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Abstract of the Dissertation

Measurement of Landau Damping of Electron Plasma

Waves in the Linear and Trapping Regimes

by

James Robert Danielson

Doctor of Philosophy in Physics

University of California, San Diego, 2002

Professor C. Fred Driscoll, Chairman

Experiments are presented on collisionless damping of standing plasma

waves in pure-electron plasma columns. Speci�cally, the �rst quantitative mea-

surements of \linear Landau damping" and \nonlinear wave-particle trapping os-

cillations" of m� = 0 Trivelpiece-Gould (T-G) modes in a pure electron plasma

are discussed in detail.

Linearly excited T-G standing waves are observed and the dispersion for

long wavelength modes is measured. Prior experiments on T-G modes commonly

showed exponential damping independent of amplitude, but no agreement with

linear damping theory. In the present experiments, we characterize the damping

from ultra-low amplitude thermal excitations to large amplitudes where particle

trapping dominates.

At low wave amplitudes (Æn=n0 < 10�3), the measured linear damping

rate (10�3 < 
L=! < 10�1) agrees quantitatively with Landau damping theory for

moderate plasma temperatures (1 < Te < 3eV; 3 < v�=�v < 5). This damping is

xvii



shown to be due to resonant particles; a dramatic decrease in the damping rate is

observed when the resonant particles are eliminated by truncating the nominally

Maxwellian velocity distribution. Surprisingly, no correspondence is found with

the somewhat more subtle theory predictions of \bounce resonant damping," nor

with damping due to \dephasing" in the plasma end sheaths.

At larger wave amplitudes (10�3 < Æn=n0 < 10�2), the excited T-G wave

initially damps at the Landau rate, but the wave-resonant particles become trapped

in the wave potential, sloshing with frequency !T �
q
eEzkz=m, as �rst analyzed

by O'Neil in 1965. This causes the wave amplitude to re-grow and oscillate in

amplitude, approaching a BGK state. The measured times characterizing the �rst

bounce oscillation are found to agree quantitatively (to about 20%) with predic-

tions based on a self-consistent numerical calculation. Small discrepancies between

the theory and the measured amplitude oscillation times are shown to be due to

additional damping processes which are not dependent on the resonant particles.

At late times, a weak exponential damping of the wave is observed. Mea-

surement of the average (nonlinear) decay rate for large amplitude waves is shown

to be consistent with the collisional repopulation of the distribution function as

described by Zakharov and Karpman in 1963. Measurements of the early-time

wave amplitude peaks and valleys are consistent with the naively predicted plateau

amplitude for a BGK state. Small discrepancies between the measured e�ective

plateau amplitude and the expected BGK equilibrium amplitude is likely the re-

sult of extra damping from either resistive damping in the detection electronics or

collisional repopulation, or both.

xviii



Chapter 1

Introduction and Summary

1.1 Introduction

This thesis is concerned with the dynamics of electrostatic compression

waves propagating on a pure electron plasma column [1]. These Trivelpiece-Gould

(T-G) modes are longitudinal Langmuir oscillations of the cylindrical plasma col-

umn [2]. Collisionless Landau damping of these waves occurs when electrons

streaming at the wave phase velocity v� interact with the wave for many wave

periods.

One of the interesting complications here is that these are standing waves,

composed of two oppositely propagating traveling waves. In this case, the waves

and the free-streaming electrons are re
ected at the plasma boundaries after each

transit of the plasma column. Since the re
ections of waves and particles are quite

dissimilar, it is questionable whether the waves can maintain coherence with the

electrons for a long enough time for the resonant interaction to take place.

This thesis shows that, remarkably, the electrons and waves maintain co-

herence over many wave oscillations (at least 100 to 1000 cycles) and over many

interactions with the plasma boundary. This implies that any perturbations to

the wave/particle dynamics due to interactions with the boundary are actually

1
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quite weak. Thus, despite the re
ection process, low amplitude waves are damped

through the resonant interaction of the wave with particles traveling at the wave

phase velocity as described by Landau in 1946 [3]. Further, large amplitude waves

trap resonant particles causing oscillations in the wave amplitude and inhibit the

damping of the wave consistent with the predictions of O'Neil [4].

In contrast to the work by Malmberg and Wharton [5], the spectrum of

these standing waves is discrete rather than continuous. This precludes sevaral

instabilities, such as nonlinear wave decay into sidebands [6], which can limit the

lifetime of BGK states. Instead, our BGK states are limited by weak resistive wave

damping due to the measurement electronics and by collisional smearing of the

resonant particle distribution. BGK states have not previously been quantitatively

diagnosed in this regime.

1.2 Summary

1.2.1 Background for the Experiments

Chapter 2 presents the details of the pure electron plasma apparatuses and

wave measurement techniques that are used in this thesis. The geometry of the

di�erent traps is described as well as measurement of the basic plasma parameters

of density and temperature.

Two basic techniques are used to study excited plasma modes: measure-

ment of the mode spectrum and measurement of the temporal response. Since the

plasma mode is similar to a simple harmonic oscillator, the two measurements are

complimentary. In the spectral measurements, we sweep the excitation frequency

through the mode resonance (at !0) and measure the response at each frequency.

The damping rate 
 is then obtained directly from measurement of the mode width.

In the temporal measurements, we launch a short burst at the mode resonant fre-
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quency to excite the wave, and then measure the free decay of the mode. The

damping rate is obtained directly from the exponential decay time of the received

signal.

Measurements of the linear excitation of the wave are presented and dis-

cussed in context with the low amplitude (thermal) and high amplitude (soliton)

limits. The measured transition from linear damping to the nonlinear damping

regime is described. Further, the wave amplitude calibration is checked by directly

measuring the density di�erence between the two ends for a large amplitude T-G

wave.

The �nite resistance of the wave detection circuit causes weak damping of

the excited plasma mode. Measurement of the resistive damping rate 
load from

an imposed \RLC" circuit are shown to agree well with theoretical predictions,

verifying that resistive dissipation of the mode sets a lower limit on the measured

mode damping rates. For the present experiments, the limit is 
load=!0
>� 10�4.

1.2.2 Trivelpiece-Gould Modes and Linear Landau Damp-

ing

In Chapter 3, the physics of Trivelpiece-Gould (T-G) modes and the mea-

surements of linear Landau damping are presented and compared to theory.

The waves studied in this thesis are long wavelength, azimuthally sym-

metric (m� = 0) T-G modes. An overview of the derivation of mode dispersion

is presented as well as measurements of the �rst 10 standing wave frequencies

verifying the numerically calculated T-G dispersion relationship. Except for this

veri�cation of the dispersion equation, all experiments will consider only the dy-

namics of the lowest frequency, longest wavelength (mz = 1) mode. This mode

is commonly referred to as the \sloshing" mode because the center of mass shifts
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from end to end. The density and potential variation is peaked near the ends of

the column with a half-wavelength approximately equal to the plasma length.

The theory of linear Landau damping is presented as well as the numer-

ical code used to calculate the theoretical damping rate. Linear damping rate

measurements are made with 3 techniques: driven spectral response, thermal spec-

trum measurement, and temporal decay of a pulse excited wave. These techniques

give identical measured damping rates in the range of 10�3 < 
L=! < 10�1 and are

in quantitative agreement with linear Landau damping theory for plasma temper-

atures giving 3 <� v�=�v <� 5.

An experiment is presented where the velocity distribution is truncated

at high velocities by a slight \hollowing" of the plasma column. A factor of 10

decrease in the damping rate is observed when the hollowing level is suÆcient to

remove most electrons with velocities at (and above) the wave phase velocity. This

demonstrates the necessity of resonant particles in order to damp the wave at the

Landau rate.

The theory of bounce resonant damping is introduced and a simple model

is used to calculate the theoretical damping rate. Bounce resonant damping is an

enhancement over Landau from the coupling of the standing wave to harmonic

resonances of the plasma column. No agreement is found with the experiments

and the predictions from the simple model.

Further, no agreement is seen between the measured damping rates and cal-

culations of wave damping from the dephasing of the electron velocity perturbation

at the end sheaths.
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1.2.3 Non-linear Trapping Oscillations

In Chapter 4, the measurements are extended from the low amplitude lin-

ear regime to the large amplitude regime where the trapping of resonant particles

in the wave potential becomes important. A launched wave initially damps lin-

early, reaches a minimum (\valley") amplitude, then re-grows to a peak amplitude

somewhat less than the launched amplitude.

The theory of O'Neil predicts these amplitude oscillations, and a simple

numerical treatment is presented which avoids some of the approximations used in

the theory. The time it takes for the �rst amplitude oscillation gives the trapped

particle \bounce frequency" !B and is shown to be in good agreement (to about

20%) with the numerical calculations. Further, the measured time to reach the

�rst amplitude valley �vall is also found to be in excellent agreement (to about 5%)

with the predictions from the numerical calculation.

Measurements of the amplitudes of the bounce oscillation and valley depth

are also presented. Although the valley depth is in excellent agreement with the

numerical calculations, the peak bounce amplitude obtained at the lowest launched

amplitudes di�ers from the theory by as much as a factor of 3. This is shown to

be most likely caused by resistive damping or collisional e�ects, neither of which

is accounted for in the basic theory.

The long-time (nonlinear) decay rate of the mode is measured, and found

to be consistent with the rate expected due to collisional repopulation of resonant

particles.

Lastly, the numerical calculations predict that in the long time limit, the

trapping oscillations phase-mix to a steady-state amplitude (plateau), sometimes

referred to as a \BGK equilibrium." Measurements of the long-time plateau level

are shown to be somewhat lower than expected from the theory, by as much as a



6

factor of 2 for the lowest amplitude waves.



Chapter 2

Background for the Experiments

2.1 Overview

This chapter describes the non-neutral plasma traps and the experimental

techniques used to measure the damping of plasma waves. There were 3 di�er-

ent traps used for the experiments, all cylindrical devices, typically referred to

as Penning-Malmberg traps. The waves are launched and detected by applying

voltages to and detecting voltages on isolated cylindrical electrodes. For all the

experiments in this thesis, the waves are cylindrically symmetric (m� = 0).

Two techniques are used to measure the damping of plasma modes. First,

the frequency spectrum of the mode was measured by either externally sweeping

through the mode resonance, or by the detection of the thermally excited mode

spectrum. Second, the time evolution of decaying modes was measured by pulse

excitation of the mode with a �xed number of cycles. The spectral measurements

give the same information as the temporal response of the mode but allow for

increased sensitivity by utilizing longer time averages. The pulse-decay excitation

typically has a worse signal-to-noise, but allows for detailed investigation into the

temporal response of the modes.

Lastly, the e�ect of the �nite impedance of the detection circuit will be

7
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Figure 2.1: Penning-Malmberg trap schematic showing the location of the excita-

tion and detection electrodes for the wave experiments. The experiments typically
set VC = �100V .

detailed. Experiments which demonstrate the damping of plasma modes due to an

external circuit impedance will be presented and shown to compare well with the

theoretical predictions.

2.2 Pure Electron Plasma Traps

Three di�erent Penning-Malmberg electron traps were used (EV, IV, CV),

all represented schematically by Figure 2.1. The traps consist of series of isolated

hollow cylindrical electrodes in ultra-high vacuum with pressure P < 10�10 Torr.

The electrons are con�ned radially by a uniform magnetic �eld (0:4 < B < 40kG)

and axially by con�nement voltages Vc � �100 Volts. Waves are excited with

a signal generator with voltage Vexc, Vm is the detected voltage on the receiving

electrode, G is the linear gain of the ampli�er, and Aw is the ampli�ed (and �ltered)

voltage measured on either the oscilloscope or spectrum analyzer.

The principle di�erences between the three traps are magnetic �eld strength
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Parameter EV IV CV

Magnetic �eld, Bz 380G 30kG 40kG

Wall Radius, Rw 3:81cm 2:86cm 1:27cm

Plasma Radius, Rp 1:5cm 0:2cm 0:05cm

Plasma Length, Lp 30cm 41cm 8cm

Total Charge, Qtot 109 109 108

Central Plasma Density, n0 107cm�3 2 � 108cm�3 109cm�3

Plasma Temperature, Te 0:5� 3eV 0:1� 2eV 0:05� 2eV

Plasma Frequency, !P=2� 28MHz 127MHz 280MHz

mz = 1 Mode Frequency, f0 3:0MHz 2:0MHz 10:0MHz

For Te = 1eV v�=�v � 5:6 v�=�v � 3:9 v�=�v � 4:8

�ee =
16

15
n�vb2 ln( rc

b
) � 180sec�1 � 2000sec�1 � 9000sec�1

Table 2.1: Typical parameters for 3 di�erent pure electron plasma traps.

and typical plasma radius. Table 2.1 lists the main experimental parameters for

the di�erent traps labeled EV, IV, and CV, respectively.

The traps are operated in the standard inject-hold-dump cycle, typical

of Penning-Malmberg traps [7, 8]. Referring to Figure 2.1, the voltage on gate

G1 is lowered to ground to allow electrons from the �lament to stream into the

con�nement region. After a short �ll time, G1 is returned to the con�nement

voltage VC . There is a short delay time after injection to allow the electrons to

come to an equilibrium, then the wave excitation and detection is performed. Gate

G5 is then lowered to ground to allow the electrons to stream out of the con�nement

region. After the electrons are removed, G5 is returned to voltage VC and the cycle

is repeated.

The z-integrated density is measured by dumping the plasma through a

movable hole onto a Faraday cup. A typical density pro�le from the EV machine is

shown in Figure 2.2. Here the measured density is plotted as a function of the radial

position of the hole in the collector plate. Each point is the average of 4 identical

experimental cycles. The shot-to-shot variation in the total charge is typically less
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Figure 2.2: Typical measured EV density pro�le.

than 0.1%. The electron source for CV and IV is in the fringing magnetic �eld,

so the electrons are compressed to a smaller radius and correspondingly a higher

density upon injection into the trap.

The EV machine incorporates a magnetic \beach analyzer" for measure-

ment of the perpendicular plasma temperature [9]. This analyzer is used to measure

the radial pro�le of the plasma temperature (shown as the crosses in Figure 2.2).

The parallel temperature is measured on all machines by slowly ramping

the dump gate voltage while measuring the collected charge as a function of con�ne-

ment voltage. The escaping charge is �t to the exponential tail of a Maxwellian,

giving a temperature estimate that is accurate to about 10% for temperatures

T >� 0:1 eV [10]. This technique gives only the parallel temperature on axis

(r = 0) [10].

The relatively rapid perpendicular-to-parallel thermal equilibration rate

�?k =
8
p
�

25
nb2�v ln( rc

b
) > 102 sec�1 [11, 9] allows these experiments to be described
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by a single temperature T? = Tk � T . Here b = e2=T is the classical distance

of closest approach, rc is the cyclotron radius, n is average plasma density, and

�v =
q
T=m is the electron thermal velocity. Furthermore, any radial temperature

variations are small enough to be ignored here.

A separate signal generator is usually attached to cylinder R3 to provide

controlled heating of the plasma [12]. The heating frequency is set close to the

thermal bounce frequency �fb = �v=2LP , which is less than 1/3 of the mode resonance

frequency (!=2�), assuring no coupling to the plasma mode to be studied. Further,

a switch can be used to physically disconnect the heating circuit after heating in

order to minimize the e�ect of the circuit on the subsequent wave dynamics.

2.3 Wave Measurements

2.3.1 Spectral Measurements

The frequency spectrum of the modes is measured by utilizing a spectrum

analyzer and a tracking generator. In order to get an accurate measure of the mode

width (and hence the damping rate), the spectrum analyzer bandwidth BW must

be smaller than the mode width. This limits the ability to detect the smallest

damping rates: the smallest width that can be measured is the bandwidth of

the spectrum analyzer. The strongly damped waves are broad, and thus their

measurement is limited by the signal-to-noise of the ampli�er.

An example mode width measurement is presented in Figure 2.3. Here

the generator frequency is swept from below the mode resonance to above the

resonance with a constant amplitude excitation. The peak response (Vpk) and the

mode full-width at half-maximum (�f) are directly measured from the data. The

damping rate is then found from 
=2� � �f=2.
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Figure 2.3: Measured plasma response as a function of applied frequency. The
width of the resonance is proportional to the mode damping rate.

2.3.2 Temporal Measurements

For the pulse-decay measurements, the T-G modes are excited by a short

burst (for 10 cycles, ie. Ncyc = 10) at the wave resonant frequency (!0=2�) applied

to cylinder R4 as shown in Figure 2.1. The resulting wave density 
uctuations

induce image charges on cylinder R2; the image charges are detected using either

a charge ampli�er (input impedance � 4
) or a low-noise 50-ohm RF ampli�er.

The received signal is �ltered and fed into a RF spectrum analyzer tuned to the

resonant frequency with a bandwidth of 300kHz.

The analyzer bandwidth also limits the temporal measurements. In this

case, too small of a bandwidth limits the response time of the analyzer, thus making

it diÆcult to measure modes with large damping rates. The weakly damped modes,
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Figure 2.4: Measured wave potential at the wall as a function of time after a
pulse excitation at the mode resonant frequency.

on the other hand, are detected with great eÆciency.

For these experiments we launch the m� = 0; mz = 1; mr = 1 Trivelpiece-

Gould standing wave, also known as the \sloshing" mode. This is the longest

wavelength longitudinal oscillation of the plasma column; it has nodes of the axial

electric �eld Ez at the ends, and a wavelength � � 2LP (see Section 3.2).

An example of the temporal measurement is presented in Figure 2.4. Here

a function generator emits a pulse of 10 cycles at the resonant frequency to excite

the wave. The wave potential at the wall is ampli�ed and detected on the spectrum

analyzer with a bandwidth BW = 300kHz. The exponential decay of the mode

is measured to obtain 
; ie. Aw = Vpk exp[�
t]. The magnitude of the signal on
the electrode (Vm) is found by dividing the peak signal by the ampli�er gain, ie.

Vm = Vpk=G.
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2.3.3 Linear Excitation and Nonlinear Damping

We consider three levels of excitation of waves in plasmas. At the lowest

amplitude, there exist thermally-excited oscillations. The weakly damped modes

are excited at a non-zero amplitude due to the thermal 
uctuations of the plasma

particles [15]. At higher levels of excitation, we have linear coupling to a damped

harmonic oscillator. In this linear excitation regims, the wave amplitude is basically

linearly proportional to the voltage applied to the wall. At even higher amplitudes,

the plasma will eventually reach a level of saturation and excite solitons, or other

non-linear waves [16, 17, 18].

This thesis is concerned only with linear waves, meaning that the amplitude

of the wave is linearly proportional to the excitation level, while the damping rate

may or may not depend on the amplitude of excitation. Thus, unless otherwise

noted, we exclude the largest amplitude levels, and only take data in regions where

the wave is linearly excited.

Figure 2.5 shows the damping rate 
=2� from measured spectral width

(hollow circles) versus excitation amplitude; along with the corresponding received

peak voltage Vm (solid squares) versus excitation amplitude, for a hot plasma with

T � 2:4eV.

For very low applied excitation Vexc, the received mode amplitude Vm is in-

dependent of Vexc, and is due to thermal excitation of the mode (see Section 3.4.1).

In this low amplitude regime, the measured damping rate 
=2� is seen to be in-

dependent of mode amplitude, representing linear Landau damping or other linear

damping as discussed in Section 3.4.

For larger amplitudes (Vexc > 10�V), the damping rate decreases with

increasing amplitude by as much as a factor of 10, signifying the nonlinear damping

regime. This transition to nonlinear damping is shown in Chapter 4 to be due to
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Figure 2.5: Linear and nonlinear T-G spectrum measurement on EV.

the trapping of resonant electrons in large amplitude waves. In this nonlinear

regime, the measured peak response is observed to rise faster than linear with the

excitation amplitude.

This apparent nonlinearity is because the damping a�ects the excitation

level of the wave; it is not due to the excitation of a nonlinear wave. This is

understood by remembering that for a driven simple harmonic oscillator at a �xed

excitation amplitude, as the damping is decreased, the steady-state peak response

on resonance will be increased. This implies that Vm / 1=
 which is qualitatively

consistent with the measurements in Figure 2.5.

The spectral width measurement, essentially, measures the steady-state

response of the system at each frequency. This is equivalent to burst excitation

at a single frequency for a long enough time such that a steady-state amplitude is
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Figure 2.6: Received amplitude vs. excitation amplitude. The solid line is the
linear coupling curve. Also shown is the expected thermal mode level on the same
scale.

reached; ie. much longer than a damping time. This is written as Ncyc � !=
,

where !=
 is approximately the number of cycles in a damping time. This is in

contrast to the pulse-decay excitation where a short burst with Ncyc
<� !=
 is used

to excite the wave. For this case, the wave does not reach a steady-state amplitude,

but rather Vpk / VexcNcyc < Vss, where Vss is the equivalent steady-state amplitude

that would be reached for large enough Ncyc. This means that for a short-time scale

excitation, nonlinear damping of the wave will not a�ect the excitation amplitude

of the wave.

Figure 2.6 shows the received amplitude versus excitation amplitude for

a temporal decay experiment, where the wave is excited by a short burst with

Ncyc = 20 < !=
 = 100. Here the peak amplitude at the wall Vm is plotted as a
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function of the excitation voltage Vexc. The data shows a linear response between

the excited voltage and the detected peak wave amplitude. In contrast to the

spectral mode width measurement in Figure 2.5, no nonlinearity of the received

peak response is observed. Although this is for a di�erent plasma, the solid line is

Figure 2.6 represents the same coupling as the solid line in Fgwidth.nonlin.

For reference, the calculated density perturbation level is given on the right

hand axis. Also shown is the expected level for thermally excited plasma waves

which are further discussed in Chapter 3.

2.4 Amplitude Calibration

An absolute calibration of the mode amplitude is obtained from measure-

ment of the density variation in the mode by dumping half of the plasma column.

This technique is a slight modi�cation of the well developed technique of phase-

locked density measurements of the diocotron mode (eg. Reference [13], or more

recently [14]). Since T-G modes are longitudinal in nature, dumping the entire

plasma would \smear out" the perturbation by averaging over all z during the

dump. In this case, we phase lock to a large amplitude wave excited by the pulse-

decay method and dump only half the plasma synchronous with the wave. For

these measurements we use a cold plasma which shows no fast damping so as to

maximize the number of cycles we can average over without introducing errors.

A circuit was developed to quickly \cut" the plasma in half. This cutting

is done by placing a large voltage (Vcut � �Sp, where �sp is the plasma space

charge) on the middle electrode in a time less than the mode period. Since the

density perturbation is odd in z, this will contain half of the perturbation on one

side of the cut, and half on the other side. Then the side closest to the dump gate

is dumped and measured. The time of the \cut and dump" is changed in phase
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Figure 2.7: Collected density �n on axis and \total" charge �Q from one half

of the column, as a function of wave phase.

with the excited wave; thus obtaining a measure of dumped density as a function

of wave phase.

An example of the phase-locked \cut and dump" measurement is shown in

Figure 2.7, where the measured density through the collector hole and the measured

total charge in half the plasma are plotted versus time delay (phase = (!0=2�)�t)

between mode excitation and the \cut." We measure the half-column density over

several wave cycles (typically 5 or more) and average to �nd the magnitude of the

variation �n. This technique is expected to be good to about 10%, mostly limited

by the shot-to-shot noise and the fact that the cut gate is not exactly in the middle

of the plasma.
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As shown in the Appendix, from the mode dispersion equation we calculate

the relationship between the density perturbation Æn and the measured detector

voltage Vm. From Equation A.7 and Equation A.10, we �nd

Æn

n0

=
2

f̂

ln(Rw=Rp)

J0(x)

e

mv3�

Vm

Rf

(2.1)

where f̂ is a coupling constant obtained from the geometry of the detection elec-

trode, and x � kzRp

q
(!p=!)2 � 1.

From the measurement of the wall voltage and the measured Æn we calculate

the geometric coupling between the density perturbation and the radial electric

�eld on the detection electrode (at r = Rw). We �nd agreement to about 20%

with Equation 2.1.

2.5 Resistive Damping

If the plasma has some internal damping mechanism (ie. linear Landau

damping), the inherent plasma impedance Zp due to the damping is proportional

to the damping rate 
p=!0. This proportionality was shown in Section 2.3.3; as

the damping rate decreases, the measured peak received amplitude increased, just

as would be expected if the Load impedance (in this case the plasma impedance)

decreased. The physical mechanism of this internal damping is the subject of

Chapter 3, and the nonlinear decrease at large amplitudes the subject of Chapter

4.

However, in an identical way, an external impedance will also cause a �nite

level of dissipation of the plasma wave, with a damping rate 
load=!0 proportional

to the real part of the applied load impedance RefZloadg. The calculation of the

damping rate from resistive dissipation in the external impedance follows from

Reference [15]. The mode equation is solved with a �nite arbitrary impedance
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on the detection electrode, whose real part is given by RefZloadg. This is similar
to the calculation of the resistive wall instability of slow-waves on space charge

dominated electron beams [19, 20, 21].

The total damping rate of the wave 
tot, including both internal plasma

damping 
p, and external load damping 
load, is found to be


tot

!0

� 
p

!0

+

load

!0

= (RefZpg+RefZloadg) !0 G; (2.2)

where the geometry factor G is given by

G � Lp

J (x)

�2

"
sin

 
�(zc + Lc)

Lp

!
� sin

 
�zc

Lp

!#2

with

J (x) � [J2

0
(x) + J2

1
(x)]=(@D=@x)2

and D(x) � xJ1(x) ln(Rw=Rp) � J0(x) and x � (!2

p=!
2

0
� 1)1=2kzRp. !0 is used

to refer to the resonant frequency of the mode, since in general, Zload will depend

on the excitation frequency. For EV, putting in the experimental parameters and

electrode location, the theory predicts 
load=! � RefZloadg=130k
 for the test

circuit described below.

Damping rate measurements are made using a test circuit composed of an

inductor L, a capacitor C, and a variable resistor Rvar, as shown in Figure 2.8.

This circuit is attached to a separate electrode from the excitation and detection

circuits, so the measured damping rate will consist of components from all attached

circuits. From elementary circuit theory, the Real part of the impedance is found

to be

RefZloadg = RefZRLCg = Rvar

!2L2

!2L2 +R2
var(1� !2LC)2

(2.3)
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Figure 2.8: Circuit for measuring resistive damping.

where Rvar, L, and C, are the circuit resistance, inductance and capacitance, re-

spectively. An extension to Equation 2.3 including the e�ective resistance of the

inductor Rind and an extra series resistor Rser, to account for the extra impedance

from the excitation and detection electrodes, is used to �t to the measurements.

An impedence meter is used to measure the magnitude and phase of the

circuit impedence at the mode frequency (f0 � 3:0MHz) for each resistor value

used. Note that the e�ect of the inductor is to partially cancel the e�ect of the

capacitance in the circuit, in order to maximize the range of RefZg.
Figure 2.9 shows the measured real part of the circuit impedance as a

function of resistor value. The dashed curve shows the expected values calculated

using Equation 2.3 and the independently measured values for C;L; and Rind (the

small �nite resistance of the inductor is the main factor in the limit as Rvar !1).

The solid curve is a best �t with the free parameters of Rvar (for large R) and Rser

(for small R), which accounts for the presence of other damping mechanisms. The

best �t values are well within the uncertainty of the measured values.
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Figure 2.9: Measured RefZg vs. measured circuit resistance (Rvar). The dashed
curve is the theoretical prediction based on the measured values of the circuit
components. The solid curve is a best �t, including an extra series resistor which

accounts for stray impedances not included in the simple circuit picture.

The plasma mode damping rate caused by this circuit is found to be linearly

proportional to the measured Real part of the circuit impedance. Figure 2.10 shows

the measured total damping rate 
tot=! versus RefZg for a large amplitude wave
on a cold plasma with negligible internal (Landau) damping 
p=! < 10�4. The

data is seen to roughly lie on a straight line with a small vertical o�set, as predicted

by Equation 2.2.

This resistive damping sets a lower limit to the measurements of 
=! that

can be made in these traps. For instance, extensive use of the charge ampli�er

(described above), minimizes the e�ect of the detector impedance and was used

for the nonlinear trapping measurements in Chapter 4. However, it is practically
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Figure 2.10: Measured damping rate (
=!) vs. measured RefZg for the data
presented in Figure 2.9. The solid curve is the theoretical prediction based on the
geometry and plasma parameters as explained in the text. The non-zero damping

rate for RefZg ! 0 is due to some other inherent damping that is not resistive
(eg. Landau, etc.).

impossible to get less than 1 Ohm impedance, which would correspond to a limit

of 
=! � 10�5. This appears to be achievable with judicious choice of detector

impedance (currently, we are limited to 
=! � 5 � 10�5 ).



Chapter 3

Trivelpiece-Gould Modes and

Linear Landau Damping

3.1 Overview

This chapter presents the �rst measurements of Landau damping in the

linear regime in trapped pure electron plasmas. Section 3.2 describes the physics

of Trivelpiece-Gould (T-G) modes, including measurement of the wave dispersion.

Section 3.3 presents the basics of the linear theory and highlights the relevant

formulas. The numerical code used to calculate the theoretical damping rates is

discussed, as well as limits to the linear theory. Measurements of the linear damp-

ing rate are presented in Section 3.4, and shown to agree closely to the absolute

predictions of the theory for both spectral and temporal experiments. Further,

experimental modi�cation of the electron velocity distribution function veri�es the

necessity of the resonant particles in the damping. Lastly, the linear damping

rate measurements are compared to the predictions of bounce resonant harmonic

damping and sheath damping in Section 3.5.

24



25

3.2 Trivelpiece-Gould Modes

We consider electrostatic compression waves (Langmuir waves) propagat-

ing axially on the pure electron column, in the linear regime where Æn=n � 1.

Trivelpiece-Gould (T-G) modes are these electron plasma waves in the regime

where a bounding cylindrical wall limits the maximum phase velocity of waves for

long wavelength modes.

Put simply, the grounded conducting walls force the wave electric �eld to

be perpendicular (ie. Er 6= 0; Ez = 0) at the wall (shown pictorially in Figure 3.1).

This limits the maximum axial electric �eld on axis when the wavelength is compa-

rable or larger than the tube radius (Rw). So, unlike Langmuir oscillations which

have ! � !P for kz ! 0, T-G modes have ! / kz for kz ! 0. Thus, for a given ra-

dial eigenfunction, the limiting phase velocity is set by the geometry (RP ; RW ; LP )

at low frequency. This means that the dispersion equation will be similar to Lang-

muir waves, but with an reduced plasma frequency [22]. The dispersion equation

Figure 3.1: A simple picture of the lowest order T-G mode on a plasma column.
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becomes

!2 = !2

p

k2z
k2tot

+ 3�v2k2z (3.1)

where !p �
q
4�ne2=m, k2tot � k2z + k2? � k2?, and k? � 1

Rp

h
2

ln (Rw=Rp)

i1=2 � kz �
�=Lp , for the experiments in this thesis. It is apparent from Equation 3.1 that as

kz becomes larger than k?, the reduction factor approaches unity, and the plasma

waves are the same as in an in�nite plasma [23].

Figure 3.2 pictorially presents the T-G dispersion relation where !=!p is

plotted versus kz=k? [24]. The plot also labels di�erent regions of the dispersion

curve including a boxed area identifying the long wavelength region of the experi-

ments.

For most of the experiments to be presented, we launch them� = 0,mz = 1,

mr = 1 T-G mode, also known as the \sloshing" mode or the \center of mass"

Figure 3.2: A picture of the m� = 0 T-G mode dispersion showing the location

of the experiments.
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mode. This is the longest wavelength longitudinal oscillation of the plasma column.

It has nodes of Ez (and anti-nodes of potential and perturbed density) at the ends

(Figure 3.1). This means that the wavelength � is approximately twice Lp, with

wavenumber kz = 2�=� � �=Lp.

Jennings et al. demonstrated with numerical simulations that the �nite

length of the plasma column acts to slightly increase the e�ective wavelength [25],

thus making the e�ective wavenumber ke�z slightly smaller than �=LP . Numerical

solutions of the drift-kinetic equations for an in�nite-length column with a given

density pro�le n(r) and plasma temperature T , determine a wavenumber k1z which

gives the observed mode frequency ! [26]. We presume that the �nite-length

column has ke�z = k1z obtained from the numerical calculation, and calculate the

wave phase velocity as v� = !=ke�z . Thus, the expected plasma dispersion equation

becomes

fmode =
!

2�
� !p

2�
keffz Rp

�
1

2
ln (Rw=Rp)

�1=2 241 + 3

2

 
�v

v�

!2
3
5 : (3.2)

Equation 3.2 is plotted as the solid line in Figure 3.3.

We measure the frequency of the normal modes by sweeping the excitation

frequency through the resonance frequency as described in Section 2.3. The data

from one such experiment is presented in Figure 3.3 along with predictions from

the \DriftK" numerical code. The excellent agreement of the measured frequency

with the predictions from the code veri�es our identi�cation of the modes and gives

us con�dence in our estimates of the wave phase velocity as described above.
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Figure 3.3: Measured dispersion on CV. The dashed line is from \DriftK" nu-
merical calculations using the measured plasma density pro�le and temperature.

3.3 Landau Damping

3.3.1 Linear Theory

Landau damping results from the resonant interaction of electrostatic waves

with particles traveling at the wave phase velocity, v� = !=kz. Depending on the

slope of the particle velocity distribution at v�, this resonant interaction can cause

either wave damping or wave growth [3, 27]. For Langmuir waves in an in�nite

homogeneous plasma, Landau calculated a temporal damping rate 
LD given by

�
LD
!

� Im[!]

!
�= �

2
v2�

@f0

@v

���v� (3.3)

When the distribution function is Maxwellian, f0 =
1p
2�

1

�v exp

�
�1

2

�
v
�v

�2�
,
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where �v �
q
T=m, Equation 3.3 becomes


LD

!
�
r
�

8

�
v�

�v

�3

exp

"
�1

2

�
v�

�v

�2
#
: (3.4)

This equation comes from an expansion of the plasma dispersion function[28] to

lowest order in the parameter �v=v� [29]. In the spatial damping experiments by

Malmberg [5], a similar expression for ki=kr (ki is the damping length, kr = 2�=�)

was tested by varying the wave phase velocity (by changing the wave frequency)

and measuring the corresponding spatial damping length ki using a plasma at a

�xed temperature.

From Equation 3.2, we �nd the wave phase velocity as

v� �
!

k
eff
z

� !p

k?

0
@1 + 3

2

 
�v

v�

!2
1
A : (3.5)

where 1=k? � RP

q
1

2
ln(Rw=Rp) as before. For the modes studied here, v�=�v >� 3

(thus (�v=v�)
2 <� 0:1), we see that the phase velocity v� is only weakly dependent on

the plasma temperature or wavenumber kz. In order to vary the damping rate, we

heat the plasma. This changes �v at roughly constant v�, enabling a comparison to

Equation 3.4. The slight temperature dependence of the phase velocity is accounted

for in the estimates of v�=�v by using the measured mode frequency to calculate the

phase velocity at each temperature.

The same \Driftk" code that was used to calculate the mode dispersion

!(keffz ) is used to calculate the theoretical damping rate. The numerical code

includes the full (non-approximate) plasma dispersion function for a Maxwellian

velocity distribution, and thus includes the temperature corrections to high order.

One limitation is that the code is only 1-D (radial), with the plasma as-

sumed to be in�nite in z with a prescribed kz as discussed in Section 3.2. Further,
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the code assumes a single temperature for the whole plasma. Any radial variation

in the temperature would cause a radial variation to the damping rate which is not

accounted for; however, these corrections are assumed to be small.

3.3.2 Linear vs. Nonlinear

The damping of the mode can be nonlinear even though the mode is in the

\linear regime"; essentially, the mode is linear because Æn=n� 1, but the damping

is nonlinear because the population of resonant electrons is strongly perturbed.

The Vlasov equation for the distribution function f(v) has a natural ordering

for amplitude as discussed by O'Neil in 1965 [4]. When the perturbation to the

distribution function f1 becomes of the same order as the velocity perturbation

of the resonant electrons Æv, the linear approximation breaks down. This sets an

upper amplitude limit to linear Landau damping. To see this limit, we solve the

linearized equation for the perturbation to the distribution function.

Starting with the 1-D Vlasov equation,

@f

@t
+ v

@f

@z
� eEz

m

@f

@v
= 0: (3.6)

we �nd the linear solution by substituting f = f0+ f1, where f1 � e�i!t+ikzz is the

perturbation to the distribution function, and f0 is the unperturbed distribution,

independent of time and homogeneous in space. Assuming @f1=@v � @f0=@v, we

obtain

f1 = i
eEz

m

1

! � kv

@f0

@v
: (3.7)

Now, to check the limit to the above assumption, we calculate @f1=@v near

the wave phase velocity v� = !=k. Using !2

T � eEzkz=m, and noting that for

v � v� and 
=! � 1, ! � kzv � !0 + i
 � kzv � i
, we �nd
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@v
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@v
jv� + ::: O

 
1




!
: (3.8)

It is easy to see that when !T � 
L, the assumption that @f1=@v � @f0=@v,

is no longer true and the linear solution will fail. From a dynamical point of view,

this means that electrons near the phase velocity will become trapped by the

wave, causing a strong perturbation to their orbits, and dramatically modifying

the damping of the wave. This breakdown of the linear theory and the nonlinear

trapping of electrons by the wave is discussed and veri�ed in Chapter 4.

Another limit is set by the number of particles available to Landau damp

the wave. When the phase velocity is high (or thermal velocity low), the resonance

will be far into the tail of the distribution. We can estimate the number of particles

in the linear mode resonance, by integrating the distribution near the wave phase

velocity with a width determined by the linear damping rate (�v = 2
L=kz � �v),

Nres = Qtot

Z v�+
L=kz

v��
L=kz
dv f0 � f0

2
L

kz
Qtot �

1

2

�
v�

�v

�4

exp

"
�
�
v�

�v

�2
#
Qtot:

(3.9)

Assuming a plasma with Qtot = 109 electrons, Equation 3.9 says that there are

only about 6 electrons in a linear resonance width for a wave with v�=�v = 5.

This sets another natural ordering for our trapped plasmas. If the plasma only

had Qtot = 108, then the same wave would only have 0.6 electrons in the linear

resonance, and thus no linear Landau damping would be expected.

3.4 Linear Damping Measurements

Taking data only in the linear regime and varying the temperature we are

able to check the theory of Landau. A summary of the data, 
L=! as a function of
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Figure 3.4: Linear damping rate compared to theory of Landau.

�v2=v2�, is shown in Figure 3.4. Normalizing the temperature (as �v2 = T=m) with

the wave phase velocity enables a comparison between di�erent traps and di�erent

plasma parameters (di�erent v�). Over the range of parameters where Landau

damping is expected to dominate, we see good quantitative agreement (within a

factor of 2) with the absolute theory of Landau. This close agreement between

experiments on two machines (EV and IV), using two measurement techniques

(spectral and temporal), with the theory of linear Landau damping in the range

3 < v�=�v < 5 as seen in Figure 3.4, is the �rst main result from this thesis.
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At low temperatures where collisionless damping is expected to be negligible

we see a �nite amount of damping which is roughly independent of temperature.

The measured residual damping in this regime is due to either resistive dissipation

from the ampli�er input impedance or the limit of the measurement of mode widths

as discussed in Section 2.3. This frequency dependent limit for di�erent bandwidth

receivers is labeled in Figure 3.4 with arrows.

3.4.1 Thermal Mode Experiments

Measurements of the spectral width of thermally excited T-G waves have

been made on trapped pure electron plasmas [30, 15]. Thermal electrons are con-

stantly emitting and absorbing waves. This process of emission and absorption can

be viewed as random kicks leading to the excitation of coherent plasma oscillations

even when there is no external drive applied.

These small amplitude modes are most readily identi�ed by decreasing Vexc

to zero, as shown in Figure 3.5 where 3 broad spectrum scans of received amplitude

versus frequency for -80dBm, -100dBm, and no drive, respectively. As can be seen

in Scan (c), the peaks at the mode frequencies still exist even when no drive is

present.

A close up of the lowest frequency (mz = 1) mode at 4 di�erent tempera-

tures is shown in Figure 3.6. Generally, as the temperature increases, the measured

mode width (ie. damping) increases and the peak amplitude decreases. This is

consistent with the simple harmonic oscillator picture described in Section 2.3.3

(Vm / 1=
).

Further, the energy in the mode (the area under the curve) has been mea-

sured and shown to be proportional to the plasma temperature [30]. Lastly, the

curve at the lowest temperature (:06eV) appears qualitatively di�erent than the
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Figure 3.5: Thermal spectrum measurement.

Figure 3.6: Thermal spectrum with �ts.
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others. This is because the low-temperature plasma is an absorber of noise gener-

ated in the ampli�er circuit. In this regime, the resonance shape of the detected

spectrum is signi�cantly in
uenced by the impedance and temperature of the de-

tection circuit [30].

The mode damping rates obtained from measured thermal spectrum widths

are plotted in Figure 3.4 as hollow squares for the IV experiments and solid dia-

monds and circles for the EV experiments.

3.4.2 Temporal Decay Experiments

The temporal evolution of launched waves elucidates both the linear damp-

ing process and the nonlinear trapping oscillations to be discussed in Chapter 4.

In this case, the damping rate is extracted from the measured exponential decay

of the mode after being linearly excited for a �xed number of cycles [26, 31].

One such measurement is shown in Figure 3.7, where the excitation is 10

cyles long. The received amplitude from the �xed frequency spectrum analyzer,

with bandwidth BW = 300kHz, is plotted as a function of time on a logarithmic

scale, so a straight line signi�es exponential decay. For small Vexc, the wave is

observed to damp exponentially at a rate independent of amplitude. As the am-

plitude is increased, oscillations in the amplitude develop and halt the decay of

the wave. These oscillations are due to trapping of the resonant electrons in the

wave potential, and are discussed in detail in Chapter 4. Even with the amplitude

oscillations, the initial decay rate can be seen to be identical to that of the the low

amplitude decay. This means that the same fast initial damping occurs at both

low and high amplitudes

Taking data only from the early part of the evolution (the fast initial damp-

ing) and varying the temperature we are able to check the theory of Landau. One
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Figure 3.7: Recorded waveforms from the pulse-decay experiment.

set of temporal damping data taken on EV is shown in Figure 3.4 as solid squares.

The measured linear damping rate is approximately the same using either temporal

decay or spectral width (solid circles) to measure 
L.

3.4.3 Veri�cation of the Landau Resonance

We have veri�ed experimentally that the observed Landau damping arises

from resonant electrons with axial velocity equal to the wave phase velocity, ie.

v � v� = !=kz; by eliminating these electrons, the observed damping decreases

by a factor of 10. Since the damping depends on the slope of the distribution at

the resonant velocity v�, modifying the number of particles near this velocity has

a strong impact on the damping rate.

The experiment uses the technique of plasma \hollowing" which has been
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Figure 3.8: Fast electrons are ejected during hollowing of the column.

used to study the diocotron instability in hollow electron columns [32]. If one of

the con�nement voltages is lowered toward the plasma potential, the most ener-

getic electrons are able to escape out of the con�nement region as showing pic-

torially in Figure 3.8. If the hollowing process is slow compared to the thermal

electron bounce frequency, then all electrons above a certain energy (which varies

with radius) will escape, e�ectively eliminating the high energy tail of the initial

Maxwellian (shown pictorially in Figure 3.9). The hollowing has to be done faster

than the unstable diocotron wave growth time to avoid bulk radial transport of par-

ticles. Moreover, if the hollowing is too deep, then the total charge in the plasma

will change signi�cantly and the mode frequency will change. All the experiments

described here used only slight hollowing, with ÆQtot=Qtot < 2%. Note that for a
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Figure 3.9: High energy tail of the distribution function is removed after hollowing

process.

Maxwellian, the percentage of electrons with velocities greater than 3�v is � 2%,

so we can modify the damping for all weakly damped waves (v� > 3�v) without

signi�cantly altering the frequency of the wave.

The suppression of wave damping when hollowing progressively eliminates

the resonant electrons is shown in Figure 3.10. With no hollowing, a short sinu-

soidal burst excites a T-G wave with clear Landau damping and a single amplitude

oscillation (similar to the 6mV wave in Figure 3.7). For weak hollowing (such as

the Vholl � 40V curve), the damping is not modi�ed signi�cantly. However, for

Vholl < �36V, the slope of the initial decay is seen to decrease (and the amplitude

of the oscillation increases). This decrease of damping as the hollowing gets deeper

continues until the fast (Landau) damping is eliminated and only damping due to
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Figure 3.10: Plots of damping after hollowing.

Figure 3.11: Measured e�ective damping rate versus hollow level.
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Figure 3.12: Relaxation of damping back to Landau after hollowing to -26V.

the resistive impedence of the detection circuit is left. Further, the amplitude os-

cillation is observed to be eliminated as well, demonstrating that these oscillations

are also dependent on the resonant electrons.

The measured initial damping rate for this data set is shown in Figure 3.11.

For weak hollowing, the damping rate is una�ected; but as the hollowing is in-

creased, the damping rate is modi�ed dramatically. When all resonant electrons

are removed, the fast initial wave damping is totally eliminated and the wave is

dominated by the resistive damping from the measurement circuit.

We argue that the hollowing process only eliminates the fast particles and

leaves the rest of the plasma alone. If the plasma is not substantially changed

(density and bulk temperature) then collisions should eventually re-populate the

tail of the distribution function. Figure 3.12 shows damped waves for di�erent delay
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times �t between the hollowing and the wave excitation as well as the received

signal for a wave with no hollowing. The original resonant Landau damping and

trapping oscillation are observed to re-appear in about 20msec after hollowing, as

electron-electron collisions re-populate the resonant electron velocities.

As mentioned above, previous experiments have shown that hollow levels

with �Qtot=Qtot � 1% are unstable to diocotron mode growth [33]. This instability

also causes large levels of turbulent cross-magnetic �eld transport [34]. Future wave

damping experiments on hollow columns can measure the turbulent transport rate

of edge electrons into the center of the column by �nding the time delay necessary

for signi�cant Landau damping to appear.

3.5 Bounce Resonances and Sheath Damping

Surprisingly, the experimental results of Section 3.4 show no correspondence

to the theoretical predictions of \bounce resonant harmonic damping" and \sheath

damping," both having to do with the �nite length of the system. Bounce resonant

harmonic damping is an enhancement to Landau damping from the coupling of

the standing wave to harmonics of the electron bounce motion. Here the bounce

motion refers to the re
ection (or \bouncing") of the electrons between the ends

of the column; this contrasts to the nonlinear \amplitude bounces" discussed in

Chapter 4. Sheath damping is the destruction of coherent velocity perturbations

due to the �nite electron penetration time in the end sheaths, causing the energy

in the standing wave to be converted to random thermal motion.

3.5.1 Bounce Resonant Damping

An analysis of the true mode potential in terms of the plasma length Lp

gives rise to a sum over all the bounce harmonics of the electron motion. This is



42

Figure 3.13: Physical picture of the bounce resonant coupling model.

similar to trying to match a long wavelength mode into a smaller box. The wave

will not exactly match any mode of the box, but rather will be made up of many

harmonics, with each harmonic contributing to the damping rate [35], similar to

e�ects seen in magetic-mirror con�ned plasmas [36].

To calculate the total bounce resonant damping rate 
BRD we use a simple

plasma model with 
at ends [37]. We assume that each harmonic n will contribute

a damping 
n as expected from linear Landau theory, except that each will have a

di�erent phase velocity (of v�=n) and coupling coeÆcient Fn. We obtain the cou-

pling coeÆcient for each mode by calculating the Fourier transform of the mode

with k = �=Leff to modes with k = n�=Lp, as shown pictorially in Figure 3.13.

As discussed in Section 3.2, numerical simulations have shown that a good approx-
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Figure 3.14: Comparison of the measured linear damping rate to a simple es-
timate of Bounce Resonant Harmonic Damping (BRD). The theory depends on

� = ÆL=L and is evaluated for EV and IV.

imation for Leff when RP=LP � 1 is [25]

Leff = Lp + 0:3Rw + 0:7Rp � Lp(1 + �): (3.10)

Doing the algebra, we obtain:
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In Figure 3.14, the measured linear damping rate data is replotted along

with the calculated enhanced bounce resonant damping rate BRD for EV (Rp �
1:5cm; Rw = 3:81cm; Lp � 30cm; � � :073) and IV (Rp � 0:2cm; Rw = 2:86cm; Lp �
41cm; � � :024). Also shown is a reference curve with � = :001 for comparison.

The theory curves were derived from Equation 3.11 using a sum from n = 1 to

n = 51. The number of harmonics is limited by collisions knocking the electrons

out of resonance. For an e�ective collision frequency �eff=! (see Section 3.5.2),

this limit is

1

nm

v�

�v
=

�eff

!
(3.14)

which says that nm >� 300, for v�=�v = 3 and �eff=! � :01. The theory calculation

using nm = 101 or nm = 151 are identical to the curves for nm = 51.

The damping data shows no correspondence with the bounce-resonance en-

hancement calculation assuming 
at ends and using � = (Leff �Lp)=Lp. However,

the ends of the plasma are actually curved [38, 39], possibly making the e�ective �

smaller than used in our simple estimate. The reference curve shows that � = :001

is in qualitative agreement with the data; however this is more than an order of

magnitude smaller than any estimate using 
at ends. Here, the theory is con-

strained by the measured mode dispersion (see Section 3.2) which shows that Leff

is essentially given by Equation 3.10. Numerical simulations of wave propagation

using realistic end-shapes might be able to obtain a better estimate for �, so that

we can make a quantitative comparison to the theory of bounce resonant harmonic

damping.

3.5.2 Sheath Damping

The electron plasma has \sheaths" at the plasma ends, where the electrons

interact with the con�nement potentials and are re
ected. This sheath region is
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about a Debye length (�D) in size [40]. This means that a thermal electron (with

velocity �v) requires a time of about �D=�v = 1=!p to re
ect o� the ends of the

plasma column.

Trivelpiece-Gould modes are electrostatic compression waves of the plasma

column. These oscillations consist of the conversion of electrostatic (potential)

energy (in the form of perturbed electron density Æn) into mechanical (kinetic)

energy (ie. 1

2
mÆv2), and vice-versa.

As shown by Bohm and Gross [41, 42], the presence of the wave perturbs

the velocity of the electrons,

vz = vz0 + Ævz (3.15)

where Ævz is the coherent velocity perturbation for an electron with unperturbed ve-

locity vz0. For a standing plasma wave with potential � = �0

h
ei(kz�!t) + e�i(kz+!t)

i
,

Ævz is given by

Ævz =
ek�0

m

ei(kz�!t)

! � kvz0
� ek�0

m

e�i(kz+!t)

! + kvz0
: (3.16)

Note that given � / cos(kz), we obtain a perturbed velocity with Ævz / sin(kz),

ie. Ævz is 90 deg out of phase with �, as expected for these compression waves.

Assuming that vz0 � v� (ignoring resonant electrons) Bohm and Gross

found that the velocity perturbation at one end of the plasma (eg. z=0) is given

by [43]

Ævzjz=0 � 2e

m!2
k2 vz0 �0e

�i!t: (3.17)

Further, the time average of the energy of the velocity perturbation is given by
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h�EiAv = 1

2
mh(Ævz)2iAv. Averaging this over all unperturbed velocities vz0 using

a Maxwellian velocity distribution, gives the average change of energy per particle

striking the end sheath as

[h�EiAv] �
1

2
m�v2

 
e�0k

2

m!2

!2

: (3.18)

Because of the �nite penetration time before re
ection, Bohm and Gross

concluded that the \velocity perturbation with which the particles strike the sheath

will lose its coherence with the wave" [43]. This imperfect re
ection causes a

decoherence between the mechanical and electrostatic energy; some wave energy

is converted into random thermal energy resulting in decay of the standing wave.

Notice that in Equation 3.18, the energy per particle goes like the square of the

wave amplitude. Since the energy in the wave also goes like the square of the wave

amplitude, we see that the damping rate will be independent of wave amplitude.

Assuming that there is complete loss of coherence at the sheath and noting

that the current of particles striking the end sheaths is given by [43]

j = 2

 
1p
2�
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�vn0 �R

2

p; (3.19)

the damping rate from sheath decoherence for standing T-G waves is given by
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In Equation 3.20 we made use of the approximate mode dispersion, !=!p � kz=k?,

from Equation 3.1.

Figure 3.15 replots the linear damping rate measurements along with the

prediction for sheath damping given by Equation 3.20. The estimate of sheath

damping (dashed curve) predicts an enhanced damping rate over the Landau rate
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Figure 3.15: Measured damping rate compared to sheath damping as predicted
by Bohm and Gross.

(solid curve). This simple estimate disagrees with the data by as much as a factor

of 10.

This disagreement is not totally unexpected. The theory assumes that there

is a total loss of coherence of the velocity perturbation when electrons penetrate the

end sheath. This will be correct if the penetration time is close to the wave period

(or !wave � !p), implying the wave has dramatically changed its phase by the time

the electron has been re
ected. However, in the experiments, !wave � 0:1!p, so

the electrons re
ect on a time scale much shorter than the the wave period. This

means that the electrons are still mostly in phase with the wave and we expect the

dissipation to be less than predicted by theory.
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Future experiments using shorter plasma lengths (with higher mode fre-

quencies) would better satisfy the approximations used by Bohm and Gross, and

might show the signature of sheath damping.



Chapter 4

Nonlinear Trapping Oscillations

4.1 Overview

Large amplitude waves trap the resonant electron population before the

wave has time to damp. As described in the previous section, this is a fundamental

limit to Landau damping. The classic picture is that the resonant electrons become

trapped during a time 1=!T =
q
m=eEzkz, picking up enough energy to overtake

the wave. When they try to overtake the wave, the wave potential now causes

the electrons to lose energy and give it back to the wave, and the cycle continues

[4]. Thus, as the electrons bounce back and forth inside of the potential well of

the wave, the wave periodically grows and damps. Since the initial phase of the

electrons entering the potential well is random, eventually the electrons will phase

mix and the amplitude of the wave becomes constant with time. This is the classic

development of what is referred to as a BGK equilibria [44], a topic that is still

being debated [45, 46, 47].

This chapter presents O'Neil's theory of these trapping oscillations, includ-

ing a simple numerical treatment to avoid some of the approximations used in

the theory. Detailed experiments verifying this trapping process in trapped pure

electron plasmas are presented. Measurements of the time of the �rst trapping os-

49
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cillation are in very good agreement with the absolute predictions of the numerical

calculations (and the classic theory in the appropriate limit). To my knowledge,

these are the �rst measurements of temporal trapping to be compared to absolute

predictions of the nonlinear theory with no adjustable parameters. Small discrep-

ancies in bounce oscillations at low amplitude are observed; this is likely a result of

extra damping not accounted for in the theory. Further, measurements of the av-

erage (nonlinear) decay rate of the mode is shown to be consistent with collisional

repopulation of the resonant particles. This chapter concludes with a comparison

of the measured e�ective plateau amplitude to the amplitude predicted for a \BGK

equilibrium."

4.2 Theory

4.2.1 O'Neil's Work (1� !T=
L)

O'Neil solved for the exact nonlinear dynamics of trapped resonant elec-

trons in a prescribed wave potential. He assumed that the amplitude is large

enough so that no signi�cant damping takes place before the trapping time. For

the untrapped (non-resonant) electrons, he solved the linearized Vlasov equation.

This theory is ostensibly applicable as long as the trapping oscillations at !T de-

velop in a time short compared to the linear Landau damping rate 
L, ie. !T � 
L.

O'Neil used elliptic integrals to solve for the exact orbit of the resonant

electrons in the stationary potential well of the plasma wave. He then calculates

the work done by the particles in executing their trapped orbits and uses con-

servation of energy to derive the dynamics of the wave. For the case of a simple

one-dimensional, in�nite, homogeneous plasma with a single sinusoidal plane wave,

O'Neil derived [4]
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(t) = 
L

1X
n=0

64�Jn(t) (4.1)
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where 
L is the Landau damping rate from Equation 3.4, F � F [�; �=2] is the

complete elliptic integral of the �rst kind, F 0 � F [(1��2)1=2; �=2], and q � e�F
0=F .

Further, the wave amplitude as a function of time de�ned by

�(t)

�0

� exp

�
�
Z t

0

dt0
(t0)
�

(4.3)

can be solved numerically for a given value of !T=
LD. Figure 4.1 gives the pre-

dicted wave amplitude (at r=0) versus time normalized to !T , for di�erent values

of !T=
L. The �gure shows that the time for the oscillations to occur is inversely

proportional to !T and that the height of the oscillations drops as !T=
L decreases.

The phase mixing of the electron orbits and the evolution to a constant amplitude

(BGK) state as t!1 is also apparent.

4.2.2 Self-Consistent Numerical Calculations (1 � !T=
L)

O'Neil's approximation of constant amplitude neglects many details about

how the particles interact with the wave during the initial damping. For instance,

it is obvious in Figure 4.1 that for !T=
L < 10 there is signi�cant damping before

the oscillation occurs. A self-consistent treatment is necessary in order to obtain

the behavior of the wave for 
L � !T . A consistent numerical solution is found by

iteration of O'Neil's equations, as done by Oei and Swanson in Reference [48].

From the de�nition of the trapping frequency, !T �
q
ek2�0=m, we can

de�ne a time dependent trapping frequency as
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Figure 4.1: Temporal evolution of the wave potential as predicted by the theory

of O'Neil, assuming !T � 
L.

Figure 4.2: Temporal evolution of the wave potential as predicted by the numer-
ical self-consistent caculations for !T > 
L.
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!T (t) �
s
ek2�(t)

m
= !T

s
�(t)

�0

: (4.4)

For a given !T=
L, we �rst solve Equation 4.3 using 
(t) from Equation 4.1, as-

suming that !T is �xed. Next, the time dependent trapping frequency is found

from Equation 4.4. This calculated trapping frequency is used in Equation 4.1 and

Equation 4.2 to �nd a new 
(t), which is then used in Equation 4.3 to �nd the

iterated �(t), and the process is repeated until the solution converges (typically 4

or 5 iterations).

This solution will be valid as long as signi�cant loss (de-trapping) of reso-

nant particles does not take place. Several authors have done numerical simulations

to predict when the e�ect of de-trapping becomes important [49, 50]. Denavit, for

example, predicts that no trapping oscillations will appear when !T=
L <� 1:7. This

agrees within a factor of 2 to the limit observed in the experiments !T=
L <� 2:6.

Figure 4.2 plots the wave amplitude (at r=0) versus time normalized to

!T , for di�erent values of !T=
L as predicted by the self-consistent numerical cal-

culation. Figure 4.2 shows that as !T=
L decreases, the time it takes for the �rst

oscillation to develop increases. As before, there is signi�cant damping of the wave

before trapping for amplitudes with !T=
L < 10. Not surprisingly, the �gure also

shows that the amplitude of the oscillations is smaller than the corresponding curve

from Figure 4.1 due to the delay in the trapping process. Note that the subsequent

oscillations that occur after the initial trapping do not have the same delay, since

no further damping takes place after the resonant electrons become trapped. The

phase mixing of the electron orbits and the evolution to a constant amplitude wave

(ie. \BGK state") as t ! 1 is also observed, but the plateau is at a level lower

than that seen in Figure 4.1.

In the experiments, there is a radial pro�le for the mode potential and thus a
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Figure 4.3: !B is de�ned as 2� times the inverse of the time between the peak of
the wave amplitude and the peak of �rst oscillation (�tB). The \BGK" plateau
develops as t!1.

radial pro�le to the trapping frequency. The e�ect of the radial pro�le is estimated

by performing a radial average over the eigenmode [51]. For the experimental

pro�les, this e�ect predicts a 10% drop in the expected trapping frequency due to

the phase mixing of electrons at di�erent radii with di�erent wave potential.

4.2.3 !T vs. !B

In order to compare to the experiments we need to �gure out what to

measure. O'Neil's theory and the numerical solutions show that the time to the

�rst peak in the wave amplitude is a well de�ned parameter, meaning that it

is unique for each value of !T=
L. We call this the trapped particle \bounce"

time (�tB), and the corresponding frequency is denoted !B � 2�=�tB, as shown

in Figure 4.3. Later amplitude peaks occur in time increments of �tBn, giving
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Figure 4.4: Predicted values of !B=!T from the self-consistent calculations for
the �rst 3 bounce oscillations. Note that for !T=
L � 1 the numerics plateau to
O'Neil's values. Also note that as the bounce number gets large, !B ! !T .

frequencies !Bn � 2�=�tBn.

In O'Neil's theory, !B � (2�=8)!T for all !T=
L (Figure 4.1). The self-

consistent numerics modify the time of the �rst amplitude peak for wave amplitudes

where !T=
L < 10, but identical times for !T=
L > 10. Figure 4.4 plots the

bounce frequencies for the �rst 3 trapping oscillations as obtained from Figure 4.2

and indicates the values predicted by O'Neil (from Figure 4.1) by arrows.
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4.3 Experiments

4.3.1 Measurement of !B

In the plots to be presented, the theory curve predicted from the numerical

solution will be shown as a solid line, and the theory curve predicted from O'Neil's

theory will be shown as a dashed line.

The experiments use a short burst (typically 10 cycles) to excite a T-G

wave; the decay of the wave is measured by the charge ampli�er as described in

Section 2.3, so as to minimize resistive damping of the wave.

Raw data from a large amplitude wave decay experiment on EV with a

warm plasma (temperature � 2:5 eV) is shown in Figure 4.5. Here the measured

wave potential at the wall is shown as a function of time for waves of di�erent

initial amplitudes. The trapping oscillations are easily seen, and !B is obtained

directly from the plots (eg. Figure 4.6). Using the calibration procedure described

in Section 2.4, we use the peak received wave amplitude to calculate Ez0; where

Ez0 is the initial wave amplitude at r = 0. Using Ez0, an estimate of the basic

trapping frequency !T is obtained from !
(E)

T �
q
eEz0kz=m.

Figure 4.7 shows the measured amplitude bounce frequency !B = 2�=�tB

normalized to 
L as a function of the basic trapping frequency !
(E)

T =
L, for an ex-

periment with 
L=! = :01 and for an experiment with 
L=! = :005. Measurements

from both experiments are seen to agree within about 20% with the curve derived

from the self-consistent calculations. Also, Figure 4.7 shows that for !T=
L � 1,

the self-consistent calculation approaches the prediction of O'Neil, as expected.

This veri�cation of the applicability of trapping oscillation theory to stand-

ing waves in bounded plasmas is the second main result of this thesis. Also, since

the nonlinear theory is based on the same collisionless Vlasov equation as the lin-
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Figure 4.5: Recorded waveforms from a series of large amplitude wave decay

experiments.

Figure 4.6: De�nition of the amplitude bounce time �tB betweem wave excitation
and the �rst amplitude peak, giving !B � 2�=�tB; and the amplitude valley time

�vall; and the average damping rate 
avg
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Figure 4.7: Measurement of !B with comparison to O'Neil and to the numerical

self consistent caculations. The dashed line is the expected curve from the theory
of O'Neil. The solid curve is from the self-consistent calculations.

ear theory, this agreement is further evidence that Landau damping is directly

applicable to standing waves in our trapped pure electron plasmas.

4.3.2 Measurement of Valley Time (�vall)

As a further check of the theory, we can look at other aspects of the theory

that appear to be good indicators of the physics. One such indicator is the bounce

time as used above. Another indicator is the time it takes to reach the �rst am-

plitude \valley" (�vall); this is the time it takes before the �rst particles start to

become trapped.

The reciprocal valley time normalized to 
L=2� is plotted in Figure 4.8 for

one set of data, along with the previous data for !T=
L for comparison, as well

as the predictions from the numerical calculations. The valley time data shows

excellent agreement with the numerics (< 5% di�erence); slightly better than the
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Figure 4.8: Measurement of !B and Valley time �vall with comparison to the self
consistent caculations

comparison between the theory and !B. Presumably, this is because at early times,

parasitic damping e�ects have had less e�ect on the wave amplitude and trapping

process.

4.3.3 Measurement of Bounce and Valley Amplitudes

The oscillation rates (!B, 2�=�vall) are just half of the picture that the

digitized data contains. The magnitude of the signal can also be checked. Figure 4.9

plots the bounce amplitude and valley amplitude (both normalized to the initial

wave amplitude) versus !T=
L as obtained from Figure 4.5.

There are two main points we can get from this data. First, for the largest

amplitudes (!T=
L�10), both data sets agree remarkably well with the numerical
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Figure 4.9: Measured amplitude of �rst peak and valley versus !T=
L.

calculations. However, as the amplitude gets smaller we observe that the bounce

amplitude drops faster than the theory predicts. Second, although the bounce

amplitude drops, the valley amplitude remains in agreement down to the lowest

amplitudes.

This discrepancy is probably due to either residual damping from the re-

sistive impedance of the measurement circuit, or due to Landau damping from

collisional repopulation of the resonant electrons as described in Section 4.4. Since

the valley time is shorter than the bounce time, there has been less time for either

damping mechanism to cause a signi�cant discrepancy. Moreover, the bounce am-

plitude, is lower than than the theory as would be predicted if there was a second

damping mechanism present.

Another possible interpretation is de-trapping of the resonant electrons. If
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a signi�cant number of electrons escape before giving their energy back to the wave,

then the peak of the bounce oscillation would be lower. Currently, the experiments

cannot distinguish the di�erent contributions of these e�ects.

4.4 Collisional Repopulation

Section 3.4.3 (Figure 3.12) presented an experiment where collisions repop-

ulated the resonant particles which were eliminated by hollowing. In this case, the

collisions drive the velocity distribution back towards a Maxwellian, allowing Lan-

dau damping to continue. In the nonlinear bounce oscillations considered in this

Chapter, trapped electrons form a plateau in the distribution function in the region

near the phase velocity of the wave [52], e�ectively halting Landau damping. Again

collisions will drive this modi�ed velocity distribution back towards a Maxwellian,

destroying the trapped particle plateau, and allowing Landau damping to proceed.

Zakharov and Karpman [53] were the �rst to investigate the e�ect of this

collisional relaxation on the evolution of a large amplitude electron plasma wave,

presuming the collisions to be with neutrals or ions. Sperling [54] later showed

that the same e�ect occurs for electron-electron collisions, as occurs in our plasmas.

More recently, Kaganovich [55] calculated the similar e�ect of particle trapping and

collisions modifying the collisionless heating rate in a low pressure glow discharge

plasma.

A nonlinear damping rate 
NL is derived from an analysis of the kinetic

equations with the assumption of weak Landau damping (!T � 
L) [53], giving


NL


L
� 3:01

�
�eff

!T

�3

� 3

 
�eff


L

!3
1

(!T=
L)3
: (4.5)

Here the e�ective collision rate is given by �eff = (�!2

zt �ee)
1

3 , where �!zt = ��v=Lp is
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Figure 4.10: Comparison of measured average (nonlinear) damping rate (
avg)
to the collisional repopulation of resonant particles predicted by Zakharov and

Karpman.

the thermal electron axial transit (bounce) frequency.

From the experiments, the long-time (average) damping rate 
avg is ob-

tained from the amount of decay in 200�sec (see Figure 4.6) and is plotted in

Figure 4.10 as the solid squares, along with the prediction from Equation 4.5.

For small amplitudes, 
avg is the the same as the linear Landau rate and

independent of amplitude. As the amplitude increases to where !T >� 
L, trapping

oscillations appear and the damping rate decreases as predicted by Equation 4.5.

At even larger amplitude, the damping rate again becomes independent of ampli-

tude, determined by resistive dissipation in the detection circuit as indicated by


load in Figure 4.10.

Overall, we �nd close agreement with Equation 4.5 over the range 1 <
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!T=
L < 10, even though the theory is only valid for !T � 
L. The long-time

damping is consistent with the dissipation of trapping oscillations due to collisional

repopulation of resonant particles.

4.5 Measurement of Asymptotic BGK-like States

The time-asymptotic state of a large amplitude Landau damped wave has

been predicted to be a BGK (Bernstein-Greene-Kruskal) equilibrium [44]. A BGK

equilibrium is a particular velocity distribution which is self-consistent with a

steady-state (undamped) large amplitude wave. No experimental observation of

a large amplitude wave evolving to a BGK state has yet been made, but several

numerical simulations have shown its development [45, 46, 47].

Experimentally, this issue has been complicated by the appearance of the

\sideband instability" [6, 56]. The oscillations that develop at the sideband fre-

quencies take energy from the main wave and further distort the velocity distri-

bution. This makes a steady-state equilibrium between the wave and particles

impossible.

In our �nite-length electron column, there are no sideband waves possible

because the T-G dispersion is �xed by the length of the system to discrete wave-

lengths parameterized by mz, as previously shown in Figure 3.3. In practice, this

should allow us to investigate the �nal state of a large amplitude wave without the

complications discussed above.

The issue that complicates our experiments is the resistive damping due

to the detection circuit. This extra damping causes a long-time dissipation of the

wave potential, thus causing a reduced e�ective trapping frequency and a reduction

of the \plateau" amplitude Vplat for any BGK state. Essentially, the predicted

BGK amplitude is set by the initial amplitude of the wave (as seen in Figure 4.1);
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Figure 4.11: Measured plateau amplitude compared to theory, showing the e�ect
of load damping at small !T=
L.

however, on times scales where resistive damping is important, the amplitude of

the wave is no longer determined solely by the initial amplitude.

One way to obtain an estimate of the BGK amplitude is to use the average

of bounce valley amplitude and the bounce oscillation amplitude. Calculations of

this average from Figure 4.1 or Figure 4.2 show that this approximation di�ers

from the long time amplitude by less than 5%. Figure 4.11 plots the average of

the bounce and valley amplitudes versus !T=
L obtained from Figure 4.9, along

with the predictions from the numerical calculations. Although there is decent

agreement for waves with !T=
L � 10, as the wave amplitude decreases, the

disagreement increases, to as much as a factor of 2 for the smallest amplitudes

(!T=
L � 2:5).

The discrepancy between the data and the theory at small !T=
L in Fig-



65

ure 4.11 is the same as the discrepancy seen in Figure 4.9. Thus, the extra damping

seen in the trapping oscillation experiments also causes the long time plateau am-

plitude to decrease and limits our ability to observe a pure BGK state. Further

reduction of the resistive damping may allow an experimental test of the recent

numerical simulations [45, 47].



Appendix A

Calculation of T-G mode

dispersion

This Appendix shows the relevant equations used to derive the Trivelpiece-

Gould (T-G) mode dispersion, as well as relate the measured voltages to the electric

�eld in the plasma. This is used to calculate !T for large amplitude plasma waves.

The derivation of the T-G dispersion relation follows directly from their

original paper [2]. The following is an outline of this procedure with all the relevant

forumlas utilized in this thesis.

In the following we assume a cold plasma with uniform density plasma

column, n0 for r < a and 0 for a < r < b, with a grounded conducting wall at

b, con�ned by an in�nite axial magnetic �eld (ie. !p=!c � 1), well below the

\Brillouin" limit [1]. For this case the plasma dielectric tensor " is given by

" =

2
664
1 0 0

0 1 0

0 0 1� !2p
!2

3
775 : (A.1)

The mode equation, r � " � rÆ� = 0, becomes

r2Æ��
�
!2p
!2

�
@2Æ�
@z2

= 0 0 < r < a

r2Æ� = 0 a < r < b

(A.2)

66
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These equations are solved using cylindrical coordinates. The boundary

conditions are that the potential Æ� must by �nite at r = 0, Æ� is continuous

at r = a, �rÆ� = E is continuous at r = a, and Æ� = 0 at r = b, which is

location the grounded conducting wall. Recognizing Bessel's equation, and de�ning

x � kza
q
!2
p=!

2 � 1 � k?Rp the solution for Æ�, ÆEz, and ÆEr is written as

Inside: 0 < r < a

Æ�(r; t) =
Ez0

kz
J0

�
x
r

a

�
cos(kzz)

ÆEz(r; t) = Ez0 J0

�
x
r

a

�
sin(kzz)

ÆEr(r; t) = Ez0

x

kza
J1

�
x
r

a

�
cos(kzz)

Outside: a < r < b

Æ�(r; t) = b Erb ln(b=r) cos(kzz)

ÆEz(r; t) = bkz Erb ln(b=r) sin(kzz)

ÆEr(r; t) = Erb

b

r
cos(kzz)

At the plasma-vacuum boundary: r = a

ÆEz ; Ez0J0(x) = Erb bkz ln(b=a)

Ez0 = Erb
kzb ln(b=n)

J0(x)
(A.3)

ÆEr ; Ez0

x

kza
J1(x) = Erb

b

a

Ez0 = Erb

kzb

xJ1(x)
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Where Ez0 is the value of the z component of the electric �eld evaluated at z = 0,

and Erb is the value of the radial component of the electric �eld evaluated at r = b

(ie. at the wall, see below). Eliminating the amplitudes using the above equations,

we �nd the dispersion relation

x J1(x) ln(b=a) = J0(x) (A.4)

which gives us a relationship between !, kz, and the geometry of the plasma; with

a equal to the plasma radius, b equal to the wall radius, and x � kza
q
!2
p=!

2 � 1

as before.

At the wall (r = b), we use Gauss' law to �nd a relationship between the

induced image charges and the radial electric �eld Erb.

Z
surface

E � dA = 4� Qencl

2�b Erb

Z z0+LR

z0

dz cos(kzz) = 4�Qm

z0 and LR are the z location and length of the detection electrode, respectively.

De�ning a new geometry function, f̂ ,

Z z0+LR

z0

dz cos(kzz) =
1

kz
[sin(kz(z0 + LR))� sin(kzz0)] � f̂

kz

we arrive at the relationship between the radial electric �eld at the wall and the

induced charge on the detection electrode.

Erb =
2kzQm

bf̂
(A.5)

Further, since the current 
owing through the detector feedback resistor

is given by Ifeed = !Qm, and Vm = IfRf , where Rf is the value of the feedback
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resistor, then the measured voltage is Vm = !RfQm. Solving for Qm, and using

Equation A.3 which relates Erb and Ez0, we �nd:

Ez0 =
2

f̂

ln(b=a)

J0(x)

k2z
!

Vm

Rf

(A.6)

which is the desired formula relating the amplitude of the axial electric �eld of the

wave to the measured voltage in the detector.

We can now use this to calculate !T for every measured plasma wave. From

the de�nition of !T =
q
eEzkz=m we can write the trapping frequency (near r=0),

as

!T

!0

jr=0 =

vuut 2

f̂

ln(b=a)

J0(x)

e

mv3�

Vm

Rf

/ (Vm)
1=2: (A.7)

We can further use Poisson's equation to solve for the density perturbation

of the wave. Starting with

r2Æ� = �4�eÆn (A.8)

plugging into Equation A.2 and using @2Æ�=@z2 = �k2zÆ�, we �nd

Æn =
1

4�e

!2

p

!2
k2zÆ�: (A.9)

Using !2

p =
4�e2n
m

, and recognizing that ek2zÆ�

m
= !2

T , and using Equation A.7 we can

write

Æn

n
=

!2

T

!2
=

 
2

f̂

ln(b=a)

J0(x)

e

mv3�

!
Vm

Rf

: (A.10)

This equation for Æn=n is used in Section 2.4 to measure and verify the amplitude

calibration for the launched T-G modes.
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