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This paper briefly describes waves and instabilities in a multispecies nonneutral plasma that have
previously been studied only in neutral plasmas: ion sound waves, drift waves, and ion temperature
gradient waves. The theory of their dispersion relations and growth rates is similar to that for neutral
plasmas, but results differ in several important respects. For instance, drift waves are not necessarily
unstable, the instabilities generally do not cause plasma loss, and they can be controlled �e.g., turned
on or off� by manipulation of density and temperature profiles using standard experimental
techniques such as centrifugal separation and laser cooling/heating. This should allow precise
experimental studies of instability growth and saturation. © 2010 American Institute of Physics.
�doi:10.1063/1.3518765�

I. INTRODUCTION

In this paper we discuss how several electrostatic waves
that have previously been studied only in neutral plasmas can
also occur in multispecies nonneutral plasmas, focusing in
particular on plasmas for which all species have the same
sign of charge. Among these waves are ion sound waves,
drift waves, and ion temperature �ITG� gradient waves. The
occurrence of these waves does not rely on neutrality of the
plasma, but rather on the coexistence of at least two species,
at least one of which responds to the wave in a nearly adia-
batic fashion, Debye-shielding the disturbance; the others
well-approximated by fluid equations. This typically �but not
necessarily� requires a large mass ratio between the species,
but has nothing to do with the sign of the charge. Thus,
nonneutral plasmas can exhibit phenomena of importance in
neutral plasma studies such as drift wave or ITG instabilities.

While multispecies dispersion relations for nonneutral
plasmas have been derived previously,1 ion sound waves,
drift waves, and ITG waves have not been explicitly consid-
ered. We will derive the dispersion relations for these waves
in a nonneutral plasma, discussing differences when com-
pared to waves in a neutral plasma, and show that certain
drift wave instabilities can be controlled �turned on and off�
in such a way as to allow careful studies of their growth and
resulting transport.

Early studies of drift waves in quasineutral Q machine
plasmas also controlled stability through a combination of
stabilizing influences such as ion viscosity and/or Landau
damping, and finite Larmor radius effects; and destabilizing
influences such as parallel current and centrifugal force due
to E�B rotation.2–5 More recent studies of ITG modes have
observed instability onset through variation of temperature
and density gradients.6 In this paper we argue that multispe-
cies nonneutral plasmas provide another plasma system
where such waves can be carefully studied, in a fully trapped
plasma �disconnected from sources and sinks at the plasma
ends�, over a wide range of parameters from low temperature
highly collisional �even strongly coupled� plasmas to plas-
mas with dimensionless parameters similar to those in fusion
plasmas. Strong E�B rotation of nonneutral plasmas also

allows study of the effect of E�B shear on instability and
transport.

To illustrate some of these ideas, consider a cylindrical
nonneutral plasma column consisting of two species with
charge q�, mass m�, density n��r�, and temperature T��r�,
where � is a species label i or e �i.e., ion or electron�. Note
that e does not necessarily refer to electrons; it really refers
to a species with nearly adiabatic response to perturbations.
This could be a light ion or a positron rather than an electron.
Also all species are assumed to have the same sign of charge,
so i and e could refer to an H− ion and electron, or a Mg+ ion
and a positron, for example.

The unneutralized density gives rise to an equilibrium
potential �0�r� that in turn causes a drift rotation of particles
at rate ���r� where

���r� = �E�r� − �E
2 /�� + O� 1

B4� , �1�

�E =
c

Br

��0

�r
�2�

is the E�B rotation frequency, ��=q�B /m�c is the �signed�
cyclotron frequency,7,8 and finite Larmor-radius �FLR� cor-
rections have been neglected. The second term in Eq. �1� is
the polarization drift due to centrifugal force �also sometimes
referred to as the centrifugal drift�. Equation �1� assumes
�E /���1, a good approximation in most nonneutral �and
magnetic fusion� plasma experiments. The centrifugal drift is
usually neglected in studies of waves in nonneutral plasmas,
but we will show it can have an important influence on drift
wave instability.

Electrostatic waves on the plasma column produce po-
tential perturbations of the form ��=���r�eikzz+i�	−i�t. We
focus our attention here on waves that satisfy

4kzv̄i 
 � − ��i � kzv̄e, �3�

where v̄�=�T� /m� is the thermal speed of species �; this is
the usual regime of weakly Landau-damped �or growing�
low frequency electrostatic waves.9 However, in nonneutral
plasmas the general features of these waves differ in some
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important respects from their neutral plasma counterparts, so
it is worthwhile to re-examine some elements of the basic
theory of the waves.

When Eq. �3� is satisfied the perturbed electron density
�ne is nearly adiabatic,

�ne = −
qe��

Te
ne�1 + i�� , �4�

where � represents the small out-of-phase nonadiabatic re-
sponse due to either collisions or electron Landau damping/
growth. On the other hand, Eq. �3� implies that ion dynamics
can be approximated by fluid theory. The linearized fluid
equations are

��ni

�t
+ �i

��ni

�	
+ �vr

�ni

�r
+ ni � · �v = 0, �5a�

��v

�t
+ �v · ���ir	̂� + �i

��v

�	

= −
qi

mi
� �� −

1

mini
� �ni�T + �niTi� + �v � ẑ�i,

�5b�

��T

�t
+ �i

��T

�	
+ �vr

�Ti

�r
+ �� − 1�Ti � · �v = 0, �5c�

where � is the ratio of specific heats, and we have neglected
ion collisions and assumed an adiabatic equation of state. For
our purposes it is sufficient to solve Eq. �5b� for �v in the
drift approximation, keeping drift terms only in the cold fluid
approximation but keeping warm-fluid corrections to the par-
allel motion. This results in

�vz =
qi

mi��
kz�� +

kz

mini��
�ni�T + Ti�ni� , �6�

where ��=�−��i is the Doppler-shifted frequency, and

�v� =
c

B
�−

i�

r
��r̂ +

���

�r
	̂� + �vp + O� 1

B3� , �7�

where the perturbed ion polarization drift �vp is

�vp = −
c

B�i
		̂
��

�

r
�� + 2�i

���

�r
�

− ir̂
��
���

�r
+

�

r
�2�i + r

��i

�r
����� . �8�

We will see that in nonneutral plasmas far from the Brillouin
limit these polarization terms can be neglected along with
other O�1 /B2� terms associated with FLR effects, as opposed
to neutral plasmas where such terms can play an important
role in drift instability.

Next we solve Eq. �5c� for �T, dropping the polarization
terms for simplicity. This results in

�T = Ti�� − 1�
kz�vz

��
−

�c

Br��
��

�Ti

�r
. �9�

Substituting Eqs. �7�–�9� into Eq. �5a� yields the ion density
response

�ni

ni
=

qikz
2

mi���2 − �kz
2v̄i

2�
�1 −

��Ti

��
��� −

��Di

��

qi��

Ti

+
c

B�ini

 ���

�r
+

�

r��
�2�i + r

��i

�r
���� �ni

�r

+
c

B�i

��

2 �� +
�

r��
�r

�2�i

�r2 + 3
��i

�r
���� , �10�

where

�T�
=

c

q�Br

�T�

�r
�11�

and

�D�
=

cT�

q�Brn�

�n�

�r
�12�

are gradient �diamagnetic� drift rotation rates.
For simplicity we have dropped warm-fluid corrections

to the drift terms in Eq. �10�, keeping them to O�kz
2v̄i

2 /��2� in
the first term describing the density response due to parallel
electric fields �so as to capture ion sound wave and ITG
dynamics�. Even with these simplifications, the O�1 /B2� po-
larization drift terms are rather complicated, but are domi-
nated by the polarization density term c /B�i��

2 �� when
transverse wavelengths are sufficiently short. In what follows
we will keep only this term, eventually showing that for
nonneutral plasmas far from the Brillouin limit it too can be
dropped. Thus, we will see that the only polarization term
that is important in such plasmas is the centrifugal drift cor-
rection to the equilibrium ion rotation frequency, given in
Eq. �1�.

Poisson’s equation, �2��=−4
�qi�ni+qe�ne�, closes the
system of equations. We first consider the “local” approxi-
mation where we replace �2 by −k2 �Ref. 9, p. 425�. The
resulting dispersion relation is

��3 = cs
2kz

2��� − ��Ti
� � − ���� +

i���

1 + k2�e
2 + k�

2 �s
2�

����2 − �kz
2v̄i

2� , �13�

where cs
2=c�

2 / �1+k2�e
2+k�

2 �s
2�+�v̄i

2 is the ion sound speed,
c�=�Teqi

2ni /miqe
2ne, �Ti

� =�Ti / �1+ ��v̄i
2 /c�

2��1+k2�e
2+k�

2 �s
2��,

�s=c� /�i, �e=�Te /4
qe
2ne, and ��=�Diqi

2niTe / �qe
2neTi�1

+k2�e
2+k�

2 �s
2�� is the drift wave phase speed. The k2�e

2 term
arises from �2��, while the k�

2 �s
2 term arises from the polar-

ization density.
Ion sound wave dispersion is obtained by neglecting

�Ti, �, and ��, yielding ��=kzcs. Note that cs is the usual
neutral plasma expression for the ion sound speed when
qini= �qene, but differs when qini� �qene. Condition �3�
that the waves are weakly Landau-damped becomes �assum-
ing k2�e

2+k�
2 �s

2�1�,
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16 

Teqi

2ni

Tiqe
2ne

+ � �
Temi

Time
. �14�

In a neutral plasma with 
qi
= 
qe
 and ni=ne, Eq. �14� can
only be satisfied if Te� �16−��Ti. However, in a nonneutral
plasma Eq. �14� can be satisfied �and hence weakly Landau-
damped waves can propagate�, even if Te=Ti, provided
qi

2ni� �16−��qe
2ne and mi /me�16.

Ion temperature gradient modes are also described by
Eq. �13�. The simplest version of the ITG dispersion relation
neglects �� and � �assuming large �Ti

� �,10 in which case the
resulting cubic equation for � is ��3=cs

2kz
2���−��Ti

� �, a
modified ion sound wave dispersion. The ��Ti

� term arises
from the �vr�Ti /�r term in Eq. �5b�, which describes tem-
perature variations due to radial E�B convection of fluid
elements in the presence of a temperature gradient. A solu-
tion of the cubic dispersion relation implies unstable waves
exist if

�2�Ti
�2 �

4

27
cs

2kz
2, �15�

provided that Eq. �3� is also satisfied, so that ion and electron
Landau damping is negligible. Inequality �15� can be rewrit-
ten as

kzr �
3�3

2

�i

LTi

v̄i

cs
�1 − �

v̄i
2

cs
2 , �16�

where LTi�Ti��Ti /�r�−1 is the ion temperature gradient scale
length and �i is the ion cyclotron radius. At the maximum
value of kz for instability, cskzmax

=3�3��Ti
� /2, Eq. �13� im-

plies ��=3��Ti
� /2. Combining these values with the lower

inequality in Eq. �3� implies cs / v̄i�4�3, and applying this to
Eq. �16� implies

kzr 

�3�48 − ��

32
�

�i

LTi
. �17�

This can be satisfied in a sufficiently long plasma column.
For example, in an H+-positron plasma with Ti=10 eV,
r=LTi

=1 cm, �=3, and kz=
 /L �the longest wavelength
mode�, instability occurs for �L�270 cm�B /1 Tesla�. A
more detailed analysis of frequency and stability of ITG
modes in a nonneutral plasma will be considered in future
work.

Drift waves are also described by Eq. �13�. The elemen-
tary drift wave solution is found by assuming that �Ti=0 and
kzcs /���1, implying

�� = − ��� −
i���

1 + k2�e
2 + k�

2 �s
2 . �18�

The condition 4kzv̄i
�� for weak Landau damping on
the ions leads to a condition on kz for drift waves similar to
that for ITG modes,

kzr 

1

4

Te

Ti

qi
2ni

qe
2ne

��i

Lni
/�1 + k2�e

2 + k�
2 �s

2� , �19�

where Lni
−1=ni��ni /�r�−1 is the ion density gradient scale

length. Like ITG modes, this condition can be met in a suf-

ficiently long plasma column, or sufficiently large �, and also
becomes easier to meet when ne /ni�1.

Drift waves in nonneutral plasmas can either be stable or
unstable depending on the equilibrium density and electron
temperature profiles. For example, in a collisionless drift
wave the out-of-phase electron response is9

� =�


2

� − ���E + �De − �Te/2�

kzv̄e


, �20�

assuming the “electrons” are light enough to neglect polar-
ization drift and FLR effects, so that the drift-kinetic ap-
proximation is valid. Then according to Eq. �18� the local
growth rate �local is given by

�local =�


2

�2��

1 + k2�e
2 + k�

2 �s
2

��i − �� − �E − �De + �Te/2�

kz
v̄e

.

�21�

When the plasma is in a state of confined thermal
equilibrium,7 this local growth rate is negative, as required
by stability of thermal equilibrium states. This can be seen
by noting that the thermal equilibrium state is defined by
�T�=0 �no temperature gradient� and �i+�Di=�E+�De

=�F=const., where �F is the fluid rotation rate of the plasma
including the diamagnetic drift. �Here we have employed a
drift approximation for �F, neglecting some relatively small
terms of order O��i

2 /Lnir� associated with the centrifugal
drift caused by the diamagnetic rotation.� Writing �local in
terms of �F, using ��= ��F−�i�qi

2niTe / �qe
2neTi�1+k2�e

2

+k�
2 �s

2�� yields the negative-definite expression

�local = −�


2

qi
2niTe

qe
2neTi

�2��i − �F�2


kz
v̄e�1 + k2�e
2 + k�

2 �s
2�2

��1 +
qi

2niTe/qe
2neTi

1 + k2�e
2 + k�

2 �s
2� , �22�

consistent with the fact that drift waves must be stable in a
thermal equilibrium nonneutral plasma.

However, when the plasma is not in thermal equilibrium,
the drift waves can be unstable. In general, Eq. �21� can be
expressed as

�local =�


2
� qi

qe
2

c

Br

Te

ne
�2 �2


kz
v̄e�1 + k2�e
2 + k�

2 �s
2�2

�ni

�r

�
−
qe

qi

�ne

�r
−

1

1 + k2�e
2 + k�

2 �s
2

�ni

�r
+

qene

2qiTe

�Te

�r

−
miqe

2

qi
2 ner

�E
2

Te
� . �23�

The four terms in the square bracket arise, respectively, from
electron and ion diamagnetic drifts, the electron thermal dia-
magnetic drift, and the ion centrifugal drift. Only the second
term is always stabilizing; the other three terms contribute to
instability respectively when
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�ni

�r

�ne

�r
� 0,

�ni

�r

�Te

�r
� 0, and

�ni

�r
� 0. �24�

As is usual for drift waves, the most unstable modes will be
those for which k����2 /r2+kr

2 is large and kz is small �but
nonzero�. However, in nonneutral plasmas far from the Bril-
louin limit, �e

2��s
2 or �i

2 so Eq. �23� implies that the maximal
growth rate will be for k��e�1, not k��i�1. This implies
that FLR effects and the polarization density term are not
important for drift waves in such a nonneutral plasma, as
opposed to neutral plasmas where typically �e

2��s
2, �i

2. Thus,
the only important O�1 /B2� term in Eq. �23� is the centrifu-
gal term, the fourth term in the square bracket. It dominates
over the other 1 /B2 terms that were dropped, provided
�e

2 /rLn�1. Also, in a neutral plasma qe�ne /�r+qi�ni /�r
�0, implying partial cancellation between the first two terms
in the square bracket �for long wavelengths�. This near can-
cellation does not generally occur in nonneutral plasmas.

In experiments it should be possible to manipulate the
nonneutral plasma temperature and density profiles to turn
the drift wave instability on and off at will. For example, if
one starts with a plasma in thermal equilibrium, the drift
wave is stable. If this equilibrium is at sufficiently low tem-
perature so that

mi�F
2rp

2

2
� T , �25�

where rp is the plasma radius, then the ions will be centrifu-
gally separated from the electrons, forming a hollow ring
around the electron density.7,8 At the interface between the
species is a region where �ne /�r�ni /�r�0, but this unstable
term in the drift wave growth rate is balanced by the second
and fourth terms in the square bracket of Eq. �23� to produce
a stable mode. However, if the plasma is now heated, the
stabilizing influence of the last term is reduced and the inter-
face between the species can become drift-wave-unstable.

An example is shown in Fig. 1. Here an H−-electron �or
H+-positron� plasma at room temperature, T=300 K, is con-

fined in thermal equilibrium with a central electron density
of 5�107 cm−3 and a radius of about 1.3 cm. These density
profiles were obtained by solving the coupled Poisson–
Boltzmann equations for two charge species in cylindrical
geometry, Eqs. �6�–�8� of Ref. 8. At a magnetic field of
0.5 Tesla, the ions are centrifugally separated due to the
roughly 106 rad /s rotation frequency of the plasma.

If the temperature were now raised to 1 eV, Eq. �25�
would no longer be satisfied and the electron and ion densi-
ties would relax to a new thermal equilibrium state where the
ions and electrons are more uniformly mixed �the second set
of density profiles in Fig. 1�.7 The T=1 eV profiles were
found by determining the thermal equilibrium state with the
same particle numbers and total canonical angular momen-
tum as the T=300 K equilibrium �assuming that the tem-
perature was raised without adding particles or torquing on
the plasma�.

The relaxation of the density profiles toward a
T=1 eV thermal equilibrium state can occur either via col-
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3 )

r (cm)
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ni

FIG. 1. �Color online� Electron �dashed� and ion �solid� densities in an
H−−e plasma in thermal equilibrium for two temperatures, T=300 K �thick
lines� or T=1 eV �thin lines�, and assuming B=0.5T. When T is raised from
300 K to 1 eV the interface between species in the T=300 K profile be-
comes drift-wave-unstable.
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FIG. 2. �Color online� Three unstable drift wave eigenmodes for the plasma
densities shown in Fig. 1 �with thick lines�, taking T=1 eV and B=0.5T, for
�=2 and nr=1, 2, and 3. Modes are found by solving Eq. �26�. Dashed lines
are the imaginary part and solid lines are the real part.
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FIG. 3. �Color online� Real and imaginary parts of the drift wave frequency
for the same plasma as in Fig. 2 vs azimuthal mode number �, for radial
mode number nr=1. Here, ��=�−��i�r� is plotted at r=0.5 cm, so as to
subtract out the large rotational Doppler shift in the mode frequency. At
r=0.5 cm, �i�r�=9.24�105 s−1.
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lisional processes or instability. Here, we note that the cen-
trifugally separated density profiles in Fig. 1, which were
stable thermal equilibrium profiles at T=300 K, become
drift-wave-unstable when T is raised to 1 eV. This can be
seen by computing drift wave eigenmodes numerically using
the shooting method to solve

��
2 �� =

��

�e
2 �1 + i�� +

4
qi�c

Br

�ni/�r

� − ��i�r�
�� , �26�

with � given by Eq. �20�. This simplified drift wave equation
follows from Eqs. �4� and �10�, dropping the polarization
drift terms and assuming kzv̄i /���1 in order to simplify the
ion response. Some representative eigenfunctions are shown
in Fig. 2. The modes are radially localized to the interfacial
region between species by the effect of electron Debye-
shielding. This shielding effect vanishes as ne�r�→0, so the
mode potential is nonzero outside the plasma and could be
picked up using probes or wall patches. Frequencies and
growth rates are displayed in Fig. 3 for several modes, as-
suming kz=
 /100 cm. All these modes satisfy Eq. �3�.

The local approximation, Eq. �18�, provides qualitatively
similar results to the numerical solution of Eq. �26�. For
instance, Eq. �18� predicts a maximum in �� when
��r /�e, as observed in Fig. 3 if one takes r /�de�3–5 to be
the rough location of the eigenmode. Also, as expected from
the expression for the local growth rate, modes with larger �
and lower radial mode number nr grow more rapidly, up to
��5.

These unstable modes would be expected to rapidly satu-
rate and produce transport that leads to mixing of the ions
and electrons, driving the plasma toward the T=1 eV ther-
mal equilibrium state shown in Fig. 1. In the absence of such
turbulence, this mixing takes a rather long time: for the pa-

rameters of the example, the collisional electron-ion diffu-
sion coefficient is roughly D�10−3 cm2 /s, so it would take
many seconds for the density profiles to collisionally
relax.11–13 One would expect the drift wave turbulence to
greatly enhance this relaxation rate. Cooling the plasma back
to 300 K would then return the ions to the plasma periphery,
through either collisional relaxation or another instability,
and the experiment could be performed again. This would
allow repeatable and reproducible measurements of drift in-
stability and transport in a confined plasma column.

These results suggest a second experiment, where for the
previous thermal equilibrium density profiles at T=300 K
and B=0.5T, the temperature is increased starting from 300
K until the drift modes begin to go unstable. In Fig. 4 we
display the predicted stability diagram for modes with
nr=1, which are the most unstable modes, according to Eq.
�26�. The least stable mode has �=9 and goes unstable at a
temperature of T=1055 K.

In conclusion, we have briefly described how nonneutral
plasmas consisting of two or more species can exhibit ion
sound waves, drift waves, and ion temperature gradient
waves, provided that certain conditions are met. We observed
that weakly Landau-damped ion sound waves can propagate
in a collisionless nonneutral plasma even if Te=Ti, provided
that qi

2ni /qe
2ne�16−� and mi /me�16. We also briefly ex-

amined conditions under which drift and ITG waves can ex-
hibit instability, demonstrating how such conditions could be
met in current nonneutral plasma experiments. This could
allow study of ITG and drift wave instabilities and the
resulting anomalous transport under carefully controlled
conditions.
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