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Energy loss rate for guiding-center antihydrogen atoms
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Collisional drag between a bound positron and a background positron plasma is considered as a
mechanism for guiding-center antihydrogen atoms to relax to deeply bound states. Contrary to
previous assessment, an adiabatic cutoff to the drag is predicted at deep binding, when the bound
positron’s EXB drift speedvy exceeds the plasma positron thermal speed. In this regime,
small-impact parameter collisions neglected in the drag calculation become the dominant 3-body
recombination mechanism. At shallow binding, whieav 4/v<<1, the atom’s energy loss rate due

to drag scales like&®/?log? £, When ¢>1 the adiabatic cutoff takes over and the rate scales as

£ exp(—2(29)?3). The adiabatic cutoff implies that collisional drag can only assist positron—
antiproton recombination up to a finite binding energy. 2604 American Institute of Physics.
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Current attempts to produce antihydrogénemploy  collisions with p<r were shown to produce an energy loss
nested Penning traps to immerse antiprotons in a cold posrate that scales as
tron plasma. At the cryogenic temperatures used in the ex- .
periments, the plasma is in the regime of strong magnetiza- Yelosd™ nv (1)
tion, where the dimensionless parametesv/Q b=r_./b cose™ g2

<1. Here,v, Q., andr, are the positron thermal speed,

lotron f d lot di ivel ({vhere e=U/KkgT is the scaled binding energy. This rate
cycozron requency, and cyclotron radius, respectively, an learly decreases as the atom falls to tight binding because
b=e/kgT is the distance of closest approach. In this re-

the cross section for close collisions is reduced as the atom

gime, three-body recombination is predicted to be the ratebecomes smaller.

limiting recombination mechanism. The recombination rate The energy loss rate due to distant collisions withr

Ry is dominated by3a kinetic bottleneck at binding energies, .« o nsidered by Men'shikov and Fedicléand it is this

U g)tf ordert' 4<BtT' At. thf|s weak“ b'ﬁd‘?'”g entergy,tthe” work which we re-examine here. These authors found that

p?f' ror:h—an Ipr_? 0%£§'rd _?trm a ?ju;hlng-ctgn e: a otm, distant collisions create a drag force on the bound positron

\(/jv_ tere € fposd| rob d " ﬁl z%[rounl eihan Ipro 0?. af_ Elid that causes it to move to deeper binding. Furthermore, they
Istancer of orderb, and oscilates along the magnetic I€ld ,qq a4 that the more tightly bound the positron, the faster

Ir}';[;hte ?ng:ﬁ;ogr?t.p?gigzalsvﬁgighal?' A(S)?ﬁg?lmsn]:joresl!nms:k it moves, and the larger the drag force, leading to an energy
plicity 'P ! ' Y : NS oss rate that monotonically increases with binding energy,

— 5 ; .
calculated thaRy=0.0M°vb®, wheren is the plasma posi eventually dominating over the rate due to close collisions.

. - - — 3
tron density. The drift orbit frequency~ed/Br™ for small However, these authors neglected the effect of the bound

E?rfc:lterll:%g?dce motion and is slower than oscillations paralbositron’s EXB drift motion on the collisional drag coeffi-

: : cient. Here, we show that when this motion is included, an
Here, we consider a different rate: the energy loss yate

. . adiabatic cutoff of the drag force is encountered at tight bind-
The above-quoted theoretical ré®g is actually the rate at 9 g

. e . ing. When the drift speed of the bound positron becomes
which atoms form with binding energies greater thag B. larger than the plasma positron thermal speed, the plasma
Beyond th|s bottleneck, atoms have.a good ‘?hanc‘? Of. everE)'osi'[rons can no longer respond to the bound positron’s ro-
tally falling to.the .grounq state W|thout.be.|ng relonIZGd'tational EXB drift motion. As a result, we find that colli-
However, &gT 1S still relatively shallow k?lndlng_. .The €N sional drag due to distant collisions is no longer important at
ergy loss ratey s the average rate at which gwdlng-centerdeep binding, but can play an important role at shallow bind-
atoms move to deeper bindirgice they are past the bottle- ing energies, depending on the specific parameters of the

negk This rate IS qf mtergst becguse in current eXpe”memsexperiment(i.e., the value ofy, which depends on plasma
various effects limit the time available to the atoms to com-

letelv recombine 1o the around state: for example atomtemperature and magnetic field strengtim particular, we
pletely g ) P, Tind that the adiabatic cutoff occurs for scaled energiesar
can drift out of the plasma where they may encounter strong

electric fields that reionize them unless they are deeply 1 b
bound. €cutoff— ;= P
C

The energy loss due to three-body collisions is due to
two processes: close collisions with impact parameidess Plasma positrons streaming past the atom along the mag-
than the atom size, and distant collisions witlp>r. Each  netic field impart random kicks to the bound positron and
process has been considered previously. In Ref. 3, the clogpve it diffusive mobility in the potential well of the antipro-
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JU D€’ [vgB\?
gt kgT | ¢

The energy loss rate due to dragy,, is

otion 149U D, [vgB\?
- Yoo G 30~ kT | ¢ 3
| drifting Uadt kgTl| c
| antiproton pasitror: | With a known diffusion coefficient and drift velocity, E(B)
& / gives us the rate at which a bound positron moves to deeper
\ ,:’J__,.x / binding. The diffusion coefficient depends on relative motion
\ 1 e ’ between plasma positrons and the bound positron. The adia-
\R / batic cutoff mentioned above manifests through this diffu-
' e sion coefficient.
- — - To calculate the diffusion coefficient, we employ the col-
lisional definition
FIG. 1. A guiding center atom. The positr&XB drifts in the electric field 1 2
of a stationary antiproton while oscillating back and forth along the mag- D= 5( vAr >, (4)

netic field in the potential well of the antiproton. The drift orbit frequency . .
w~edBr? for small bounce motion and is slower than oscillations parallel Where v is the frequency of collisions between the bound

to the field. positron and passing plasma positrons and is the dis-
placement along experienced during each collision. Con-
sider a guiding-center atom immersed in a magnetized posi-
ton. If the diffusion tensoD is known, then the ensemble tron plasma. The bound positron orbits the antiproton with
averaged fluxX™ of positrons bound in a potential field is  frequencyw=uv4/r. To first order, plasma positrons are con-
given by the Einstein relatién fined to move along magnetic field lines at a constant veloc-
ity v,. As each plasma positron travels by the atom, its elec-
tric field perturbs the drift velocity of the bound positron by

en
Vr1+'E;i:V7¢
ce(r(t)—rp(t))x2z

The mobility fluxI', to lower binding energy is given by the vy(t)= B no OF
r(t)—r
P

second term. Thus, a single positron will, on average, move

to deeper binding with velocity Herer(t) is the position of the bound positron, ang(t) is
T, e the position of the passing plasma posit(6ig. 1). Without
V=" T~ D- kB—TV¢- loss of generality, we can let the passing positron pass
through thez=0 plane at=0 when the bound positron is at
Let us assume cylindrical coordinates centered on thg=0 in its orbital cycle. We therefore write
antiproton with the magnetic field oriented alohgthe unit
vector in thez direction (Fig. 1). For simplicity, we neglect
the bound positron’s bounce motion along the magnetic field
and consider only the cross field drift motion. In this limit,
binding energy takes the point particle form If r,>r, the radial component of the bound positron’s veloc-
> ity perturbation is

r(t)=r(coswtX+sinwty),

p(D) =X X+ ypy+uv,tz

r’ . Cce(Xpsinwt—y,coswt)
V, =V .r:—
re B (xg+ys+ust?)¥?

(Note that the positron’s perpendicular kinetic energy is ne-
glected in the guiding-center approximatip@ince we ex- |nteqgrating over all time gives the radial displacement from
pect the diffusion tensor to be diagonal in cylindrical coor- 5 collision,
dinates, we can leD, be the diffusion coefficient in the

radial direction. Because is parallel toV¢, D, represents ce
the positron’s mobility in the background potential well of Ar= _ZE Yp
the antiproton. The change in binding enetdyis given by

U D,e?

—_— . == 2
g ev-Vo KT (Vo)©.

w
2
erZ

wrp

K
1,

) ) ®)

whereK is the first modified Bessel function of the second
) kind. For a positron plasma in thermal equilibrium, E4)
takes the form

Recalling that the positroiEXB drifts in the potential
field ¢, we can use Dr:%f d?rpdufelv Ar?, (6)
c
vdZE‘zXV¢ wheref(v,) =(n/\/27-r5)e‘”§’2”j is the thermal equilibrium

distribution at densityr. Using this distribution with Eq¥5)

to rewrite Eq.(2) in terms of the drift velocity magnitude, , and(6) and integrating over the spatial varialtlewe obtain
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2
* * ce w wl 3R
DrZZWf do, drpry ( ) E |3 2(| T fe. (7 Varmx avb? =& F(g)
- Mmin Uz Uz 1
The lower bound of the radial integrgl,, is on the order of 0.5

the atom radius. Collisions occuring at smaller radii are no

longer accurately modeled by unperturbed passing positron 0.2
orbits, and are neglected in this drag calculation. The addi- g_ 1
tive contribution to the energy loss rate from close collisions 0.05

is estimated by Eq(1).
If we let r,,=r and switch to scaled variables
=owr,/v andx=v,/v,

D_L(c) mew}_) -
r_\/g B (§
with
X212
9—J ss| K1(| |)de ©

Here wp=47re n/mg is the square of the positron plasma

frequency and

< &

3 (10

Zd
v
is the “adiabaticity parameter.” The functiof(¢) has the
limiting forms
F(é&)~In*¢ for ¢<1

\/§§1/3e(3’2)(2§)2/3 for &>1.

Thus, as the positron drift speegt increases above the av-
erage thermal speed the adiabatic cutoff manifests through
a drop in the positron’s diffusion coefficient.

To write the energy loss ratgq,q in terms of the posi-
tron drift frequency, we use E@3) and replace 4= wr:

r(or\2w) [or
’ydrag:— fppe— fp— .
\/877 1% v 1%

For small bounce motion, the drift frequenaycan be ex-
pressed as

(11)

Fé)= 12

ec
W~ ——=

Br3
Using this scaling, we can write an expression §Qf.g in
terms of the adiabaticity parametér

Yara= V2mxnub? E2F(£). (13)

The energy loss rate is plotted in Fig(the solid ling, and
compared to the asymptotic form&l) and (12) at large
(dashegl and small(dotted adiabaticity parametef. While
our form for y4,g agrees with Ref. 4 foé<1, our loss rate
cuts off exponentially wheg=1. Consequently, energy loss
due to distant collisions becomes unimportant wijenl.

0.02

0.01
0.01

E=wr
0.050.1 0.5 1 5

FIG. 2. The normalized recombination ragg.q V2mynvb? = ¢&2F(¢)
due to distant collisiongsolid line) plotted against the adiabaticity param-
eteré=wr/v. We have assumed=ed/Br. The limiting forms foré<1
(dotted ling and¢>1 (dashed lingare also shown. The drop ipat high&
comprises the adiabatic cutoff.

cuts off at a finite binding energy. To compare with the close
collisions studied by Glinsky and O’Neil, we shift to scaled
variables:

€= U/kBT,

r=tnub?.
Using the small bounce motion scaling=ec/Br?, the adia-
baticity parameter is given by

wl
§=—= = ~e’y.

Now we can write Eq(13) in terms ofy and binding energy
€
Ydrag
'Ydrag_ nob

=\27é

From Eq.(1), the scaled energy loss rate due to close colli-
sions is

X2F(€x). (14)

1
Yclose— €2 (15
Figure 3 shows both energy loss rates. The drag is given for
the parameters of the AthenaB£3x10°G and T

=15 K= x=0.0257) (Ref. 2 and ATRAP B=5.4xX10* G

and T=4.2 K=y=2.11x10"%) (Ref. 1) experiments. At
deep binding, energy loss due to drag mobility cuts off ex-
ponentially. Thus, short range collisions dominate at deep
binding.

Both rates shown in the figure are calculated in the
guiding-center-atom regime. When binding becomes very
deep, the positron cyclotron motion becomes coupled to the
orbital drift motion and the atom becomes chaotic. This oc-
curs when

w~,. (16)

Over a range of binding energies, collisional drag can bén the chaotic regime, the positron’s motion can no longer be
an important mechanism for relaxation to deeper binding in alescribed by guiding center drift dynamics. Its motion is fast,
guiding center atom. However, we have seen that the effe@nabling energy loss through radiation and a correspondingly
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,? _10e€e TABLE I. The normalized timgnumber of collision times 7, required
T €edt € (Athena) € (ATRAP) for a guiding-center atom to collisionally relax to the chaotic orbit regime
N | (see text Bound pairs escape the positron cloud in approximaiglycol-
0.1 PP - o
. NN\ I|_S|on times.L and|l refer to escape transverse and paralleBtarespec-
17=00257 tively.
0.01¢ (Athena) e
I \\ C Athena ATRAP
t=211x10° Ly
0.001 (ATRAP) ' \ AN X 0.0257 2.1%10°8
: N Trelax ~390 ~18
.0001 I \ Tesc 1~40 II=250 I=1.5
| \
toy
L €
1 5 10 50 100 500 1000

both transverse to the field, a maximum distance of roughly
FIG. 3. The ratéy at which energy is lost from the bound charge system due0.5 ¢cm, and parallel to the field, a maximum distance of 3
to mobility drag (for Athena and ATRAP parametgysand for Glinsky—  c¢m, were considered. Atoms escaping paralleBtavould
O'Neil small impact parameter collisionslashed ling Drag dominates  yamgain jn the plasma longer, evolving to deeper binding. For
over a finite range in binding energy, depending on the fagtor ATRAP, the path was chosen on axis, a maximum distance of
0.1 cm. These estimates indicate that, on average, guiding-

fast transition to Kepler style orbits. We can write Etp) in ~ Ccenter atoms remain in the plasma about one-tenth to one-

Y gime. More accurate calculations are currently underway.

Figure 3 shows that small impact parameter collisions
“ _ Ex2=1 dominate at very shallow and at very deep binding, but that
Q. ' long range collisions can be important at intermediate bind-
ing energies. However, note that the precise location of the
adiabatic cutoff in Fig. 3 depends on our choice i@, in
Eq. (7). We assumed ,,=r, but takingr ., larger would

€Ec=X move the cutoff to lower energy, further reducing the effect

For the Athena parametees~11.5 and for ATRAPe,~61  ©Of long-range collisions. Also, a Vlasov wake calculation to
(gray areas in Fig.)3 For these experiments;,, cuts off be presented in a future paper suggests an even steeper func-

The approximate binding energy. at which the atom be-
comes chaotic is given by
~2/3

close to where the positron orbit becomes chaotic. tional form for the adiabatic cutoff. While the existence of an
The normalized timer,q, required for an atom to relax adiabatic cutoff aé~1 is incontestable, its precise form and
to the chaotic regime is given by location are not known. To fully answer this important ques-
. tion, one must consider short and medium range collisions
_ [P o€ with a computer simulation and graft that result onto our
Trelax— - €, (17) . . .
ar drag calculation. This work is currently underway.

where the total energy loss rate due to collisions is givery cKkNOWLEDGMENTS
approximately by adding the rates due to large impact pa-
rameter(drag collisions and closéreplacementcollisions: The authors thank Professor C. F. Driscoll and Professor
T. M. O'Neil for useful discussions.
E% €(Vrag™ Velose - This work was supported by the National Science Foun-
ar ’ dation Grant No. PHY-9876999 and the Office of Naval Re-

Table | shows the relaxation timge,, compared to the Séarch Grant No. N00014-96-1-0239.
estimated timer,s. that a bound pair takes to escape the

. 1 .
positron cloud for the Athena and ATRAP parameters. Each gbggb”e'se' N. S. Bowden, P. Oxley al, Phys. Rev. Lett89, 213401
time is normalized by the collision frequencﬁb , estl- 2M. Amoretti, C. Amsler, G. Bonomkt al, Nature (London 419, 456

mated from Refs. 1 and 2. For ATRAP, antiprotons were (2002.
assumed to be at 10 meV. For Athena, the antiprotons WeréM- E. G“nﬂ(_z and L- M-OO'Necijl_, l;hyS- Fl;izfs 3(15559)(1991)-
; ; L. I. Men’shikov and P. O. Fedichev, JETH, 78 (1 .
assumed the_rm_alLS K). The escape timeescwas estlmgted 5. 0. Fedichev, Phys. Lett. 226, 289 (1997,
as the transit time for an atom travelmg at the am'prOtonsF. Reif, Fundamentals of Statistical and Thermal Phy<igkGraw—Hill,

velocity to reach the plasma edge. For Athena, escape pathslew York, 1963, p. 567.

Downloaded 06 May 2004 to 132.239.69.90. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



