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The use of the random phase approximation in quasilinear theory has been controversial for 
some time. For the bump-on-tail instability this approximation leads to the neglect of mode 
coupling effects mediated by the resonant particles. Recently, it has been argued theoretically 
and numerically that resonant particle mediated mode coupling effects actually play an 
important role, and that the statistically averaged effect of this mode coupling is a zeroth-order 
increase in the growth rate. The quasilinear theory of the interaction between a warm beam 
and a slow wave structure is formally identical to the quasilinear theory of the interaction 
between a warm beam and a plasma in the weak beam limit. Strong mode coupling effects have 
been experimentally observed when a weak warm beam interacts with waves on a slow wave 
structure. When a statistical average is done over the mode coupling, however, the predicted 
zeroth-order increase in the growth rate is not observed. 

I. INTRODUCTION 

The prototypical example of the development of turbu- 
lence in plasmas is the interaction between a low-density, 
warm electron beam and a plasma (also known as the bump- 
on-tail instability). When a low-density, warm electron 
beam is injected into a plasma, a spectrum of modes may 
become unstable and grow at the expense of the beam kinetic 
energy. In the traditional quasilinear description’ the mode 
growth rate is proportional to the slope of the time-averaged 
velocity distribution function evaluated at the phase velocity 
of the mode. As the waves grow, energy is extracted from the 
beam in such a way as to reduce the slope of the distribution 
function in the vicinity of the phase velocities of the waves. 
Saturation occurs when this slope is reduced to zero thus 
forming a plateau in the time-averaged velocity distribution 
function. 

The principal simplifying assumption in quasilinear the- 
ory is the random phase approximation. This assumption, 
which leads to the neglect of mode coupling mediated by the 
beam, has been controversial for some time. Since the beam 
dynamics are highly nonlinear, one might expect that there 
would be contributions to the electric field of a mode due to 
nonlinear products of other modes. These contributions are 
neglected in the quasilinear description. Twenty years ago, a 
detailed experimental test of quasilinear theory was per- 
formed by Roberson and Gentle.’ However, they were un- 
able to directly check for the presence of mode coupling ef- 
fects. The neglect of mode coupling effects has been 
criticized in the past using quite general theoretical argu- 
ments3 and indeed, early computer simulation4 showed 
some evidence for their existence. Recently, the neglect of 
beam mediated mode coupling has been shown to be suspect 
by explicit calculation.5 
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It has been further suggested6 that when the mode cou- 
pling interactions are included in the theory, their statistical- 
ly averaged effect is to cause a zeroth-order increase in the 
growth rates of the modes. It has been argued theoretically 
that as the beam electron orbits become nonlinear, the beam 
electrons begin to form clumps in phase space.7 The clumps 
cause an enhanced drag force on the beam and thus produce 
an enhanced transfer of beam kinetic energy to wave energy, 
thereby increasing the growth rate. The growth rate has been 
predicted6 to increase by about a factor of 2. In a recent 
computer simulation,8 a zeroth-order increase in the wave 
growth rate has in fact been observed. However, in another, 
more recent computer simulation only a modest increase in 
the growth was observed.’ 

An important simplifying feature of the weak warm 
beam plasma instability is that if the beam is of sufficiently 
low density, then the background plasma behaves as a linear 
dielectric and acts only to support the waves.” We exploit 
this feature in our experiment by replacing the plasma with a 
slow wave structure. This replacement preserves the basic 
physics of the instability and, as we will show in this paper, in 
the weak beam limit, this ensures the mathematical corre- 
spondence between the interaction of a warm beam with a 
slow wave structure and the interaction of a warm beam with 
a plasma. Thus we inject a warm electron beam through a 
helical slow wave structure. l1 

This replacement of the plasma by a slow wave structure 
greatly reduces the background noise in the experiment. In 
fact, the background noise is sufficiently reduced that we can 
inject and thus control the spectrum of waves that interact 
with the beam particles. We have found our ability to define 
and control the input spectrum of waves to be crucial in our 
experimental study of this complex wave-particle interac- 
tion. In particular, we have been greatly aided by a technique 
that we have developed for use in this experiment-the use of 
repetitive “noise.” By repetitive “noise,” we mean an arbi- 
trary but well-defined time-varying signal that lasts for some 
time, T, and that then repeats; T is generally chosen to be a 
time larger than the longest physically relevant time in the 
experiment. The use of repetitive noise allows us to study the 
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actual dynamics of the turbulent wave-particle interaction, 
Wemay then perform well-defined statistical averages of our 
measured dynamical quantities. 

We have observed strong mode coupling effects which 
are neglected in standard quasilinear theory. However, 
when we average over these mode coupling effects, we do not 
observe the predicted zeroth-order increase in the growth 
rate. 

The paper has been organized as follows. In Sec. II we 
derive the quasilinear equations of the warm beam slow 
wave structure interaction and compare them to those of the 
warm beam plasma interaction. In Sec. III we describe the 
experimental apparatus. In Sec. IV we present our results 
and in Sec. V we state our conclusions. 

Il. THEORY 
Here we derive the quasilinear equations of the warm 

beam slow wave structure interaction. We will show that in 
the weak beam limit, these equations are identical to the 
quasilinear equations” of the warm beam plasma interac- 
tion. When the beam is of small but finite strength, a correc- 
tion term due to the beam space charge occurs in the quasi- 
linear dispersion relation. We have shown in a previous 
paper I3 that in the weak beam limit the interaction between a 
weak cold beam and a single wave in a plasma is mathemat- 
ically identical to the interaction between a weak cold beam 
and a single wave on a slow wave structure. Here we make a 
similar identification for the weak warm beam many-wave 
interaction. 

The interaction between the beam electrons and the 
growing spectrum of waves is characterized by the ratio of 
the particIe autocorrelation length to the spatial growth 
length, T,, , and by the ratio of the field autocorrelation 
length to the spatial growth length, TV. We are interested in 
the case in which these ratios are less than unity. Here, rlP is 
inversely proportional to the spread in particle velocity in 
the beam, vP = kiw/k 2AvP, and ~~ is inversely proportional 
to the spread in wave number in the spectrum, 

ki ki 
“= A(k-w/v,) = f l/u, - l/v, ) Aw’ 

Here, vg and v+ are typical group and phase velocities of 
waves within the bandwidth, Aw, of the spectrum; w, k, and 
ki are the angular frequency, wave number, and spatial 
growth rate of a typical mode in the spectrum; AuP repre- 
sents the width of the distribution function; in our expeii- 
ment we define AuP = v75 - v~~, where v,~ and uZ5 are the 
velocities at which the unperturbed beam parallel energy dis- 
tribution function has decreased down its positive slope to 
75% and 25% of its maximum value, respectively. In the 
experiment 0.038 < 7~~ < 0.098 and 0.17 < l;ls < 0.36. In the 
following derivation, we assume T*, 1j7~ ( 1. 

We assume the beam dynamics to be one dimensional 
and use the one-dimensional Vlasov equation for the beam 
distribution, f( r,z,v,t), 

Jf e $+v-----Eg=o. 
az m (1) 

We employ a cylindrical geometry: F and z are the radial and 
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axial coordinates; u is the axial velocity, t is time, m is the 
electron mass, and - e is the electron charge. We express 
the self-consistent, axial electric field, E,, felt by the elec- 
trons as the sum of two parts-a part due to the waves on the 
slow wave structure, E(r,z,t), and a part due to the beam 
space charge, Es, ( r,z,.t ) : 

E,frJJ) = E(r,z,G “I- Es, (F&J). (2) 
The principal difference between the beam plasma interac- 
tion and the beam slow wave structure interaction is that in 
the former system, ET (r,z,t) is given by Poisson’s equation, 
while in the latter Es, (r,z,r) is given by Poisson’s equation 
and E(r,z,t) is given bly an inhomogeneous wave equation. 

We assume a discrete set of modes and we let 

~ff~SWA = + ( 
~,fo,(r,z,v)e-i”“‘+ i2.c. , 
n > 

ET(F,z,~) = $-(z ET,,, (r,z)e-‘““’ + C.C. , 
)i > (3) 

EM, (F,Z)@ - imnt f C.C. 
> 

, 

1 E8c, (r,z)e - iod -I- C.C. , 
n > 

where by “mode” we mean one of the terms in the above set 
of series. Since we have imposed periodicity in time the Four- 
ier decomposition in10 discrete modes of frequency w is 
mathematically correct. Whether or not this Fourier decom- 
position is the physically most transparent way to describe 
the problem is by no means obvious. However, for the pur- 
poses of following the traditional quasilinear description we 
will make the usual development in Fourier decomposed 
modes. 

We obtain 

Fore, =0 

e = ; 5 ET.. ,*+t$ n 

(4) 

(5) 

We assume that the zero frequency components of the slow 
wave structure electric field and the beam space-charge elec- 
tric field are zero; &, == Es,-, = 0. For w, #O, 

The prime on the sum indicates that the w,,, = 0 is not in- 
cluded. The right-hand side (rhs) represents mode coupling 
due to nonlinearities in the beam orbits. These nonlinearities 
couple frequency components of both the field of the mode 
on the slow wave structure, E,,, and the field due to the 
beam space charge, Es, w,. In the quasilinear approximation 
we neglect the terms on the rhs, In neglecting the rhs we are 
also neglecting the higher harmonics of the beam space- 
charge electric field. Please note that since we neglect the 
mode coupling terms, any subtle differences between mode 
coupling in a beam plasma system and a beam slow wave 
structure system are also neglected. Integrating over per- 
turbed orbits,‘” 
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La” =; j(k ;:, (7) 
n ” 

where k, (w, ) is determined by the dispersion relation. Thus 
far we have followed the same formalism as in the beam 
plasma case.” Equation (7) is essentially Eq. ( 13) of Ref. 
12. In the warm beam slow wave structure interaction we use 
an inhomogeneous wave equation instead of Poisson’s equa- 
tion to solve for Em.. From the transmission line equations 
(see, for example, Ref. 11, p. 9), we have 

a’%” 
- -I- kin Vu, = R~,kon~o,t a.2 

(8) 

where 

avon 
Em”= --, 

a2 

p(r,zA = + ( ~p&,z)e-‘++ C.C. > , (9) 
n 

where p(t;z,t) is the charge density of the beam and 
k,,, = ko, + iko,,; is the wave number in the absence of the 
beam. We assume that ko,, <ko,,. Here R is the interaction 
impedance of the slow wave structure and is given by 

R(m, 1 = (E:ni,/2k:,,P,n, (10) 

where (E :, ) ,, is the square of the slow wave structure elec- 
tric field averaged over the area of the beam and Pm, is the 
power of the wave on the slow wave structure. The beam 
density is assumed to be uniform over its cross-sectional 
area. We obtain 

Em, = [iR~,konW(k2, - kh)]pmn- (11) 

For the space-charge electric field, we use Poisson’s equa- 
tion. In cylindrical coordinates 

a2vsc avsc ;+~?Lk2Vsc,dn = 
a3 r ar 

- 4valn 2 (12) 

where 

E 
a k,, 

SC,, = -2. 
az 

(13) n 

For the purpose of calculating Escwn, we model the helical 
slow wave structure as a conducting cylinder. This has prov- 
en to be a good model” in the cold beam case. Then near the 
helix axis, 

E 
%L” 

SC,” n 
=-pq= 

ik, 
- 4;pqenb s f,, dv, (14) 

R 
where nb is the beam density. Here Pq is the plasma frequen- 
cy reduction factor. Branch and :Mihran16 have tabulated 
values of P, for many beam geometries including the case in 
which a constant density beam partially fills the cylinder. 
Using Eqs. (2), (7), and (14), 
E SC,” (w~/k,)S[af,/av/(k,v--w)ldv rH 
-= l- (w~/k,)S[af,/av/(k,v--w,)ldv E q’ 0” 

(15) 
where we define wi = P,wi where wb is the beam plasma 

frequency. Combining Eqs. (7)) ( 11) , and ( 15 ) we have 

1 = _ R~,ko,k,(z)e2nb 
[k:(z) - k&]m 

[‘+H,(z)] 

X af,(z)/av due 
k, (~1 v - 0, 

(16) 

In the weak beam limit Hq -+O. We assume (k, - ko, )/ko, 
is small and to lowest order in this quantity, 

k - ken = - ‘“Ruoz!L am/au d V 
k On 4Vo ko, v - w,/k, 

+ j,%3(Z) 
av I > 

, (17) 
u = %dkl” 

where I, is the beam current, V, is the cathode voltage, ua is a 
velocity satisfying I, = n,,euO and eV, = imu;, and f de- 
notes the principal value of the integral. 

We note that if we equate 

. .A&= -P- w2 nb 1 

4Vo 01; 
(18) 

no ( ud0, ) k ‘, wak) o,,ko. ’ 
we recover the beam plasma quasilinear expression for spa- 
tial wave growth. Here no is the plasma density, wp is the 
plasma frequency, and e is the linear plasma dielectric func- 
tion. This is the same equality that is made in order to for- 
mally identify13 the small cold beam plasma equations” 
with the nonlinear traveling wave tube equations. l8 

In order to obtain the diffusion equation, we combine 
Eqs. (5) and (7) 

,.z% = &qz v)afo 
az av ’ av’ 

D(z,v) = $ c IE, I2 
n i(k,v - w,) ’ 

(19) 

(20) 

This expression is formally the same as Eq. ( 17) in Ref. 12. 
Thus, we see that in the weak beam limit (H, -0) the 

quasilinear equations of the weak warm beam slow wave 
structure system are formally identical to those of the weak 
warm beam plasma system. When H, is nonzero, a correc- 
tion term occurs in the quasilinear dispersion relation. In the 
experiment, we estimate - 0.08 < Re Hq < - 0.05 and 
0.07 < Im H, < 0.1 for harmonic beam perturbations. 

III. EXPERIMENTAL APPARATUS 
The apparatus, which has been described in detail else- 

where,13’19 is shown schematically in Fig. 1. In essence it is a 
traveling wave tube” modified so that a warm beam rather 
than a cold beam interacts with the waves on the slow wave 
structure. 

The electron beam is directed along the axis of a helical 
slow wave structure and is confined by a strong (Larmor 
frequency is large compared to all other frequencies) axial 
magnetic field (B, = 440 G) . The electron source is a stan- 
dard tungsten dispenser cathode of radius 0.38 cm. A cold 
electron beam is formed with a Pierce-type structure consist- 
ing of the cathode, the forming electrode, and the anode. 
This cold beam is made warm by passing it through three 
parallel, closely spaced, wire mesh grids. The two outer grids 
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are grounded and the middle grid is biased at a high positive 
potential Vs. Because of the strong electric fields near the 
grid wires, some of the axial kinetic energy of the electrons is 
scattered into perpendicular kinetic energy. Thus, by adjust- 
ing V, we can control the axial velocity spread of the beam. 
Of course, since the total kinetic energy of each electron is 
conserved in this process, there is a corresponding perpen- 
dicular velocity spread of the beam. The cyclotron motion of 
,the particles does not affect the behavior of the waves on the 
slow wave structure since the cyclotron frequency is 1.2 
GHz, which is much too high to couple efficiently to the slow 
wave structure. The beam radius is 0.34 cm. 

The electron beam is pulsed by applying a square gating 
pulse to the anode. The beam electrons produce ions through 
their collisions with the residual background gas. The base 
pressure is 1 x 10 - 6  in the middle of the tube. We  pulse the 
beam in order to prevent the ions from accumulating. A 
large ion population in the tube wquld give rise to ion noise 
which would produce undesirabIe effects. The time duration 
of the current pulse is typically 400 ysec. The pulse repeti- 
tion rate is 40 Hz. Thus a pulsed electron beam with a con- 
trollable axial velocity spread is directed along the axis of the 
slow wave structure. 

The slow wave structure is a wire helix that is rigidly 
held together by an insulating support structure and is eri- 
closed by a glass vacuum tube. A resistive rf termination at 
each end of the helix serves to reduce reflections. Reflected 
waves originate from slight irregularities in the radius and 
pitch of the helix as well as from the ends. The maximum 
voltage standing wave ratio is 1.26. Since the backward wave 
is far from synchronism with the beam, the effect of the back- 
ward wave on the beam dynamics is negligible. The helix 
assembly is enclosed by a glass vacuum jacket which in turn 
is enclosed by an axially slotted 3.8 cm radius cylinder that 
defines the rf ground. Inside the cylinder but outside the 
vacuum jacket are four axially movable rf probes. The 
probes couple capacitively to the helix. The cylinder, which 
has a cutoff frequency of 3.0 GHz, is a waveguide beyond 
cutoff for the frequencies used in the experiment. This en- 
sures that for these frequencies, the only traveling waves that 
can exist in the tube propagate on the helix. 

Most of the beam is collected immediately after passing 
through the helix. A small fraction of the beam passes 
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through a hole in the collecting electrode, then through the 
discriminator tube, and then separately collected. By biasing 
the discriminator tube and measuring the current that gets 
through it, we can del:ermine” the t ime-averaged parallel 
velocity distribution function of the beam. 

The receiver consists of a  probe followed by a step atten- 
uator, a low-noise amplifier, and a spectrum analyzer. The 
output of the spectrum analyzer is sampled and held. The 
held output is applied to they channel of an X-Y recorder. A 
voltage proportional to the axial position of the probe is ap- 
plied to the X channel of the X-Y recorder. The probe is 
moved along the helix and thereby plots of wave power at a  
particular frequency versus axial distance are produced. For 
many of the plots shown in this paper we employ two probes 
configured as a directional coupler. This is done to reduce 
the backward wave component of the signal. The two probes 
move together but are separated by distance il/4 where /I is 
the wavelength of the mode we wish to measure. The signal 
received by the upstre.am probe is delayed in time by 1/4f 
wherefis the frequency of the mode. The vector sum of the 
signals from these two probes is a constructive interference 
of the components traveling downstream received by each 
probe and a destructive interference of the two backward 
components. 

Figure 2 is a plot of the dispersion of the helical slow 
wave structure. The dispersion relation closely resembles 
that of a  finite radius, .finite temperature plasma.*’ There is 
an experimental advantage to using a slow wave structure 
rather than a plasma to support the wave propagation. Un- 
like a plasma, the helix does not introduce any appreciably 
noise. In a beam plasma system, low-frequency ion noise 
causes phase jitter in the unstable spectrum which makes 
mode coupling measurements very difficult. By replacing 
the plasma with a sloop wave structure we eliminate these 
undesirable effects. 

Because the background noise level in our experiment is 
very low, we are in a position to define and control the input 
wake spectrum. A particularly interesting way to do this is to 
launch repetitive “noise,” By repetitive “noise” we mean an 
arbitrary but well-defined time-varying signal that lasts for 
some time T, and that then repeats. This time-varying signal 
could, for example, be a sample of duration T  taken from 
truly random noise such as bandlimited Johnson noise. Gen- 
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ko 

FIG. 2. Dispersion relation for the slow wave structure. The points are the 
measured results, and the line is the result of calculation; a = 1.08 cm is the 
helix radius. 

erally, Tis chosen to be a time longer than the longest physi- 
cally relevant time in an experiment. In our case, this is the 
beam transit time ( -0.5 psec). 

We manufacture this repetitive “noise” using a comput- 
er controlled, high-speed arbitrary waveform generator that 
was built for this purpose and which has been described in 
detail elsewhere.22 This device allows us to prescribe the 
complex Fourier coefficient of each mode of the launched 
spectrum. 

There are substantial advantages to using repetitive 
“noise.” The use of repetitive “noise” enables us to study our 
turbulent system with all relevant initial conditions under 
our control and with all genuine randomness eliminated 
from the dynamical variables that describe the system. In 
many experiments that study turbulence, one is unfortunate- 
ly only able to measure statistical quantities. In our experi- 
ment, the ability to launch repetitive noise enables us to 
study the dynamics of this complex wave-particle interac- 
tion. If we desire, we may subsequently perform well-defined 
statistical averages of the dynamical quantities that we mea- 
sure. 

Because the waveform repeats, it is possible to follow the 
evolution of a launched waveform with a single receiving 
probe that is slowly moved down the tube. One could accom- 
plish the same thing with a multiplicity of receiving probes 
positioned along the tube with each probe recording the time 
variation of nonrepetitive noise for a sufficiently long time 
duration (say, two or three beam transit times). The evolu- 
tion of a given time segment of the nonrepetitive noise could 
then be pieced together from the individual temporal wave- 
forms recorded at each successive probe position. This ap- 
proach would be quite unwieldy in practice due to the num- 

ber of probes and recording devices required. It has the 
additional disadvantage that each experiment is irreproduci- 
ble. Using a repetitive waveform only a single, movable, re- 
ceiving probe is required. Moreover, if it can be continuously 
moved, the evolution of the noise can be determined to arbi- 
trary spatial resolution. 23 Also, each experiment is repro- 
ducible. As far as the interaction with the beam electrons is 
concerned, repetitive “noise” is indistinguishable from non- 
repetitive noise so long as the repetition time of the noise is 
sufficiently long (longer than the beam transit time). 

The use of repetitive “noise” also enables one to define 
the launched waveform with which the electrons interact at 
the beginning of the tube. This means, for example, that we 
can compare the evolution of a given launched spectrum 
whose complex Fourier components we control, with that of 
a launched spectrum that is different in some manner and 
determine how the interaction depends on the difference. 
The use of repetitive “noise” therefore gives us a powerful 
means for investigating the complex wave-particle interac- 
tion. 

Figure 3 is a plot of the interaction impedance, R, versus 
ka, where a = 1.077 cm is the helix radius (measured from 
the helix axis to the wire center). The solid line in Fig. 3 is 
calculated using Eq. ( 10) and using the known radial eigen- 
functions for the electric field, E,“, and the magnetic field, 
Hun, for the helix in the absence of the beam.” The measured 
points are made using the Kompfner dip method which has 
previously been described in detail elsewhere.” This figure 
essentially gives the wave-number dependence of the left- 
hand side of Eq. ( 18). One difference between our slow wave 
structure and a cold infinite plasma is that for a cold infinite 
plasma the right-hand side of Eq. ( 18) is essentially indepen- 
dent of wave number. 

Another advantage of the beam slow wave structure sys- 
tem is that the background noise level is so low that it is 
possible to measure the growth rate of a single wave 
launched far below saturation so that the time-averaged dis- 
tribution function is essentially unchanged. This single wave 
growth rate is very useful. Since it is the only wave in the 
system, no mode coupling is possible, and it is thus an experi- 
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FIG. 3. Interaction impedance of the slow wave structure. The points are 
the measured results, and the line is the result of calculation. 
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mental definition of the Landau growth rate. In Fig. 4 we 
show a plot of the single wave corrected growth rate as a 
function of beam density. The corrected growth rate is ob- 
tained by subtracting the measured helix damping rate from 
the measured growth rate. The density is varied by increas- 
ing the beam current and keeping the beam voltage the same. 
The dots represent the measured growth rates and the line is 
the theoretical prediction given by the Landau formula [ I$. 
( 17) ] and the slope of the measured time-average distribu- 
tion function of the beam. --ii--- 60 120 160 200 240 cm 

AXIAL DISTANCE 
IV. RESULTS 
A. Saturation and plateau formation 

We have observed the growth and saturation of broad- 
band noise in the warm beam slow wave structure system. 
The background noise level is sufficiently low that in the 
absence of any launched waves, all wave activity is far below 
the saturation level of the instability. We launch the noise in 
our experiment by applying an rf voftage to a probe near the 
gun end of the machine. For example, we may launch broad- 
band noise that has been derived from the input noise of an 
amplifier. In Fig. 5 (a) we show a plot of the logarithm of the 
total received power as a function of axial distance down the 
tube. The wave power is seen to grow exponentially nearly 15 
dB and then saturate. In Fig. 5 (b) we show the correspond- 
ing evolution of the time-averaged parallel energy distribu- 
tion function of the beam. The position of the retarding field 
analyzer used to measure it is fixed at the downstream end of 
the machine and cannot be moved upstream to observe the 
early evolution of the beam. However, when we move the 
transmitting probe to anotherzposition, the wave power as a 
function of axial distance is axially translated with the trans- 
mitting probe. So by moving the probe closer to the down- 
stream end, we bring to that end an earlier point in the evolu- 
tion of the noise and the beam. Figure 5(b) shows the 
evolution of the distribution function measured in this way. 
As the noise grows and saturates, the beam distribution is 
seen to evolve into a plateau.24 

..I..~ No launched waves 
---- 3 U8 below satufation 
- Saturation 

50 
PAi%CEL ENERGY 

60 @/ 

FIG. 5. (al Total wave power versus axial distance. Beam voltage, 
V, = 60.0 V; &, = 110 /rA; spreader bias voltage, V, = 2.0 kV, 
nP = 0.055, ~7~ = 0.17. (b) Time-averaged beam parallel energy distribu- 
tion function at various posttions versus parallel energy. Same parameters 
as (a). The launch level is held constant, 

The observation of a smooth plateau together with the 
good agreement between the measured single wave growth 
rate and the Landau warm beam expression are good indica- 
tions that the values of ljfs and qP are sufficiently small in our 
device for the predictions of quasilinear theory to apply. Al- 
though the best way to check that our values for vs and ~7~ 
are sufficiently small is to carry out quasilinear theory to 
second order in these quantities, we have not done this. It is 
well known2’ however, that there is a smooth transition 
between the behavior of the weak warm beam plasma system 
and the weak cold beam plasma system as rjp and vP are 
varied. There is a mathematically identical transition in the 
weak beam slow wave structure case. The beginning* of the 
transition from warm beam behavior to cold beam behavior 
is marked by the emergence of structure on the time-aver- 
aged velocity distribution function corresponding to trapped 
particle formation. This does not appear in Fig. 5(b). In 
addition, in the cold beam case the linear growth rate is pro- 
portional to 1 A” whereas in the warm beam case it is linearly 
proportional to 1,. Figure 4 clearly shows a linear depen- 
dence on &. 

BEAM CURRENT 

FIG. 4. Corrected single wave growth rate, k, - k,,, , versus beam current 
with the beam voltage held fixed; V, = 65 V, If, = 2 kV,f= 65 MHz. 
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8. Existence of stronlg coupling effects 
With the aid of the arbitrary waveform generator we 

have observed strong mode coupling effects. Figure 6(a) 
shows a typical launched spectrum of repetitive “noise.” The 
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FIG. 6. (a) Spectrum launched by the arbitrary waveform generator. The 
spectral lines shown here and in (b) and Fig. 7(a) are meant to show only 
the measured power at each mode frequency. The finite linewidth at each 
frequency has been suppressed for clarity. (b) Spectrum downstream; 
v,, = 60.0 V, I,, = 14OpA, V, = 2.5 kV, b = 0.098, T$ = 0.36. 

amplitudes of the modes (which are discretez6 since the sig- 
nal is repetitive with period = 2.56 ,usec) have been chosen 
to be a smooth function of frequency, but their phases have 
been chosen by a random number generator in the computer. 
Figure 6(a) shows the spectrum measured upstream, near 
the transmitter. Figure 6(b) shows the spectrum down- 
stream. The modes have grown due to their interaction with 
the beam and most of them saturated. However, their ampli- 
tudes are no longer the smooth function of frequency pre- 
dicted by standard quasilinear theory. As the time-averaged 
distribution function evolves, quasilinear theory predicts 
that it remains a smooth function of velocity. We, in fact, 
observe this to be the case in our experiment [as shown in 
Fig. 5 (b) I. However, since quasilinear theory also assumes 
that the growth depends only on the time-averaged part of 
the distribution function, it therefore predicts that the spec- 
trum, if originally smooth, should remain smooth through- 
out the entire nonlinear evolution up to saturation. We see 
from Fig. 6(b) that this is not the case experimentally. This 
nonsmooth behavior has also been seen in computer simula- 
tions.4*x*9 

The nature of this behavior was investigated further by 
launching a spectrum which was similar to that of Fig. 6(a) 
but with one of the mcdes near the middle of the spectrum 
having a level 20 dB below the neighboring modes. This 
spectrum is shown in Fig. 7(a). The solid line in Fig. 7(b) 
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FIG. 7. (a) Spectrum used to further investigate the mode coupling. (b) 
Wave power versus axial distance of the small mode with phase = (5 (solid 
curve) and of the mode with phase = d + r (dotted curve). Here 
I’, = 60.0 V, Z0 = 110 PA, V, = 2.0 kV, frequency, f= 69.12 MHz; 
qp = 0.038, q, = 0.20. 

shows how this mode evolves as a function of axial distance 
down the tube. Up to z = 100 cm the mode grows at the 
single’wave growth rate. The single wave growth rate was 
determined by replacing the arbitrary waveform generator 
with a signal generator set to the frequency of the mode. The 
growth rate of this single wave is represented by the dashed 
line in Fig. 7(b). As mentioned above, this single wave 
growth rate is our experimental definition of the Landau 
growth rate. At z = 100 cm the wave exhibits a change in 
growth rate and continues to grow at an enhanced growth 
rate until it saturates. The dotted curve shows the evolution 
when we change the phase of the small launched mode by 
180” and leave the phases and amplitudes of all the other 
modes the same. Again the mode grows at the single wave 
growth rate until about 90 cm, where, in this case, it experi- 
ences a dramatic dip in power. It then grows at an enhanced 
growth rate until it saturates. 

This behavior is due to mode coupling into this frequen- 
cy caused by the surrounding larger modes. The electric field 
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received by the probe at this frequency consists of two contri- 
butions. One contribution comes from the launched mode. 
The other is due to surrounding larger modes which couple 
together and produce an induced electric field at this fre- 
quency. In the case of the solid curve in Fig. 7(b), these 
contributions are combining constructively. In the case of 
the dotted curve they are combining destructively. The solid 
and dotted curves in Fig. 7 fb) were selected to show the 
extreme cases of this effect. For values of the phase of the 
small launched wave intermediate between Qt and .$ + r, the 
corresponding curve is observed to have an intermediate be- 
havior between the solid and dashed curves. For a smooth 
sequence of phases from # to # + v we observe a sequence of 
curves representing a smooth variation of behavior from that 
shown by the solid curve to that shown by the dotted curve. 

The fast oscillations seen in this plot are due to a beat 
between the forward wave and a small component of back- 
ward wave originating from reflections from the end of the 
helix and from irregularities in the windings. Since the back- 
ward wave is far out of synchronism with the beam, its inter- 
action with the beam is negligible. The fast oscillations have 
been reduced (but not eliminated) by using the two-probe 
directional coupler technique [in both Figs. 7( b f and 8 ] . In 
addition, there are very weak slow oscillations visible in the 
plot, especially in the region between 40 and 100 cm. These 
are due to a beat between the forward wave on the helix and a 
passive mode on the beam. We regard these small amplitude 
oscillations as incidental to the main effect shown in Fig. 7, 
namely, that the mode coupling can cause dramatic effects 
on the evolution of the modes. 

C. Measurements of the average growth rate 

When we average over these mode coupling effects we 
do not observe the predicted zeroth-order increase in the 
growth rate. At each axial position along the helix the square 
of the electric field is averaged. Three different kinds ofaver- 
aging procedures have been tried. The different averaging 
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FIG. 8. Wave power versus axial distance for vai-ious launched signals: Re- 
petitive “noise” (dashed), nonrepetitive noise (solid), and a single wave 
(dotted). Here V, = 60.0 V, I,, = 140 PA, V, = 2.5 kV, f = 62.34 MHz; 
?fp = 0.055, Tjs = 0.19. 
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methods (to be discussed below) are characterized by what 
is varied when the average is taken. We then determine the 
spatial growth rate of the average. None of these averaging 
methods result in a zeroth-order increase in the growth rate. 

One type ofaveraging is ensemble averaging. The wave- 
form generator is used to launch repetitive “noise” corre- 
sponding to a set of randomly chosen initial amplitudes and 
phases. We average the square of the electric field of a mode 
from this noise over different sets of randomly chosen initial 
amplitudes and phases, 

Another averaging method is frequency averaging. 
Again the waveform generator is used to launch repetitive 
“noise.” In this case, we average the square of the electric 
fields of a number of modes within the receiver bandwidth. 
Here we use a single set of randomly chosen initial ampli- 
tudes and phases. Ensemble averaging and frequency aver- 
aging are equivalent in the limit of infinitely many modes if 
the bandwidth over which we frequency average is much 
smaller than the reciprocal of the longest physically relevant 
time scale. We assume this to be the beam transit time. 

We have also performed combined frequency and en- 
semble averaging. This is done by replacing the waveform 
generator with a nonrepetitive noise source (the input noise 
of an amplifier). A frequency average of the square of the 
electric field is taken ever the receiver bandwidth. This fre- 
quency average is in turn averaged over time. These three 
averaging techniques will be described in further detail be- 
low. We first present our results from the combined frequen- 
cy and ensemble average, 

The combined frequency and ensemble average over the 
mode coupling effects does not result in the predicted zeroth- 
order increase in the growth rate. To demonstrate this we 
first launch a smooth spectrum of modes using the arbitrary 
waveform generator [similar to the spectrum of Fig. 6(a) 1. 
The dashed line in Fig. 8 shows the evolution of one of the 
modes. Strong mode coupling effects are seen to occur begin- 
ning at z = 80 cm. If we launch a single mode at low ampli- 
tude, we obtain our experimental definition of the Landau 
growth rate. This is shown in Fig. 8 by the dotted curve. Next 
we replace the wavel%rm generator with a nonrepetitive 
noise source. The nonrepetitive noise is similar to the wave- 
form generator noise in both shape and magnitude. We re- 
ceive with a narrow-band receiver (bandwidth = 100 kHz) 
that squares the received electric field and then time aver- 
ages it (averaging time > 100 psec). Thus, during each 
beam pulse, a frequency average over the receiver bandwidth 
is taken. These frequency-averaged values are then ensemble 
averaged over many beam pulses. The solid curve shows the 
evolution of the logarithm of this average. To good accuracy 
(better than 10%) no deviation from the Landau growth 
rate is seen. 

It is possible that a change in the average growth rate 
due to mode coupling could be masked by an opposing 
change in the slope of the time-averaged distribution func- 
tion. So, to further ensure the validity of this result we show 
below that at the onset of the strong mode coupling near 
z = 80 cm, no substantial change has occurred in the time- 
averaged distribution function. The saturation level for the 
case shown in Fig. 8 is around 0 dB on the plot. The onset of 
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the mode coupling occurs when the solid curve is between 15 
to 20 dB below saturation. Figure 9 shows the time-averaged 
distribution function corresponding to various points in the 
growing level of the nonrepetitive noise. The curve labeled 
“10 dB below saturation,” for example, corresponds to the 
time-averaged distribution function at the point where the 
solid curve in Fig. 8 is 10 dB below saturation. This could 
correspond to the time-averaged distribution function at z 
= 140 cm in Fig. 8. In Fig. 8 we see that the mode coupling is 

occurring around z = 100 corresponding to a power level 15 
dB below saturation. In Fig. 9 it is seen that in the vicinity of 
the phase velocity of the wave (indicated by the arrow), the 
curves labeled “15 dB below saturation” and “no launched 
waves” overlay. Thus, no substantial change in the slope of 
the time-averaged distribution function has occurred during 
the onset of the mode coupling. 

Although the analytic theories have predicted a growth 
rate enhancement of about a factor of 2 for all modes in the 
spectrum, computer simulations’ have found that the 
growth rate enhancement should be even more dramatic 
near the edges of the spectrum. In the experimental case 
described above, the narrow band of noise we follow occurs 
near the high-frequency edge of the spectrum. We have simi- 
larly looked at the growth of a narrow band of noise near the 
low-frequency edge of the spectrum and at the growth of 
narrow bands of noise in the middle of the spectrum. Again 
we find, to good accuracy, no deviation from the Landau 
growth rate. 

In the averaging experiment just described nonrepeti- 
tive noise was used to obtain a frequency and ensemble aver- 
age. We may also construct a frequency average using the 
repetitive noise of the waveform generator. This is done sim- 
ply by selecting a receiver bandwidth wide enough to include 
several noise generator modes (typically 3-10). The repeti- 
tive electric field within this bandwidth is squared and then 
time averaged. For any given averaging experiment only a 
single set of initial amplitudes and phases is used. Typically, 
the amplitudes and phases of the modes are chosen random- 

I I I I 
40 50 60V 

PARALLEL ENERGY 

FIG. 9. Time-averaged beam parallel energy distribution function at var- 
ious positions versus parallel energy. Same parameters as Fig. 8. The launch 
level is held constant. 

ly using the random number generator in the computer. 
Since the noise is repetitive, the same signal occurs during 
each beam pulse and so no significant ensemble averaging is 
occurring. The logarithm of this average is compared with 
the growth of a single wave. No substantial deviation from 
the Landau growth rate is observed. 

The above method of averaging can be considered as 
pure frequency averaging with no significant concomitant 
ensemble averaging. We have also constructed pure ensem- 
ble averaging. To do this we transmit waveform generator 
noise as before, but we now receive the repetitive noise with a 
fast digitizer. By Fourier analyzing this signal, we have ac- 
cess to the complex Fourier coefficient of each mode at every 
axial position down the tube. For the purposes of averaging, 
however, we form the square of the modulus of the complex 
amplitude of a given mode and store its variation as a func- 
tion of axial distance. We then select another sample of repe- 
titive noise by choosing another random set of amplitudes 
and phases. We again form the square modulus of the mode 
and add its value to the stored value previously taken at each 
corresponding axial position. We repeat the process many 
times and then form the ensemble average. After averaging a 
sufficient number of samples (typically 8-16) the logarithm 
is taken and compared with the single wave growth. Again, 
no substantial deviation from the Landau growth rate is ob- 
served. 

Thus we have investigated pure ensemble averaging, 
pure frequency averaging, and combined frequency and en- 
semble averaging. In no case do we observe any significant 
deviation from the Landau growth rate. 

Another interesting experiment which is related to the 
above averaging experiments involves using the arbitrary 
waveform generator and a separate signal generator. Repeti- 
tive noise from the arbitrary waveform generator is launched 
together with a low-level sine wave from a separate signal 
generator. The frequency of the sine wave is in between two 
adjacent waveform generator frequency components. This 
sine wave always grows at the Landau growth rate. We show 
below that this result suggests that there is no significant 
trapped particle sideband instability27 occurring in the ex- 
periment. 

Let us first consider the character of the waveform gen- 
erator signal above, in the absence of the separate signal gen- 
erator. The repetition time of the waveform generator is de- 
termined by a single high-frequency clock and thus each 
frequency component generated by the device is a harmonic 
of a single frequency, the inverse repetition rate. In other 
words, every frequency component is of the form f, = nAf 
where n is an integer and Af is the inverse repetition rate. A 
necessary condition for mode coupling to occur among any 
m frequency components f,f2...f, is the existence of time- 
independent whole numbers n,,n,,...,n, such that 
nJ;+FJ2+ . . * + KZ,,&~ = 0. This is satisfied for the f, of 
the form f, = nA$ Furthermore, the f, ‘s form a closed sys- 
tern. That is, mode coupling among fn’s of the form 
f, = nAf can never create an f, = sAf where s is not a time- 
independent integer. Let us now launch repetitive noise and 
in addition launch a low-level signal from a separate sine 
wave generator. The sine wave of frequency f, is asynchro- 
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nous relative to the clock of the arbitrary waveform aenera- 
ted and thus fs = sAf where s is not a time-independent in- 
teger. 

Let us now consider adding the sine wave of frequencyf, 
from the separate signal generator. We know that the f,‘s 
from the arbitrary waveform generator cannot by them- 
selves couple and produce an electric field at f,. However, it 
is possible that the signal at f, could become unstable due to 
the perturbation produced in the beam from the repetitive 
noise. In the simplest case, a three-wave interaction between 
f, , f,, and 2f, -f, may occur. The signals at f, and at 
2f, -f, are small compared to the signal at f, . The modes f, 
and f, are asynchronous in the sense previously described. 
This process was studied in connection with trapping by 
Kruer et aLz7 A large amplitude wave is launched at fL in a 
cold beam plasma system which sets up an oscillating 
trapped particle distribution. Sidebands at f, and 2fL -f, 
can become unstable. The unstable sideband at f, is asyn- 
chronous to the launched wave fL in the sense previously 
described. In fact, there is a continuous band of unstable 
upper and lower sideband frequencies. In our many-wave 
experiment, we envision the possibility that one or more of 
the waveform generator modes creates some oscillating 
trapped particles. It might then be possible for an asynchro- 
nous sideband at f, to become unstable. The fact that this 
asynchronous frequency component grows at the Landau 
growth rate in our experiment suggests that there is no sig- 
nificant trapped particle sideband instability of the Mruer et 
a/. type occurring in the experiment. 

V. CONCLUSIONS 
We have observed strong mode coupling effects when a 

weak warm beam interacts with waves on a slow wave struc- 
ture. However, when we statistically average over these 
mode coupling effects, we do not observe a zeroth-order in- 
crease in the growth rate. 

The observation of strong mode coupling effects means 
that quasilinear theory as applied to the warm beam slow 
wave structure system is incomplete. One cannot a priori 
neglect mode coupling terms in the theory. The absence of 
any zeroth-order increase in the growth rate when we aver- 
age over the mode coupling in our system suggests the action 
of some statistical or dynamical conservation law whose ori- 
gin has not yet been identified. The results that we have ob- 
tained may have important consequences for the under- 
standing of the beam plasma instability as studied in 
laboratory plasmas, theoretical model calculations, and par- 
ticle simulations. 

interaction generally model the plasma as having infinite ex- 
tent and impose periodic boundary conditions. That is, they 
consider the temporally growing instability of an infinite 
beam and plasma. Although compared to the analogous lab- 
oratory plasma system these theoretical models are still 
further removed from our experimental system, we suspect 
that in these models as well the essential physics is the same. 
If these theoretical and computational systems do differ 
from ours in a crucial way, the differences might be in the 
way the space-charge harmonic fields behave in an infinite, 
temporally growing b,eam plasma system as opposed to our 
finite, spatially growing beam slow wave structure system. 
Or, there may be some subtle difference in the nature of the 
mode coupling between the two systems, 

If we can presume that the essential physics between our 
experiment and the theoretical models is the same, then we 
can make the following comments on recent theoretical de- 
velopments. First, our results are in agreement with the as- 
sertion that quasilinear theory is not complete since we 
clearly observe mode coupling effects which are neglected in 
the quasilinear approximation. However, our results do not 
support the theoretical prediction of a zeroth-order increase 
in the statistically averaged growth rate. 

Similar comments apply to recent computer simulation 
studies of the warm beam plasma system. Again, the com- 
puter simulations produced thus far model the interaction as 
a temporally growing one of infinite extent. As in our experi- 
ment, two prior computer simulations have observed strong 
mode coup&g effects. One’ also showed clear evidence of a 
zeroth-order increase in the average growth rate contrary to 
our experimental result. The other,9 more recent simulation 
showed a more modest increase in the average growth rate. 
This simulation result is also contrary to our result as their 
observed increase in the average growth rate is greater than 
the limit imposed by the accuracy of our measurement. 

To sum up, we have shown that the quasilinear descrip- 
tion of our experiment is incomplete. The correct nonlinear 
description ofour experiment has yet to be found. An impor- 
tant clue may be the existence of a statistical or dynamical 
conservation law governing the mode coupling effects. We 
believe these conclusions may also apply to analogous labo- 
ratory plasma systems, plasma theories, and particle simula- 
tions. 
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