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Abstract. A particle in cell (PIC) simulation is used to investigate the excitation of electron acoustic
waves (EAWs) by a driver electric field and the stability of the EAWs against decay. An EAW is
a nonlinear wave with a carefully tailored trapped particlepopulation, and the excitation process
must create the trapped particle population. For a nearly collisionless plasma, successful excitation
occurs when a relatively low amplitude driver that is spatially and temporally resonant with the EAW
is applied for a sufficiently long time (many trapping periods). The excited EAW rings at nearly
constant amplitude long after the driver is turned off, provided the EAW has the largest wavelength
that fits in the simulation domain. Otherwise, the excited EAW decays to a longer wavelength EAW.
In phase space, this decay to longer wavelength appears as a tendency of the vortex-like trapped
particle populations to merge.
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INTRODUCTION

In 1991, Hollway and Dorning [1] noted that certain nonlinear wave structures can exist
in a plasma even at low amplitude. They called these waves electron-acoustic waves
(EAW) since the dispersion relation is of the acoustic form (i.e.,ω = 1.31kvth for small
k). Here,ω is the angular frequency of the wave,k the wave number, andvth the thermal
velocity of the plasma electrons.

Within linear theory, an EAW would be heavily Landau damped,since the wave
phase velocity is comparable to the electron thermal velocity [2]. However, the EAW
is a Bernstein-Green-Kruskal nonlinear mode (BGK mode) [3]with electrons trapped in
the wave troughs. Because of the trapped electrons, the distribution of electron velocities
is effectively flat at the wave phase velocity, and this turnsoff Landau damping.

These waves can be constructed even at low amplitude by carefully tailoring the
trapped particle distribution. However, the importance ofthe waves as elementary ex-
citations of the plasma, such as Langmuir waves (LW), depends on the extent to which
they are excited by general perturbations and drives applied to the plasma, and the extent
to which they are stable against decay to other modes. Because EAWs are intrinsically
nonlinear structures, one expects that parametric decay instabilities are possible.

A simple argument shows that the waves can be excited by a sudden (or initial) per-
turbation only at large amplitude. We assume here that the trapped particle distribution
does not exist initially, but forms dynamically as the wave evolves. For a wave electric
field E sin(kx−ωt), the time to form the trapped particle distribution is approximately
the period for trapped particles to oscillate in the trough of the wave,τt = 2π

√

m/(eEk),
wheree andm are the electron charge and mass, respectively [4]. The waveis killed by



Landau damping before the trapped particle distribution can form unlessγLτt < 1, where
γL is the linear Landau damping rate [2]. For a wave with phase velocity comparable to
the thermal velocity(ω/k ∼ vth), the Landau damping rate is comparable to the fre-
quency(γL ∼ kvth), so the initial amplitude must be large (i.e.,eφ ∼ eE/k ∼ mv2

th = Te).
However, we will see that EAW’s can be launched by a small amplitude driver if

the driver is applied resonantly over many trapping periods. The driver continuously
replenishes the energy removed by Landau damping, so the trapped particle distribution
(and the EAW) is eventually produced. This result will be demonstrated using a particle
in cell (PIC) simulation [5]. For the case where the wavelength is the longest wavelength
that fits in the plasma and the plasma is nearly collisionless, the launched EAW persists
at nearly constant amplitude long after the driver is turnedoff.

Stability of the EAW’s against decay to other modes is investigated. As mentioned, an
EAW with wavelength equal to the length of the plasma rings without decay. However,
when this EAW is replicated in space and used as an initial condition for the simulation
of a much longer plasma, the EAW is observed to decay to longerwavelength EAW’s.
In phase space, the trapped particles for an EAW appear to be avortex structure, and the
decay to longer wavelength involves a merger of the vortices[6, 7, 8, 9, 10]. The above
results were first reported by the authors in thePhysics of Plasmas [11].

Evidence suggests that EAW’s and the decay of EAW’s to longerwavelength were
observed in recent experiments using a pure electron plasmacolumn in a Penning trap
(see paper by Kabantsev, Valentini and Driscoll in this proceeding). We will discuss the
theory of EAW’s on such a plasma.

Our simulation results are complementary to recent resultsreported by Afeyan, Won,
Savchenko, Johnson, Ghizzo, and Bertrand [12]. These authors also carry out numer-
ical simulations of nonlinear waves launched by a driver in an unmagnetized plasma.
Motivated by suggestions that EAW’s might be launched in laser-plasma interaction ex-
periments [13], Afeyanet al. focused on relatively large driver amplitudes. They found
novel nonlinear waves that they call “Kinetic Electrostatic Electron Nonlinear (KEEN)
Waves.” These waves are comprised of 4 or 5 significant harmonics, persist only when
driven hard enough, and are driven by a wide range of frequencies. In contrast to our
work, these authors reported that low amplitude drive doesnot produce coherent EAWs,
presumably because the drive was not applied resonantly fora long enough time. We
will see that the resonance is relatively narrow and can easily be missed.

DISPERSION RELATIONS

For convenience, we scale time by the inverse plasma frequency ω−1
p , whereωp =

√

4πne2/m andn is the electron density. Length is scaled by the Debye lengthλD =
vth/ωp. With these choices, velocity is scaled by the electron thermal velocityλDωp =

vth and electric field by
√

4πnmv2
th.

Using these scalings, the Landau dispersion relation takesthe form [2]

k2 =
Z

L
dv

∂ f0/∂vz

v−ω/k
= 0, (1)



FIGURE 1. The "thumb" dispersion relation. The frequency is expressed in units of the electron plasma
frequency and the wave number in units of the inverse of the electron Debye length.

whereω is the complex frequency,k the wave number, andf0(v) the distribution of
electron velocity components in the direction of wave propagation. Here, we take this
distribution to be Maxwellian,f0(v) = exp[−v2/2]/

√
2π. The subscriptL on the integral

sign indicates that the velocity integral is to be taken along the Landau contour, dropping
down around the pole atv = ω/k. For the high frequency modes of interest, the ions
don’t participate; throughout the paper the ions are taken to be a uniform neutralizing
background charge.

For sufficiently weak damping, the velocity integral along the Landau contour can be
approximated by

Z

L
dv

∂ f0/∂v
v−ω/k

= P
Z +∞

−∞
dv

∂ f0/∂v
v−ω/k

+πi
∂ f0
∂v

∣

∣

∣

∣ω
k

, (2)

where P indicates that the principal value is to be taken. As mentioned earlier, the
trapped particle distribution for an EAW effectively makesthe distribution flat at the
wave phase velocity (i.e.,∂ f0/∂v|ω/k ≃ 0). Thus, Holloway and Dorning [1] obtain a
dispersion relation for small amplitude EAWs by retaining only the principal part in the
velocity integral of Eq. (1).

Solving for the roots of the resulting dispersion relation then yields the solid curve in
Fig. 1. This so-called “thumb” dispersion curve exhibits two roots for smallk. The upper
root [ω = (1+3k2)1/2] is the LW and the lower root(ω = 1.31k) is the EAW.

We emphasize that Fig. 1 describes only small amplitude EAWs. Using a Maxwellian
distribution for f0(v) and taking the principal value in the velocity integral assumes that
the width of the plateau where∂ f0/∂v = 0 is infinitesimal. For a finite amplitude EAW,
the plateau width is the velocity range over which electronsare trapped in the wave
troughs, that is∆vt , where(∆vt)

2 ∼ E/k. An infinitesimal trapping width corresponds to
an infinitesimal wave amplitude. We will see that the phase velocity for a large amplitude
EAW is shifted upward from the value indicated in Fig. 1.



PARTICLE IN CELL SIMULATIONS

Excitation of the EAWs

The PIC simulation follows the electron dynamics in thex-direction, which is the
direction of wave propagation. The electron phase space domain for the simulation is
D = [0,Lx]× [−vmax,vmax], wherevmax = 5. For an initial set of simulations, we choose
Lx = 2π/k = 20, but in later simulations the plasma length is increased to Lx = 40 and
Lx = 80. This increase in length allows for decay to longer wave length EAWs. The time
step is∆t = 0.1. The simulations follow the evolution ofN ∼ 5×106 to 107 electrons
for many plasma periods (tmax = 4000). The initial electron velocity distribution is taken
to be Maxwellian. Periodic boundary conditions in physicalspace are imposed, and
Poisson’s equation is solved using a standard Fast Fourier Transform (FFT) routine. The
external driver electric field is taken to be of the form

ED(x, t) = Emax
D

[

1+

(

t − τ
∆τ

)n]−1

sin(kx−ωt) (3)

whereEmax
D = 0.01, τ = 1200,∆τ = 600,n = 10, andk = π/10. The plasma response

is studied as a function of the driver frequencyω, or equivalently, phase velocityvφ =
ω/k = 10ω/π. An abrupt turn on (or off) of the driver field would excite LWsas well
as EAWs, complicating the analysis. Thus, the driver is turned on and off adiabatically.
The driver amplitude is nearEmax

D (within a factor of two) for several trapping periods
(toff − ton ≃ 1200≃ 11τD), and is near zero again byto f f = 2000. Here, the trapping
period associated with the maximum driver field isτD = 2π/

√

kEmax
D = 112.

Figure 2 shows the evolution of the plasma electric field,Ek(t), for two different
values of the driver phase velocity. In the top graph (forvφ = 0.4), Ek(t) rises to a small
value while the driver is on, but falls to zero when the driveris turned off. The timeto f f
is indicated by the dashed line. In the bottom graph (forvφ = 1.70),Ek(t) grows to large
amplitude and maintains this amplitude (rings) after the driver is turned off.

Repeating such simulations for many different phase velocities (but holding the other
driver parameters fixed at the values listed) yields the peaked graph in Fig. 3. Here,
the ordinate is the amplitude of the oscillating plasma electric field at the end of the
simulation (long after the driver has been turned off), and the abscissa is the driver phase
velocity. For this set of driver parameters, an EAW is drivenresonantly for phase velocity
vφ ≃ 1.70.

For the wave numberk = π/10, Fig. 1 implies the resonant phase velocityvφ ≃ 1.45.
However, we must remember that Fig. 1 applies only to small amplitude (infinitesimal)
EAWs. For the relatively large EAW in the simulation, the resonant phase velocity is
shifted up to 1.70 by the finite plateau width. A separate calculation taking into account
a plateau width corresponding to the saturated field amplitude(Esat

k ≃ .055) yields the
phase velocityvφ ≃ 1.74.

More precisely, we show that the distribution function obtained in the simulation is
effectively a BKG structure. Then we use the BGK formalism toget the EAW solution.
Figure 4 shows a false color contour plot of the electron distribution, f (x,v), at the end
of the run (t = 4000). The color code assigns higher values off to longer wavelengths in



FIGURE 2. Plasma response for two different values of the driver phasevelocity:vφ = 0.4 (at the top)
andvφ = 1.70 (at the bottom).

FIGURE 3. The peak of resonance for the EAW.

spectrum. The vortex-like structure in Fig. 4 represents trapped particles, and as expected
these particles have a mean velocity equal to the phase velocity v = 1.7. The velocity
width of the trapped particle region is about∆vt ≃ 1.7, which is in agreement with the
theoretical expectation∆vt = 2

√

2Esat/k = 1.674. Here, the saturation amplitude of the
electric field isEsat= 2Esat

k ≃ 0.11 (see bottom graph in Fig. 2). In Fig. 5, we plot the
distribution function f at the end of the run as a function of the energy in the wave



frameε = (v− vφ)
2/2−φ(x, tmax). That is, for each(x,v) in the simulation domain, we

plot f (x,v) versusε(x,v), resulting in the single curve shown in Fig. 5. This shows that
the electron distributionf is a function of the energyε alone, as expected for a BGK
distribution. By using this distribution in the BGK formalism [3] for the phase velocity
vφ = 1.7 and the electric potential amplitudeEsat/k ≃ 0.35, we get a sinusoidal solution
whose wavelength isλBGK ≃ 19.5, which is very close to the wavelength of the electric
perturbation in the simulation (λ = 20).

FIGURE 4. The phase space contour plot of the distribution functionf at t = 4000.

FIGURE 5. The distribution functionf plotted as a function of the energy in the wave frameε =
(v− vφ)

2/2−φ(x,tmax).

FIGURE 6. The coalescence and merging of two phase space holes.



Decay instability

The EAW in the bottom graph of Fig. 2 rings at nearly constant amplitude after the
driver is turned off. However, the wavelength for this mode is the longest wavelength that
fits in the simulation domain, so the constant amplitude is noguarantee against decay to
a longer wavelength mode. Moreover, previous theory suggested that BGK modes with
trapped particles may be subject to such decay instabilities [6, 7, 8, 9, 10].

To investigate the possibility of decay to a longer wavelength mode, we replicate
the mode periodically in space and use it as the initial condition for a simulation in a
longer domain. The matching from wavelength to wavelength is smooth since periodic
boundary conditions were used in the initial simulation.

Figure 6 shows a temporal sequence of phase space contours for the case where the
simulation domain has been doubled in length (Lx = 20→ Lx = 40). The contour plot for
t = 0 is simply two copies of the plot in Fig. 4 placed side by side.Thet = 0 plot shows
two vortex-like structures representing trapped particles. The sequence of plots shows
a progressive merger of the two vortices until there is only asingle vortex att = 4000.
A decay instability has transferred the energy from mode 2 (i.e.,k = 2 ·2π/40= π/10),
to mode 1 (i.e.,k = 1 ·2π/40= π/20); that is, to the longest wavelength that fits in the
simulation domain. Also, we have carried out simulations for Lx = 80 (4 initial vortices)
and again observed merger to a single vortex.

From these observations, we expect that merger to a single vortex (or decay to the
longest mode) is a general tendency for EAWs. This is consistent with observations for
the merger of phase space vortices in other situations, suchas the vortical holes that
result from the two stream instability [6, 7, 8, 9, 10].

EAW’S IN A NONNEUTRAL PLASMA

Consider a long pure electron plasma column in a strong uniform axial magnetic field.
Let (r,θ,z) be a cylindrical coordinate system with thez-axis coincident with the center
line of the column. For simplicity we take the equilibrium distribution of electrons to be
of the form f0(r,vz) = n0(r) f0(vz/vth), where

n0(r) =

{

n0 for r < Rp
0 for Rp < r < Rw

(4)

is a top-hat radial density profile andf0(vz/vth) is a Maxwellian. Here,Rp is the radius
of the plasma column andRw is the radius of the conducting cylindrical wall that bounds
the confinement region. Because of the large axial magnetic field, only the velocity
componentvz enters the dynamics and need be retained in the distributionfunction.
For an electrostatic mode with no azimuthal dependence, thedispersion relation reduces
to the simple form [14]

k2 = ω2
pP

Z

dvz
∂ f0/∂vz
−ω
kz

+ vz
, (5)

wherekz is the axial wave number,K⊥(kz) an effective transverse (radial) wave number,
andk2 = k2

z +K2
⊥. Following the Holloway-Dorning prescription [1], we havereplaced
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FIGURE 7. Dispersion curves for electron acoustic and Trivelpiece-Gould waves in cylindrical plasmas
with top-hat density profiles for whichRw/Rp = 3.45 and (a)λD/Rp = 0.3; (b) λD/Rp = 0.1.

the Landau velocity integral by a principal value integral.Note that this dispersion
relation differs from that for the 1-D case [see Eq. (4)] onlyby inclusion ofK2

⊥ in the
definition ofk2 = k2

z +K2
⊥.

For the top hat density profile, the allowed values ofK⊥(kz) are determined by the
equation

RpK⊥J′0(K⊥Rp)

J0(K⊥Rp)
= kzRp

[

I′0(kzRp)K0(kzRw)−K′
0(kzRp)I0(kzRw)

I0(kzRp)K0(kzRw)−K0(kzRp)I0(kzRw)

]

(6)

whereJ0(x), I0(x), and K0(x) are Bessel functions. Equation (6) admits a sequence
of solutions:K j

⊥(kz), where the different solutions corresponding to differentradial
eigenfunctions of the mode potential. When the solutions are ordered in j so that
increasingj corresponds to increasingK j

⊥(kz), the j = 1 eigenfunction has no nodes
in the plasma, thej = 2 eigenfunction has a single node in the plasma, and so on.

Each solution forK j
⊥(kz) is substituted into the left hand side of Eq. (5), and the

resulting equation is solved (when the solution exists) to find the dispersion curve
ω = ω j(kz). Whenω is scaled byωp andkz by λ−1

D = ωp/vth, the dispersion curves
depend parametrically only on the ratiosRw/Rp andλD/Rp.

For the experiments mentioned in the introduction, the density profile n0(r) is not a
top-hat profile with a precise value ofRp, but a reasonable choice forRp yields the value
Rw/Rp = 3.45. To illustrate an important dependence on Debye length, we evaluate the
dispersion curves forλD/Rp = 0.3 andλD/Rp = 0.1.

Figure 7(a) shows the single dispersion curve( j = 1) found for λD/Rp = 0.3, and
Fig. 7(b) shows the two curves (j = 1 and j = 2) found for λD/Rp = 0.1. As the
temperature (andλD) increase, dispersion curves shrink and eventually vanishinto the
origin. This result is easily understandable from Eqs. (5) and (6). One can show that the
maximum value of the right hand side of Eq. (5) is(0.28)/λ2

D and that the minimum



value of the left hand side is[K j
⊥(0)]2. Consequently, a solution for thejth mode is

possible only if[K j
⊥(0)λD]2 < 0.28. To relate this criterion to Figs. 7(a) and 7(b), we

note from Eq. (6) thatK1
⊥(0) = 1.15/Rp, K2

⊥(0) = 4.03/Rp, and K3
⊥(0) = 7.13/Rp.

Consequently, the dispersion curve exists forj = 1 whenλD/Rp < 0.46, for j = 2 when
λD/Rp < 0.131, and forj = 3 whenλD/Rp < 0.0742. Thus, Fig. 7(a) can have only the
j = 1 curve and Fig. 7(b) only thej = 1 and j = 2 curves.

By comparing Fig. 1 and Fig. 7(a), one sees that the “thumb” dispersion curve has
become a “finger” dispersion curve. Both the LW (upper curve)and the EAW (lower
curve) are acoustic in nature for smallkz. The acoustic nature of the LW for a finite
radius plasma is well known; in the acoustic regime the LW is called a Trivelpiece-
Gould wave (TGW) [14].

In the limit of smallk2λ2
D approximate dispersion relations are easily obtained for

both the TGW and the EAW. From Eq. (5), we see thatk2λ2
D ≪ 1 requires that

P
Z +∞

−∞

xe−x2/2

ω
kzvth

− x
≪ 1. (7)

A zero of the principal value integral occurs forω/kzvth = 1.31 which is the EAW
dispersion relation, unchanged from the 1-D case. The integral also is small for large
ω/kzvth, varying as(kVth/ω)2; this limit yields the dispersion relation for TGW’s
ω j(kz) = ωpkz/K j

⊥(0). For example, forj = 1 the valueK1
⊥(0) = 1.15/Rp implies the

TGW dispersion relationω1 = kzRpωp/(1.15). Note that the frequency is determined

by the plasma line density (i.e.,Rpωp ∝
√

πR2
pn0).

Qualitatively, the EAW frequency is proportional to the square root of the plasma
temperature and is insensitive to the plasma density; whereas, the TGW frequency is
proportional to the square root of the line density and is insensitive to the temperature.

In the experiments mentioned in the introduction, the plasma density profile (and,
therefore, the line density) was well determined, so TGW’s could be identified through
accurate (∼ 1%) comparison of measured and predicted frequency. The plasma temper-
ature was not well characterized, so identification of the EAW through a precise check
of the measured and predicted frequency was not possible. However, the frequency of
the candidate EAW was in a range consistent with the expectedplasma temperature, in-
creased as expected with temperature, and was insensitive to plasma line density. Also,
the wave exhibited decay to long wave length.
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