Viasov theory of electrostatic modes in a finite length electron column
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A Vlasov theory of low-frequency electrostatic modes in a finite length electron column is
presented. The column is assumed to have cylindrical symmetry and flat end surfaces at which the
electrons undergo specular reflection. The eigenfrequencies and the eigenfunctions are obtained
asaseries expansion in the small parameter R /L (where R isacharacteristic radiusand L the half-
length). In zeroth order, the modes are simply the modes for an infinitely long column with axial
wavenumbers quantized as k = n7/L. In first order, these modes are weakly coupled. This means
that a & = 0 diocotron mode can share in the Landau damping of higher £ modes. For certain
values of the plasma parameters, two zero-order modes are degenerate and the coupling is strong.

I. INTRODUCTION

Experiments have been performed recently on low-fre-
quency electrostatic modes in a warm pure electron plasma
column of finite length.! For these modes, we present a Vla-
sov theory which includes the bounce motion of the elec-
trons and a self-consistent treatment of the mode structure
on the finite length column. A fluid theory of these modes
has been published previously.?

The theory is applicable to both plasma modes and di-
ocotron modes,> but attention is focused on the k =0 di-
ocotron modes, especially the / = 1, k£ = 0 diocotron mode
(I = azimuthal mode number, k = axial wavenumber). For
an infinitely long column this mode is undamped.* The rea-
son is that the resonant radius 7, [defined by v — lw, (r,) = 0,
where w,(7) is the E X B rotation frequency of the column] is
equal to the radius R of the conducting cylindrical wall
which bounds the confinement region and the plasma den-
sity is zero at that radius. For the /> 1, £k = 0 diocotron
modes, the resonance radius 7, is less than R, but the mode is
still undamped if the radial density profile falls to zero at a
radius less than ;. One of the main points of this paper is that
these modes can be damped in a finite length column. They
couple to k #0 plasma modes and share in their Landau
damping.

The confinement geometry used in the experiments is
shown in Fig. 1. The plasma resides inside a conducting cy-
lindrical tube adjoined on either side by a coaxial cylindrical
section. The outer sections are given a strong negative bias

— AV which serves to confine the plasma axially. A strong
magnetic field B directed along the common axis of the three
cylindrical sections provides the radial confining force on
the plasma.
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FIG. 1. Plasma confinement geometry.
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We model the plasma column as a right circular cylin-
der of radius a and of length 2L (see Fig. 2). In other words,
the radial density profile is assumed to be rectangular and
the column ends to be flat. The main features of our results
are insensitive to slight modification of this geometry {e.g.,
slight rounding of the rectangular radial density profile},
provided the resonant radius remains outside the plasma.

We choose the ordering of the relevant parameters to be
in accord with the experiments.' The plasma radius, the ra-
dius of the conducting cylindrical wall and the column
length are ordered as a S R<2L. The plasma frequency is
much smaller than the cyclotron frequency (i.e., , <w.),
which in turn implies that the EXB rotation frequency,

w, =cE,/Br =0l /20,, (1)

is small compared to the plasma frequency. The modes un-
der discussion have frequencies in the range of the rotation
frequency. The inequality @, €w, implies that the Larmor
radius is much smaller than the Debye length, and the Debye
length is smaller than the plasma radius (i.e., 7, €Ap <a).
Under these conditions, the electron dynamics may be
described by the drift-kinetic equation. The electron motion
consists of EX B drift across the magnetic field and stream-
ing along the field with specular reflection at the ends of the
column. The modes are simultaneous solutions of the linear-
ized drift-kinetic equation and Poisson’s equation, subject to
the boundary condition that the mode potential vanish at
r=Randatz = + «.Notethat as regards the mode poten-
tial, we are treating the three cylindrical sections as one con-
tinuous grounded conductor. To justify this procedure, we
note that potential differences between the sections are asso-
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FIG. 2. Model for the wave theory.
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ciated with the inability of the currents in the leads to keep
pace with the oscillating potential (finite capacitance effects,
etc.). However, for the / > 0 modes we consider in this paper,
the ¢ angular dependence assures that the total charge in-
duced on the inside of any one cylindrical section is zero and
hence there are no currents flowing in the leads. Thus the
potential perturbation at the walls of all three sections due to
the modes is zero.

The solution for the modes is obtained as a perturbation
expansion in the small parameter R /L. In the lowest order in
this parameter, the modes are just the modes of an infinitely
long column, but with axial wavenumbers quantized in mul-
tiples of 7/L. In the next order, these modes are coupled to
each other (i.e., the modes do not have a single axial wave-
number k = nw/L, but have other Fourier components
mixed in). As mentioned above, this has the consequence of
enabling modes to share their damping properties. For ex-
ample, the k = 0 diocotron mode which normally exhibits
no damping can be damped because of its coupling with the
Landau damped k #0 plasma modes. For certain values of
the plasma parameters (v,, @, a, R, and L ), this normally
weak coupling between the k& = 0 diocotron mode and a
k #0 plasma mode increases rapidly to order unity. The
modes can then be regarded as degenerate and the damping
of both modes can be significant.

The paper is organized in the following way. In Sec. II,
we use the basic equations to obtain a matrix equation for the
eigenfrequencies and the eigenfunctions. In Sec. III we solve
the matrix equation for the £ = 0 diocotron mode and dis-
cuss the corrections to the eigenfrequency and the eigenfunc-
tion due to the finite length of the column. We find that the
correction to the real part of the frequency occurs in order
R /L, while the correction to the imaginary part occurs in
order (R /L ). In Sec. IV, the degeneracy of the modes is
discussed. Modes other than the & = 0 diocotron mode are
discussed in Sec. V.

I1. THE DISPERSION EQUATION
The drift-kinetic equation is given by

I VoxB o U, edpd_
ot B? ox, dz m 9z dv

where f(x,v,t ) is the electron distribution function and @(x,? )
is the electric potential; x refers to the spatial variables (r,0,z)
and v to the z component of the electron velocity. This equa-
tion must be solved simultaneously with Poisson’s equation

0,

Vip=4me| f(x,v)dv, (3)
subject to the boundary conditions on the potential.

To discuss the eigenmodes of the system, we linearize
Eqgs. (2) and (3). Since f, and ¢, have no azimuthal depen-
dence, modes of different azimuthal numbers / can be con-
sidered separately. Assuming the azimuthal dependence ¢®
for the perturbed quantities, we obtain

af, | . af, e dp, df; e ilp, df,
D yilofi+vZ= L %P1 Po € Up Yo
ot S dz m dz v + mo, r dr

(4)
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and
19 dp, I? Fo,
2 9.,9h ! 2L — 4gren,, 5
rarr or rztpl_i_az2 e B)
where
n=| filxp)dv. (6)

We assume an asymptotic time dependence e ~ " for @,, f;,
and n, and solve Eqgs. (4)—{6) for the eigenfrequencies @ and
the eigenfunctions ¢,. We shall use the usual method of inte-
gration along unperturbed orbits for the solutions. The un-
perturbed electron drift motion perpendicular to the mag-
netic field consists of uniform rotation (with angular velocity
«,) at a constant distance from the axis of the cylinder. The
unperturbed axial motion is modeled as a uniform motion
with specular reflections at theendsz= + L.

The unpertubed system is mirror symmetric about the
plane z = 0, and this fact together with the assumption that
folv)is an even function of v enables us to consider modes odd
and even in z separately. Confining ourselves to even modes
[i.e.,, modes such that ¢,( — z) = @,(2)], we expand the mode
potential in region ii in terms of a complete set of basis func-
tions involving Bessel functions and cosine functions

o0 00

@ilrz) = z

m=1n=

A (K ricos 222, (7)
() L

where K, is the solution of /;(K,, R ) = 0. In region iii, @, is
expanded in terms of the solutions of Laplace equation
which vanish at 7y = Rand at z = oo:

@ii(12) = ZBmJI(KIm rie K, (8)

We shall not consider ¢, (7,z) since @, (r.z) = @,; (r, — 2).
The continuity of @, across z =L along with the
orthogonality relation for Bessel functions yields

B,e Mt =3(—1)4,,. (9)

Thus the determination of the coefficients 4,,, implies the
determination of B,, and hence of the complete wave poten-
tial. The second matching condition at z = L is the contin-
uity of dp,/dz. Using Eq. (9), this can be expressed as

S
- ) Y.L o) Y M (T
We now consider the problem of an infinitely long col-
umn® in which @;, which is an even function of z, has been
periodically continued to + wo[@,(2nL + z) = @,(2),
n= + 1,42, ..] and in which the electrons can stream
without restriction along the z axis. If we now impose the
restriction that dg,/0z|, (= d¢,/3z|,, , 1._) in this prob-
lem should have the value (10), it is easy to see that our new
problem is exactly equivalent to the original problem in
which the electrons were specularly reflected at z= + L.
The restriction on dg,/dz can be most conveniently effected
by introducing the surface charge densities
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L ( S K di(Kin?) z (— 1)",4,,,,,)

e —
X 2 Slz—(2n+ 1)L ], (11)
sothatnziw
| _dp| __,0m
dz L, 9z L 0z L.

= 2EKImJI(KImr)Z( - l)nAmn .

Having noted the equivalency of the two problems, we
shall proceed to solve the simpler infinite length problem.
Since the unperturbed electron motion now consists just of
uniform rotation (EXB drift) with angular velocity », and
of uniform axial motion with velocity v and since ¢, is a
superposition of plane waves propagating in z, integration of
Eq. (4}is straightforward. For an unperturbed distribution of
the form

Jolr,v) = n(rig(v)
=al — 2~ V2exp( — v2/207) (12)

(U is the unit step function), we obtain

A ZAanI(Klmr)

Ulr —a)]2#v

Slrzp) =

X( (nw/L )aldg/dv) — (I /re,)dn/drig
2 — nmv/L

Xeimrz/L + (n_> _ ’1)), (13)

where 2 = w — lw,. Note that in the present infinite length
problem f; is not a function of z.

The perturbed charge density produced by ¢, is given
by [ff, dv, where the velocity integration is performed over
the appropriate Landau contours. Since g is an even function
of v, the two terms in the large parentheses of Eq. (13) contri-
bute equally to the velocity integral. This perturbed charge
density along with the surface charge density (11) is inserted
into Poisson’s equation (5). Using the orthogonality proper-
ties of the Bessel functions and the cosine functions, we ob-

taino—[ 2 (M_)]

+ZAmn( Jwrer,(K,mr)J;(sz 7

%+ 1 (KImR )Amn

(nr/L g/ do)
XJ_ wdv {2 — (nw/L)v
« g
+ 2o Kl Kl | i)
12 0 Pn) g, R R Jis 1 (KmR)
L
XY(—1),,. 4

We can rewrite Eq. (14) in matrix notation as
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M,+B —B B -\ [Ay
__ZB M1+ZB —Z.B had Al
ma = =0,

2B —~2B  M,+2B - [A4,

(15)

where A,’s are column vectors whose components are
4,); = J,,,M s and B are infinite matrices whose compo-

nents are
nmr \? 2w,
+( L )N’}5”+ 2 P

o, 1 a)f,) , 0
+(_n—ﬂ""_2a" 7 Z(vz(m/L)) (16}

M), = [K%.-N,

and
B, =(K,/L)N$,;, (17)
where
N, =(R?*/2J?, (K;R), (18)
a; = fr dr J, (K, (K, )
’ (19)

Bij = Jl(Klia)Jl(KIja)’
and Z is the plasma dispersion function.® In writing the
expression (16) for (M, ), we have made use of the Maxwel-
lian nature of g [see Eq. (12)].

The solution of Eq. (15} provides the eigenfrequencies @
and the corresponding eigenvectors «. Since these =’s deter-
mine the potential wavefunctions completely via Egs. (7}-(9),
we shall often refer to the 2’s themselves as the wavefunc-
tions.

Itl. SOLUTION OF THE MATRIX EQUATION

The matrices Bare of order R /L smaller than the matri-
ces M, . With this in mind we develop a series solution to Eq.
(15) in which R /L is the smallness parameter. In the order
(R /L )°, the matrix - is block diagonal and Eq. (15) can be
factored as

M, (™49 =0 (n=01,.) (20)
For each n, there are an infinite number of eigenfrequencies
0%, 0%, ©%, ... and eigenvectors 4 %, 49,49, ... . These
are just the frequencies and the wavefunctions correspond-
ing to the various radial modes {with an axial wavenumber
nm/L )in an infinitely long column. We note that in practice,
taking a z dependence ~ ™" and solving the radial eigen-
value problem embodied in Eqs. (4}6) is a more direct and
more accurate way of obtaining these solutions than solving
Eq. (20). The various values of w plotted versus nw/L form
the various branches of the dispersion curve.” The frequen-
cies @' lie on the “diocotron branch,” while the frequencies

®'9, lie on the “mth plasma branch” m= +1, +2, ..}
For n = 0, all the plasma branches converge tow = lw,, and
s0 w = lw, is an eigenfrequency with infinite degeneracy.
The diocotron branch, on the other hand, stops at

o =wp=0,[l—1+@/R)]. (21)
Figure 3 shows the qualitative behavior of the first few
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FIG. 3. Qualitative behavior of the first few branches of the / = 1 dispersion
curve for a cold infinitely long plasma column. The dispersion curve for
I> 1is qualitatively similar if the frequencies are shifted down by (/ — 1)w,.
The dots are the solutions of Eq. (20} and represent D, modes and P,,,
modes corresponding to axial wavenumbers k = nw/L.

branches in the limit v = 0. For 7#0, the frequencies on all
the branches develop imaginary components (increasing
monotonically from zero as n7/L is increased) which repre-
sent Landau damping.

The various modes on a finite length electron plasma
column reduce, in order (R /L )°, to the solutions of Eq. (20).
This provides us a basis for nomenclature. We shall refer to
the mode corresponding to the solution »'% as the D, mode.
The mode corresponding to the solution &, (m= + 1,

2,...) will be referred to as the P,,, mode. In the rest of this
section, we shall concentrate on the D, mode, i.e., the mode
whose lowest-order frequency is @) = @, and calculate the
corrections introduced for the frequency and the wavefunc-
tion due to the finite length of the plasma column.

For the D, mode, the expansions (in powers of R /L ) for
the frequency @ and the wavefunction « = (4, 4,, ...) take
the form

0 =0Y=0)+ 0" +0? + .., (22a)
Ap=AP(=AP)+ AP+ 47 + ., (22b)
A, o=AD 44D 4 . (22c)

In writing Eq. (22c¢), we have assumed that M, ,(w')) is not
close to being singular so that we can set 4 , =0. We
consider the special case of M, _ ,(w},) being singular in Sec.
Iv.

In orders (R /L )" and (R /L ), Eq. (15) yields

Moo+ 0" ¥ 401 49 =0, 23)
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and
dM,
(1) My
o d0©

dM, 1 d*M,
+( (2)d «;))_'_7(‘0(1))2 i (0);2)A

+ 30

n=0

respectively, where 4! , is determined by

MU 8 + o U 41

1)"BA ' =0, (24)

1) +2A 0+ M, (0OM ) =0
(25)

(Mod ©)7 = 0. Us-
(1),

(—~1)”ZBA{§”+ZBZ(—
p=1

Since M) is symmetric, (4 )M, =
ing this result, Eq. (23) can at once be solved for o
(4 0hTp4q @

(A4 ) (dMo/d )4 P
From Eq. (16) and Eq. (20}, we have

dM,

Mgyl
=T dffﬁf" (49,
_ U, = [Mo(zi(é(’)'))] l—iw-K,,N By 4o
¥ - W,
=0 la 2K NG (27)

(A9, canbe obtamed by solving Eq. (20). However, we shall

evaluate it using the well-known radial dependence of the

n = 0 diocotron wave function:
l

Pl = [( /) (!

ra,

a<r<R.
(28)

2[)/(aZI_R 2[)]’

09 T T T T T T T T T T

fyla/R)

0 0.1 0.2 03 04 05 06 07 08 09 1.0
a/R

FIG. 4. Plotof fi(a/R ) vsa/R for I = 1,2, 3. The solid curves are from Eq.
(30). The dotted lines indicate qualitatively the corrections due to second-

order terms (see Appendix). The corrections are significant only for a/
RS |02y/0,|.
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Substituting this function in Eq. (7) yields
Sordr 9 J,(Kyr)
SordrJ{K,r)

_ 2la’ 2 J,(Ka) (29)
—(a/R )21 R Kh i+ 11KuR)

From Egs. (26), (27), (29), and (17), we obtain an explicit
expression for o'";

g, =

a
o = o) = (o, — o)

( 3, [J%(Klia)/(Klf )BJZ+ (KR )] ) (30)
3, [JHKya)/(Kpa T2, (KiR)] )

We note that »'" is real and is independent of the tempera-
ture. Also, it depends linearly on the ratio a/L. The depen-
denceofoona/Risviaw, { =w, [l — 1+ (a/R)*]} and
via the dimensionless expression within the large parenthe-
ses which we shall designate f;{a/R ). A plot of f; vs a/R is
presented in Fig. 4 for the cases / = 1, 2, and 3 (solid lines).

The expression for " given by Eq. (30) is strictly true
only if a/R is greater than w, /w,. For smaller values of a/R,
we shall show in the Appendix that the last term in Eq. {24)
which is an infinite sum of terms each of order (R /L ), adds

|

o? =

— (49 {0 dMy/do M ) + Yo P[4 My/d (@OP 14 + BZ2 o —

up to asum of order R /L and hence has to be included in Eq.
(23). However, since we are already working in the limit
w,/w, €1, this correction to w'” can generally be ignored.

The correction 4§ to the eigenvector can also be ob-
tained from Eq. (23). Since M,(»'”) is a real symmetric ma-
trix, its eigenvalues A, are all real and the corresponding real
eigenvectors X; form a complete set. Since the eigenvector
corresponding to the nondegenerate eigenvalue 4, =0 is
X, =AY, we find from Eq. (23) that

© (Oh (1}
A = — Z(X,T (dMO/d‘"/{ o +8 X,)X,.. (31)
i=2 i

!

We note that 4 )’ is real since all the quantities on the right-
hand side of Eq. (31) are real. We also note that the compo-
nent of 4 ) in the direction of 4 {” is not determined by Eq.
(23). Imposition of a normalization condition of A, however,
allows us to set this component equal to zero.

We shall now evaluate the imaginary part of the fre-
quency w,, caused by the finite length of the column. This
imaginary part arises from the coupling of the n = 0 dioco-
tron mode to the various n#0 components which are Lan-
dau-damped. The diocotron mode can be envisioned as shar-
ing in this Landau-damping. To obtain the damping rate of
the D, mode, we inspect the solution of Eq. (24) for o

v} (32)

(4 ) (dMo/de A P

o', and B are all real, we immediately obtain

Since 49, 4 %), M,(w®),
_ADBIm Sy (— 1Ay
(4 (dMy/de )4 D

Imo® =

Using Eqgs. (A4), (A7), (27), (29), and (33), we finally obtain, in the limit 1> (/w,

Debye length),

lo, — A
Imo® = — (lw, —a)D)< Or 79D 1y e )—D—
@, lo, —w,/ L

32 )1/2 Z‘E [a JI(KI,G)J,(KIJU)/NNKIIKIJ]

(33)

—wp)/w,»An/L (where A, =V/w, is the

(34)
a

(1721)[1 — (@/R "]

The term in large brackets is just a function of a/R and /. We denote it by F,(a/R ) and display its dependence on a/R in Fig. 5

for the cases I = 1, 2, and 3.

Finally, we investigate the behavior of the D, wavefunction in region ii for A, /R 1. In the order (R /L )°, the wavefunc-

tion @

(r.z) = 3,4 9J,{K,, 1) is independent of z and has a radial dependence shown in Eq. (28). The first-order corrections

AV to the wavefunction are determined by Eq. (25). We shall consider a/R~1 in which case the middle term in Eq. (25) is

small by order R /L and thus can be ignored. Keeping just the leading term in the expansion of M ,~

! (see Appendix), we obtain

from Eqgs. (7) and (25) the first-order correction part of the D, wavefunction

— 1)+ 'cos(nmz/L)

@ Vrz)~ I"'NA‘O’JK r ) (35
irz)e 2 1K )Z K2.N, + (n1/L)’N,, —IN, (@2 /TP)Z'[2/V2nm/L 7] )
where {2, = ,, — lw,. In the limit of small A, /R, this expression can be approximated by
“‘(r,z)~zA O J (K, )( 2, cos(2y/w,)K,,,z KAy cosh(z/Ap) ) (36)
w, sin(2y/w,)K,,L sinh(L /Ap)

The first term on the right-hand side represents the tempera-
ture-independent correction to the wave function intro-
duced by the finite length of the column. The second term
(which is significant only for points within a few Debye
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|
lengths from the ends of the column) depends on tempera-

ture through A.
Ignoring the temperature-dependent second term of

Eq. (36), we find for the wavefunction g, ( = #{’ + @}),
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FIG. 5. Plot of Fj(a/R})vsa/R for1=1,2, 3.

Op;; Ip;;
— | ~—YA4YK, J (K, N~—1|, (37
€.z aZ L ; mofimv| ( 1 ) aZ L ( )
which is just the cold plasma boundary condition at z=L
for the z component of the wave electric field. In obtaining
Eq. (37) we have used Eqgs. {8) and (9) and the relation
€. =1—-w/05~—w}/07. (38)
Since |€,, |» 1, dp;; /dz~D atz = L for the cold plasma wave-
function.
Including the temperature-dependent correction in @,

we find that it provides the dominant contribution to dg, /dz
at z = L. We then obtain

Ip;;

~— %K, A% K, r~—>| , 39
aZ L ; Im<“* mo l( lmr) (92 ( )

L
i.e., the z component of the wave electric field is continuous
acrossz= L.

Thus the overall picture of the wavefunction that
emerges is the following. Over most of the column, the wave-
function is well approximated by the cold plasma wavefunc-
tion. Its radial structure is very close to that of the k = 0
diocotron wavefunction, and as a function of z it is slightly
concave enabling it to satisfy the cold plasma boundary con-
dition (37) at z = L. Equation (37) implies a discontinuity in
dp/dz and hence a surface charge layer at z = L. Since the
plasma is warm this charge layer is actually spread over a
width ~A,, and the wavefunction bends over in the region
L — Ap Sz <L to join smoothly with i -

In our model, the electrons are all reflected at the plane
z = L. A more realistic model, one in which the region of
reflection has a finite width ~Ap, will not qualitatively
change the behavior of the wavefunction described above. It
should be pointed out that a real plasma presents the added
complexity that the end surface is not flat but is rounded
with a shape that depends on the confining potential, the
plasma density and the geometry of the system.”

IV. DEGENERACY

In writing Eqs. (22), we assumed that M, _,(w!%)) was
not close to being singular; this enabled us to-set 49, = 0.

>
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We now consider the case in which a solution &2, of the
equation | M, (w)| = 0 is very near wlJ) (m is negative as is
clear from Fig. 3). Then the D, mode will be degenerate with
the P, mode. In the zeroth order, the vector « is now of the
forma=(4,=4(),4,=0,4,=0,..,4,=ad9, 4,,
=0, ...), where a is a number of order unity.

Assuming |0f) — o |<0f), we set © =0 + o
and Taylor-expand My(w) and M, (w). Ignoring quadratic
and higher-order terms in the expansion, we obtain the equa-
tions for 4, and 4, [see Eq. (15)].

[Mo(wl) + (@5 — of) + o")dMy/dol)) + B |
XA +46)+(—VBladl) +44) =0,
(40)
(—1J2BAG) +48)
+ [M. (o)) + 0 (dM,/de) + 2B |
X[ad) +40) =0
Proceeding as before, we obtain
(A6 B[AG) +(—10ad
UM/,
m)'B[(— 1745 + a4 )]

[
ald )" (dM,/do)A ),
Equation (41) can be regarded as a quadratic in & and can be
readily solved for the two values of @ and the corresponding
pair of frequencies . The degeneracy is strong when
|@| ~O(1) and is weak when |a|—0 or —w. Using the
fact that (4 %)) (dM,/daf)AS) ~(AQ)T(dM,/dw® )4 ©,
~1/w,, it can be easily shown that |a|~0(1) only if |0,
— )| <,(R /L ). Defining the width of degeneracy dw as
4w = ,(R /L)~ |a"V|, we find that in order to have strong
degeneracy between the P,,, mode and the D, mode, o',

% must satisfy

o — by < Ao~ [0, (42)

()
sm

(©)

w(l)z _(wsm —wg)})

24

(41)

The frequencies »!9 are complex because of Landau
0)

damping. For values close to wf), %, is given by

@, sma

Re 0l ~lw, — - —, (43)
Ji+1,im) L
®,a 4
L Vi]1+ 1,|m| VU
Xexp[ — (@,a/VZ,, 1 m 0] (44)

Since Im ), increases monotonically with s, there is a

threshold value of s above which the inequality (42) cannot
be satisfied and hence there can be no degeneracy between
the D, mode and the P,,, mode. Also, for a given P,,, mode,
there is a threshold temperature above which it cannot be
degenerate with the D, mode. Both these thresholds are en-
compassed in the following necessary condition for strong
degeneracy between the P,,, mode and the D, mode:

e b b g |
jI+l,|m|AD 2 j1+1,|m|/{D

@, R .
S :]l+ 1,|m]* (45)

@,
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For example, for w,/w, = 1072, /=1, and a/R = 1/2, the
P, _, mode can be degenerate with the D, mode only if A,
% 15a. It should be noted that even if the inequality (45) is
satisfied, one must still have the real part of %, close enough
to wZ to satisfy (42). This can be achieved by tuning one of
the plasma parameters, most conveniently .. From the ex-
pressions (43) for »?, and (21) for @y, one finds that Re o)),

= ! when

&zij’*“_"\':‘__[;[l_(_a_)u], (46)

o, 2 sm a R

When there is no degeneracy, the damping rate of the
n = 0 diocotron mode is extremely weak, being of order (R /
L)Ap/L)of [see Eq. (34)]. In the presence of degeneracy,
however, the damping rate can be much higher. In fact, Eqs.
(41) and (42) suggest that Im w' can become as large as
Re w'~(R /L )o'°. This effect provides a clear signature for
degeneracy in an experiment. If one locked a receiver to the
diocotron frequency v and continuously varied @, one
would see an undamped wave showing sudden damping as
o, crossed the degeneracy value given by Eq. (46).

V.OTHER MODES

The present theory can be applied to the n 50 modes in
a straightforward manner. As mentioned in Sec. III, the
zero-order solutions © and 4 % are complex. The first-or-
der correction »!" is also, in general, complex. Whether this
correction produced by the finite length of the column tends
to stabilize or destabilize the zero-order mode depends on
the particular situation considered.

The only modes we have not considered are the n =0
plasma modes. For these egregious modes, w), =low,
(m= 41, +2,..)and all the particles are resonant with
these modes; the modes seem to be intrinsically nonlinear.
Furthermore, they are infinitely degenerate. These difficul-
ties cannot be handled by the present theory.
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APPENDIX: EVALUATIONOF Im 22_, ( — 1)"AY"
1. Evaluation of =7_,( — 1)"4

We shall evaluate the sum S=322_,(—1y4!)
terms M, , B, and A Y. This result is used in obtaining the
expression (34) for Im »'”. We shall also show that S, which
is normally of order (R /L ), turns out to be of order (R /L )°
when a/R—0. In this limit, the term B Z( — 1)"4 (! should be
transferred from the second-order equation (24) to the first-
order equation (23). As a result, the expression (26) for &' is
modified for very small values of a/R.

From Eq. (25), it follows that
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25 M BAP+2S MBS (— 1p4Y)
n=1 n=1 p=1
+ S(—1rav—o,
or "
S (= 1Al = —(1+2§:M,f‘(w‘°’)B>_l
n=1 n=1
X2 3 M (@)BA. (A1)

n=1
We shall first evaluate the second term inside the large par-
entheses to see under what conditions it can be ignored in
comparison with the first. In doing so we shall ignore ther-
mal effects as being small. Then, the ijth element of the ma-
trix M, is given by

= [sin (22

nir \? (z)‘z, 2w,

(L)a”gg+noﬂ”’ (A2
where a;;, B, and N, are defined by Egs. (19) and (18), re-
spectively; also, 2, = ©'” — lw,. As a—0, the off-diagonal
elements of M, go to zero. With this in mind, we shall ex-
pand M, ' in powers of the nondiagonal elements. In the
lowest order, M [ ! is given by

(M, l)ij = 6ij/(Mn Ji-

Substituting (M, ), from Eq. (A2), we sum over n to obtain®

S,
_5[ coth[ ( AN, + (2o, /2N, )]
2 —(@2/2%)a;

21 /2 2 1727 —1
[(K,,N 4 2 /3) (N,._&_aﬁ>
2, 73

1 | (A3
 2[K2N, + (2lo,/008,]
In the limit a—0, (M '),—6,[L /2K, N; + O(1)]. For
w2/Qi>N,/a,;~R?*/d’, M6 {O[(L/ZK,,N)
[(ﬂo/w )R /a)}}. Similar conclusions hold in higher or-
ders of the expansion. Thus we see that fora—0,22 M " 'B
—I,butfora/R> |2y/w,|,2 2 M, 'B is small in compari-
son with 7 and can be ignored. In the limit a—0, ( — 1’4
— — 34 ¥, and the normally second-order (in R /L ) quantity
B =(— 1)"4" happens to be a first-order quantity. This ne-
cessitates the shifting of the term from the second-order
equation (24) to the first-order equation (23). As a result, the
value of »” in the limit @—0 is half the value given by Eq.
(26). As a/R increases beyond |£2o/w, |, the magnitude of
B 3( — 1)"4 Y rapidly drops off, and w approaches the value
given by Eq. (26). The modified plots of f;(a/R ) [see Eq. (30]]
represented qualitatively by the dashed lines in Fig. 4 agree
with results previously obtained.’
Excluding very small values of a/R, we can replace the
large parentheses in Eq. (A1) with the identity matrix /. Thus
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we have

S(—1Al= —23 M ()B4 (A4)
n=1 n=1
Since B and 4 are known real quantities, the imaginary
part of the left-hand side [which determines Im »'® through
Eq. (33)]) is known if Im = M | '(0'?) is known.

2. Evaluation of Im =7_, M,, '(»'®)

The value of Im M ! is determined by the value of
Im Z’, and Im Z’ vanishes rapidly when its argument in-
creases beyond unity. Thus, in evaluating Im 3, M ' we
can restrict ourselves to n 2 (£2,|L /v2#7D. For 7—0, the fol-
lowing approximation is valid in this regime:

(M,); = (n7/Ly’N,5,; — 5aij(w§/v2)Z’. (A5)
Using the identity
JUK W (K1)
Sr—ry=ry —m—m————,
( ) 2 N,
it can be easily shown that
L\ 94, L /nmfZ’ a;
MYy = (L) ST
nr/ N, 2nnv/Lo,) —Z' NN,
(A6)
Thus we have
213 Phys. Fluids, Vol. 27, No. 1, January 1984

m S MY,

n=1
i 2 ()2 ()
=1 =)z —
NN, " n;l( nw V2(nsw/L o

nr U \? £ -t
X L o, B Z '( T )] ’
[( L o ) V2\nn/L o
In the limit |2o/a, | (>5/La, )0,

Im 3 (MY,
n=1
a; L? 27 Ao | 2y 1,1(‘&
NN, 7 4 Lo, w,

where A, = U/w,, is the Debye length.
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