Excitation and Decay of Electron Acoustic Waves

Francesco Valentifhj Thomas M. O’Neil and Daniel H. E. Dubih

*Dipt. di Fisica and INFM, Univ. della Calabria, 87036 Rende, Italy
TDepartment of Physics, University of California at San Diego, La Jolla, California 92093

Abstract. A particle in cell (PIC) simulation is used to investigate #xcitation of electron acoustic

waves (EAWS) by a driver electric field and the stability of tBAWs against decay. An EAW is

a nonlinear wave with a carefully tailored trapped partjpdgulation, and the excitation process
must create the trapped particle population. For a neatligiomless plasma, successful excitation
occurs when arelatively low amplitude driver that is sgbtiand temporally resonant with the EAW

is applied for a sufficiently long time (many trapping pespdThe excited EAW rings at nearly

constant amplitude long after the driver is turned off, jided the EAW has the largest wavelength
that fits in the simulation domain. Otherwise, the excited\Edecays to a longer wavelength EAW.
In phase space, this decay to longer wavelength appearseaslency of the vortex-like trapped

particle populations to merge.
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INTRODUCTION

In 1991, Hollway and Dorning [1] noted that certain nonlineave structures can exist
in a plasma even at low amplitude. They called these wavetrefeacoustic waves
(EAW) since the dispersion relation is of the acoustic form. (w = 1.31kv;, for small
k). Here,wis the angular frequency of the wakethe wave number, ang, the thermal
velocity of the plasma electrons.

Within linear theory, an EAW would be heavily Landau dampsithice the wave
phase velocity is comparable to the electron thermal vid2i. However, the EAW
is a Bernstein-Green-Kruskal nonlinear mode (BGK mode)i8) electrons trapped in
the wave troughs. Because of the trapped electrons, thiéodisdn of electron velocities
is effectively flat at the wave phase velocity, and this twffit andau damping.

These waves can be constructed even at low amplitude byutgrédiloring the
trapped particle distribution. However, the importanceh&f waves as elementary ex-
citations of the plasma, such as Langmuir waves (LW), dependhe extent to which
they are excited by general perturbations and drives apfithe plasma, and the extent
to which they are stable against decay to other modes. Bedad/s are intrinsically
nonlinear structures, one expects that parametric destgfiitities are possible.

A simple argument shows that the waves can be excited by aesuad initial) per-
turbation only at large amplitude. We assume here that #poéd particle distribution
does not exist initially, but forms dynamically as the wavelees. For a wave electric
field E sin(kx — wt), the time to form the trapped particle distribution is apqmoately
the period for trapped particles to oscillate in the troufithe wave 1, = 2rt,/m/(eEk),
wheree andm are the electron charge and mass, respectively [4]. The isduibed by



Landau damping before the trapped particle distributionfoam unlessy t; < 1, where
yL is the linear Landau damping rate [2]. For a wave with phasacity comparable to
the thermal velocityw/k ~ w), the Landau damping rate is comparable to the fre-
quency(yL ~ kvn), so the initial amplitude must be large (i.ep~ eE/k ~ mva = Te).

However, we will see that EAW’s can be launched by a small &oge driver if
the driver is applied resonantly over many trapping periddee driver continuously
replenishes the energy removed by Landau damping, so thyeetlgparticle distribution
(and the EAW) is eventually produced. This result will be dastrated using a particle
in cell (PIC) simulation [5]. For the case where the wavethngthe longest wavelength
that fits in the plasma and the plasma is nearly collisionkbsslaunched EAW persists
at nearly constant amplitude long after the driver is turoid

Stability of the EAW’s against decay to other modes is ingedéd. As mentioned, an
EAW with wavelength equal to the length of the plasma ringheut decay. However,
when this EAW is replicated in space and used as an initiaditiom for the simulation
of a much longer plasma, the EAW is observed to decay to lowgeelength EAW'’s.
In phase space, the trapped patrticles for an EAW appear tedmex structure, and the
decay to longer wavelength involves a merger of the vor{iéeg, 8, 9, 10]. The above
results were first reported by the authors in Bigsics of Plasmas [11].

Evidence suggests that EAW’s and the decay of EAW'’s to longerelength were
observed in recent experiments using a pure electron plastaen in a Penning trap
(see paper by Kabantsev, Valentini and Driscoll in this peating). We will discuss the
theory of EAW'’s on such a plasma.

Our simulation results are complementary to recent resgtsrted by Afeyan, Won,
Savchenko, Johnson, Ghizzo, and Bertrand [12]. These @u#tgo carry out numer-
ical simulations of nonlinear waves launched by a drivernruamagnetized plasma.
Motivated by suggestions that EAW’s might be launched iedgdasma interaction ex-
periments [13], Afeyart al. focused on relatively large driver amplitudes. They found
novel nonlinear waves that they call “Kinetic ElectrostdEiectron Nonlinear (KEEN)
Waves.” These waves are comprised of 4 or 5 significant haioegpersist only when
driven hard enough, and are driven by a wide range of freqasenm contrast to our
work, these authors reported that low amplitude drive ameproduce coherent EAWS,
presumably because the drive was not applied resonantly kmng enough time. We
will see that the resonance is relatively narrow and canyelasimissed.

DISPERSION RELATIONS

For convenience, we scale time by the inverse plasma frequregl, where wp =
\/41™me?/m andn is the electron density. Length is scaled by the Debye lehgtk
Vth/wp. With these choices, velocity is scaled by the electronntiaévelocityApwp =
Ven and electric field by /4mmmva .

Using these scalings, the Landau dispersion relation thleeform [2]
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FIGURE 1. The "thumb" dispersion relation. The frequency is expré#senits of the electron plasma
frequency and the wave number in units of the inverse of theteln Debye length.

wherew is the complex frequenck the wave number, andp(v) the distribution of
electron velocity components in the direction of wave pggieon. Here, we take this
distribution to be Maxwellianfo(v) = exg—Vv?/2] /v/21t The subscripk on the integral
sign indicates that the velocity integral is to be taken glitve Landau contour, dropping
down around the pole at= w/k. For the high frequency modes of interest, the ions
don'’t participate; throughout the paper the ions are takemeta uniform neutralizing
background charge.

For sufficiently weak damping, the velocity integral alohg tandau contour can be
approximated by
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where P indicates that the principal value is to be taken. As memtibearlier, the
trapped particle distribution for an EAW effectively makiée distribution flat at the
wave phase velocity (i.edfo/dv|.k >~ 0). Thus, Holloway and Dorning [1] obtain a
dispersion relation for small amplitude EAWSs by retainindyathe principal part in the
velocity integral of Eq. (1).

Solving for the roots of the resulting dispersion relatibart yields the solid curve in
Fig. 1. This so-called “thumb” dispersion curve exhibitetots for smalk. The upper
root [w = (1+ 3k?)1/?] is the LW and the lower rodtw = 1.31K) is the EAW.

We emphasize that Fig. 1 describes only small amplitude EAWEEg a Maxwellian
distribution for fo(v) and taking the principal value in the velocity integral anss that
the width of the plateau whep/dv = 0 is infinitesimal. For a finite amplitude EAW,
the plateau width is the velocity range over which electrares trapped in the wave
troughs, that i\, where(Av )? ~ E /k. An infinitesimal trapping width corresponds to
an infinitesimal wave amplitude. We will see that the phaseoity for a large amplitude
EAW is shifted upward from the value indicated in Fig. 1.



PARTICLE IN CELL SIMULATIONS

Excitation of the EAWs

The PIC simulation follows the electron dynamics in thdirection, which is the
direction of wave propagation. The electron phase spacentofar the simulation is
D = [0, Ly] X [—Vmax, Vmax], Wherevmax = 5. For an initial set of simulations, we choose
Lx = 21rt/k = 20, but in later simulations the plasma length is increasdd, t= 40 and
Lx = 80. This increase in length allows for decay to longer wangtle EAWSs. The time
step isAt = 0.1. The simulations follow the evolution &f ~ 5 x 10° to 10’ electrons
for many plasma periods(x = 4000). The initial electron velocity distribution is taken
to be Maxwellian. Periodic boundary conditions in physisphce are imposed, and
Poisson’s equation is solved using a standard Fast FouaesTform (FFT) routine. The
external driver electric field is taken to be of the form

¢ nq—1
—T
1 - -

sin(kx — wt) (3)
whereEf® = 0.01, T = 1200,At = 600, n = 10, andk = 11/10. The plasma response
is studied as a function of the driver frequeroyor equivalently, phase velocity, =
w/k = 10w/1t An abrupt turn on (or off) of the driver field would excite LVds well
as EAWSs, complicating the analysis. Thus, the driver is¢dran and off adiabatically.
The driver amplitude is nedJ® (within a factor of two) for several trapping periods
(toff — ton =~ 1200~ 111p), and is near zero again iy ¢+ = 2000. Here, the trapping
period associated with the maximum driver fieldgs= 21t/ /KEJ™ = 112.

Figure 2 shows the evolution of the plasma electric fi#ldt), for two different
values of the driver phase velocity. In the top graph (p#= 0.4), Ex(t) rises to a small
value while the driver is on, but falls to zero when the drigaiurned off. The timéy s
is indicated by the dashed line. In the bottom graph o« 1.70), Ex(t) grows to large
amplitude and maintains this amplitude (rings) after theedis turned off.

Repeating such simulations for many different phase viéscf{but holding the other
driver parameters fixed at the values listed) yields the @eajtaph in Fig. 3. Here,
the ordinate is the amplitude of the oscillating plasmateledield at the end of the
simulation (long after the driver has been turned off), dredabscissa is the driver phase
velocity. For this set of driver parameters, an EAW is drivesonantly for phase velocity
Vo~ 1.70.

(pFor the wave numbét= 11/10, Fig. 1 implies the resonant phase velogiy~ 1.45.
However, we must remember that Fig. 1 applies only to smafilnde (infinitesimal)
EAWSs. For the relatively large EAW in the simulation, thearant phase velocity is
shifted up to 1.70 by the finite plateau width. A separatewtaton taking into account
a plateau width corresponding to the saturated field ar‘rmhﬁi([lil?’I ~ .055) yields the
phase velocity, ~ 1.74.

More precisely, we show that the distribution function ofea in the simulation is
effectively a BKG structure. Then we use the BGK formalisngéb the EAW solution.
Figure 4 shows a false color contour plot of the electrorrithstion, f(x,v), at the end
of the run { = 4000). The color code assigns higher values$ taf longer wavelengths in

ED<X7t) = Eg]ax




0.06 F
0.04 F
0.02F

< 0.00f A

~0.02F
~0.04F
—0.06L

0 1000 2000 3000 4000
time

vg=0.40
I
I
I
N
I
I
I
|

vg=1.70

0.06 F
0.04F
0.02F

< 0.00f

—0.02F
—0.04F
—0.06

0 1000 2000 3000 4000
time

FIGURE 2. Plasma response for two different values of the driver plakxity: vy = 0.4 (at the top)
andvy = 1.70 (at the bottom).
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FIGURE 3. The peak of resonance for the EAW.

spectrum. The vortex-like structure in Fig. 4 represemigged particles, and as expected
these particles have a mean velocity equal to the phaseityeloe 1.7. The velocity
width of the trapped particle region is abal; ~ 1.7, which is in agreement with the
theoretical expectatiofiv; = 2,/2ES3/k = 1.674. Here, the saturation amplitude of the
electric field iSES®' = 2Eg2'~ 0.11 (see bottom graph in Fig. 2). In Fig. 5, we plot the
distribution functionf at the end of the run as a function of the energy in the wave



framee = (v —Vy)?/2 — @(x,tmax). That is, for each{x,v) in the simulation domain, we
plot f(x,v) versuse(x, V), resulting in the single curve shown in Fig. 5. This shows tha
the electron distributiorf is a function of the energy alone, as expected for a BGK
distribution. By using this distribution in the BGK formain [3] for the phase velocity
Vo= 1.7 and the electric potential amplitué&* /k ~ 0.35, we get a sinusoidal solution
whose wavelength isggk ~ 19.5, which is very close to the wavelength of the electric
perturbation in the simulatior\ (= 20).

FIGURE 4. The phase space contour plot of the distribution funcfi@it = 4000.

FIGURE 5. The distribution functionf plotted as a function of the energy in the wave fragne
(V= Vg)?/2— G(X, tmax)-

FIGURE 6. The coalescence and merging of two phase space holes.



Decay instability

The EAW in the bottom graph of Fig. 2 rings at nearly constanplétude after the
driver is turned off. However, the wavelength for this moslthie longest wavelength that
fits in the simulation domain, so the constant amplitude igurantee against decay to
a longer wavelength mode. Moreover, previous theory sugdelat BGK modes with
trapped particles may be subject to such decay instabi[ie7, 8, 9, 10].

To investigate the possibility of decay to a longer wavetengode, we replicate
the mode periodically in space and use it as the initial doomdifor a simulation in a
longer domain. The matching from wavelength to wavelengmooth since periodic
boundary conditions were used in the initial simulation.

Figure 6 shows a temporal sequence of phase space contoting ftase where the
simulation domain has been doubled in lendth-€ 20— Ly = 40). The contour plot for
t = 0 is simply two copies of the plot in Fig. 4 placed side by sitlget = 0 plot shows
two vortex-like structures representing trapped pasicléhe sequence of plots shows
a progressive merger of the two vortices until there is orgyngle vortex at = 4000.

A decay instability has transferred the energy from modee2 k= 2- 2rt/40= 11/10),

to mode 1 (i.e.k = 1-211/40= 11/20); that is, to the longest wavelength that fits in the
simulation domain. Also, we have carried out simulationd o= 80 (4 initial vortices)
and again observed merger to a single vortex.

From these observations, we expect that merger to a singlexv(r decay to the
longest mode) is a general tendency for EAWSs. This is coarsistith observations for
the merger of phase space vortices in other situations, asi¢the vortical holes that
result from the two stream instability [6, 7, 8, 9, 10].

EAW’SIN A NONNEUTRAL PLASMA

Consider a long pure electron plasma column in a strong tumifxial magnetic field.
Let (r,0,2z) be a cylindrical coordinate system with thaxis coincident with the center
line of the column. For simplicity we take the equilibriunsttibution of electrons to be
of the form fo(r,vz) = no(r) fo(vz/vin), where

_J ng for r<Rp
no(r)_{o for Rp<r<Ry “)

is a top-hat radial density profile arfg(v;/vin) is a Maxwellian. HereRy, is the radius

of the plasma column arfg, is the radius of the conducting cylindrical wall that bounds
the confinement region. Because of the large axial magnetid, fonly the velocity
componenty, enters the dynamics and need be retained in the distribfioction.
For an electrostatic mode with no azimuthal dependencelisipersion relation reduces

to the simple form [14]
2 — 62P / v, fo/ V2 5)
+V,

wherek; is the axial wave numbekK | (k;) an effective transverse (radial) wave number,
andk? = kZ + K2. Following the Holloway-Dorning prescription [1], we haxeplaced
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FIGURE 7. Dispersion curves for electron acoustic and Trivelpie@eH@ waves in cylindrical plasmas
with top-hat density profiles for whicR,/Rp = 3.45 and (aj\p/Rp = 0.3; (b)) \p /R, = 0.1.

the Landau velocity integral by a principal value integfdbte that this dispersion
relation differs from that for the 1-D case [see EQ. (4)] obfyinclusion ofo in the
definition ofk? = k2 + K?2.

For the top hat density profile, the allowed valueof(k,) are determined by the
equation

RpK 1 J5(K Rp)

15(kzRp)Ko(kzRw) — Kg(kzRp)lo(kzRw)
IO(kZRp>KO(kZRW) - KO(szp)lo(szw)

where Jo(X), lo(x), and Ko(x) are Bessel functions. Equation (6) admits a sequence

of squtions:Ki(kZ), where the different solutions corresponding to differeadial
eigenfunctions of the mode potential. When the solutiores @dered inj so that

increasingj corresponds to increasingi(kz), the | = 1 eigenfunction has no nodes
in the plasma, thg = 2 eigenfunction has a single node in the plasma, and so on.

Each solution forKi(kZ) is substituted into the left hand side of Eq. (5), and the
resulting equation is solved (when the solution exists) mal fihe dispersion curve
w = w(ky). Whenw is scaled byw, andk; by Ay = wp/win, the dispersion curves
depend parametrically only on the rati®g/Rp andAp/R.

For the experiments mentioned in the introduction, the itfepsofile ny(r) is not a
top-hat profile with a precise value Bf,, but a reasonable choice f8f yields the value
Rw/Rp = 3.45. To illustrate an important dependence on Debye lengérgwaluate the
dispersion curves foxp /Ry = 0.3 andAp/Rp = 0.1.

Figure 7(a) shows the single dispersion cufye= 1) found for Ap/Rp = 0.3, and
Fig. 7(b) shows the two curveg & 1 and j = 2) found for A\p/Rp = 0.1. As the
temperature (andlp) increase, dispersion curves shrink and eventually vanishthe
origin. This result is easily understandable from Egs. (&) @). One can show that the
maximum value of the right hand side of Eq. (5)(%28)/A3 and that the minimum

= kRp (6)



value of the left hand side i&! (0)]2. Consequently, a solution for thigh mode is
possible only if[K! (0)Ap]? < 0.28. To relate this criterion to Figs. 7(a) and 7(b), we
note from Eq. (6) thakl(0) = 1.15/R;, K?(0) = 4.03/R;, andK?(0) = 7.13/R;,.
Consequently, the dispersion curve existsjfer 1 whenAp /R, < 0.46, for j = 2 when
Ap/Rp < 0.131, and forj = 3 whenAp /Ry < 0.0742. Thus, Fig. 7(a) can have only the
j =1 curve and Fig. 7(b) only the= 1 andj = 2 curves.

By comparing Fig. 1 and Fig. 7(a), one sees that the “thumgpelision curve has
become a “finger” dispersion curve. Both the LW (upper cua) the EAW (lower
curve) are acoustic in nature for smijl The acoustic nature of the LW for a finite
radius plasma is well known; in the acoustic regime the LWaled a Trivelpiece-
Gould wave (TGW) [14].

In the limit of smallkz)\% approximate dispersion relations are easily obtained for
both the TGW and the EAW. From Eq. (5), we see &faf < 1 requires that

+ooxe—X2/2
P / c <« 7)

% kevin

A zero of the principal value integral occurs fay/k,vi, = 1.31 which is the EAW
dispersion relation, unchanged from the 1-D case. The rakedso is small for large
W/ KzVih, varying.as(k\/th/co)z; this limit yields the dispersion relation for TGW'’s
w (k) = oopkz/Ki(O). For example, forj = 1 the valuek! (0) = 1.15/R, implies the
TGW dispersion relatiom! = k,Rywp/(1.15). Note that the frequency is determined
by the plasma line density (i.€Rpp O | /nR%no).

Qualitatively, the EAW frequency is proportional to the aggiroot of the plasma
temperature and is insensitive to the plasma density; vasetbe TGW frequency is
proportional to the square root of the line density and isms#ive to the temperature.

In the experiments mentioned in the introduction, the pkstansity profile (and,
therefore, the line density) was well determined, so TGVdsld be identified through
accurate £ 1%) comparison of measured and predicted frequency. Tisenglé&emper-
ature was not well characterized, so identification of th&\Et#&rough a precise check
of the measured and predicted frequency was not possibleevs, the frequency of
the candidate EAW was in a range consistent with the expgdéstha temperature, in-
creased as expected with temperature, and was insensififasma line density. Also,
the wave exhibited decay to long wave length.
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