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The effect of an applied static electric field on trapped beam electrons in a traveling
wave tube has been observed. In particular, it was found that the wave power can be in-
creased. It was found that beam space charge can play an important role in limiting the
wave-power enhancement, and that the wave enhancement is strongly dependent on the
rf input drive level. By launching large-amplitude waves over 10 dB of enhanced wave
growth has been observed.

PACS numbers: 41.70.+t, 42.60.-v, 52.40.Mj. 85.10.Hy

In a previous Letter' it was predicted that if an
external force is applied to particles executing
nonlinear trapping oscillations in a plasma wave,
the wave power can be increased. We have ob-
served this effect in a traveling wave tube' (TWT).
The equations' that describe the wave-particle
interaction in a TWT are identical to those''
that describe the beam-plasma instability in the
small-cold-beam limit. The effect of a static
electric field on trapped beam particles has been
studied theoretically both in a small-cold-beam-
plasma system and in a TWT. In the beam-
plasma system the theory was first done by
Morales. ' In the TWT, it was done by Bess. '

Although the physics of this effect in this highly
nonlinear system is interesting in and of itself,
there are more practical reasons for studying it
as well. One of the reasons that motivates the
study of this effect in the beam-plasma case is
that it provides a possible model for the inter-
action of runaway electrons with cavity modes in
a tokamak. ' The study of this effect in the TWT
case is motivated by the possibility of enhancing'
the wave growth past saturation in TWT's. In-
deed, a closely related enhancement technique,
velocity tapering, has been well studied' theo-
retically and experimentally. In addition, be-
cause of the analogy between free-electron lasers
and TWT's, recent ideas' concerning power en-
hancement in free-electron lasers may also stim-
ulate interest in the study of this effect.

The main qualitative features of the effect can

be understood by considering the following sim-
plified physical picture. If a weak force is applied
to particles trapped in the potential well of a
wave of essentially fixed phase velocity, the
response of the particles cannot be a uniform
acceleration because they are constrained to
move on the average at the wave phase velocity.
Since the particles cannot change their momen-
tum in response to the applied force, the wave
responds by changing its momentum. And be-
cause the wave power is proportional to the wave
momentum, the wave power can be increased in
this way. If the applied force is strong enough to
detrap the particles, the particles accelerate,
and the wave-power enhancement is destroyed.

We have observed these effects in a TWT. The
effects are also predicted by our computer sim-
ulations and the computer solutions agree well
with the experiment. The apparatus, which has
been described elsewhere, ' differs from most
conventional TWT's in that it is 3-4 times longer
when measured in scaled units. A cold electron
beam is directed down the axis of a wire helix
slow wave structure which is held together by a
support structure and is enclosed by a glass vac-
uum tube. Outside of the glass tube are electro-
static probes which are used to transmit and
receive radio-frequency waves. This assembly
is enclosed by a grounded cylindrical conduc-
tor which is slotted so that the probes can be
moved axially. The grounded cylinder acts as
a waveguide beyond cutoff and insures that waves
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of the experiment. The model includes detuning,
damping, finite-beam-strength corrections, and
space charge (i.e., the Coulomb force between
beam electrons). The important differences
between this model and that of Morales are the
inclusion of beam space charge and the presence
of the applied field in both the linear and non-
linear regions of the tube instead of only in the
nonlinear region as assumed by Morales.

In Fig. 3 we exhibit the dependence of the slope
of the wave-power plots on the strength of the
static electric field. The static electric field,
Fd„ is applied along the entire length of the
helix including the region before trapping has
occurred. The computed points are solutions of
the equations for 100 particles and are analyzed
in exactly the same way as the experimental data.
The solid points represent the experimental data.
The open circles represent the computed results
with space charge included. One of the differ-
ences between our TWT and a small-cold-beam-
plasma system is that the beam space-charge
forces in the TWT are much greater than in the
small-cold-beam-plasma system. The open tri-
angles represent the computer solutions when

space charge is not included. The experimental
results agree well with the calculations including
space charge but disagree with the calculations
not including space charge. Our computer studies
have shown that in the latter case the electrons

near the edge of the potential well can easily de-
celerate towards the center of the well. In the
former case the motion of the electrons toward
the center is slowed down. These electrons are
more susceptible to detrapping and many of them
become runaway electrons.

The wave enhancement can be increased by in-
creasing the input rf drive level. In Fig. 4 we
plot the scaled secular growth rate versus the
scaled applied field strength for four different
values of input rf drive level. The solid symbols
are the experimental results and the open sym-
bols are the corresponding results of the simula-
tion. The data labeled SAT correspond to an rf
drive level near the saturation amplitude. The
data labeled SAT —2.6, SAT —13, and SAT —26
correspond to launched levels 2. 6, 13, and 26 dB
below the SAT drive level. The solid lines are
drawn in only to aid the eye in following the trend
of the data points. In Fig. 5 we show a case of
over 10 dB of enhanced growth. The wave has
been launched near saturation. The ordinate is
linear in power. The dashed curve indicates the
saturation power level, P, . Finally, we note
that the application of the static electric field in-
creases the efficiency of the TWT. In the ab-
sense of a static electric field, the amplifier ef-
ficiency is given by P, /I, V, and for the values of
Fig. 5 is 19.2~i~. In the presence of the static
field, the amplifier efficiency is P/[I, (V, + V„)
+P,], and for the Fig. 5 values is 37.5%.

In conclusion, we have observed the effect of a
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FIG. 3. Scaled secular growth rate vs applied static
field. Ed, is scaled to the wave field at saturation, E~
= 0.685 V/cm. The wave power, P, is scaled to the
saturation power, I', = 0.775 mW. The axial distance,
z, is scaled to the linear e-folding distance, z&= 11.3
cm. &0 = 42.6 V, Io

= 0.10 mA, and f= 60.0 MHz.

FIG. 4. Scaled secular growth rate vs scaled applied
static field for various input rf drive levels. Open sym-
bols are the simulation results and solid symbols are
the experimental results. Except for the value of in-
put rf drive level (see text), all parameters are the
same as i. n Fig. 3.
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hancement of launched large-amplitude waves
has been observed.
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FIG. 5. Wave power (linear scale) vs axial distance.
The launched wave amplitude is near the saturation
level which is marked by the dashed line. Vp= 55 ~ 7 V,
Io= 0.50 mA, f= 45.0 MHz, Edc = 1.88 U/cm, and I',
= 5.36 mW. The applied static voltage Vz = 506 V.

static electric field on beam trapping in a TWT.
For weak fields the wave power can be enhanced
while for stronger fields beam detrapping occurs
and the enhancement diminishes. Space charge
can play an important role in causing the beam
to be detrapped. The wave enhancement has been
found to be strongly dependent on the rf input
drive level. In particular, appreciable wave en-
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Enhancement of the energy loss of 1-MeV deuterons in target-ablation plasmas over
that in cold targets has been observed when signficant ionization is present in the plasma.
Scaling of enhanced stopping with target ionization is consistent with stopping by free
electrons and the remaining bound electrons. Measured energy losses for Mylar and

aluminum targets are also in agreement with hydrocode calculations.

PACS numbers: 52.40.Mj, 29.70.Gn, 52.50.Gj, 52.70.Nc

Inertial confinement fusion (IC F) with ion-beam
drivers requires high-power-density deposition
of ion energy in fusion targets. The beam power
density is proportional to the current density fo-
cused onto the pellet target and to the stopping
power of the beam-heated target material. Cal-

culations' ' indicate that at the ionization levels
of ICF pellet plasmas, the ion stopping power is
enhanced such that the ion range is about half of

that in a cold target. In this paper, measure-
ments of the energy loss of megaelectronvolt deu-
terons in plasmas formed by focusing the beam

Qc 1982 The American Physical Society 549


