Wave enhancement due to a static electric field
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The effect of an applied static electric field on beam electrons trapped by the wave in a traveling
wave tube has been investigated experimentally. For sufficiently weak applied fields the wave
power is enhanced. When the applied field is sufficiently strong the beam electrons are detrapped,
and the wave power enhancement is destroyed. It is found that the beam space charge plays an
important role in the detrapping process and acts to limit the wave power enhancement. In
addition it is found that the wave power enhancement can be increased by increasing the rf input
drive level. By launching waves near the saturation level, over 10 dB of wave power enhancement
has been observed. These effects are predicted in a computer simulation, and there is good
agreement between the results of the simulation and the experimental results.

1. INTRODUCTION

It has been shown'™ theoretically that the application
of a static force to particles trapped in the potential well of a
wave can result in an increase in wave amplitude rather than
auniform acceleration of the particles. The basic mechanism
of the effect can be understood by considering, in the rest
frame of the wave, a single particle trapped in the potential
well of the wave. Let us apply a weak, static force to the
particle. Since the particle is trapped in the well of the wave,
the response of the particle to the force cannot be a uniform
acceleration because it is constrained to move at the essen-
tially fixed phase velocity of the wave. Since the particle mo-
mentum cannot change in response to the applied force, the
wave momentum changes. The wave momentum is propor-
tional to the wave power, and hence, the wave power can be
increased in this way. If instead we apply a force strong
enough to detrap the particle, the particle accelerates, and
the wave enhancement does not occur. This investigationis a
study of this wave enhancement effect in a traveling wave
tube® (TWT). We have observed the effect by applying a stat-
ic electric field to beam electrons trapped in the potential
well of a wave on the slow wave structure of a TWT. In the
TWT the simple physical picture described above is compli-
cated by the presence of many particles which are sloshing
back and forth in the potential well. The particles not only
feel the wave electric field and the static electric field, they
also interact with one another through space-charge forces.
This situation is further complicated by the oscillation of the
potential well underneath the particles; that is, the wave
phase velocity also oscillates.

In the TWT this effect was first studied theoretically by
Hess.! Although the prospect of enhancing the power output
beyond saturation was quite attractive, apparently his work
was never followed up experimentally. There are, however,
two related effects that have been studied both theoretically
and experimentally. One effect involves the use of a voltage
jump near the position of saturation along the tube. The idea
is to sever the slow wave structure in such a way that the two
pieces of the slow wave structure will support a large dc
voltage jump while at the same time maintaining continuity
for the propagating wave. As the wave is amplified, the beam
slows down. At the position of wave power saturation, the
beam velocity is a minimum. At this position the beam en-
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counters the voltage jump. As it crosses the jump, the beam
is reaccelerated so that it can again decelerate and give up
more energy to the wave. This effect has been seen by Sau-
seng.® The other related effect is known as velocity tapering.
By modifying the slow wave structure the wave phase veloc-
ity can be made to decrease as a function of axial distance. If
the beam is still trapped, the beam momentum is thereby
caused to decrease. The decrease in beam momentum causes
an increase in wave momentum, and since the wave momen-
tum is proportional to the wave power, the wave power in-
creases. This effect was first studied theoretically by Meeker
and Rowe.” In neither of these cases was the physics investi-
gated very far beyond the region of saturation.

There are at least two other systems in which the wave
enhancement effect can occur. It can occur? in a small cold
beam plasma system,®° where the beam is trapped in the
potential well of a plasma wave. It can also occur®* in a free
electron laser'® (FEL). In an FEL the beam is trapped in the
beat wave due to an electromagnetic wave traveling in the
presence of the spatially varying magnetic field of a wiggler.
Although in this case the beam is relativistic, and the poten-
tial well is a magnetic well instead of an electrostatic well,
there is a close relationship between the TWT and FEL, as
has been pointed out by Kroll.!!

In the small cold beam plasma system the effect was
first studied theoretically by Morales.? His work was origin-
ally motivated by observations of runaway electrons in toka-
maks. It was observed'>'? that at low plasma densities the
energy of the runaway electrons became clamped (that is,
attained a constant value). At the same time electromagnetic
radiation at the ion plasma frequency was observed. At high-
er plasma densities these effects were not observed. Morales’
theory was developed in order to model these observations.
This work was quickly followed by relativistic particle simu-
lations by Leboeuf and Tajima'* which supported the essen-
tial features of the theory.

In the FEL the application of a static electric field to
trapped beam electrons has been proposed as a possible wave
power enhancement scheme by Kroll et a/.®> and by Lin.*
They have developed the theory of this enhancement
scheme, but to date there has apparently been no experimen-
tal verification in FEL’s.

In the present investigation we have verified the exis-
tence of this effect in a TWT. We have developed a technique
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for quantifying the wave enhancement that is observed, and
we have found excellent agreement with theory. In the the-
ory of the small cold beam plasma system, the space-charge
electric field is always much smaller than the main wave
electric field. However, in a TWT the space-charge electric
field can be as large as the main wave electric field. We have
found that the theory of the wave power enhancement is
sensitive to the inclusion of space charge. We have also found
that the extent of the wave power enhancement is sensitive to
the rf input drive level. In particular, by launching waves at
levels near the saturation level we have been able to increase
the power to 10 dB above the saturation level.

The paper has been organized in the following manner.
In Sec. II we review the linear and nonlinear theory of the
TWT. In Sec. III we describe the experimental apparatus. In
Sec. IV we present our results and in Sec. V our conclusions.
In the Appendix we describe in detail the relationship
between the TWT equations and the equations of the small
cold beam plasma interaction.

Il. THEORY

Here we review the one-dimensional theory of the
TWT. The linear theory is taken from the theory of Pierce.’
The basic procedure for the nonlinear theory presented here
was given by Nordsieck.'® This procedure was extended to
include various corrections such as space charge and finite
beam strength by Tien'® and by Tien, Walker, and Wolon-
tis.'” Hess' further refined Tien’s model and included the
effect of the applied dc electric field. For reasons to be given
below, Hess doubted the accuracy of his calculations when
the space-charge correction was large. In Sec. II B we give a
slightly different treatment of space charge which does not
have these difficulties.

In both the linear and nonlinear theories the injected
beam is assumed to be monoenergetic, and the spectrum is
assumed to be a single wave. The interaction between the
wave and the beam is governed by three equations—an inho-
mogeneous wave equation, Newton’s law, and an equation
of charge conservation. In the linear theory the beam is treat-
ed as a fluid, and harmonic solutions are assumed. The equa-
tions are solved in a Eulerian system, and an equation for the
complex wavenumber is obtained. In the nonlinear theory,
the dynamics of each beam electron are followed. The equa-
tions are cast in Lagrangian form, and the resulting equa-
tions are solved numerically.

A. Linear theory

In both the linear and nonlinear theories of the TWT
presented here, the slow wave structure is represented by an
equivalent one-dimensional transmission line. From the
transmission line equations one can derive an inhomogen-
eous wave equation
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where ¥V is the wave potential, p is the beam charge density
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{per unit length), @ is the angular frequency, and k, is the
complex wavenumber in the absence of the beam; k,, is its
real part and k,, is its imaginary part. Here Z is the interac-
tion impedance of the line [whose real part is defined in Eq.
{7)], z is the distance, and ¢ is the time.

In addition, we have Newton’s law that, in the absence
of the static field, is

m—=e— —eE,, (2)

where u is the beam velocity, Eg. is the space-charge electric
field, — e is the electron charge, and m is the electron mass.
We also have the equation of continuity,

dp 0 _
E +az(pu) 0. (3)
In the linear theory we let p = p, + p, and w = 4, + u; and
as usual assume p, and u,, to be constant and p,, u;, and ¥ to
be harmonic perturbations of the form e~ ),

Pierce considers the perturbed charge density to capaci-
tively couple to the slow wave structure through some effec-
tive capacitance per unit length C,,

Vsc =p/Cy,s (4)
where V. is the space-charge potential. The above equa-

tions can be combined to form a determinantal equation for
k

_ Tka/u, ( Zkok + k ) (s)

ok —w/uP \k2 —k?  wC,)’
where I, = pgu, is the unperturbed beam current and
V,= — mu}/2eis the beam voltage. Because the slow wave

structure is slightly lossy, k, and Z have small imaginary
parts. The imaginary part of k, is kept in the resonant de-
nominator and the imaginary part of Z is neglected.

In order to put this equation into scaled form, four pa-
rameters are defined by Pierce. The specification of these
parameters completely characterizes the behavior in the lin-
ear regime for any given set of initial conditions.

The gain parameter C is defined by

C = (IR /4V,)'3, (6)
where
R=ReZ=(E?), /2k} P, (7)

where (E %), is the square of the axial electric field averaged
over the area of the beam. Here P is the total power of the
wave. All quantities in Eq. (7) are defined in the absence of
the beam. If we replace the slow wave structure interaction
impedance R with the plasma impedance, then C is equiva-
lent to 77'/2, the smallness parameter of the spatial small cold
beam theory.® This identity is discussed in detail in the Ap-
pendix. The detuning parameter b is

b =(uy— vo)/Cuy, (8)

where v, = w/k,,, the phase velocity in the absence of the
beam. The damping parameter d is defined by

d=ky/Clo/uy) . {9)
The space-charge parameter is given by
QC=C/2uC\R. (10)
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Birdsall and Brewer'® have shown the above expression
to be equivalent to

1 w, /@ )2
= 11
oc 4C2(1+mq/w 1
where
v, =Pw,, (12)

where w, is the beam plasma frequency and P, is the plasma
frequency reduction factor’® due to finite beam radius.
P,=[1/(1+R})]"? (13)
and
R, = ugy/or, , (14)

where 7, is the beam radius and ¥ is a geometrical factor of
order unity and is a slowly varying function of wr, /u,.
If we now introduce the complex quantity & by setting
= (w/ug)(1 + iC8) and insert this expression along with the
Pierce parameters into Eq. {5), we obtain

(6 L W40C )(5_ Wa0C )
1—Cy40C 1+ Cy4QC
X(@B+ib+d)[C6—ib—d)—2i]
1+ Chb— iCd)
T—agcct.
Here C, b, d, and & are measured quantities, and we use the
above equation to determine QC.

=2(6C — 02( (15)

B. Nonlinear theory

As in the linear theory, the charge distribution couples
to the wave potential via Eq. (1). The wave potential together
with the space-charge potential and the applied electrostatic
potential affect the charge distribution through Newton’s
law

dz av

m o =e—a—z——eESC—eEDC, (16)
where we have added E ., the applied static electric field. At
any point z along the tube, the increment of charge about
that point, p(z,t }dz, is equal to an amount of charge p(z,,0)dz,
at a point z,, near the beginning of the tube where the density
P(24,0) is unmodulated.

plz,t)dz = plz,,0)dz, . (17)

The three equations (1), (16), and (17) together with a method
for calculating the space-charge potential provide a com-
plete one-dimensional description of the TWT.

These equations are manipulated into a form suitable
for calculation on a computer and are recast into scaled var-
iables. The scaled distance along the tube is defined as

y=Cla/u. (18)
And the input phase for an electron is
$o = (@/uy)z, . (19)

We next define the dependent variables. The electron phase
is defined as

B (¥:po) = wlz/ug — t). (20)
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The electron velocity, which defines ¢( y,é,), is
dz

E=“o[1 + Cq(y,40)] » (21)
and the wave potential, under the single wave assumption, is
Vizit) = Vy(z,2) + Vsz,t), (22)
where
Vilz.t) = 4C?Vod (y)cosld — 6 ()], (23)

Viz,t) = [2C3*V/(1 + Cb)]

X[A (d—0+b)cos(¢—0)—d—Asin(¢—0)] )
dy dy
(24)
where ( y)isthescaled amplitude of the wave and 8 ( y) is the
phase of the wave. Here ¥,(z,¢ ) is a small correction to V(z,¢)
due to the finite strength of the beam. It is discussed in detail

in the Appendix. In scaled variables, Egs. (1), (16), and (17)
become

*" dg, sin(g — 6)
—Ad - f 2r 1+Cq ’ 23)
46, _ 1 (" dgycoslp —6)
J- 2r 14+Cq ’ 26
a_¢ = ——
dy 1+Cq’ 27
99 _ > gsini—0)— [ cosis —
(1+ Cq) ™ = 24 sin(¢ — 9) C[dy cos(¢ — )
doé .
+4 (E_ b)sm(¢— 0)]
+ (I/E7)(Esc + Epc), (28)
where
= 2(w/uy)C?V,. (29)

In these equations, terms of order C2 and Cd have been ne-
glected. The space-charge field is calculated in a manner
similar to that described by Tien ef al.’” They represent the
electrons as disks, and by using the Green’s function for a
disk inside a conducting cylinder of radius equal to the helix
radius they find

Es/E; =47QC(1 +R?2)

ds
X [ 25 expl — Ru(1 + Call (43
~$(rgollsen[4 (145)—$ (0] . B0)

As Hess has pointed out, this method gives rise to a
space-charge electric field that is a discontinuous function of
distance. When two disks cross over each other, the space-
charge force on a disk reverses direction discontinuously.
These discontinuities produce errors that are of the same
order as the value of the actual space-charge field. One way
to overcome this is to treat the electrons as cylindrical blocks
of charge. When two blocks cross over, the force on a block
reverses sign smoothly. The blocks have a fixed width 4. A
slight modification to Eq. (30) thus gives
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ESC

=47QC(1 + R2)

T

Xf dpo exp[ — Ri{1+ Cq)id (y.85) — 4 (3ho) — 48 /2]] —exp[ — Ri(1 4 Cq)l¢ (1,85) — ¢ (1.80) + 4 /2| ] .

27

In the actual computation where N particles are followed, 4
is equal to 2#/N. This method of calculating the space-
charge force is slightly different from the “compressible
block” mode of Hess. As Hess points out, for large values of
QC (QC=0.28) and large values of b (b= 1.5), the compress-
ible block method for calculating space charge results in a
nonphysical behavior of the beam potential energy. He finds
that at the start of the tube, the space-charge potential ener-
gy is zero since the beam is unmodulated there. However, in
the nonlinear regime the space-charge potential energy be-
comes negative. This violates the requirement that the space-
charge potential energy should be a minimum where the
beam is unmodulated. In using Eq. (31), we find that the
minimum always occurs at the beginning of the tube.

Since QC is typically 0.1-0.3 and R, is typically 24, it
can be seen from Eq. (31) that Eg. can be comparable to E ..
This behavior is in contrast to that in a small cold beam
plasma system where Eg is always small compared to E .
The reason for the difference in Eg. /E; between our TWT
and the small cold beam plasma system is discussed in detail
in the Appendix.

From Egs. (25)-{28) we can derive conservation of mo-
mentum (neglecting terms of order C % and Cd )

21
dy\1+CbJ 27

1 27% Esc + Epc 1
1+CbJo 2w  E; 1+Cq’
(32)

and conservation of energy (neglecting terms of order C)

2T 2
iU %q_+(2_di+b),42]
dylJo 27 2 dy

40 42y [ o Bue ¥t Brc
dy o 2w E;
When b = d = QC = 0, Egs. (32) and (33) become (neglect-
ing terms of order C)

= —24%d+

= 2 (33)

d ( 1 JQ" 2) Epc

Z(— dpo+4%)==25, 34

dr\2r Jo qddo + E, (34)
2T 2 27T E

_‘L(Lf q—d¢o+2ﬁA2)=—1——f g =25 dg, .

dy\2mr Jo 2 dy 2 Jo E,

(35)

These are the spatial analogs of Morales’? Eqs. (34) and (35).
From the conservation of momentum equation [Eq. (34)] we
see that the static electric field is properly described as a
force which causes an increase in either particle momentum
or wave momentum or both. In general, both the particle
and wave momentum increase. Since the wave power is pro-
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31)

portional to the wave momentum, the wave power can be
increased. If the beam were totally clamped (that is, if all the
beam electrons have a constant velocity), the increase of the
wave power would be secular, and the secular growth rate
would be proportional to the strength of the applied field.

We have integrated Egs. (25)—(28) numerically in the
manner described by Hess. Just as in the experiment, the
beam is assumed to enter the tube unmodulated. Thus, part
of the initial wave amplitude is used to bunch the beam.
Starting from this initially unmodulated state at the begin-
ning of the tube, the phases and velocities of the beam parti-
cles as well as the wave amplitude and wave phase are calcu-
lated. The distance is then stepped forward and the
calculations are repeated. The step sizeis 4 y = 0.01 and we
use N = 100 beam electrons. As a check on the accuracy of
this procedure we compute and compare the left-hand side
and right-hand side of Eq. (32). 4 and g are of order unity in
the nonlinear region and the discrepancy is always less than
0.02.

IIi. EXPERIMENTAL APPARATUS AND LINEAR
PROPERTIES

In this section we describe the characteristics of our
TWT, the means by which the static electric field is pro-
duced, and the experimental technique. In order to compare
theory with experiments in the nonlinear regime, we experi-
mentally determine the Pierce parameters in the linear re-
gime of the tube. The methods by which these parameters
are measured are described in Sec. 111 B.

A. Experimental apparatus

The TWT used in this experiment, which has been de-
scribed in detail elsewhere,?® is much longer in scaled units
than commercially available TWT’s. Commercially avail-
able TWT’s are generally 5-8 e-folding lengths long. Be-
cause we are interested in the interaction region beyond satu-
ration, our TWT was designed to be approximately 20
e-folding lengths long. Our TWT also has axially moveable
rf probes which allow us to measure the wave power as a
function of axial distance. Commerically avaitable TWT’s
generally have their output coupler fixed at the position of
saturation.

The apparatus is shown schematically in Fig. 1. The
beam is formed by a Pierce type electron gun. The source
filament is a directly heated flat spiral of 2% thoriated tung-
sten wire. The wire diameter is 0.043 cm. The spiral has 3}
turns and is 0.89 cm in diameter. The filament and the form-
ing electrodes are biased negatively. We can independently
vary the beam voltage between 40-150 V and the beam cur-
rent between 0-1.2 mA. The beam radius is 0.39 cm. The
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FIG. 1. Schematic diagram of the apparatus (not drawn to scale).

electrons are directed along the axis of the helix and are
radially confined by a strong axial magnetic field whose on
axis value is B, = 385 G. In addition there are two magnetic
field coils (not shown) which provide perpendicular magnet-
ic fields (B, and B, ). These coils are used to control the tilt of
the beam with respect to the helix axis. The electron beam is
pulsed by applying a square pulse to the accelerating elec-
trode. This is done in order to keep the ion density in the
system low. The electron beam produces ions due to colli-
sions of the beam electrons with the residual gas back-
ground. The ions leave the beam region by following the
magnetic field lines to the gun and collector. If the produc-
tion rate is greater than the loss rate, the ions accumulate,
and the resulting ion noise can produce undesirable effects.
Pulsing the beam keeps the ion production rate low and
keeps the tube substantially free of ions. The time duration of
the current pulse is 180 zsec. The pulse repetition rate is 60
Hz. The transit time of the beam is approximately 0.5 usec.
After passing through the helix, most of the beam is collect-
ed by the front collector of the velocity analyzer. A small
fraction (approximately 0.5%) of the beam passes through a
hole in the front collector and through the discriminator ring
and is collected by the back collector. By biasing the discri-
minator ring and measuring the current collected at the back
collector, we can determine?' the velocity distribution func-
tion of that portion of the beam which passed through the
front collector. The region containing the electron gun, he-
lix, and velocity analyzer is evacuated. The pump pressure is
typically 3 X 10~° Torr. We estimate the pressure at the mid-
point of the tube to be about 1X 10~ Torr.

The heart of the TWT is the helical slow wave structure.
The helix is 2.7 m long and composed of 0.051 cm diam Be—
Cu wire which is held rigid by four alumina rods glued to the
outside of the wire helix. The pitch of the helix is 0.079 cm
and its outside diameter is 2.21 cm. At each end of the helix is
a resistive rf termination which serves to reduce reflections.
The termination consists of carbon-impregnated paper
which is glued onto the windings of the helix. Each termina-
tion is 13.7 cm long, and one end of the carbon-impregnated

2561 Phys. Fluids, Vol. 27, No. 10, October 1984

paper is flush with the end of the helix. Reflected waves
originate from slight irregularities in the radius and pitch of
the helix as well as from the ends. The maximum VSWR is
1.26. Because the backward wave is far from synchronism
with the beam, the effect of the backward wave on the beam
dynamics is negligible. The helix assembly is enclosed by a
glass vacuum jacket which is in turn enclosed by an axially
slotted 3.8 cm radius cylinder which defines the rf ground.
Inside the cylinder but outside the vacuum jacket are four
axially moveable rf probes. The probes couple capacitively
to the helix. The frequency range of the launched waves is
typically 5-100 MHz. The cylinder, which has a cutoff fre-
quency of 3.0 GHz, is a waveguide beyond cutoff for the
frequencies used in the experiment. This ensures {assuming
the receiving probe is more than 5 cm away from the trans-
mitting probe) that the received waves are helix traveling
modes and prevents any direct coupling between the trans-
mitting and receiving probes.

The static electric field is created by applying a poten-
tial to the end of the helix near the collector. The end of the
helix near the gun is grounded. Thus the electric field ex-
tends along the entire length of the helix. The potential is not
continuously held constant because for potential above 100
V, too much power is absorbed by the helix due to ohmic
heating, and the helix support structure begins to deterio-
rate. In order to avoid this, the potential is pulsed. The dura-
tion of the pulse is 31 ysec. Since this is much longer than the
beam transmit time (typically 0.5 usec), the electrons see an
essentially uniform, static electric field. The pulsed potential
can be varied from 0 to 1.5 kV.

The timing sequence is as follows. Initially the acceler-
ating electrode is held at a more negative potential than the
cathode. To initiate the beam current pulse the accelerating
electrode potential is brought abruptly to ground. Eighty
microseconds later the helix potential is pulsed and 10 usec
later the data are taken. Finally, 70 usec after the data are
taken the beam current pulse terminates as the accelerating
electrode potential is brought back below the cathode poten-
tial. This sequence is repeated 60 times a second. The fila-
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ment heating power and the transmitter are on continuously.

The receiver consists of a calibrated probe followed by a
step attenuator and a low noise amplifier. The amplifier out-
put is split into two parts. One part is fed into a high-frequen-
cy (> 60 MHz) scope in order to monitor the waveform. The
other part is put through a low pass filter, which rejects the
harmonics, and is then detected. The detected output is am-
plified and sampled and held. The sample and hold is gated
10 psec after the helix potential is pulsed. The held output is
put through a logarithmic amplifier and into the Y channel
of an X-Y recorder. A voltage proportional to the axial posi-
tion of the probe is put into the X channel of the X-Y record-
er. The probe is moved along the helix and thereby plots of
the wave power versus axial distance are produced. The
probe coupling is calibrated using the three-probe coupling
technique.?! The probe coupling is determined to an accura-
cy of 3 dB.

B. Linear properties

Figure 2 shows a plot of the measured and theoretical
helix dispersion. The measured dispersion is determined
with a standard interferometer technique.** The theoretical
dispersion is calculated assuming the Pierce sheath helix
model® and assuming that the dielectric constant of the shell-
like region between the helix and the glass vacuum jacket is a
constant whose value is the area weighted average of the rod
and vacuum dielectric constants.

€effective — (4Ar/As)(€r - 1) + 1 ’ (36)

where €, = 8.6 is the dielectric constant of the four alumina
rods and 4, and A, are the cross-sectional areas of a rod and
the shell, respectively. The measurements are within 0.8% of
the corresponding theoretical values. There are no adjusta-
ble parameters.

The imaginary part of the wavenumber in the absence
of the beam, &, is determined by directly measuring the
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FIG. 2. Dispersion relation for the slow wave structure. The points are the
measured results, and the line is the result of calculation. @ = 1.08 cm is the
helix radius.
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FIG. 3. Interaction impedance of the slow wave structure. The points are
the measured results, and the line is the result of calculation.

power as a function of axial distance. The loss tangent,
koi/ko,, is 2.2X 1073 at 20 MHz and rises slowly to
42X 102 at 90 MHz. At 40 MHz, the total attenuation
over the entire length of the tube is 4.0 dB; at 60 MHz, it is
9.2dB.

There are five parameters which completely character-
ize the interaction in one-dimensional TWT theory. They
are the gain parameter C, the damping parameter d, the de-
tuning parameter b, and the two space-charge parameters
QC and R, . We now describe the methods we use to experi-
mentally determine these parameters. Many of these meth-
ods are described in detail elsewhere.*

In order to determine the gain parameter we must first
determine the interaction impedance R. The interaction im-
pedance is theoretically calculated using Eq. (7). It is experi-
mentally determined using the Kompfner dip technique.*?**
Figure 3 shows a plot of the measured and theoretical imped-
ance. The measurements are within 4% of the corresponding
theoretical values. Here C is then computed using Eq. (6).

The damping parameter is determined from Eq. (9),
with k,, directly measured as previously described.

The detuning parameter is a measure of the difference
between the beam velocity and the wave phase velocity in the
absence of the beam. The wave phase velocity is accurately
known because we measure the frequency and wavenumber
independently in order to determine the dispersion relation.
TWT theory assumes that the beam is monoenergetic. For
most of the experimental data the beam has a 1-2 V shear
which is due to the Ohmic drop across the filament. We have
checked that this shear is unimportant by pulsing the poten-
tial across the filament and comparing wave power plots
taken with and without the Ohmic drop across the filament.
The beam velocity is measured in several ways. First, by
measuring the dispersion relation of a sufficiently weak
beam of high enough velocity so that there is no beam helix
interaction, one can infer the beam velocity. The experimen-
tal error in this procedure is less than 2%. Second, again for
noninteracting electron beams, the beam energy can be di-
rectly measured using the velocity analyzer. The values ob-
tained using this method agree with those obtained using the
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first within 1%. Third, for interacting beams, the detuning
parameter b can be measured using the Kompfner dip tech-
nique. The accuracy obtained with this technique is
Ab = + 0.12. This corresponds to an experimental error in
velocity of 1.0%. All three methods agree with each other
within experimental error.

The space-charge parameters are given by Egs. (11)}-
(14). In order to determine them one of the quantities that
must be measured is the beam radius. The beam radius is
measured by varying the perpendicular magnetic fields (B,
and B,) which tilt the beam and measuring the current that
passes through the hole in the center of the front collector as
a function of beam tilt. By measuring the beam current and
voltage, w, can be determined. Thus, in order to determine
QC and R,, all that remains is to determine y. Here y is a
geometrical parameter, and it is a slowly varying function of
wry/uy, We determine it as follows. We first determine the
functional dependence of ¥ on wr,/u, for noninteracting
beams, that is, beams that are of high enough velocity that
they do not excite growing modes. The dispersion relation
for such a beam is

o=kpug+w,, o=ksuy—o,, (37)
where k corresponds to the fast wave and kg corresponds to
the slow wave. We measure o, k5, and k and thereby deter-
mine y through Eqs. (12}14) and (37). Figure 4 shows a plot
of ¥ vs wr, /u, for five different noninteracting beams. The
best fit straight line through these points yields

¥ = 1.06[(@/uo)r, ] +0.682. (38)

We use this form for y to calculate QC which in turn is used
in Eq. (15) to calculate linear growth rates. Figure 5 shows
the comparison between the measured growth rates and the
theoretical growth rates which have been calculated in this
way. The growth rates are plotted versus 4 and have been
normalized to Cew/u,. The dots are the measured values and
the lines are the calculated valuesfor y, ¥ + 0.1,and ¥ — 0.1.
Itis seen that the linear growth measurements agree with the
wave dispersion measurements to ¥ + 0.1.

i.6 T T T
|41 .
Least Squares Fit
1.2 y = 1.08{g ) +.682 .
H
1 ol-
os%
-
06 « 1200V 0.2ma ]
« 1500 05
0.4 o 1700 1.0 ]
s 2200 15
0.2 ° 3200 2.0
1 l 1
0.1 02 03 0.4

uob

FIG. 4. The geometrical parameter y vs wr,/u, for five different beams.
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IV. RESULTS

We present our basic findings in this section. We first
demonstrate the existence of the effect and give a method for
quantifying the degree of wave power enhancement. Using
this method we show that there is good quantitative agree-
ment between the experiment and the computer simulation.
The effect is seen to be sensitive to the inclusion of space
charge in the theory, to the position along the tube where the
field is first applied, and to the strength of the rf input drive
level. The phase space plots generated in the simulation are
used to understand the process of detrapping.

A. Existence of the effect

In Fig. 6, we exhibit an example of wave power versus
axial distance from the transmitter. Consider first the solid
curve. The wave power is seen to grow linearly up to about
z =40 cm. Wave power saturation occurs around z = 55
cm, and the wave power then undergoes the familiar trap-
ping oscillations. By the level of saturation, we mean the
level of the first relative maximum. Three trapping oscilla-
tions are clearly seen. The slight damping evidenced here is
due to the dissipation in the helix support structure. The fast

3 /WEAK APPLIED FIELD

WAVE POWER

NO APPLIED FIELDJ

1 [ t
80 120 160 200 ¢m

2

FIG. 6. Wave power versus axial distance with and without a weak static
field applied. Solid curve: E,c =0, ¥, =97.4V, ], = l.1 mA, w/27 = 40.0
MHz. Dotted curve: Ejc = 0.535 V/cm, ¥, = 85.8 V. All other param-
eters are the same as for the solid curve. 0 dB corresponds to 30.9 mW.
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oscillations are a beat between the forward wave and a small
component of backward wave. Since the backward wave is
far out of synchronism with the beam, its interaction with
the beam is negligible.

When we apply a weak static electric field {which is
applied along the entire length of the helix), the result is the
dotted curve in Fig. 6. The sense of the field is such that in the
absence of the wave the field would increase the velocity of
the beam. The beam voltage has been changed so that at the
position of saturation (z = 55 cm), the power levels are the
same. This is done in order to emphasize the enhanced
growth beyond saturation. We see that not only has the wave
power overcome the damping due to the dissipation in the
helix support structure, but it has also grown by about 3 dB
above the saturation level. The trapping oscillations indicate
the presence of trapped particles, and we see that the applica-
tion of a force to these trapped particles has resulted in an
increase in wave momentum and hence in wave power.
When we apply a strong static electric field, we obtain the
dotted curve in Fig. 7. Again the solid curve is the zero field
case. And again the beam voltage has been changed to make
the power levels at z =55 cm the same. Although power
level of the first relative maximum (z = 60 cm) is higher than
the level at z =55 cm, we see that beyond z = 60 cm, the
wave enhancement is destroyed in the presence of a strong
applied field. The absence of wave enhancement is to be ex-
pected for fields so strong that particle detrapping occurs,
and the result of the applied force is then an increase in beam
momentum rather than wave momentum. The reason the
power level at z = 60 cm is so high is that most of the elec-
trons remain trapped up to this point. Even for large static
fields some electrons that later become runaways remain
trapped prior to saturation and contribute to the wave
growth prior to saturation. So that prior to the saturation
regime of the tube, the wave power can be enhanced. In Fig.
8 we show the result of applying a static electric field in the
reversed sense; that is, the sense in which in the absence of
the wave, the static field would decrease the beam velocity.
As expected, the response to the force is a decrease in wave
momentum and hence in wave power, and so the result is
enhanced damping.

~—STRONG APPLIED FIELD

WAVE POWER

NO APPLIED FIELD)

1 L I\ -
0 40 80 120 160 200 cm
z

FIG. 7. Wave power versus axial distance with and without a strong static
field applied. Solid curve: same as parameters for solid curve in Fig. 6. Dot-
ted curve: Epe = 0.665 V/cm, ¥, = 112 V. All other parameters are the

same as for the solid curve.
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FIG. 8. Wave power versus axial distance with the static ficld applied in the
reversed sense (dotted curve). Ep. = — 0.147V/cm, ¥V, =81.0V, 1, =0.2
mA, and w/27 = 40.0 MHz. For comparison, a case with no static field
applied is shown (solid curve). In this case, V, = 76.4 V, I, = 0.2 mA, and
/27 = 40.0 MHz. 0 dB corresponds to 8.1t mW.

B. Fourier analysis of wave power plots

In order to quantify the degree of wave power enhance-
ment, we would like to assign a slope to the wave power piot
in the region beyond saturation. Here a difficulty arises due
to the presence of the trapping oscillations. Typically, the
average rate of power enhancement is much smaller than the
large growth and damping rates associated with the trapping
oscillations. In addition, the power variation is affected by
the dissipative damping due to the helix. Thus, the determin-
ation of the proper slope is not easily made from a casual
inspection of the data. However, a method for determining
the proper slope is suggested by the following consider-
ations. Equation (34) expresses conservation of momentum
for b=d = QC =0 and C«l. The first term on the left-
hand side corresponds to the beam momentum, and the sec-
ond term corresponds to the wave momentum. Let us as-
sume all the electrons are trapped. If we average over the
trapping oscillations, the first term vanishes and we obtain

E
diyu =2 (39)
T

So in this ideal case, the slope of the wave momentum or
wave power averaged over the trapping oscillations is a con-
stant, and the constant is proportional to the strength of the
applied static field. Figure 9(a) shows an example of raw
data. The first step in the data analysis is to consider only
that portion of the power plot past saturation and to remove
the fast oscillations in the plot by drawing a smooth curve
through the fast oscillations. The curve passes through the
geometric mean of the maxima and minima of the fast oscil-
lations. Since the fast oscillations have peak-to-peak ampli-
tudes typically between 1-3 dB, the error incurred in using
the geometric mean to describe the forward traveling wave is
0.17%-1.5%. The data are then put on a linear scale. Now,
again from conservation of momentum, this time including
damping, we have

27 E
4 -%q+A2)=—M2d+ L2 (40)
dy\Jo 2w E;
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FIG. 9. An example illustrating the data analysis procedure. (a) Typical
example of raw data. The experimental parameters are the same as those in
Fig. 10. E,,./E; = 0.307. (b) The portion of the raw data beyond saturation
has been put on a linear scale and corrected for damping and filtered. (c) The
corrected plot is Fourier transformed. The real part is shown here. (d) In-
verse Fourier transform of (c) after the trapping oscillations have been fil-
tered out.

If
id
Az:=A2+f 2dA% y)dy, (41)
Vsat
then
2 E
L([ gt ar) =22, @)
dy\Jo 27 E;

and in the case of 100% trapping, we would have
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4 g7y =L, 3)

dy E;
where we average over the trapping oscillations as in Eq.
(39). So we use Eq. (41) to correct for the effect of the damp-
ing due to helix structure dissipation. The Pierce parameter
d in Eq. (41} is a measured quantity. At this point the power
plot takes the form of Fig. 9(b). Next, the length of the abscis-
sa is doubled by reflecting the data about a vertical line at the
left edge of the curve (z = 60 cm) in Fig. 9(b). The doubled
curve resembles one period of a sawtooth wave with a sine
wave superimposed on it. The data are then Fourier trans-
formed. The real part of the transformation is shown in Fig.
9(c). The peaks in the Fourier transform at m = 7,8 corre-
sponds to the trapping oscillations. The next step in the pro-
cedure is to get rid of the trapping oscillations by applying a
square bandstop filter to both the real and the imaginary
parts of the spectrum. The center of the filter is positioned at
the mode number of the largest peak away from the peaks at
m =1 — 4. The full width of the filter is equal to the mode
number at the center of the filter minus two. So in this exam-
ple the bandstop filter would extend fromm =5tom = 9.
The real part of the inverse Fourier transform is shown in
Fig. 9(d). The result is very nearly a straight line. Finally, the
slope of this straight line is calculated with a least squares fit.
To see how sensitive this procedure is to the nature of the
filter, we have tried a variety of different widths of square
bandstop filters and Gaussian filters. The resulting slopes
were found to be essentially insensitive to the type of filter
used. We also calculate the imaginary part of the inverse
Fourier transform. Its smallness (typically < 10™%)is a mea-
sure of the integrity of the transform procedure.

The procedure is applied to the experimental power
plots and the simulation power plots in exactly the same
way. In particular, damping is included as an input param-
eter of the simulation. The computer generated power plot is
then corrected for damping in the manner described above.

C. Dependence of secular growth rate on applied field
strength

Having developed a procedure for determining the
slope of the enhanced wave power growth; that is, the secular
growth rate, we can plot these growth rates versus the ap-
plied static electric field strengths. This is done in Fig. 10.
The ordinate and abscissa are labeled in scaled dimension-
less units. The secular growth rate scaling involves z;, = uy/
Cw and P, = 2CI,V, which correspond physically to the lin-
ear e-fold distance and the saturation power, respectively.
The applied static electric fieldisscaled to Ey = 2C*Vw/u,,
the main wave field strength near saturation. When these
scalings are used, Eq. (43), which describes the ideal case of
QC = 0and C«1 and 100% trapping, would be plotted as a
45°line in Fig. 10 (and in Figs. 14 and 16). The solid dots are
the results of the experiment. As we would expect, the secu-
lar growth rate at first increases as the static electric field
strength increases and then decreases as beam particles de-
trap and run away. In the data set of Figs. 6, 7, and 8 the
beam voltage is changed in order to emphasize the behavior
of the wave power in the nonlinear regime. In the data set of
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FIG. 10. Normalized secular growth rate versus normalized static field
strength E,./E;. Vy=42.6 V, I, =0.10 mA, and /27 = 60.0 MHz. z,
=11.3 cm, P, = 0.995 mW, and E; =0.685 V/cm. C =0.0909, =0,
d = 0.0498, OC = 0.181, and R, = 3.10. The solid points are the measured
results. The open circles are the computed results including the space
charge force. The open triangles are the computed results neglecting the
space charge force.

Fig. 10 the beam voltage is kept at a constant value so that all
the data correspond to the same values of the Pierce param-
eters. As was mentioned in Sec. III, there is a resistive rf
termination placed at each end of the helix. In order to effec-
tively launch waves, the transmitter probe must not be di-
rectly over the rf termination; it must be placed at some
distance away from the edge of the helix. In this case the
distance between the end of the helix and the transmitter is
16.6 cm. In order to keep the injected beam voltage constant
as the applied field strength is increased, it is necessary to
increase the cathode voltage (that is, make it less negative)
because the portion of the helix between the gun end of the
helix and the transmitter accelerates the beam electrons be-
fore they reach the z coordinate of the transmitter. Thus, at
each value of the applied field strength the cathode voltage
was increased by 6.19% of the applied helix voltage in order
to compensate for this additional acceleration. The open cir-
cles are the results of the computer simulation for the corre-
sponding Pierce parameters of the experiment. The input
parameters in the simulation are the same as those in the
experiment. In order to obtain the best fit to the experiment,
some of the input parameters have been adjusted slightly.
However, each input parameter is within the experimental
error of the corresponding experimental value. No other ad-
justments have been made.

In Fig. 11 we plot the computed normalized average
particle momentum as a function of scaled distance for the
open points at E,./E; = 0.136 and E,./E; = 0.407. The
input particle momentum has been subtracted from the par-
ticle momentum and the result has been averaged over the
particles and divided by C. The distance is scaled by o C /u,,.
The plot corresponding to E,/E; = 0.136 (bottom curve)
shows the normalized average particle momentum increas-
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FIG. 11. Computed normalized average particle momentum versus scaled
distance. The bottom curve corresponds to the open circle at E,./E,

= 0.136 in Fig. 10. The top curve corresponds to the open circle at E,./E
= 0.407 in Fig. 10.

ing due to the applied electric field until y = 3.5, where it
begins to decrease. There is a minimum in the average parti-
cle momentum at y = 6.6. Beyond y = 6.6 the average parti-
cle momentum oscillates as the trapped particles execute
their orbits in phase space. When the applied field strength is
increased to E,./E; = 0.407 (top curve), the normalized
average particle momentum continues to increase beyond
¥ = 7.0 as particles become detrapped and run away.

D. Effect of space charge

Space charge can play a very important role in the en-
hancement process. The computer results (open circles) of
Fig. 10 include the space-charge force. If we do not include
the space-charge force, the result is the set of triangular
points in Fig. 10. It is seen that the inclusion of space charge
in the calculation significantly limits the extent of the wave
power enhancement.

The space-charge force plays an important role in the
wave power enhancement because it can be as strong as the
wave field itself. Figure 12 is a plot of the space-charge elec-
tric field felt by a single representative electron as a function
of distance down the tube. The abscissa is scaled to the linear
e-folding distance, and the ordinate is scaled to the main
wave field strength E,.. The main wave amplitude at satura-
tion is approximately 2E;. Thus, it is seen that the space-
charge electric field strength is comparable to the saturation
field strength at certain points along the tube.

The particle dynamics in this system are complicated
for the following reasons: the wave amplitude is a function of
distance along the tube; the potential well oscillates under-
neath the particles; and the magnitudes and directions of the
space charge forces vary rapidly as the particles execute their
motions. The description is further complicated by the fact
that the linear wave growth, the wave phase oscillations, and
the trapping oscillations all have the same length scale. We
have not been able to invent any model that both simplifies
the particle dynamics and describes all of the essential phys-
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FIG. 12. Computed normalized space-charge electric field felt by a typical
particle versus scaled distance. The Pierce parameters correspond to those
of Fig. 10. Epc/Ey = 0.339.

ics. The best way to understand the particle dynamics is to
study in detail their phase space trajectories.

The phase space trajectories of the particles with and
without space charge included in the simulations are funda-
mentally different. This is demonstrated in Fig. 13. On the
left from top to bottom are phase space plots which have
been calculated without space charge. The ordinate is the
scaled particle velocity g defined by dz/dt = u,(1 + Cq). The
abscissa is the particle phase minus the wave phase, ¢ — 6.
The plots shown from top to bottom are selected phase space
plots at certain positions along the tube away from the trans-
mitter. On the right from top to bottom are corresponding
phase space plots which have been calculated with space
charge. These two sets of phase space plots represent the
cases at E,./E; = 0.339 in Fig. 10.

The top pair of phase space plots shows the position of
the particles in phase space at a point along the tube just
before the electron trajectories start crossing over one an-
other. Prior to this point along the tube the velocity pertur-
bation is approximately sinusoidal in ¢ — 6 and the shapes of
the phase space plots are the same for both sets of calcula-
tions.

The next pair of plots shows the phase space positions
when the electron trajectories start crossing over. In the cal-
culation not including space charge shown on the left, the
particles are very close to each other near ¢ — 8 = 4.8 form-
ing a bunch which begins to fall back towards the center of
the plot. In the calculation including space charge shown on
the right, the particle positions are much different. The par-
ticles near ¢ — 6 = 3.5 feel not only the main wave field, but
also the space charge repulsion due to the particles bunched
near ¢ — @ = 4.2. As a result they strongly decelerate and
form the tail shown at ¢ — 6 = 4.0 and ¢ < 0. The main wave
electric field exerts a force on the electrons to the right of the
tail which, in the absence of space charge, would cause those
rightmost electrons to decelerate towards the center of the
well. However, since we are including the space-charge
force, the space-charge force due to the tail exerts an addi-
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FIG. 13. Phase space plots illustrating the effect of the space-charge force.
Each plot is a plot of normalized particle velocity g versus the particle phase
minus the wave phase ¢ — 6. The left-hand column of plots represents phase
space at selected positions, y, down the tube calculated in the absence of the
space-charge force. The right-hand column of plots are corresponding
phase space plots {although not necessarily at the same distance down the
tube) calculated with the space-charge force.

tional force on those rightmost electrons which retards their
deceleration. v

The situation at saturation is shown in the third pair of
plots. In the zero space-charge plot on the left, the particles
continue their orbits; few, if any, get detrapped. In the finite
space-charge plot on the right, many of the particles which
were to the right of the tail in the middle plot have now gone
over the top of the well into the next well (and appear at small
¢ — 0 in this plot). They have become runaway particles.
The other particles remain trapped and continue to execute
their rotation in phase space. The position of saturation for
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the zero space-charge case is y = 5.6 while for the finite
space-charge case it isy = 7.0. The inclusion of space charge
acts to slow down the average phase space rotation.

In the fourth pair of plots the phase space rotation con-
tinues. In both the zero and finite space-charge plots, the
particles at large ¢ — @ move closer and closer to the edge of
the well and spill over as seen in the fifth and sixth pairs of
plots. The space-charge force causes there to be more parti-
cles with larger velocity near the edge of the well. At this
point most all of the runaways have been generated. In the
calculation with space charge a few of the particles become
detrapped subsequent to this point, and a few particles may
even become retrapped.

The evolution of phase space can be described in more
general terms as follows. Near the beginning of the tube, the
particles have a sinusoidal distribution in phase space. A
little further down the tube, the particles to the right of
¢ — @ = mbegin to move down in the direction of decreasing
g. Still further down the tube, the particles begin to orbit
about a position near the center of the phase space diagram,
that is, near ¢ — = 7 and ¢ = 0. However, some particles
never make a complete 360° orbit in phase space. These parti-
cles go over the potential hill at ¢ — @ = 27 and are de-
trapped. The position in phase space about which a trapped
particle orbits will in general change as a function of applied
field strength and distance down the tube. However, this
position is always near ¢ — & = 7 and ¢ = Ofor all the phase
space plots presented in this paper. In the region of the tube
near where particle trajectories first begin to cross one an-
other, there are particles which are far away from the center
of the phase space orbits, and there are those which are close
to the center of the phase space orbits. Most of the particles
which eventually are detrapped are in a region of phase space
far from the center of the phase space orbits. The effect of the
beam space charge is to increase the number of electrons that
are far away from the center of the phase space orbits.

E. Other configurations

We have also investigated the wave power enhance-
ment theoretically for configurations other than that corre-

sponding to the experiment. Figure 14 shows a plot of secu-
lar growth versus static electric field strength for various
theoretical models. For reference the computed points of
Fig. 10 have been represented as curve (a) in order to include
the results for the experimental configuration where the stat-
ic electric field is applied throughout the entire length of the
slow wave structure, and where the wave is launched well
below the saturation level. If we instead apply the static elec-
tric field only in the region beyond the position of saturation,
the result is curve (b). In other words, we allow the wave to
grow up exponentially and deeply trap the beam in the ab-
sence of the applied field. We then apply the static field for
the remainder of the nonlinear region. This is the configura-
tion that Morales originally studied in the small cold beam
plasma description of the effect. It is seen that the wave pow-
er enhancement is significantly increased over that repre-
sented by curve (a). The maximum secular growth rate has
been substantially increased, and the range of static field
strengths over which enhancement occurs has been greatly
extended.

The reason for this improvement in wave power en-
hancement is that the presence of the static field in the linear
region causes the beam electrons to be shifted into an unfa-
vorable region of the wave potential well while in the config-
uration of curve (b) the beam is allowed to be deeply trapped
before feeling the applied field. At saturation the average
particle velocity relative to the wave is minimized, and in this
configuration most of the particles are close to the center of
the phase space orbits. They are in the regionnear¢ — 6 = 7
and ¢ <0. Any moderate increase in velocity caused by the
applied static field acts to bring the particles closer to the
center of the phase space orbits. In addition, the wave poten-
tial well depth is maximum at saturation. Thus, a large force
can be applied from this point without causing much detrap-
ping.

In Fig. 14, curve (c) shows the result of the highly ideal-
ized situation where a single electron is placed in a large
amplitude wave. The static electric field is applied through-
out the entire length of the tube, but the wave is launched at a
high level. The wave enhancement is maximally efficient in
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- |3 malized static field strength E,,./E;. for
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this case up to E,-/E; = 3.0 where the enhancement ab-
ruptly falls as the particle becomes detrapped and becomes a
runaway.

F. Effect of launch amplitude

If the wave is launched well below saturation, then near
the beginning of the tube the wave is not large enough to trap
the beam, and in this region the response of the beam to the
applied static field is an acceleration. Some of the electrons
then become trapped and contribute to the wave power en-
hancement; others become runaways.

We have found that the wave power enhancement is
significantly increased when the input rf drive level is in-
creased. The increase in the drive level results in a decrease in
the length of the linear region of the tube and an increase in
the wave potential throughout the region of the tube prior to
saturation. This causes the electrons to be more deeply
trapped and results in the production of fewer runaway elec-
trons.

In Fig. 15 we show a plot of wave power versus axial
distance for various input rf drive levels. The curve labeled
SAT corresponds to a wave launched at the saturation level.
SAT-2.6indicates that the wave is launched 2.6 dB below the
launch level of the SAT curve, etc. We determine the SAT
level as follows. A wave is launched at a level well below the
saturation level of the wave and a power plot is produced (for
example, the plot labeled SAT-26). Then the beam is turned
off and the transmitter power level is increased until at the
position of saturation, the received power level (dotted curve
at z = 87 cm) is equal to the saturated power level (solid
curve at z = 87 cm). The beam is then turned back on, and
the resulting plot is the curve labeled SAT. Attenuators are
placed in the transmitter circuit to successively reduce the rf
input drive level. In Fig. 15 we see that due to the presence of
cold circuit damping, as the rf drive level increases, the satu-
ration amplitude increases (except for the SAT-13 curve).
More importantly, the position of saturation moves closer
and closer to the transmitter position as the rf drive level

P(dB)

1 1

1 1
20 40 60 80 100
Z (cm)

1
120

FIG. 15. Wave power versus axial distance for various input rf drive levels.
The experimental and Pierce parameters are the same as those in Fig. 10.
0 dB corresponds to 0.955 mW.
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FIG. 16. Normalized secular growth rate, (z, /P,) (d /dz){P ),, versus nor-
malized static field strength, E,,./E for various input rf drive levels. The
Pierce parameters correspond to those in Fig. 10. The solid symbols are the
results of the measurements and the open symbols are the calculated results.
The lines are drawn only to aid the eye in following the trend of the data.

increases, and the wave field throughout the region prior to
saturation becomes larger and larger.

In Fig. 16 we plot the secular growth rate versus applied
field parameterized by the rf drive level. The curve of Fig. 10
is reproduced here (labeled SAT-26). So as the drive level
increases, it is seen that the wave power enhancement greatly
increases in both the maximum obtainable secular growth
rate and also in the range of applied electric field over which
enhanced growth occurs. In the SAT-2.6 and SAT cases the
secular growth rates start decreasing when applied fields of
the order of E are applied. The solid symbols are the result
of the experiment, and the open symbols are the result of the
computer simulation for the corresponding Pierce param-
eters. The experimental uncertainties in the Pierce param-
eters have been discussed earlier. At low values of the wave
launch level the launch amplitude is made uncertain by the
presence of the reflected wave. For the SAT-26 data the un-
certainty in the launch level is 4 2.0 dB. For the rest of the
data the uncertainty is less than + 0.5 dB. The input param-
eters of the simulation runs that produce the computed
points in Fig. 16 are equal to the corresponding parameters
of the experiment within experimental error. The solid lines
are drawn only to aid the eye in following the trend of the
points.

In Fig. 17 we compare the phase space evolution of the
particles when E,,./E = 0.543 for the launch level at satu-
ration (SAT) at left and for the wave launched 26 dB below
saturation (SAT-26) at right. Each pair of plots corresponds
to the same axial position along the tube.

The top pair of plots shows phase space at y =0.2
where the velocity perturbation in both cases is harmonic.
The perturbation for the large amplitude wave launch on the
left is seen to be larger than that for the small wave launch on
the right.

In the next pair of plots in Fig. 17, the SAT plot on the
left shows the phase space when the electron trajectories
start crossing over. There are a large number of particles
near the point ¢ — 8 = 7, ¢ = 0. The SAT-26 plot on the
right shows particles slightly elevated above ¢ =0 with a
harmonic perturbation superimposed.
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FIG. 17. Phase space plots illustrating the effect of launched wave ampli-
tude. The left-hand column represents plots at selected positions down the
tube corresponding to the open diamond (wave launched at saturation) at
Epc/E; =0.543 in Fig. 16. The right-hand column represents plots at the

same position down the tube but corresponding to the open circle (wave
launched 26 dB below saturation) at E,./E, = 0.543 in Fig. 16.

The next pair of plots shows the situation at y = 2.6
which corresponds to the position of saturation for the SAT
case on the left. It is seen in this plot that there are many
particles executing tight orbits about ¢ — 8=, g = 0. Inthe
SAT-26 plot on the right, the particles continue their rise in
phase space while the wave perturbation increases.

Aty = 5.4, the trapped particles in the SAT plot on the
left continue their tight orbits. A small runaway population
is also seen. In the SAT-26 plot on the right, the electron
trajectories are beginning to cross over. The electrons in this
case are all quite far away from the point¢ — 8 =7, g =0.
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FIG. 18. Wave power (linear scale) versus axial distance for a launched large
amplitude wave with a static field applied. E,,. = 1.88 V/cm, ¥, = $5.7V,
I,=0.5 mA, w/2m = 45.0 MHz. P, = 5.36 mW. The dashed curve indi-
cates the saturation level for £, = 0.

The situation at y = 6.3 is shown in the next pair of
plots. In the SAT plot on the left, the large, well-trapped
electron population and the small runaway population con-
tinue to separate. The SAT-26 plot on the right shows the
phase space near the position of saturation for this case. The
electrons all continue to be far away from¢ — 6 =7,¢ =0.

In the last pair of plots in Fig. 17, there are well-separat-
ed trapped and runaway populations in both plots. Beyond
this position along the tube, the trapped and runaway elec-
tron populations continue to separate, and the rest of the
essential features of the plots remain unchanged.

Slight improvement in the wave power enhancement
can be produced by reducing the injected beam velocity.
However, the amount by which the injected beam velocity
can be reduced is limited by the sensitive dependence of the
linear growth rate on velocity for a given frequency. More-
over, even if the injected beam velocity could be reduced to
zero, in the small amplitude launch case the linear region
would be so long that for moderate values of static field, the
electrons could still be detrapped in the same manner as de-
scribed above. Thus, the better way of avoiding this detrap-
ping process is by decreasing the length of the linear region.
The increase in the rf input drive level also causes an increase
in the wave amplitude in this region of the tube; that is, it
deepens the well. This also helps to prevent detrapping.

The maximum amount of wave power enhancement we
have observed is greater than 10 dB. In Fig. 18 we exhibit our
best case of wave power enhancement. The data have been
placed on a linear power scale to dramatize the effect. The
dashed curve on this plot indicates the level of saturation. It
is seen that the wave power has overcome the dissipation due
to the helix support structure and has grown to nearly 20
times the saturation power.

V. CONCLUSIONS

We have demonstrated that the wave power ina TWT
can be enhanced above its saturation value by an application
of a static electric field to the trapped beam electrons in the
nonlinear interaction region of the TWT. When the electric
field is made sufficiently strong, the beam electrons are de-
trapped, and the wave power enhancement is destroyed.
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When the sense of the electric field is reversed, enhanced
damping results.

In order to quantify the extent of the wave power en-
hancement, we analyze the data in a way which assigns a
slope to the wave power enhancement in the nonlinear re-
gime. Good agreement is found between theory and experi-
ment.

The space-charge force is found to play a very impor-
tant role in the detrapping mechanism. This is so because
unlike the situation in a small cold beam plasma system, the
space-charge force in our TWT is comparable to the force
exerted by the main wave. In the calculations neglecting the
beam space-charge force, the electrons near the edge of the
potential well can easily decelerate toward the center of the
well. In the calculations including the beam space-charge
force, the motion of these electrons toward the center of the
well is slowed down. These electrons are more susceptible to
detrapping, and many of them slip over the edge of the well.

Our computer studies have shown that the wave power
enhancement can be increased by applying the static field
beginning from the position of saturation rather than apply-
ing the field along the entire length of the tube. At saturation
the wave amplitude is a maximum and the average beam
velocity is a minimum. Under these conditions it is very diffi-
cult to detrap the beam particles.

The wave power enhancement can also be improved by
increasing the input rf drive level which decreases the length
of the linear region and increases the wave potential
throughout the region of the tube prior to saturation. An
examination of phase space shows that this acts to prevent
the electrons from entering unfavorable regions of phase
space. We have found that by launching near the saturation
level, the wave power can be enhanced by more than 10 dB.
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APPENDIX: RELATIONSHIP BETWEEN THE SMALL
COLD BEAM PLASMA EQUATIONS AND THE TWT
EQUATIONS

The spatial small cold beam plasma equations were first
derived and solved by O’Neil and Winfrey.” The TWT large
signal equations used in this paper are extensions (by Hess) of
the work by Tien. The following shows the relationship
between the small cold beam plasma equations and the TWT
equations. Detuning, damping, space charge, and finite
beam strength corrections are included.
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The appendix is divided into five parts. The first part
extends the analysis of O’Neil and Winfrey to include detun-
ing, damping, and space charge. The second part shows the
relationship between the small cold beam plasma parameter
77'/2 and Pierce’s gain parameter C. The third part derives a
set of TWT equations®® from the small cold beam plasma
equations. The fourth part presents an additional refinement
to the TWT theory due to Tien'®—the finite beam strength
correction term. The fifth part discusses the treatment and
relative strength of the space-charge force in the two theor-
ies.

1. Spatial small cold beam-plasma equations

The physics of the interaction between a small cold elec-
tron beam and a plasma is simplified in an important way by
the introduction of the single wave model®. If the tempera-
ture of the electron beam is sufficiently low and if the density
is sufficiently small, then after a few e-foldings, the band-
width of the growing waves is so narrow that the spectrum is
very nearly a single wave. Under these conditions it has been
shown® that the background plasma electrons continue to
execute linear oscillations even when the wave amplitude is
so large that the dynamics of the beam electrons are highly
nonlinear. Thus, the plasma may be treated as a linear dielec-
tric, and the plasma charge density may be represented by a
dielectric function.

Consider a potential @, ,,,(z,) of the form

Dy =3[P 2t) + Psclz,t) + Ppclz) +c.c.] . (Al)
The first term is associated with the spatially growing main
wave
D(z,t) = D (z)expliw(z/ug —t)] ,
(A2)

Diz)= (O)exp(i fz dz' 6k (z’)) , Ok(z)€w/u,.

Here 8k (z) is a spatially varying complex wavenumber cor-
rection to w/u, The second term represents the harmonic
field contribution

Dsclzt)= Y Psclzw,)e™ e,

n=1

(A3)

The third term corresponds to the applied static electric field
(Ad)

The beam is divided into N charge sheets per period. The
beam density is given by

Ppclz) = — Epcz.

277“0 ;ib N
— N 8[z—2z{t)],
v 2,00 -50]
where 71, is the unperturbed beam density (per unit volume)
and z;(¢ ) is the position of the jth charge sheet. To be consis-
tent with the expression for the potential

ny(z,t)= (AS5)

ny(z,t) =1[n,(zwe " +cc.], (A6)
with
2u0)_l,, N eim'j
o) = : A7
mle@) = —5 ,Zq (dz/dt), (A7)

t; is the time at which the jth electron is at the positionz. We
assume the dielectric function is not resonant at w/u, but at a
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different wavenumber k, = (1 + 4 }w/uy where [4,|<1.
The wave in the beam plasma system has wavenumber w/
u, + 6k. So the plasma dielectric function, €(w,k ), near reso-
nance is

e‘(w, @y 5k>g(ﬁ) (6k _24 ,) . (A8)
Uy Ik Jok Uy
Poisson’s equation then becomes
o (G- 24
— = 6k——A4,\P1(z
v I el L
_ 87Tell = N —~ iw(z/ug — 1)
— oy e ‘ (A9)

N =1 (dz/dt )j
This equation corresponds to Eq. (16) of O’Neil and Win-

frey.® Let us define
@ (@)= grelens(i [ dz 5k,0)).
(A10)
$12) = ¢ (Ojesp( - [a k.21

where 8k, = Re 6k and 6k; = Im 6k. Taking the real and
imaginary parts of Eq. (A9) and rearranging, we obtain
sk, —"(‘U—Alr _ — 8meugn, 1

u, N (@*/u})0e/3K ), i, $1

N cos[(w/upkz — ot; + §5 dz' Sk, ]

=1 (dz/dt);
(Alla)
dé, _ — 8men u,
dz  N(w*/u})de/dk ook
N si /Uug)z — wt; 5 dz' 8k,
x 3 Snllefue—oi + i d2 o] o 4,
=1 (dZ/dt)l Uy
(Al1b)

where 4,, =Re 4, and 4,;, =Im 4,. We also have New-
ton’s equation

d* ) d
ml—-] =e— D, .(28).

( dt? j a " = j)
Equations (A11) and (A 12) are the small cold beam plasma
equations in the spatially growing case.

(A12)

2. Relation between C and 7'/2

Here we show that if we identify the slow wave struc-
ture impedance with the plasma impedance, then C is equi-
valent to 7'/2, the spatial small cold beam plasma param-
eter.

The slow wave structure interaction impedance is de-
finedasR = (E2),/2k 2 P,wherek, = Re koand (E2), is
the z component of the electric field averaged over the beam
cross-sectional area 4,,.

(E2) =—1—sz da, (A13)
4,
P is the power given by
P=SRe j (E X H *)dr, (A14)
Y1
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where the integral is over the plane perpendicular to the di-
rection of propagation.
In the one-dimensional plasma it is useful to define

P=jvg$do, (Al5)
where
% =—1—w(£) E?| (Al6)
167 \dw/ok,

is the wave energy density, v, is the group velocity, and we
integrate over the plane perpendicular to the direction of
propagation. The plasma impedance then is

— 87
R s = . Al7
» k 2,0(0€/3k ), Ap (A7)
The beam impedance is
Yo _ 2mup 1o (A18)

I 0 A ,,a)i ’_lb ’
where n, is the plasma density and 7, the beam density. So
letting R = R jpima »

C 3 IORplnsma
4V,
= — ﬁ _ﬁ_"_ 1 . (A19)
@ Ny (up/w)k;,(9€/3k ), k,
In O’Neil and Winfrey k,, = w/u,. So
C:=(n/2]. (A20)
3. Equations of the TWT
Using the identification
ci=LR _ (l)’
4v, \2
_% P L (A21)

©® o (/) u Kl Uo/0)

we can now define the scaled TWT variables. The initial
phase is

po =0Ty, (A22)

where Ty, is the time at which the jth electron enters the tube

atz = 0. As such @, can be regarded as identifying a particu-
lar electron. The phase is given by

¢ (y:do) = wlz/us — 1)) - (A23)
The velocity is given by

(£) = uolt + Catdol (A2

dt/;

The scaled wave potential 4 ( y) is given by

$.\(2) =4C?V,4(y), (A25)
and the wave phase is

()= — f dz' 6k.(z'). (A26)

0

The Pierce detuning parameter b and damping parameter d
are related to the complex quantity 4, Since
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ko= {1+ 4,)o/u,,
Re ko = ko, = (@/uo)(1 + 4,,),

(A27)
4, = (up—vo)/vo,=Cb,
where v, is the phase velocity w/k,,, and
Imky=ky = (@/ugld,; ,
(A28)

4,=Cd.

Substitution of Eqgs. (18), (A22)-{A28) into Eq. (A11) and
converting sums to integrals yields two of the TWT equa-
tions—Egs. (25) and (26). Substituting Eqgs. (18), (A22)-{A28)
into Eq. (A12) gives

(1+ cqj)%=z,4 sin(¢ — 0)
dy

—2C(Ai‘?-sin(¢ —6) +—“—"icos(¢—o))
dy dy
e
T mouC? (Esc + Epc), (A29)

where we have identified the harmonic fields with the space-
charge field. Finally, we note that since ¢ = w(z/uy — t;)

(E) =— Y (A30)
dt/; 1—C|(34/8y)
equating this expression with Eq. (A24) yields Eq. (27).
Equations (25), (26), (27), and (A29) are a set of equations for
the TWT. They correspond to Eqs. (14), (21), (22), and (23) of
Rowe.?® Equations (25) and (26) are lower-order versions of
Rowe’s (21) and (22).

In order to obtain the set of equations used in this paper,
the finite beam strength correction must be included.

4. Finite beam strength correction

In TWT theory the starting point for the theory is not
Poisson’s equation but an inhomogeneous wave equation,

OVere ki Vare  2kokor IV oie
a2 @ o ot
- — %k (ﬁ.{_k"_‘ma_p), (A31)
® at?: k, Ot
where p(z, ) is the beam charge density and
plzt) =p, (2l =" (A32)

The solution to Eq. (A31) is

Vare 2t) = €™ 7% - e ™ot "
iwR — ik ’ ’
——2—e"k"z “”J. e "y, (2)dz
0

. D 3 ,
— ———“;R ¢~ ozt o) f e p, (2)d2 {A33)
where we have neglected the imaginary part of Z, and ¢, and
¢, are constants and the system extends fromz = 0toz = D.
Weassume |ko,D |» 1. We assume that the beam travels in the
direction of increasing z. The second term in Eq. {A33) repre-

2573 Phys. Fluids, Vol. 27, No. 10, October 1984

sents a pure helix mode traveling in the opposite direction.
We neglect this backward wave since it is far from synchro-
nism with the beam. Let

Vigt)= — —-——m;R hor—en f p2)e % dz
0

+ V(0)e" e,

ioR 4 2 iho"
I/C(Z,t)= __2_e—x(koz+mr)f pw(zr)etkozdzr.

(A34)
(A35)

At first glance it might seem that we should neglect V_(z,¢)
altogether. However, there is a portion of V,(z,t) that is in
synchronism with the beam. In the linear theory, for in-

stance p,, (z) = p,, (0)e™*. In this case,

2k +k

X {exp[ilk, + kolD Jexp[ — i(koz + ot )]
—exp[ilk,z — wt)]}. (A36)
The first term corresponds to a backward traveling lightly
damped (due to cold circuit damping, k,,;) wave. The second
term is a small forward traveling growing wave. It is much
smaller than the main growing wave and is a small correc-
tion to it.

By directly substituting Eqs. {A34) and (A35) one can
verify that

Velzt)=

av, arv,
ﬂ’. ﬁ _aK = _——° ﬁ <. (A37)
9z o dt 9z w Jdt
Let us write
Viz,t) = V(z)e™& 411, (A38)
V.(z,t) =V, (z)g =1 (A39)
Then Eq. (A37) becomes
av.
—i(2+ ko)Vc =i(2— ko)V(z) ALy
U u, oz oz
(A40)

Let us neglect 3V, /dz and show later that it is small,
L [:2¥e (f’- - ko) V(z)] . (A41)

w/uy + kg oz Uy

Since ko = kg, + iC dew/u,,

V.(z)e=

o[ {2 I _@
Vol l(uo Ccdvi(z) + az) = b V(z)] :
(A42)
Let
Vie)= ¢1(z)exp(i f “dr zsk,(z')) :
(A43)

i2) =8 Oexp — [ a 6k (2) = 4CA (3%,

substituting (A43) into (A42), making use of (A26) and (A27),
and taking the real part yields Eq. (24). We have neglected
terms of order (C3d). The correction due to finite beam
strength is one order of C smaller than the main wave, and
dV, /02 is correspondingly smaller.
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When the main wave expression and the finite beam
strength correction are inserted into Eq. (A31), each term on
the left-hand side consists of a main wave contribution and a
correction term of order C smaller. When the two correction
terms are subtracted the result becomes an order of C?
smaller than the main wave contribution. Thus, the two
equations which are derived from the wave equation [Eqs.
{25) and (26)] are not affected to order C by the addition of
V.(z,t). When Eq. (24) is included in the expression for @,,,,,
and substituted into Eq. (A 12), the result is the TWT equa-
tion, Eq. (28).

5. The space-charge force in the beam plasma and TWT

We have found so far that the equations of the spatial
small cold beam plasma interaction become nonlinear TWT
equations when the Pierce gain parameter C is identified
with the spatial small cold beam plasma parameter %'/2. In
our experiment C is typically around 0.1. This is also a typi-
cal value for 7’/2 in small cold beam plasma experiments.
However, the way in which Cis made small is different in our
experiment than the way in which %'/2 is made small in a
typical plasma experiment. Let us rewrite C in a way which
allows a more direct comparison with %'/2.

2 A R 2
0
"3 @? Je\ !
G--Sead)

where w} = w3(7i,/no) and 4, is the beam cross-sectional
area. For a cold infinite plasma

de 4

—Hop2 9 _ 2 A46
or ak 3 ( )

In our experiment, typically,
A R*/8mmug = . (A47)

Thus the beam charge density in our TWT must be corre-
spondingly larger in order for C and 7’/2 to be equal. One
manifestation of this difference is the size of the space-charge
force in the two systems. In the small cold beam plasma
system, the harmonic fields are always a factor of 7'/2
smaller than in the main field of the wave. However, as seen
in Fig. 12, in a TWT the space-charge field can be compara-
ble to the main wave electric field.

One way to estimate the size of the maximum space-
charge force is to consider a delta function distribution of
charge and consider the size of the resulting electric field
compared to the size of the main wave field. For the beam-
plasma case

Amen,uy 7 dnee” mug Ay

ESC ~ 27Te'_1bi =

3

@ m we n,

(A48)

where 7, and n, are the beam and plasma densities.

(A49)

"\ o) & \3
(—’7—) =22 = 27 (l) 2v,, (A50)
2 @ ng u,
and
N2
E, =2(1’~) 2y,
2/ u,
(AS1)
E ’
SC — —Tfl
E, 2

As expected, the space-charge electric field is of order 7'/2
smaller than the main wave field even for a delta function
charge distribution. However, for the TWT

4meRi,u,  An? yeus

Eye ~2mefih =——22 =7 e E;. (A52)
Since E; = 2(w/uy)C*V,,
E 2
¢ — _ﬂ-l_f)_"__ (A53)
E, C? »?
Typically, ,/w~1/4 and C~0.1, so
|Egc/Eq|~20. (A54)

Given a delta function charge distribution, one can also esti-
mate the ratio of the harmonic fields to the field of the main
wave. One obtains essentially the same scalings as before.

Another way of expressing the difference between the
small cold beam plasma system and a typical TWT is to
consider the Pierce gain parameter and the small cold beam
plasma smallness parameter as the ratio of impedances. The
Pierce gain parameter is the cube root of the ratio of the slow
wave structure interaction impedance to the beam imped-
ance. The smallness parameter is the cube root of the ratio of
the plasma impedance to the beam impedance. The helix
impedance is much smaller than the plasma impedance and
this causes the beam impedance in the TWT to be much
smaller than the beam impedance in the beam plasma system
in order to have C and 7'/2 be equal. This in turn results in a
larger beam space-charge field in the TWT.
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