near the m¼ 2 degen-
eracy, compared to the perturbation theory valid for small A. There is
a slight shift in the location of the degeneracy compared to theory
because second-order perturbation theory is not quite sufficient to pre-
dict the frequency shifts at this pump amplitude. However, the scaling
with amplitude of the growth rate, the nonlinear shift in the degener-
acy location, and the width of the degeneracy regions follow perturba-
tion theory fairly well (at least, on a log scale), up to quite large pump
amplitude (Fig. 10). The largest amplitude A¼ 0.2 in these plots corre-
sponds to a pump wave density variation of over 100%. In these plots,
the perturbation theory for the resonance locations and growth rates is
calculated at small amplitudes A using Eqs. (65), (67), and (69), which
employ Eqs. (A16), (A17), (A20), (A21), and (A22) for the matrix
coefficientsL. We then simply extrapolated to larger amplitude using
the expected lowest-order scaling with A for each plotted quantity.
This seems to provide a better match to the numerical data than evalu-
ating the perturbation theory for large A values, where perturbation
expansions for frequency shifts and mode coupling are not valid.

For smaller k? values below k? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
p
� 1

	 

=6

q
, a modula-

tional instability is predicted near jkj ¼ 1, which corresponds to l¼ 0.
We have observed this instability in the numerical evaluation of the
eigenmodes. In Fig. 11, we plot the imaginary part of the mode fre-
quency compared to the theory of Eq. (74) for several pump wave
amplitudes and for k? ¼ 0:2. The numerically determined growth
rate agrees well with the perturbation theory, even for fairly large
amplitude waves (the maximum possible amplitude at this k? value is
roughly A¼ 0.4; see Fig. 2).

IV. DISCUSSION

In this paper, we have extended the analysis of Ref. 33 for the sta-
bility of nonlinear TG traveling waves to arbitrary wavenumber
daughter waves. The new analysis shows that, while the pump waves
are stable to three-wave processes, they can be unstable to four-wave
and higher order processes over several narrow wavenumber bands,
whose locations and widths are determined by wave degeneracies that

depend on the amplitude of the pump and the perpendicular wave-
number. A long-wavelength 4-wave modulational instability was also
described, similar to the instabilities studied in finite-amplitude water
waves. Analytic expressions for the instability growth rates, valid at
small pump wave amplitude, were compared to numerical evaluations,
with good agreement found over applicable amplitude ranges.

Experiments on TG traveling waves in periodic boundary condi-
tions have not yet been carried out, but such experiments could be
done on systems such as the toroidal non-neutral plasma trap at
Lawrence University,41 where the plasma can be confined in a torus.
Other experiments have observed the instability of nonlinear TG
standing waves,29 with growth rates far larger than those predicted
here for traveling waves, or those predicted in Ref. 33 for standing
waves. These experiments point to a kinetic instability mechanism
caused by particles trapped in the potential wells of the pump wave.30

FIG. 9. Imaginary part of the eigenmode frequency plotted for a set of l values
near the m¼ 2 degeneracy, for pump amplitude A¼ 0.05 and k? ¼ 3=2. The solid
line is perturbation theory, Eq. (68). The vertical dashed line is the A� 1 m¼ 2
degeneracy location (second dot from the right in Fig. 8).

FIG. 10. (a) The maximum growth rate Cmax, (b) shift in the degeneracy location
�k 0 � k0, and (c) width Dk of the instability region for both the m¼ 2 and m¼ 3
degeneracies for k? ¼ 3=2, plotted vs pump wave amplitude A. Lines are perturba-
tion theory given by Eqs. (65), (67), and (69), extrapolated to large amplitude, and
dots are from numerical evaluations.
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Work on this kinetic mechanism is ongoing and will be reported on in
the following paper.42
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APPENDIX A: NONLINEAR COUPLING
COEFFICIENTS

In this Appendix, we evaluate the nonlinear coupling coeffi-
cients in Eq. (63) for general m> 1. For higher-order degenerate
perturbation theory applied to a resonance of the form xa

k ¼ xb
kþm

� x0, m> 1, we cannot ignore the Dw term appearing in Eq. (46).
Instead, we express the eigenmode as

w sð Þ ¼
X

�b¼þ;�

Xmþ1
�n¼�1

c
�b
�nwkþ�n�b sð Þ; (A1)

where the coefficients ca0 � C1 ¼ O 1ð Þ and cbm � C2 ¼ O 1ð Þ, and all
of the other coefficients are of order Ap; p � 1. The sum over �n only
needs to run from �1 to mþ 1 because only these waves are
required to obtain the lowest nontrivial order for the matrix-
coefficients given in Eq. (63). Substituting this expression for w into
the eigenmode equation, Eq. (27), and taking an inner product with
respect to one of the zeroth-order waves w�a

kþn [using the zeroth-
order inner product, Eq. (53)], yields the following matrix equation
for the coefficients:

xE�a
kþnc

�a
n ¼

X
�b¼þ;�

Xmþ1
�n¼�1

K�a;�b
n;�n c

�b
�n ; (A2)

where K�a;�b
n;�n ¼ �i½w�a

kþn; L̂wkþ�n�b �0. Using Eqs. (27), (28), (53), (8),
(10), (11), and (12), this matrix coefficient can be expressed in
terms of the Fourier coefficients of the pump wave

K�a ;�b
n;�n ¼

x�a
kþn
4

u2kþndn;�nþVn��n �aukþnþ�bukþ�n

	 

þ�a�bNn��nukþnukþ�n

h i
;

(A3)

where we again employ the notation that multiplication by �a ¼ þ
or � means multiplication byþ 1 or �1, respectively, and similarly
for �b.

In our analysis of the solution to this problem, it is important
to note that, thanks to Eq. (17), the K coefficients are ordered in A

according to K�a ;�b
n;�n ¼ O Ajn��njð Þ. We explicitly account for the order-

ing by writing the coefficients as

K�a ;�b
n;�n ¼ Ajn��njx�a

kþnk
�a;�b
n;�n ; (A4)

where the coefficients k�a;�b
n;�n are order unity and are symmetric under

interchange of the subscripts and superscripts: k�a;�b
n;�n ¼ k

�b;�a
�n;n .

Also, for �n ¼ n, the matrix coefficient simplifies

K�a;�b
n;n ¼ xkþn�a

E�a
kþn � �aukþn u0 � u1ð Þ=2; �a ¼ �b

0; �a 6¼ �b:

(
(A5)

The term u0 � u1 � A2Du represents the nonlinear shift in the
speed of the pump wave, and is O A2ð Þ, given by Eq. (15).

There are two equations from the set of 2mþ 6 equations
encoded in Eq. (A2) which we will reduce to the two-by-two-form
of Eq. (63): the fn; �ag ¼ f0; ag equation and the fn; �ag ¼ fm;bg
equation. These two equations take the forms [using Eqs. (A4) and
(A5)]

Ea
k x� xa

k

	 

þ axa

kukDuA
2=2

h i
C1

¼ Amxa
kk

a;b
0;mC2 þ

X
f�n; �bg
�n 6¼ 0

f�n; �bg 6¼ fm;bg

xa
kA
j�njka;�b

0;�n c
�b
�n ; (A6)

Eb
kþm x� xb

kþm

� �
þ bxb

kþmukþmDuA2=2
h i

C2

¼ Amxb
kþmkb;a

m;0C1 þ
X
f�n; �bg

f�n; �bg 6¼ f0; ag
�n 6¼ m

xb
kþmA

j�n�mjkb;�b
m;�nc

�b
�n : (A7)

Here, we already begin to see the general form of the coupling
given by Eq. (63). There is a direct coupling between C1 and C2 of
order Am, arising from the mth Fourier coefficients of the pump
(since k

�b;�a
m;0 is proportional to a linear combination of Vm and Nm),

and this coupling is symmetric on resonance, due to the symmetry
of the k coefficients. There are also diagonal nonlinear frequency
shift terms of order A2, arising from the nonlinear shift Du in the
pump wave speed.

The complete calculation of the nonlinear coupling coefficients
in Eq. (63) requires the solution of the other 2mþ 4 equations in

Eq. (A2) for the small coefficients c
�b
�n in terms of C1 and C2. The

solution for these coefficients can be broken into two parts, with the
following lowest-order expansion in A:

c
�b
�n ¼ Ajm�jm��njjg

�b
�n C1 þ Ajm�j�njjh

�b
�nC2; (A8)

FIG. 11. Growth rate for the modulational instability vs wavenumber, each scaled
by amplitude according to perturbation theory, for three amplitudes: A ¼
0:05; 0:2; 0:3 and for k? ¼ 0:2. The solid line is perturbation theory given by Eq.
(74) with j ¼ l=A and C ¼ A2Im½Dx�. Data for larger amplitude give slightly
larger growth rates. The A¼ 0.05 numerical results cannot be distinguished from
the theory curve.
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where g and h are of order unity in A, except for the g0 and hm
terms. We find that ga†

0 ¼ O Að Þ. Similarly, hb†

m ¼ O Að Þ. This order-
ing implies that these terms can be neglected, so that neither ca

†

0 nor

cb
†

m are required in Eqs. (A6) or (A7). Thus, we can neglect both the

�n ¼ 0 and �n ¼ m terms in the sums, and we may take ga†
0 ¼ hb†

m ¼
0 in Eq. (A8). The ordering provides the following forms for the
matrix elements in Eq. (63). The O A2ð Þ frequency shift terms are

La
k ¼ �axa

kukDu=2þ xa
k

X
�a

g�a
�1k

a;�a
0;�1 þ g�a

1 ka;�a
0;1

� �
; (A9)

L
b
kþm¼�bxb

kþmukþmDu=2þxb
kþm
X

�a

h�a
m�1k

b;�a
m;m�1þh�a

mþ1k
b;�a
m;mþ1

� �
;

(A10)

and the O Amð Þ off diagonal elements are

L
a;b
k;kþm ¼ xa

kk
a;b
0;m þ xa

k

X
�a

Xm�1
n¼1

h�a
nk

a;�a
0;n ; (A11)

L
b;a
kþm;k ¼ xb

kþmkb;a
m;0 þ xb

kþm
X

�a

Xm�1
n¼1

g�a
n kb;�a

m;n: (A12)

For m¼ 1, the sums do not enter and the off diagonal coeffi-
cients can be seen to agree with the off diagonal terms in Eq. (56),
using Eqs. (A4), (A3), (10), and (18).

It is easy to solve for the g and h coefficients in Eqs. (A9) and
(A10), since these coefficients enter only at O(A) in Eq. (A8).
Solving Eq. (A2) for g�a

61 and h�a
m61 yields, to the lowest order

g�a
n ¼

x�a
kþnk

�a ;a
n;0

d�a
n

; n ¼ 61; (A13)

h�a
n ¼

x�a
kþnk

�a;b
n;m

d�a
n

; n ¼ m61; (A14)

where

d�a
n ¼ E�a

kþnx� K�a;�a
n;n (A15)

is the diagonal coefficient in the nth equation. When these expres-
sions are used to determine the frequency shift via Eqs. (A9) and
(A10), we obtain

La
k ¼ �axa

kukDu=2þ xa
k

P
�a x�a

k�1

ka;�a
0;�1

� �2
d�a
�1

þx�a
kþ1

ka;�a
0;1

� �2
d�a
1

2
4

3
5
;

(A16)

L
b
kþm ¼ �bxb

kþmukþmDu=2

þxb
kþm

X
�a

x�a
kþm�1

kb;�a
m;m�1

� �2
d�a
m�1

þx�a
kþmþ1

kb;�a
m;mþ1

� �2
d�a
mþ1

2
4

3
5
;

(A17)

where we have used the symmetry of the k coefficients under the
exchange of indices.

The other g and h coefficients required in Eqs. (A11) and
(A12) can also be determined by solving Eq. (A2) for
�n ¼ 1;…;m� 1, noting that for each �n value that part of the

equation proportional to C1 can be solved independently of the part
proportional to C2. The C1 part yields the g�a

�n coefficient in terms of
coefficients with smaller �n and is of order A�n . The C2 part yields the
h�a

�n coefficient in terms of coefficients with larger �n and is of order
Am��n . The solutions are given below, enabling a recursive construc-
tion of the g and h coefficients

g�a
n ¼ x�a

kþn

k�a;a
n;0 þ

X
�b

Xn�1
�n¼1

k�a;�b
n;�n g

�b
�n

d�a
n

; n ¼ 1;…;m� 1; (A18)

h�a
n ¼ x�a

kþn

k�a ;b
n;m þ

X
�b

Xm�1
�n¼nþ1

k�a;�b
n;�n h

�b
�n

d�a
n

; n ¼ m� 1;…; 1: (A19)

For example, for m¼ 2, only the n¼ 1 terms are needed, with
forms already given explicitly in Eqs. (A13) and (A14). When they
are applied to Eqs. (A11) and (A12), we obtain the following form
for the off diagonal coupling coefficients in the reduced matrix:

La;b
k;kþ2 ¼ xa

kk
a;b
0;2 þ xa

k

X
�a

x�a
kþ1

ka;�a
0;1k

�a;b
1;2

d�a
1

; (A20)

L
b;a
kþ2;k ¼ xb

kþ2k
b;a
2;0 þ xb

kþ2
X

�a

x�a
kþ1

kb;�a
2;1 k�a;a

1;0

d�a
1

: (A21)

On resonance, where xa
k ¼ xb

kþ2; Lkþ2;k and Lk;kþ2 are iden-
tical due to the symmetry of the k coefficients.

For m¼ 3, the coupling coefficients are given by

La;b
k;kþ3
xa

k

¼
Lb;a

kþ3;k

xb
kþ3
¼ ka;b

0;3 þ
X

�a

x�a
kþ1
d�a
1

ka;�a
0;1k

�a ;b
1;3

þ
X

�a

x�a
kþ2
d�a
2

ka;�a
0;2k

�a;b
2;3 þ

X
�a;�b

x�a
kþ1x

�b
kþ2

d�a
1 d

�b
2

ka;�a
0;1k

�a;�b
1;2 k

�b;b
2;3 : (A22)

For larger m, the coupling coefficients continue this pattern, sum-
ming over every combination of k coefficients that couple mode 0
to mode m.

Note that these coefficients depend implicitly on the eigenfre-
quency x, through the d coefficient [see Eq. (A15)]. The problem is
made tractable by taking for x the zeroth-order value at degeneracy,
x ¼ x0. This is sufficient to obtain the lowest order forms for the
frequency shifts and off-diagonal mode coupling coefficients.

We now return to the special case of the modulational instabil-
ity and evaluate the matrix coefficients in Eq. (63). Recall that for
this m¼ 2 degeneracy, the daughter waves have wavenumbers
k ¼ �1þ Dk and k ¼ 1þ Dk and both are on theþ branch of the
dispersion relation. The mode coupling coefficients, the daughter
wave energies, and their frequencies all vanish at the m¼ 2 degen-
eracy point k¼�1, so there is mode coupling and instability only
for Dk 6¼ 0. Since all terms vanish at Dk ¼ 0 in Eq. (63), we
Taylor-expand each matrix coefficient in small Dk. Writing
Dk ¼ Aj and x ¼ Avþ1 jþ A2Dx [where vþ1 is the daughter wave
group velocity; see Eq. (60)], the reduced matrix equation (63) has
the form
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j�Dxþ j a� bj2ð Þ ja
ja �j�Dxþ j a� bj2ð Þ

� �
� C1

C2

� �
¼ 0;

(A23)

where we have divided a factor of A3 from the matrix. Dividing out
a factor of j then yields Eq. (70). The coefficient � is the first-order
Taylor expansion coefficient of the first daughter wave energy Eþk

� k?ð Þ ¼ @Eþk =@kjk¼�1 ¼
1

2 1þ k2?
	 
2 ; (A24)

where we used Eqs. (43) and (14). Thanks to symmetry about k¼ 0,
the second daughter wave energy Eþkþ2 has a Taylor expansion about
k¼�1 of the opposite sign.

The dispersive term b arises from the Taylor expansion of
xþk to second-order in Dk, multiplied by the Taylor expansion
of Ek

b ¼ �=2ð Þ@2xþk =@k2jk¼�1 ¼
3k2?

4 1þ k2?
	 
9=2 ; (A25)

where we used Eqs. (41) and (14). The Taylor expansion for the
other daughter wave at k¼ 1 leads to the same coefficient, thanks to
symmetry about k¼ 0.

Here, we should pause to note that the first-order term in the
Taylor expansion of xþk has already been accounted for through
our choice of the form of the eigenfrequency, x ¼ vþ1 Dkþ A2Dx.
The first-order Taylor expansion of xþk at k¼�1 yields vþ�1Dk,
which cancels with the first order term in the eigenfrequency, vþ1 Dk.
(Note that vþ�1 ¼ vþ1 by symmetry.) Also, thanks to the symmetry
about k¼ 0, this cancelation occurs for the second daughter wave as
well.

The mode coupling term a can be evaluated by Taylor-
expansion to first order in Dk of either Eqs. (A16), (A17), and
(A20) or (A21); all give the same result. For example, comparing
Eq. (63) with Eq. (A23), we can write a ¼ �@La

k=@kjk¼�1. Since
Eq. (A16) shows that, for a ¼ b ¼ þ; La

k is proportional to xþk ,
which vanishes at k ¼ 61, we obtain

a ¼ vþ�1 u1
Du
2
�
X

�a

x�a
k�1

kþ;�a0;�1

� �2
d�a
�1

þ x�a
kþ1

kþ;�a0;1

� �2
d�a
1

2
4

3
5
k¼�1

8><
>:

9>=
>;:
(A26)

L’Hôpital’s rule and the first-order form for the eigenfrequency,
x ¼ Dk vþ1 , must be used to evaluate x�a

kþ1=d
�a
1 jk¼�1

x�a
kþ1
d�a
1
jk!�1 ¼

2 �au0 � u1ð Þ
u0 u0 � �au1ð Þ u1 þ vþ1 � �au0

	 
 : (A27)

For d�a
�1, it is sufficient to simply take x¼ 0, yielding d�a

�1jk¼�1
¼ �4x�a

�2E
�a
�2 to the lowest order in A. Applying these results to Eq.

(A26) along with the forms for the k coefficients given by Eqs. (A4)
and (A3), and the shift Du ¼ u0 � u1ð Þ=A2 ¼ 2þ 3k2?=4 from Eq.
(15), we obtain, after some algebra

a ¼ k2?

8 1þ k2?
	 
5=2 1� 3k2? � 9k4?

1þ 3k2? þ 3k4?
: (A28)
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