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Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are

investigated for electron equilibrium velocity distribution functions that deviate slightly from

Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear

excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a

region with zero velocity derivative over a width that is a very small fraction of the electron

thermal speed, is shown to give rise to new undamped modes, which here are named corner modes.

The presence of the plateau turns off Landau damping and allows oscillations with phase speeds

within the plateau. These undamped waves are obtained in a wide region of the ðk;xRÞ plane

(xR being the real part of the wave frequency and k the wavenumber), away from the well-known

“thumb curve” for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear

Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also

shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb

curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition,

a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the

thumb curve. Suggestions are made for interpreting experimental observations of electrostatic

waves, such as recent ones in nonneutral plasmas. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4751440]

I. INTRODUCTION

In his 1946 seminal paper,1 Landau demonstrated that

electrostatic plasma waves of vanishing amplitude can be

damped, due to their interaction with particles that stream

with velocities close to the wave phase speed, v/. For

unmagnetized uniform plasmas, the wave damping rate is

generally proportional to the slope of the equilibrium distri-

bution of particle velocities at v/. Therefore, for monotoni-

cally decreasing equilibrium velocity distribution functions

(such as the usual Maxwellian), plasma waves are damped

exponentially in time.

Almost twenty years later, O’Neil2 and Mazitov3 ana-

lyzed the effects of nonlinearity on the propagation of

plasma waves and found that the process of particle trapping

in the wave potential well can inhibit Landau damping, by

flattening the velocity distribution near the wave phase

speed.

In 1991, Holloway and Dorning4 noted that certain

nonlinear electrostatic oscillations can survive Landau

damping even when their phase velocities are comparable

to the electron thermal speed, vth, due to the effect of parti-

cle trapping. They called these waves electron acoustic

waves (EAWs), since in the range of small wavenumbers

their dispersion relation is of the form x ’ 1:31kvth. An

EAW is in fact a Bernstein-Greene-Kruskal (BGK) mode5

with a velocity distribution function that is effectively flat

at the wave phase speed, due to trapping. In 1991, Demeio

and Holloway6 performed Vlasov-Poisson simulations and

provided evidence for the analytical results of Ref. 4. Also

in Ref. 4, the authors claimed that these undamped plasma

oscillations have no linear counterpart, since in their con-

struction the trapped particle distribution vanishes with

wave amplitude and approaches a Maxwellian, for which

the waves are heavily damped.

The latter point was discussed in 1994 by Shadwick and

Morrison,7 where it was pointed out that stationary inflection

point modes are the natural linear limit of the EAWs (BGK

modes) of Ref. 4. A stationary inflection point mode is an

undamped mode with phase speed v/ at a point where the

first two derivatives of a stable homogeneous equilibrium ve-

locity distribution function vanish, and by the Penrose crite-

rion this is necessary for the simultaneous existence of the

mode and stability. The issue here is that the homogeneous

equilibrium distribution function approached as the wave

amplitude approaches zero is not unique, and there is no a
priori reason it should be locally Maxwellian, since the

structure near v/ is determined by the history of formation of

the waves. Given a nonlinear BGK wave, there are many

ways the limit of the vanishing of trapped particles can be

taken and the result is clearly norm dependent. (See Ref. 8

for a discussion of bifurcations in W1;1.)

The existence of the EAW branch has been investigated

in many electrostatic particle-in-cell9 and Vlasov-Pois-

son10,11 simulations. Moreover, recent Vlasov-Yukawa sim-

ulations (with Vlasov ions and linear adiabatic electrons) led
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to the prediction of undamped electrostatic waves at low fre-

quencies (of the order of the proton plasma frequency), simi-

lar in nature to the EAWs and dubbed ion-bulk waves.12,13

EAW-type fluctuations have been detected in spacecraft data

from observations in the interplanetary medium.14 Also, the

excitation of the EAWs has been obtained in laboratory

experiments with nonneutral plasmas,15,16 in which an exter-

nal driving electric field is applied to the plasma column for

the time needed to create a population of trapped particles,

with the waves surviving after the drive is turned off. The

flat region in the particle velocity distribution generated by

trapping at the wave phase speed inhibits Landau damping

and allows the EAWs to survive. The experimental results

discussed in Refs. 15 and 16 confirm the existence of EAWs

on the nonneutral analog of the so-called thumb curve of

Ref. 4, as is the case for the numerical results in Refs. 9–11;

however, these experiments also suggest that wave excitation

can be obtained off of the usual thumb curve of Ref. 4, which

we will refer to as off-dispersion EAWs. The purpose of this

paper is to shed some light on the nature of these off-

dispersion EAWs, by examining the sensitivity of the thumb

curve to small deviations from the Maxwellian used in Ref.

4.

However, before starting our analysis, we note that in a

separate research thread, motivated by experiments on nonlin-

ear laser plasma interactions,17 Afeyan and collaborators10,11

carried out extensive Vlasov simulations and observed states

that they referred to as kinetic electrostatic electron nonlinear

(KEEN) waves. These large amplitude structures also exist

off-dispersion; however, the KEEN waves observed by these

authors are large amplitude, while we focus on relatively low

amplitude EAWs, where any effect of nonlinearity is limited

to a narrow velocity range of trapped particles.

Specifically, we investigate both on-dispersion and off-

dispersion EAWs with a simple linear dispersion analysis.

As noted above, there is no a priori reason the distribution in

the vicinity of v/ should be Maxwellian, since the structure

near v/ is determined by the history of formation of the

waves, and since experimentally fine details of the distribu-

tion function are difficult to measure, it is natural to examine

the alteration of the thumb curve of Ref. 4 caused by small

deviations from the Maxwellian. Of main importance here is

the alteration caused by replacing the trapped particle region

of the velocity distribution by a plateau, but we also consider

the alteration caused by altering the tail of the distribution

function.

For the plateau distribution function (see Eq. (3)), the

Landau velocity integral is carefully evaluated using a high

resolution trapezoidal scheme. We look for roots of the dis-

persion function in the high frequency range of electron

modes, treating the ions as a stationary neutralizing back-

ground charge. Consistent with the experiments,15 the analy-

sis shows that undamped EAWs exist in a wide range of the

ðk;xRÞ plane, that is, off the thumb curve of Ref. 4.

From the perspective of the linear dispersion analysis, the

existence of the off-dispersion modes is easy to understand.

The Landau velocity integral in the dielectric function obtains

contributions from velocities that are well away from

the plateau (the non-resonant particle contributions) and

contributions from near the plateau (the resonant particle con-

tributions). The thumb dispersion curve is determined exclu-

sively by contributions from the non-resonant particles, that

is, for ðk;xRÞ on the dispersion curve, the non-resonant con-

tribution alone yields a dielectric function that is zero. Off the

dispersion curve, the non-resonant contribution yields a

dielectric function that is not zero, so the resonant contribu-

tion must make up the difference, yielding a total dielectric

function that is zero. Thus, for the off-dispersion modes, elec-

trons in the resonant (or plateau) region make a significant

contribution to the mode charge density. In that sense, the off-

dispersion modes are like beam modes, for which a significant

part of the charge density resides on the beam.18 As we will

see, for the case of the plateau (rather than a beam), the reso-

nant particle charge density is associated with the two corners

of the plateau. Thus, we call these waves corner modes.

As one would expect, the charge density from the corners

is a very sensitive function of v/ in the plateau region. Equiv-

alently, the dielectric function has a spiky variation for v/ in

the plateau region. Thus, a small change in v/ can make the

resonant particle charge density have whatever value is

needed to compensate for the non-zero value of the non-

resonant dielectric, yielding a total dielectric that is zero. On-

dispersion EAWs are special only in that the charge density

from the two corners is equal and opposite adding to zero.

This is the case if the phase velocity is equidistant from the

two corners, that is, at the velocity mid-point of the plateau.

From this perspective, there is little difference between the

on-dispersion and off-dispersion EAWs. However, there is a

significant difference between the EAWs (or corner modes)

and weakly damped Langmuir waves, where v/ is well out

on the tail of the velocity distribution and there is no signifi-

cant corner contribution to the mode charge density.

Another way to obtain off-dispersion waves is to alter

the tail of the distribution function, which may not be known

precisely. Although the dispersion curve is not as sensitive to

this kind of deviation, one can ascertain systematic shifts of

roots off of the thumb curve. In particular, we can show ana-

lytically that a fattening of the tail of the distribution shifts

roots toward lower k-values and chopping the tail shifts them

toward higher k-values. Chopping produces perturbed corner

charge and this idea leads to a derivation of a rule of thumb

for assessing shifts caused by general plateau type of equilib-

rium distribution functions.

The paper is organized as follows. In Sec. II, we numeri-

cally analyze the roots of the electrostatic dielectric function

and discuss the wave dispersion relation for a velocity distri-

bution flattened in a small velocity interval. This is followed

by an analysis of the consequences of altering the tail and the

derivation of the rule of thumb. In Sec. III, the numerical

results of Vlasov-Poisson simulations are presented and com-

pared to the analytical predictions of Sec. II for the plateau

distributions. Summary and Conclusions are given in Sec. IV.

II. WAVE DISPERSION RELATION

The propagation of electrostatic waves in a collisionless

unmagnetized plasmas can be described by a simplified

1þ 1þ 1 (one space, one velocity, and one time dimension)
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Vlasov-Poisson system, which is given in dimensionless

form as follows:

@f

@t
þ v

@f

@x
� E

@f

@v
¼ 0 ;

@E

@x
¼ 1�

ð
f dv ; (1)

where f¼ f(x, v, t) is the electron distribution function and

E¼E(x, t) the electric field. In Eq. (1), the ions are a neutral-

izing background of constant density n0 ¼ 1, time is scaled

by the inverse electron plasma frequency x�1
p , velocities by

the electron thermal speed vth, and lengths by the electron

Debye length kD. For simplicity, all the physical quantities

will be expressed in these characteristic units.

By linearizing Eq. (1) and following the Landau prescrip-

tion1,19 for weak wave damping, the time asymptotic solution

for the complex frequency of the fluctuations (x ¼ xR þ ixI)

can be obtained by looking for the roots of the dielectric func-

tion Dðk;xÞ ’ DRðk;xRÞ þ iDIðk;xRÞ
þixI@DRðk;xRÞ=@xR, where

DR ¼ 1� 1

k2

ð
� dv

f 00
v� v/

; DI ¼ �
p
k2

f 00

����
v/

: (2)

Here, f 00ðvÞ :¼ @f0=@v;
Ð
� indicates an integral over all v 2 R

with the singularity handled by taking the Cauchy principal

value, f0 is the equilibrium velocity distribution of electrons,

and v/ ¼ xR=k is the wave phase speed. The roots of DR

give the real part of the wave frequency xR, while the imagi-

nary part is given by xI ¼ �DI=ð@DR=@xRÞ.
Undamped waves can be obtained from Eq. (2) by

assuming f0 has a velocity plateau of vanishing velocity

width at v ¼ v/. This renders DIðv/Þ ¼ 0 and solution of

DR ¼ 0 yields xR ¼ xRðkÞ. In Ref. 4, the equation DR ¼ 0

was solved by assuming Maxwellian f0 with the velocity pla-

teau of vanishing width, leading to the so-called thumb
curve, the dispersion diagram displayed in the top plot of

Fig. 1. The upper branch of this k � xR diagram represents

Langmuir (LAN) waves, while modes of the lower branch

are usually referred to as EAWs, since for small wavenum-

bers on the lower branch xðEAWÞ
R � 1:31k, which is reminis-

cent of acoustic waves. In the bottom plot of Fig. 1, the same

thumb curve is displayed in the k � v/ plane.

From the plots in Fig. 1, it is evident that no undamped

roots of DR exist beyond a critical value of the wavenumber

k� ’ 0:53. The presence of this nose-like structure at k ’ k�

appears unphysical, since the group velocity of the wave at

k� seems to diverge. To understand this apparent paradox,

one should bear in mind that the thumb curve does not repre-

sent a usual dispersion relation: each point in the ðk;xRÞ
plane along the thumb curve corresponds to a different parti-

cle velocity distribution function. In order to get undamped

solutions, the location of the infinitesimal plateau in the elec-

tron velocity distribution must slide along and always fall at

v ¼ v/. This corresponds to changing the shape of the veloc-

ity distribution at each v/.

As discussed in Sec. I, the existence of the EAW branch

has been reproduced in numerical simulations and observed

in experiments on nonneutral plasmas. In the experiments,

stable oscillations also are observed off-dispersion, i.e., off

of the usual thumb curve. In order to obtain insight for

understanding this experimental behavior, we will analyze

the roots of DR for an equilibrium particle velocity distribu-

tion function that deviates from Maxwellian by a small, but

not infinitesimal, velocity plateau of width DVp located at

v ¼ V0. Specifically, we chose the plateau distribution func-

tion given by

fpðvÞ ¼ N fMðvÞ �
fMðvÞ � fMðV0Þ

1þ ½ðv� V0Þ=DVp�np

� �
; (3)

where fM ¼ expð�v2=2Þ=
ffiffiffiffiffiffi
2p
p

is the usual Maxwellian, np is

an even integer (here np ¼ 10), DVp ¼ 0:01, and N is a nor-

malization constant that deviates slightly from unity. It is

worth noting that fp is smooth in v with derivatives up to

order np that vanish at v ¼ V0.

The distribution fp and its first derivative dfp=dv are

shown in Fig. 2, in the region near V0 (where V0 ¼ 1:5 for il-

lustrative purposes); the dashed line in the top plot represents

the function fM. The red-vertical lines in the bottom plot indi-

cate the width of the plateau DVp. It is clear from this figure

that in the interval ½V0 � DVp=2;V0 þ DVp=2� the first veloc-

ity derivative of fp obtains very small values.

We investigate the possibility of getting undamped (or

weakly damped) plasma oscillations with v/ in the interval

½V0 � DVp=2;V0 þ DVp=2�. In this velocity interval, one can

numerically calculate the value of DR for a fixed k, with the

imaginary part of the dielectric function being negligible

FIG. 1. Thumb curve in the k � xR plane displaying branches of undamped

LAN waves and EAWs (top). The same thumb curve plotted in the k � v/

plane (bottom).
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because of the plateau of width DVp at v ¼ V0 (see the bot-

tom plot of Fig. 2). We emphasize that the choice of fp of

Eq. (3) is for computational convenience. Because this distri-

bution is not perfectly flat in the plateau region, we get the

dominant Landau root with very small damping that approxi-

mates an undamped corner mode. We note, contributions

from the other Landau poles that are further down in the

complex x-plane give small but larger damping rates. In

general, the smallest rate is expected to scale as kDvc, where

Dvc represents the corner velocity scale.

To calculate the value of DR, we compute the Cauchy

principal value of the integral of DR of Eq. (2) on a uniform

velocity grid with a standard trapezoidal scheme. The limits

of numerical integration are set to jvmaxj ¼ 6, with the distri-

bution set to zero outside this interval. To smoothly resolve

the small plateau of width DVp ¼ 0:01 in fp, in this interval,

we use a large number of grid points Nv ¼ 12 000, so as to

have Dv ¼ 2jvmaxj=Nv ¼ 0:001 < DVp.

The two plots of Fig. 3 depict the dependence of DR on

v/, for a fixed value of the wavenumber k¼ 0.3. In the top

plot we show the case where f0 is Maxwellian, results which

are essentially equivalent to the thumb curve of Fig. 1. In the

bottom plot of Fig. 3, we show the results obtained when the

equilibrium distribution is chosen to be fp of Eq. (3) with a

small plateau at v ¼ V0 ¼ 1. The curve in the top plot dis-

plays two roots, the EAW with vðEAWÞ
/ ’ 1:44 and the LAN

wave with vðLANÞ
/ ’ 3:86, both being undamped since DI is

assumed to vanish at each v/. Note, the curve in the bottom

plot reveals new features: the two roots corresponding to the

EAW and LAN wave (in agreement with those of the top

plot) now undergo Landau damping (very strong for the

EAW), since the location of the velocity plateau in fp is now

fixed at v ¼ V0 ¼ 1. In addition, DR displays a marked spike

in the region around v/ ’ V0 ¼ 1.

In Fig. 4, we zoom in for a close-up of the spike region

around V0 and find several extra roots of DR. Among these

roots, we focus on the one that falls within the interval

½V0 � DVp=2;V0 þ DVp=2� marked by the red-vertical lines,

since the other roots outside this interval are very strongly

Landau damped. Now the search for the undamped root of

DR and related analysis can be restricted to a limited and

very small region of the velocity domain, and we can

increase the velocity resolution by a factor of 100 so as to

determine more precisely the location of the root of DR in

the interval ½V0 � DVp=2;V0 þ DVp=2�. By doing this, we

find that the root of DR is located at v/ ¼ v�/ ’ 0:9966. We

also evaluated the corresponding imaginary part of the

dielectric function from the second of Eq. (2), getting a

small value DI ’ 2� 10�3. Moreover, using xR ¼ kv�/ and

FIG. 2. Velocity dependence of the function fp (top) and its first velocity de-

rivative dfp=dv (bottom) in the region near V0 ¼ 1:50. Dashed line of top

plot is the usual Maxwellian, fM; red-vertical lines of the bottom plot mark

the edges of the interval ½V0 � DVp=2;V0 þ DVp=2�.

FIG. 3. Real part of the dielectric function DR as a function of v/ for k¼ 0.3

for a Maxwellian equilibrium velocity distribution (top) and for the equilib-

rium distribution fp given in Eq. (3) for V0 ¼ 1 (bottom).

FIG. 4. A zoom of the bottom plot of Fig. 3 near v/ ¼ V0 ¼ 1.

092103-4 Valentini et al. Phys. Plasmas 19, 092103 (2012)



xI ¼ �kDI=ð@DR=@v/Þjv�/ , the ratio Rth :¼ jxI=xRj ’ 10�6,

meaning that this is an almost undamped solution. It is inter-

esting to point out that if one chooses the value of V0 (the

location of the plateau in fp) so that for a fixed k it falls

exactly on the thumb curve of Fig. 1 (i.e., it falls exactly on

the LAN or EAW branch), the roots of DR are found exactly

at v/ ¼ V0 and they are completely undamped, since

ðdfp=dvÞv¼v/¼V0
¼ 0) DI ¼ 0.

In order to establish the domain of parameters for which

electrostatic waves can exist without being Landau damped,

by including small plateaus in the equilibrium velocity distri-

bution, we calculate the minimum value of jDRj in the veloc-

ity interval ½V0 � DVp=2;V0 þ DVp=2� for different values of

k and V0. Then minfjDRjg ¼ 0 corresponds to a root of DR.

The results for minfjDRjg are displayed in the k � V0

contour plot of Fig. 5. Here, the dark area represents the

region where minfjDRjg ¼ 0, which corresponds to weakly

damped solutions, while outside this region minfjDRjg > 0,

which means no solutions exist. The red-dashed line

represents the thumb curve previously shown in the bottom

plot of Fig. 1. For the dark region of the contour plot in

Fig. 5, for which the roots of DR are in the interval

½V0 � DVp=2;V0 þ DVp=2�, one can evaluate the ratio Rth to

ascertain the importance of Landau damping for each

solution. The maximum value of this ratio in the dark region

of the contour plot in Fig. 5 is Rmax
th :¼ maxfjxI=xRjg

’ 6� 10�5, with jxI=xRj being exactly null on the thumb

curve (red-dashed line in Fig. 5). Therefore, Fig. 5 shows that

almost undamped oscillations can be obtained with a small

plateau in the equilibrium velocity distribution in an unexpect-

edly wide region around the thumb curve. More importantly,

undamped solutions can be found well beyond the critical

wavenumber k� predicted by the thumb curve, suggesting an

avenue for understanding the experimental results with non-

neutral plasmas discussed in Refs. 15 and 16.

To complete our analysis, we analyze the perturbed dis-

tribution function of these undamped oscillations, the form

of which is given by dfp ¼ f 0p=ðv� v�/Þ.
7,19 We first assume

k¼ 0.3 and V0 ¼ 1 (as in Fig. 3) and v�/ ¼ 0:9966, which

corresponds to a mode that is located off the thumb curve

(see Fig. 1). In the top plot of Fig. 6, dfp is plotted as a func-

tion of v in the region around V0 ¼ 1. The red-vertical lines

mark the interval ½V0 � DVp=2;V0 þ DVp=2� and a small

spike is seen at the location of the pole at v ¼ v�/ ¼ 0:9966.

In addition, two pronounced peaks, visible within a velocity

interval Iv of width �0:04 around V0, correspond to the sharp

corners at the boundaries of the plateau. For this off-

dispersion mode, the contributions to dfp due to the two cor-

ners are not symmetric, because the wave phase speed is not

in the center of the velocity plateau, V0. This means that for

these off-dispersion modes, when dfp is integrated over Iv
there will be a net contribution from the corners to the charge

density.

The situation is different for modes that fall on the

thumb curve. The bottom plot of Fig. 6 displays dfp for an

on-dispersion mode with k¼ 0.4 and V0 ¼ 1:561. As dis-

cussed previously, when the values of k and V0 are such that

the mode falls on the thumb curve, then v/ exactly equals

V0, the center of the velocity plateau. This suppresses the

pole in the perturbed distribution (which is valid for any dis-

tribution with a plateau at v ¼ V0, whose first and second ve-

locity derivatives vanish at v ¼ V0). Indeed, the Landau pole

is not visible in the bottom plot of Fig. 6 and now the contri-

butions from the two corners are exactly symmetric (but of

opposite sign). Consequently, the peaks corresponding to the

two corners cancel upon integration over Iv, yielding a negli-

gible contribution to the charge density.

In reality, the tail of fp of Eq. (3) is composed of a part

that is algebraic and a part that is Maxwellian. This deviation

from Maxwellian only matters for large velocities, and it is

insignificant for our simulations of Sec. III, where the tail is

actually chopped at large velocities. However, it does raise
FIG. 5. Contour plot of minfjDRjg in the k � V0 plane; red-dashed line is

the thumb curve.

FIG. 6. Velocity dependence of the perturbed distribution dfp near v ¼ V0,

for a mode with k¼ 0.3 and V0 ¼ 1 that lies off of the thumb curve (top); for

a mode with k¼ 0.4 and V0 ¼ 1:561 lying on the thumb curve (bottom).
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the question of how altering the tail affects the thumb curve.

To address this kind of deviation, consider an equilibrium of

the form f0ðvÞ ¼ N1fM þ N2ftail, where N1 and N2 are yet to

be determined normalization constants, and assume

ftail ¼
fM for v � v�

/tail for v > v�;

�
(4)

where v� > v/ > 0, and we assume continuity at v�, but

smoothness is not essential. Normalization requires

1 ¼ N1 þ N2 þ N2 Dðv�Þ :¼ N1 þ N2 þ N2

ð1
v�

dv ð/tail � fMÞ:

(5)

Then, the thumb curve is given by

k2 ¼
ð
� dv

f 0M
v� v/

¼: Mðv/Þ; (6)

as plotted in the bottom panel of Fig. 1, and its deviated form

with f0ðvÞ is given by

k2 ¼ ðN1 þ N2ÞM þ N2 Tðv�Þ; (7)

where

Tðv�; v/Þ :¼
ð1

v�

dv
/0tail � f 0M
v� v/

: (8)

Equations (5) and (7) define a one parameter family of devi-

ated thumb curves given by

k2 ¼ Mðv/Þ þ N2ðTðv/; v�Þ �Mðv/ÞDðv�ÞÞ; (9)

where N2 determines the fraction of particles in the non-

Maxwellian part of the tail of the distribution.

We consider two cases: fat tails and chopped tails. For

both, we suppose v� 	 v/, so to good approximation

T �
ð1

v�

dv

v
ð/0tail � f 0MÞ: (10)

A. Fat tails

A fat tail is one where /0tail > f 0M, which is the case if

/tail is a kappa-distribution function which for large v
behaves as /tail � c=va, where c > 0 is a constant. Then

T � � a
aþ 1

c

vaþ1
�

; D �
ð1

v�

dv /tail �
1

a� 1

c

va�1
�

; (11)

and Eq. (9) becomes

k2 ¼ M þ cN2

vaþ1
�

� a
aþ 1

þM
v2
�

1� a

� �
: (12)

Therefore, for a > 1, which physically is clearly desired, the

new contribution is negative and the thumb curve moves so as

to decrease k2. This means fattening the tail with v� 	 v/

shifts the thumb curve upwards in the bottom plot of Fig. 1.

B. Chopped tails

For thin tails the situation is not so clear cut. First, to

remove the Maxwellian tail, we set N1 ¼ 0, which amounts

to setting f0 ¼ N2ðHðv� � vÞfM þ Hðv� v�Þ/tailÞ, where H is

the Heaviside function that is unity for positive argument

and zero for negative. For thin tails, D would be negative,

which would tend to move k2 toward larger values, but the T
term is more subtle. As an extreme case we will chop the tail

at v� by setting /tail 
 0, giving the derivative of f0 a jump

discontinuity. This jump can be removed, e.g., by interpola-

tion with a steep slope, but the results do not change much.

With the chopped choice

Dðv�Þ ¼ �
ð1

v�

dv fM; (13)

making the last term of Eq. (9) positive, as opposed to the

case of the fat tail. For T we must evaluate the jump using

f 00 ¼ N2ð�dðv� v�ÞfM þ Hðv� � vÞf 0MÞ. With some manipu-

lation, we obtain

k2 ¼ M þ N2ffiffiffiffiffiffi
2p
p � e�

v2
�
2

v�
þ ð1þMÞ

ð1
v�

dv e�
v2

2

0
@

1
A; (14)

and it remains to determine which of the “correction terms”

within the parentheses dominates. To this end, we make use

of the following inequality:20

2 e�
v2
�
2

v� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
� þ 4

p <

ð1
v�

dv e�
v2

2 ; v� > 0: (15)

Evidently, k2 increases if

� 1

v�
þ 2ð1þMÞ

v� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
� þ 4

p > 0 (16)

and a simple calculation shows this is true if

v2
� >

1

Mð1þMÞ : (17)

Examination of Fig. 3 of Ref. 4 reveals that M�1 which

means for large v�, a chopped tail shifts the thumb curve so
as to increase the values of k2. This means chopping the tail

at v� 	 v/ shifts the thumb curve downwards in the bottom

plot of Fig. 1.

One can interpret the chopping of the tail as contributing

an extreme kind of corner charge to the perturbed charge dis-

tribution. In closing this section, we will use this idea to

obtain a rule of thumb for explaining frequency shifts due to

plateaus. Consider the following plateau distribution with

extreme corners:
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fep ¼ NMfM Hðv� vþÞ þ Hðv� � vÞ
�h i

þ Np Hðv� v�Þ � Hðv� vþÞ
�h i
; (18)

i.e., with jump discontinuities at v6 :¼ V06DV=2. Normal-

ization of Eq. (18) requires

1 ¼ NM � NM

ðvþ

v�

dv fM þ Np DV: (19)

Differentiating of Eq. (18) gives

f 0ep ¼ NMf 0M Hðv� vþÞ þ Hðv� � vÞ½ �
� ðNMfM � NpÞ dðv� vþÞ � dðv� v�Þ½ �; (20)

where the delta function terms represent the corner contribu-

tions. Upon inserting Eq. (20) into Eq. (2), setting DR ¼ 0,

making use of Eq. (19), and manipulating, we obtain

k2 ¼ M þM NM

ðvþ

v�

dv fM � Np DV

� �

�NM

ðvþ

v�

dv
f 0M

v� v/

þNMf
ðþÞ
M � Np

vþ � v/
� NMf

ð�Þ
M � Np

v� � v/
; (21)

where f
ð6Þ
M :¼ fMðv6Þ. Expression (21) is valid if fM is

replaced by any homogeneous equilibrium distribution func-

tion. Now expanding in DV=V0 � 1, retaining the leading

order, and assuming v� < v/ < vþ, to avoid Landau damp-

ing, produces

k2 � Mðv/Þ þ
f
ðþÞ
M � Np

vþ � v/
� f

ð�Þ
M � Np

v� � v/
; (22)

an expression that displays the two corner charge correc-

tions, which have opposite signs provided f
ð�Þ
M > Np > f

ðþÞ
M

and v� < v/ < vþ. The direction of the shift in k2 depends

on which dominates. From Eq. (22), we obtain the following

compact rule of thumb:

k2 ¼ M þ
ðV0 � v/Þ

�
f
ðþÞ
M � f

ð�Þ
M

�
ðV0 � v/Þ2 � ðDV=2Þ2

; (23)

which makes it very clear how the sign is determined. Note

that the corners produce a waterbag-like denominator, as

opposed to beam modes,18 and this contribution vanishes for

v/ ¼ V0, in agreement with our discussion above. Equation

(23) can be used in a practical sense: even though in this der-

ivation f
ð6Þ
M represents the values of the Maxwellian just

below and just above the plateau, their difference can be

viewed as a measure of the total corner charge contributions,

while DV serves as an effective plateau width. Thus, the rule

of thumb provides a general rule for parameter dependencies

of frequency shifts, one that should be useful for analyzing

experimental data.

III. NUMERICAL SIMULATIONS

Because the results of Sec. II are essentially linear in na-

ture, we investigate their resilience by resorting to simula-

tions of the nonlinear Vlasov-Poisson system of Eq. (1). In

particular, we concentrate on modes that arise from devia-

tions of the thumb curve, off-dispersion modes, caused by

the small plateaus.

Our simulations are performed with an Eulerian Vlasov

code based on the well-know splitting time advance method

given in Ref. 21. The phase space domain for the simulations

is D ¼ ½0; L� � ½�vmax; vmax�. Periodic boundary conditions

in x are assumed, while the electron velocity distribution is

set equal to zero for jvj > vmax ¼ 6. We investigate distur-

bances near the initial equilibrium of Eq. (3), with np ¼ 10

and DVp ¼ 0:01 by applying a drive force. The x-direction is

discretized with Nx ¼ 256 grid points, while v-direction with

Nv ¼ 12 000. Our goal is to numerically analyze the modes

predicted by Fig. 5.

The plasma is driven by an external electric field that is

taken to be a sinusoidal traveling wave with phase speed v/D

that exactly matches V0, the location of the plateau of fp. The

explicit form of the external field is

EDðx; tÞ ¼ gðtÞEDM sinðkx� xDtÞ; (24)

where EDM is the maximum driver amplitude, k ¼ 2p=L is the

drive wavenumber, which is the maximum wavelength that

fits in the simulation box, xD ¼ kv/D
is the drive frequency,

and gðtÞ ¼ ½1þ ðt� sÞn=Dsn��1
is a profile that determines

the ramping up and ramping down of the drive. The external

electric field is applied directly to the electrons by adding ED

to E in the Vlasov equation. An abrupt turn-on or turn-off of

the drive field would excite LAN waves and complicate the

results. Thus, we choose n¼ 10 so g(t) amounts to a nearly

adiabatic turn-on and turn-off. The driver amplitude remains

near EDM for a time interval of order Ds centered at t ¼ s and

it is zero for t � toff ’ sþ Ds=2. We will analyze the plasma

response for many wave periods after the driver has been

turned off.

The effect of the driver is to prepare a state (i.e., distri-

bution function), which is then used as an initial condition

for the undriven Vlasov-Poisson system of Eq. (1). This type

of initial condition is an example of those called dynamically
accessible in Refs. 22–24, where they were advocated and

discussed in detail. Ultimately, any perturbation of a known

distribution function within the confines of Vlasov-Poisson

theory must, in fact, be caused by an electric field, since

there are no other forces available. Thus, it is physically very

natural to consider such initial conditions. Dynamically ac-

cessible initial conditions are also important because they

have a Hamiltonian origin, and consequently, preserve phase

space constraints. Because the perturbed distribution func-

tion is obtained by evaluating the known state on particle

orbits, the perturbed distribution function must have the

same level set topology as the unperturbed and the areas

between any level set contours must be preserved. For our

simulations, the dynamically accessible initial conditions

used amount to evaluating the plateau distribution of Eq. (3)

on the orbits (run backwards) produced by the total electric
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field in the interval 0 < t < toff . Thus, the initial condition

for the undriven dynamics that begins at toff is a symplectic

rearrangement of fp.8,24,25

We performed Nsim ¼ 64 simulations for various values

of the plateau velocity position V0 of fp and the wavenumber

k, in order to numerically investigate the predictions

of Fig. 5. For each simulation, we chose Ds ¼ 20T, where

T ¼ 2p=kv/D
is the wave period (that is the plasma is driven

for 20 wave periods) and s ¼ 80T. Typically the maximum

time for the simulations is tmax ¼ 250T, but when needed the

system evolution is followed up to 1000 T. The driver ampli-

tude is set for each simulation by adjusting the driver trap-

ping time strap :¼ 2p=
ffiffiffiffiffiffiffiffiffiffiffi
kEDM

p
to be larger than tmax. In

particular, we set strap ¼ 125Ds ¼ 10tmax, so that trapping

does not play a large role in the system evolution, i.e., the

distribution function changes little during the simulation.

Numerical results for E, show two different kinds of

electric field response for t > toff . To see this we plot EkðtÞ,
the electric field k-spectral component, in the semi-log plots

of Fig. 7, for two different runs denoted by A and B with pa-

rameters given in Table I.

In the plots of Fig. 7, the electric signals are normalized

by the corresponding maximum driver amplitude EDM and

the red (gray) line represents the function g(t). As is evident

from the plots, in run A we observe damped (more or less

exponentially) oscillations after the driver has been turned

off, consistent with Landau damping, while in run B we

observe a stable electric response, consistent with plateau

suppression. Figure 8 is a semi-log plot of the spectral elec-

trostatic energy, obtained by the Fourier analysis of E for

t > tof f , as a function of v/, for the case of run B, where a

stable plasma response is recovered at t > tof f . This plot

reveals that the electric field propagates with a phase veloc-

ity v/ near the driver phase velocity v/D
(red-vertical line).

Moreover, for run B, we evaluated the electron charge

density q ¼ 1�
Ð

fdv at the end of the simulation. This

undamped mode with the parameters of Table I is located off

of the thumb curve (see Fig. 1). The black-dashed line in

the top plot of Fig 9 is the total electron charge density,

q, obtained by integrating f over the velocity interval

I ¼ ½�vmax; vmax�, the red-solid line is the charge density,

q1, obtained by integrating f over the velocity interval

Iv ¼ ½1:48; 1:52� near V0, while the blue-dot-dashed line is

the charge density, q2, obtained by integrating over the com-

plement of Iv. Clearly, q ¼ q1 þ q2. From the plot, it is seen

that the contribution to the charge density coming from the

small interval Iv around V0, which contains the sharp corners

at the boundaries of the plateau, is comparable to or even a

bit larger than the contribution from the rest of the velocity

distribution. The same calculation has also been performed

for a third run C, whose parameters are summarized in

Table I. This mode falls on the thumb curve. Here, as can be

seen in the bottom plot of Fig. 9, the contribution to the

charge density from the sharp corners within the interval Iv
around V0 (red-solid line) is significantly smaller than that of

the rest of the velocity distribution. These runs provide nu-

merical evidence that supports the predictions of Sec. II for

the perturbed distribution function summarized in Fig. 6.

In order to reproduce numerically the predictions

displayed in Fig. 5, we analyzed in detail the results of

Nsim ¼ 64 numerical experiments. For each simulation, we

evaluated the real part of the frequency xR and the wave

damping rate xI after the external driver was turned off.

Each simulation is then characterized by calculating

jxI=xRj :¼ R from the simulation data. To compare the sim-

ulation results with the contour plot of Fig. 5, we use the

FIG. 7. Time evolution of the electric field spectral component EkðtÞ (nor-

malized by the maximum driver amplitude EDM) for run A (top) and run B

(bottom); in both plots the red (gray) curve represents the function g(t).

TABLE I. Relevant parameters for runs A, B, and C.

Run k v/D

A 0.9 0.3

B 0.7 1.5

C 0.4 1.561

FIG. 8. Resonance peak for run B; red-vertical line indicates the value of the

driver phase velocity v/D
.
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value Rmax
th from Sec. II as a threshold to divide our 64 simu-

lations into two classes: Class 1 for which R � Rmax
th and

Class 2 for which R > Rmax
th .

These results are summarized in the k � V0 scatter plot

of Fig. 10, where the simulations of Class 1 are indicated by

black squares, while those of Class 2 by red diamonds. In

this figure, the red-dashed line indicates as usual the thumb

curve, while the black-solid lines delimits the dark region of

the contour plot in Fig. 5, where almost undamped roots of

the dielectric function have been recovered. Figure 10

clearly shows that the black squares fall within the black-

solid line, while the red diamonds lie outside this line; thus,

results of the analysis of Fig. 5 are well corroborated by the

simulations. The simulations of runs run A, run B, and run C

are indicated by capital letters in Fig. 10. Runs A fall outside

the black-solid lines, runs B fall inside the dark region with

black solid-line boundaries, and runs C are exactly on the

thumb curve indicated by the red-dashed line.

IV. SUMMARY AND CONCLUSIONS

In the present work, roots of the electrostatic dielectric

function were analyzed when a velocity plateau of small but

nonvanishing width is present in the equilibrium velocity

distribution of electrons. The numerical solution of the Lan-

dau integral, performed through a high resolution scheme,

allowed us to show that quasi-undamped plasma oscillations

can be obtained off of the thumb curve of Ref. 4. By solving

numerically the Landau integral, we noted that the presence

of the velocity plateau, even of very small width, can highly

affect the real part of the dielectric function, producing

marked spikes within the velocity interval around the pla-

teau. In a wide region of the k � xR plane, almost undamped

roots of the dielectric function were obtained. Examination

of the perturbed electron distribution function revealed that

most of the charge density associated with the off-dispersion

oscillations comes from the sharp corners at the boundaries

of the velocity plateau, and for this reason we called these

new modes corner modes. A rule of thumb was derived by

assuming infinitely sharp corners, a rule useful for gauging

how a plateau shifts roots off of the thumb curve.

Next, these analytical predictions were compared with

the results of Eulerian Vlasov-Poisson simulations with high

resolution in velocity space. Our simulations were initiated

by applying a wave-like external electric field to drive the

plateau distribution of Eq. (3) off of equilibrium. The exter-

nal electric field was turned on and off adiabatically in such

a way to avoid the excitation of usual Langmuir waves.

Also, the amplitude of the external driver was chosen to be

very small so trapping effects were minimized. As discussed

in Sec. III, the numerical results of these nonlinear simula-

tions corroborated the linear results of Sec. II.

Although we spoke of off-dispersion results, it is impor-

tant to note that all of the roots obtained in Sec. II are actual

linear electrostatic plasma oscillations: while LAN waves

are approximate time asymptotic states as shown by Landau;

EAWs, corner modes, stationary inflection point modes, etc.,

are all exact linear plasma oscillations for specific homoge-

neous equilibrium distribution functions. In essence, what

we are really attempting is to find a homogeneous equilib-

rium distribution function that best describes a weakly non-

linear theory. Because plasmas can exist in states away from

thermodynamic equilibrium for substantial lengths of time,

there is no a priori reason to believe the distribution function

is Maxwellian, particularly if wave-like disturbances are

excited. Because of the sensitivity of the dispersion relation

to equilibrium distribution functions, in the tail but particu-

larly near v/, we conclude that the thumb curve of Ref. 4 is

of limited predictive capability.

Since the original BGK paper,5 it has been understood

that there is nonuniqueness in the construction of these non-

linear modes: a given electric field can be consistent with a

large class of distribution functions. It is difficult to pin down

FIG. 9. Spatial dependence of the electron charge densities q (black-dashed

line), q1 (red-solid line), and q2 (blue-dotted-dashed line) for run B (top)

and run C (bottom).

FIG. 10. k � V0 scatter plot for Class 1 simulations (black squares) and

Class 2 simulations (red diamonds). The red-dashed line is the thumb curve,

while the black curves delimit the dark region of the contour plot of Fig. 5.
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the shape of the distribution function for the trapped particle

population, because the formation of this distribution depends

on the time history. This is true both in experiments and sim-

ulations, whether the BGK modes evolve out of instability or

arise by driving the plasma as we have done here. In the case

of small amplitude disturbances, we make the point that this

arbitrariness is the same as that in choosing the appropriate

shape of f0ðvÞ near v/. For very small disturbances, the sta-

tionary inflection point modes of Ref. 7 are natural candi-

dates. For larger disturbances, the off-dispersion modes of

this paper appear to be an attractive alternative.

Thus, the present work bears on the interpretation of

recent results of nonneutral plasma experiments that provide

evidence for undamped off-dispersion modes. In the experi-

ments of Refs. 15 and 16, any plateau-like structures in the

electron velocity distribution are created dynamically by

means of an external driver electric field that traps resonant

particles. After the driving process, the plasma is strongly in-

homogeneous, with the formation of humps and depressions

in the particle distribution function, produced by the nonlin-

ear dynamics triggered by the external field. Thus, one would

think that a linear analysis might not be relevant; however,

by designing a plateau and tail for a distribution function

that has modes that match the experiment, it appears that one

can obtain a linear theory consistent with some of the experi-

mental results, and possibly even infer information about the

trapped particles. In fact, we note that the rule of thumb

explains the frequency shifts observed in the experiments of

Ref. 16, but continuing with this line of investigation is

beyond the scope of the present paper, so we conclude here.
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