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Correlation energies of simple bounded Coulomb lattices
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The lattice structure of bounded Coulomb systems is explored using a simple zero-temperature
slab model. For slabs above a certain size in6nite-volume behavior (i.e., a bcc lattice) occurs. Below
this size surface e6'ects dominate and the lattice type depends on the size, usually taking on an fcc-
like symmetry. This state is similar to the lattice observed in recent computer simulations. These
results have implications for experiments now underway.

In recent experiments, ' a collection of N ions (where
N-10 —10 ) are trapped and cooled to very low temper-
atures. The density no and temperature T of this cloud of
ions are such that the correlation parameter I
=e /awskT is much larger than unity, i.e., the ions are
strongly correlated (here aws is the Wigner-Seitz radius
given by —', tra wsno = 1).

The regime of strong correlation has been studied ex-
tensively for an infinite homogeneous collection of ions.
For instance, computer simulations of such systems pre-
dict a phase transition to a body-centered-cubic (bcc)
crystal at I =178. However, in the experiments the
number of ions is sufficiently small that surface effects be-
come important. In order to study these effects, a series
of computer simulations modeling the trapped ions were
performed. The simulations show that the correlation
properties are strongly affected by the boundedness of the
cloud: at sufficiently large I the ions form concentric
spheroidal shells whose symmetry is determined by the
symmetry of the confining quadratic trap potential. Such
shells have been seen in the experiments. On each shell,
the simulations predict an imperfect two-dimensional
(2D) hexagonal lattice. However, one would expect that
for X sufficiently large a bcc lattice would form, perhaps
in the center of the cloud, far from the boundaries.

This paper considers in more detail how the bounded-
ness of the ion system affects the lattice structure, and an
estimate is obtained for the minimum system size re-
quired before infinite-volume behavior is achieved.
Several other relations are also derived, including the
scaling of the number of shells as a function of the cloud
size and shape, and the approximate spacing between
shells.

In order to make theoretical progress, we focus here on
the structure of the minimum energy (T =0) equilibrium
state, and we consider a model which neglects the effects
of the shell curvature but still incorporates the effects of
boundedness. The model consists of a collection of ions
trapped in planar geometry in a 1D quadratic well of the
form mao, z /2 where m is the ion mass and co, is the os-
cillation frequency in the well. This system is therefore
infinite and homogeneous in the x-y plane but bounded in

the z direction. This model allows us to make predictions
concerning the spacing and lattice structure of shells in
large clouds where shell curvature is small compared to
aws (However, shell curvature is an important element
of the actual ion systems, so this model should be regard-
ed as a simple first approximation).

Symmetry implies that the equilibria consist of a series
of 2D lattice planes oriented parallel to the x-y plane.
The number of planes P is determined for large P to be
proportional to the total number of ions per unit x-y area,
o. Sufficiently far from the surface planes, the lattice
planes are evenly spaced, setting up a 3D lattice in the
bulk. As o.~~, P~ ~ so the system becomes homo-
geneous in z and, as is well known, the lattice with
minimum energy has bcc symmetry. However, for finite
P, surface effects are important; ion-ion correlations in
the z direction are disrupted by the finite system size, and
bcc symmetry is not necessarily minimum energy.

The effect of the surface on the structure of the T =0
state can be understood by considering the potential ener-

gy per ion of the system of stacked 2D lattice planes.
The energy eN per ion may be written as
e4=e4z+E„„where e4v is the "Vlasov" energy per
ion of a uniform slab of charge in the quadratic well and
E„„is the correlation energy per ion. The Vlasov ener-

gy is

e&bz=[Lcr/(4ao) o /24—]4tre /ao,
where o =oao and ao =(4n.e /leo, )' —. (In order to
keep 4z finite we have assumed that the system is cen-
tered between conductors at z =kL. ) Note that if corre-
lations are neglected, a uniform density slab is an equilib-
rium since the quadratic well has the same confining
effect as a uniform neutralizing background charge of
density no =a 0 . The ions therefore match their density
to this background charge out to a value of z, set by o.,
where the supply of ions is exhausted. The correlation
energy E, „is the additional energy due to the fact that
the system is not uniform but is made up of separate lat-
tice planes.

An analysis of the potential energy for a system of P
2D lattice planes yields the following expression for E„„:
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where A„» = ~aXb~ is the area of the primitive cell. The
positions (X„.. . , X ) are the positions of basis ions
from which all other ion positions may be obtained
through translations of the form n a+ m b. Thus each
value of X;=(X,, Y;,Z;) determines a 2D lattice plane
through Z, ~ In order to simplify the analysis we have fo-
cused on equilibria for which the 2D lattice symmetry is
the same in each plane. The positions Z; of the lattice
planes may be found by consideration of electrostatic
force balance; we find that Z, =Z,' '+5Z; where

Z,' '/ao= —[(P+1)/2+t]ao/A„„

is the 2D Madelung energy associated with the interac-
tion of an ion with its 2D lattice images. The sum over k
is a sum over the reciprocal-lattice vectors for the 2D lat-
tice, given in terms of the 2D primitive lattice vectors a
and b by

k =2mz X (n a+ mb)/A „„

gives evenly spaced planes a distance D—:a p /3, ]
=o ao/P apart, and where 5Z; is given by

5Z, =—g g sgn(Z, —
Z~ )e

ij k(WO)
I +J

Xcosk (X;—Xj) . (2)

E~orr =Eb +2E~ /P (3)

where E& is the bulk energy per ion in the infinite lattice,
obtained by setting 5Z, =0:

The terms in Eq. (1) have simple physical interpreta-
tions. The first term represents the difference between
the Vlasov energy of a uniform density slab and that of a
series of P sheets of uniform charge evenly spaced by dis-
tances D. The third term gives the correction due to
nonuniformity of the spacing between the planes; Eq. (2)
shows that this nonuniformity is a surface effect due to
correlations between ions on different lattice planes
(5Z~0 in the bulk). The last term is due to correlations
between ions in a given plane, while the second term is
due to correlations between different planes.

It is instructive to rearrange Eq. (1), writing

cc —kDi 4 ' UM
(4)

and the remaining energy gives the contribution due to
the surfaces. The "surface energy" E, is positive for
stable lattices and is independent of P for given D and
sufficiently large P; the factor of 2 arises because there are
two surfaces in the system.

The bcc lattice has the lowest value of Eb
(Eb„=—0. 895 929 3e /aws) and so for P~ cc this is the
equilibrium symmetry. However, other lattices, such as
the face-centered-cubic (fcc) and hexagonal-close-packed
(hcp) lattices, have values of Eb which are very close to
the bcc value, so only slight differences in E, are required
in order to change the minimum energy symmetry. We
will therefore be interested in equilibria which lead to
these symmetric lattices in the bulk.

To determine the equilibria it is first instructive to
make a simple approximation, first put forward by Tot-
suji and Barrat for cylindrical systems, which gives some
insight into the form of the minimum energy solutions.
The approximation involves keeping the correlation ener-
gy UM of an ion with its 2D lattice, and neglecting the
other sum over k which represents interplane ion-ion
correlations. The planes are then spaced evenly with
Z, =Z"', and

E„„=crier e /(6P ao)+ UM/2 .

5Ecarr =0=
BP

—mo. eo'' e+
3P 4P ap

Thus the value of P which minimizes E„„will be the in-

teger closest to the minimum at P;„=(4~ 3/cz) o.. The
minimum possible value for E„„is then, in this approxi-
mation, given by

E,«r= —3(3a /4~) e /(8aws),
where the Wigner-Seitz radius aws is related to ap by
aws/ao =(3/4')'

Now, it is well-known that the lattice with the max-
imum cx value is the 2D hexagonal lattice, with
+=3.921. Thus, by neglecting the interplane ion-ion
correlations we find that the minimum energy
configuration is a series of P evenly spaced 2D hexagonal
lattice planes, where P is approximately P;„=1.045o.

I

Now, in general, U~ can be written as UM= —ae /A, 'g,
where n is some dimensionless constant depending only
on the lattice type (i.e. , the angle between a and b and the
ratio of their lengths).

Since o /P =a 0/A„&~ we can extremize E„,„with
respect to P:
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and D/ao =o./P;„=0.956.
Note that interplane ion-ion correlations are disrupted

in the ion clouds studied in the experiments because there
are only a few shells, and also finite shell curvature im-
pedes formation of a commensurate" lattice from shell
to shell. It is not surprising, therefore, that a 2D hexago-
nal lattice is seen in the shells (however, a more realistic
model including finite T and curvature must be employed
to fully explain the simulations). Furthermore, for rela-
tively large clouds (N ) 10 ) the curvature of the shells is
small compared to the intershell spacing, so the planar
model for the shells is a useful approximation (although it
does break down near the cloud center). The model pre-
dicts the spacing between shells to be approximately con-
stant, given by D. This is observed in simulations and ex-
periments. Such clouds are approximately ellipsoidal,
with density no =ao so N =4mR Z/(3ao) where R and
Z are radial and axial extents of the cloud, respectively.
The approximate number of shells S as a function of X is
thus

S= (3NR /4vrZ)' ao /D

for prolate clouds and

$=(3NZ /4mR )' ao/D

for oblate clouds.
Unfortunately, the simple model put forward above

fails in an important way. It is well known that as P~ ~
the equilibrium structure is a bcc lattice. There is no
transition to a bcc lattice in the above model because in-
terplane ion-ion correlations have been neglected. In or-
der to improve the model we now attempt to take these
correlations into account.

Rather than attempt a full solution of this complex
problem, we minimize E„„for a few interesting cases.
We consider the equilibria obtained from values of a, b,
and (X, , Y, ) given in Table I, as a function of D. [Symme-
try implies that these values of (X;,Y;) are equilibrium
positions. ] These configurations are chosen because for
certain values of D they correspond to bcc, fcc, or hcp
lattices in the bulk, which all have low values of Eb. The
bcc lattices are of particular interest since bcc symmetry
is the correct result as P~ ~. Lattices constructed from
2D hexagonal planes (entries 5, 6, and 7 of Table I) are
also of interest since for P =1 this 2D lattice is the equi-
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FIG. 1. Absolute value of 5Z; for various simple lattices.
Plane 1 is the surface, and P))1 is assumed, so the other sur-
face does not interfere. (Lines connect points as an aid to the
eye. )

librium symmetry.
The correlation energy for these lattices is found using

Eq. (1), for given a, b, (X;, Y;), P, and D/ao. The dis-
tance between lattice planes can be found by solving Eq.
(2) for 5Z;, which is easily solved iteratively; solutions are
displayed in Fig. I for some cases. Sufficiently far from
the surface, HZ~0 so a 3D lattice is set up in the bulk.
A plot of E„„asa function of D/ao for various values of
P is shown in Fig. 2 for the case of lattices given by en-
tries 5 and 6. A general feature of the curves is that for
large P minima occur at various values of D (labeled
D—:D„) corresponding to particularly symmetric bulk
lattices. For instance, the minima in Fig. 2, at
D„/a0=2 /&3 and D„/a0=2 i /&3, correspond
to bulk fcc and bcc lattices, respectively, in which the
(111)lattice planes are oriented parallel to the surface [re-
ferred to here as fcc (111)and bcc (111) lattices]. Values
of Eb and E, at D points are given in Table I. Figure 2
shows that as P +00 the bcc (111)lat—tice has lowest ener-
gy (as expected), but even for quite large values of P, the
fcc (111) lattice dominates. This is because the fcc (111)
lattice has much smaller surface energy than the bcc

TABLE I. Correlation energies of bounded Coulomb lattices.

(X;, Y,-)

(1,0)
(1,0)
(1,0)

(1,0)
(1,0)
(1,0)
(1,0)

(arb. units)

(0, 1)

(0,1)

( ~, 1/&2)
(0,~Z)

(-,', &3/2)
( .~3/2)
( .~3/2)

( —,', 0)
( ~, 1/&2)i
(0, 1/&3)i
(0, 1/&3)i

(0,0), i even

(0, 1/&3)i, i odd

D /ao

0.6300
0.7937
0.8909
0.5612
0.3637
0.9165
0.9165

Lattice type

bcc (001)
fcc (001)
bcc (110)
fcc (110)
bcc (111)
fcc (111)
hcp

Eb —Eb„(e /a~s)

0
S.S6x 1O-'

0
S.S6x 1O-'

0
S.S6x1O-'
9.11x10-'

E,(e laws)

2.3395 x 10-'
1.0185x 10-'
3.779 x 10-'
3.0370x 10-'
4.6055 x 10-'
2.147 x 10-'
2.112x 10-'
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FIG. 3. E„„vso for the bounded lattices given by a, b, and

(X;, Y; ) of entries 2, 3, and 6 of Table I. For each curve D varies
around the D„value of the lattice shown, and P varies by unity
from cusp to cusp.

FIG. 2. E„„vsD for the bounded lattice given by a, b, and
(X;, Y;) of entries 5 and 6 in Table I. Dashes, P =20; dots,
P = 100; solid line, P = ~.

(111) lattice, since the lattice planes are spaced relatively
far apart, reducing interplane correlations and localizing
the effect of the surface to a few planes (see Fig. 1).

Note that for a given bulk lattice different lattice
planes can be oriented parallel to the surface, giving rise
to different surface energies. There are many such
planes, labeled by various indices (I, m, n), but we consider
only those planes with l, m, n =0 or 1. These are the
most symmetrical cases and so are easiest to treat, and
they also have the lowest surface energies since the planes
are spaced relatively far apart.

The minimum energy state for a given value of o. is
then found using Eq. (3). Consider two bounded lattices,
1 and 2, with different values of D„,D"', and D' ', and
with Eb" & Eb '. For each lattice minimum energy occurs
for P =o /D„. Equation (3) then predicts that lattice 1

has lower energy than lattice 2 for

~ (2(E( )D(&) g )D( ) )/(E( ) E ))

Now, Eb and E, are functions of o. through the variable
D, but for large o., it is a useful approximation to take
D-D„since D =o./P =D . In this case the values of
E, and EI, in Table I may be used in Eqs. (3) and (5),
which then predict that for large o. the lowest energy bcc
lattice is bcc (110),and the lowest energy fcc lattice is fcc
(111). Furthermore, Eq. (5} predicts that this fcc lattice
has lowest energy for cr &50 (i.e., P' "'&57). An im-

proved estimate for this transition is obtained by solving
Eq. (3) exactly for E„„for given o and lattice type. This
shows that the bcc-like symmetry corresponding to bcc
(110}can in fact occur for P' "'& 57 over certain narrow
ranges of o (see Fig. 3). However, for P' "'~ 60 only this
bcc-like structure occurs, in agreement with Eq. (5).

Thus, at T =0, surface contributions to the correlation
energy affect the lattice structure for o. & 50 (or
P' ")&60). Over most of this range a fcc-like lattice
[corresponding to a fcc (111) lattice for particular values
of o.] is minimum energy. This lattice consists of stacked
2D hexagonal planes and so is similar to the distorted lat-
tice seen in simulations. (The state is reminiscent of cer-
tain smectic mesophases observed in liquid crystals
which also consist of stacked 2D hexagonal planes, and in
which interplane correlations are also either weak of
nonexistent. ) Of course, there may be other less symme-
trical configurations, neglected in our simple approach,
which lead to bulk bcc symmetry with lower surface en-
ergy. Furthermore, at finite temperature the entropy of
the configurations is important, and curvature effects
must be considered in order to make contact with the ex-
periments. A more complete study of both slab and
spheroidal equilibria is currently underway.
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