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A perturbation procedure for the construction of a nonlinear diocotron mode of an infinite length
cylindrical pure electron plasma column is presented. The plasma is modeled as a cold fluid
executing EXB drift in a strong axial magnetic field. The mode has no axial variation and
depends on @ (azimuthal angle) and ¢ (time) through the combination & — Q. Thus the potential
and the density are stationary in the frame rotating with angular frequency Q. In this frame, the
potential satisfies the relation V¢ = F(¢) where Fis a function of ¢ only. This equation is solved
perturbatively to determine a nonlinear mode supported by a cylindrically symmetric equilibrium
density profile. The properties of the mode depend only on the offset of the plasma column from
the axis of the bounding conducting cylinder and the frequency of the mode is larger than the
value predicted by linear theory by an amount roughly proportional to the square of the offset.

I. INTRODUCTION

The diocotron mode is a low-frequency drift mode sup-
ported by an electron plasma (more generally, by any non-
neutral plasma) confined by a magnetic field. A simple phys-
ical picture for the mode can be given for the typical electron
plasma confinement geometry'—a cylindrical electron plas-
ma confined by a strong axial magnetic field inside a concen-
tric grounded conducting tube. A state of dynamical equilib-
rium for such an electron column is one of EXB rotation
(right-handed circular motion relative to the magnetic
field) caused by the radial self electric field. A displacement
of the column away from the equilibrium position induces
extra positive charge on the nearest portion of the wall and
the resulting extra electric field causes the displaced column
to EXB drift about the axis in the same direction as the
equilibrium drift but with a lower frequency (Fig. 1). For a
small displacement, this second drift is seen by a stationary
observer as the linear diocotron mode with azimuthal mode
number / = 1 (having a density perturbation ~cos ) mov-
ing counterclockwise along the surface of the plasma col-
umn.

An interesting property of the diocotron mode is that in
a frame rotating counterclockwise along with the equilibri-
um E X B drift, the mode is moving clockwise and as is the
rule in such a situation,” the mode has negative energy. As a
consequence, any process that takes energy out of the mode
causes it to grow.? This characteristic has been used in recent
experiments* to drive the diocotron mode quasistatically to
large amplitudes. The conducting tube surrounding the plas-
ma is split into sections (Fig. 1), which are connected
through a resistance. The diocotron mode loses energy and
thus grows, because the image charges on the wall induced
by the mode generate heat as they traverse the resistor. Typi-
cally, only the diocotron mode with azimuthal mode number
I =11is observed to grow in these experiments. The growth
of the mode can be stopped at any level by shorting the resis-
tance, and the wave persists with a very small damping rate.
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A quasistatic reduction in the wave amplitude can also be
achieved® by inserting a suitable negative effective resistance
between the sections of the tube, i.e., by negative feedback.
The equilibrium density profile seems to remain unchanged
to good accuracy after a cycle of growth and reduction and
the frequency of the mode (i.e., the frequency with which the
perturbed density profile rotates around the axis of the tube)
increases with amplitude.®

In this article, we develop a systematic perturbation the-
ory for the construction of such a nonlinear diocotron mode,
which can be continuously grown from zero amplitude on an
infinite length cylindrical pure electron plasma column hav-
ing a smooth radial equilibrium density profile. The plasma
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FIG. 1. Schematic diagram for the quasistatic growth of the diocotron
mode. Here @, is the angular frequency of the equilibrium EXB rotation
and (Q is the frequency of the diocotron mode with azimuthal mode number
1.

© 1986 American Institute of Physics 2196



density profile is predicted not only to move away from the
axis of the tube, but to also deform with increasing ampli-
tude. Using conservation of the total number of particles, we
also obtain the variation of the mode frequency with ampli-
tude; it is shifted upwards from the value predicted by linear
theory by an amount proportional to the square of the mode
amplitude.

We restrict our theory to diocotron modes that have no
axial variation (k, = 0). The electron plasma is modeled as
a cold dissipationless fluid executing EXB drift (resulting
from E produced by the plasma itself) in a strong axial mag-
netic field. Thus, our basic equations [(1)-(3)] can also
describe two-dimensional incompressible flows in fluid dy-
namics,? in convective cells (in the zero temperature limit)’
and in ideal magnetohydrodynamics (MHD).?

The article is organized as follows. In Sec. II, we review
the conventional linear theory as a benchmark. In Sec. III,
we develop our nonlinear perturbational approach, which
we carry out explicitly up to the third order. Our theory
applies to a “steady-state” diocotron mode for which the
density and the potential depend on time ¢ and azimuthal
angle 8 only through the combination 8 — Q, i.e., the den-
sity and the potential are stationary in a frame rotating with
angular velocity ). In this frame, the potential is found to
satisfy the relation V¢ = F(¢), where F is a function of ¢
only. Our theory determines the function F(¢) for a given
equilibrium density profile and solves this relation in a per-
turbative manner. The first-order solution
[ < cos(8 — Q)] agrees with the conventional linear analy-
sis for the diocotron mode having azimuthal mode number
! = 1. Higher-order terms represent corrections with more
complicated angular dependence, introduced by noninfinite-
simal wave amplitude. In Sec. IV, we obtain the nonlinear
frequency shift by demanding that the total number of parti-
cles be the same with or without the diocotron mode. The
frequency shift is positive and is proportional to the square of
the wave amplitude. In Sec. V, we present numerical solu-
tions calculated for a typical experimental profile.

Ii. LINEAR THEORY

We assume that the electrons can be treated as a cold
dissipationless fluid and that the motion perpendicular to
the magnetic field Bz is just the E X B drift motion resulting
from the self-electric field. The equations governing the two-

dimensional motion of the electrons (with charge = —¢)
are
n L vWn=0, (1)
ot
v= — (¢/B)VDPX2, V=0, 2)
V?® = 4ren, 3)

where, as in the rest of the article, V=V, . Linearizing the
above equations and assuming a dependence e ~ '+ for
the linearized quantities, we obtain, for the continuity equa-
tion
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= —,, 4
dar dr Br ' )
where nj, (r) is the equilibrium radial density profile and
@, (r) is the equilibrium E X B drift frequency of the plasma
column;

@.(r) = —‘_————f rdr ni, (r'). (5)
0

r B B

Combining (4) and the linearized Poisson’s equation yields
the eigenvalue equation

1d, dg Dy 4mecdi 19
rdr dr r Br dr o-—lo,(r)

(6)
with &, satisfying the boundary conditions ¢, =0 at
r = O,R (ignoring the trivial / = 0 case), where R is the radi-
us of the surrounding conducting tube.

For the special case® of / = 1, the only solution of Eq.
(6) for an arbitrary choice of density profile nd, (r) is
D, xrle, (r) — o, (R)] corresponding to the eigenvalue
® = o, (R); from Eq. (5) it is clear that the eigenvalue de-
pends only on the total charge in the system and is indepen-
dent of the structure of the density profile. For />2, there are
no solutions to Eq. (6) unless dnl, /dr = 0 at points where
the resonant denominator vanishes. This is related to the fact
that particles that are at the resonant radius (where
o — lw, = 0) have an EXB drift velocity equal to the azi-
muthal phase velocity of the wave and cause the wave to
damp or grow depending on whether dnl, /dr is negative or
positive, respectively, at the resonant radius. In analogy with
the conventional Landau damping, this process is sometimes
referred to as “spatial Landau damping.””® As with conven-
tional Landau damping, ‘normal modes’ (valid for all times)
of the system do not exist if there is damping. Therefore, if
np, is a monotonically decreasing function of r, vanishing
only at # = R, then dn},, /dr#0 for all r < R and hence the
/>2 normal mode solutions to Eq. (6) do not exist [except,
of course, the trivial kind, ,(7) = 0].

lll. NONLINEAR THEORY

We shall now construct a theory to describe steady-state
nonlinear diocotron waves in an electron column. We as-
sume a realistic model of a monotonically decreasing radial
profile for the equilibrium density n2, (7). The theory is a
perturbation expansion in the wave amplitude and reduces
in the limit to the linear theory described above.

We begin by noting that for a “steady-state’ diocotron
wave, there exists a frame (rotating at an angular frequency,
say £1) in which the flow pattern is independent of time, i.e.,
in which d /9t = 0. We can combine Egs. (1)~(3) in this
frame to obtain

VéX2VV?4 =0
or

VVi$X Vs =0, (7)
where ¢ is the potential measured in the moving frame.
Equation (7) implies that V¢ is a function of ¢:
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V¢ = F(¢). (8)

To determine the functional dependence F and to then solve
Eq. (8), we expand ¢ as

$=¢%(r) + Z Z € (r) cos 16, (9

i=11=

where the superscripts denote the order of perturbation (see

Secs. IIT A and III B) and & = 0 is the axis of symmetry.
Similarly,

a=3 o

i=0

(10)

Since the laboratory frame electric field is given in terms of
the moving frame electric field E by

E,, =E— (v, XB)/c=E — (rQB /c)?,
we have the following relationship between quantities mea-
sured in the laboratory frame and the rotating frame:

b =P =0+ (B /2c)7, (11a)

4men,,, = V., = F($) + (2QB /c). (11b)
In the absence of the wave, nl), is a smooth decreasing func-
tion of r and thus F is a smooth function of the equilibrium
potential #°. Since the mode we have in mind involves a
displacement of the equilibrium profile (with some possible
deformation), we expect F to be a smooth function of ¢ even

when the wave is present. Substituting (9) into (8), and
Taylor expanding F(¢) about ¢ = ¢°, we obtain

V2(¢°(r) + Z Ze}(r) cos 10)

i=1l=

=F[¢°%(n]
1 F“’"(i i e(r) cosl@)

m=1 m i=11=0
with the abbreviation
d"F(¢)
g™ lg=g°
Since ¢ (r = R,0) = const, we must have
€,,(r=R) =0, foralli (14a)
Furthermore, since the angular part of V> in Eq. (12) intro-
duces terms like — /%€ (r)/r*, we must also have
€,,(r=0)=0, foralli (14b)

The / = 0 components €} are not constrained by the condi-
tions (14a) and (14b). Instead, they obey the single condi-
tion

(12)

F™ = (13)

dey (r)
dr l.,-o
which follows immediately from the structure of V2.

To solve Eq. (12) subject to the boundary conditions
(14) and (15), we need to know F(¢°). The determination
of this functional dependence follows from the observation
that in the limit of the wave amplitude going to zero (¢,—0),
Egs. (11a) and (11b) imply

2Q0°B

4]
= &b—ﬁ—’iﬂ, F(4°) = dmeny, — 222,

where nj, (r) and ¢, (r) are the laboratory frame density

=0, foralli, (15)

(16)
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and the electric potential of the equilibrium cylindrically
symmetric electron column. Since n),, (7) is assumed to be a
monotonically decreasing function of r vanishing only at
r=R, F is also a monotonically decreasing function of r.
Also,

d¢0 f dr rF(¢°(r)]

(1]
= _1_(41ref ar rm, (r') — OB rz).
r (o] c

When Q° is determined in the first-order analysis below, we
shall find that the quantity in the large parentheses is posi-
tive. So ¢° is a monotonically increasing function of r and
thus can be inverted to obtain a smooth single-valued func-
tion F(¢°)=F[r(¢°)].

(17)

A. First-order analysis
In the first order, Eq. (12) reads

2
(_1__5; %_17) ) = FOe(r) (1=0,1,2,...). (18)
Since
po_dF _dF/dr _ _ 4medni,/dr
d¢°  d¢®/dr  adl,/dr— (Q°B/c)r’

we see that Eq. (18) is identical to Eq. (6) of the linear
theory with the identification /Q2°—w. As discussed in con-
nection with Eq. (6), Eqgs. (18) for />2 have only trivial
solutions €},, = O for any choice of Q°. On the other hand,
for one particular value (the linear / = 1 diocotron frequen-
cy) of Q°, we can find a nontrivial solution to the / = 1 equa-
tion. To determine this Q°, we note that €; (#) = eR d¢°/dr
is a solution to the / = 1 component of Egs. (18):

0 0 0
lhs = eR (L iri di — i d¢ ) eRi(i ir %)

rdrdrdr 7 dr r\r dr dr
0 (1]
— RIS _ pdFay _ .o
dr d¢° dr

The dimensionless parameter € is the small parameter of our
perturbation theory. Constraints on its value will be ob-
tained in Sec. III B.

The value of Q° for which ¢} = eR d¢°/dr is nontrivial
is obtained by imposing the boundary condition
€! (r = R) =0 together with Eq. (17). This yields

Q° — 44rec

f ar rnd, (r') =, (R). (19)

For a monotomcally decreasing np, (r), the integral
dare §5 dr' r'nd, (7') in the expression (17) for d¢°/dr in-
creases like 7* near the origin but less rapidly near r = R.
Since from Eq. (19) the quadratic Q°Br*/c is equal to the
value of the integral at r = R, it is clearly less than the value
of the integral for 7 < R. Therefore, d¢,/dr>0 (the equality
sign holding at » = O,R ) and hence, as claimed before, ¢°(r)
is a monotonically increasing function of r. Thus, one can
indeed invert ¢°(7) to obtain a smooth single-valued func-
tion r(¢°) and hence a smooth single-valued function
F($)=F[r(4)].

With the choice of 2° given by Eq. (19), we go back to
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the / = 0 component of Eqgs. (18) and solve for ;. Since €,
has only one boundary condition [Eq. (15)], it is deter-
mined only to within an arbitrary multiplicative constant.
This interdeterminacy will be removed in the second-order
analysis.

B. Second-order analysis
The second-order equations are

1 d de (6665 6161)

14.% _pwg  pofff | 1) 20a
; dr dr ot 2 * 4 (202)
%Ed;r_‘_i;__:?e% —FWe L F¢le (20b)
1d de, 4 €l€

4,29 4o _fpog pofifl 20
rdrdr P° * 4 (20)
dé?
%%,_‘17'_%63=F0>é (I=34.).  (20d)

Using the same argument given in the first-order analysis,
we set €7, () = 0. We then turn our attention to the equa-
tion for €2, which can be rewritten as

1 d d 1 n — 2]

(T drrdr—— 7 F )6% =Freoe
The operator in the parentheses is a second-order Sturm—
Liouville operator whose eigenfunctions [satisfying the
boundary conditions (14a) and (14b) ] form a complete set.
From the first-order analysis, we know that €] (7)
= €R d¢°/dr is the eigenfunction of this operator corre-
sponding to the eigenvalue 0. It follows that in order to have
any allowed solution to Eq. (21), the right-hand side of Eq.
(21) must be orthogonal to €], i.e.,

(21)

R
f rdre; (FPeye}) =0. (22)
0

We use this condition to find the multiplicative constant in
€) left undetermined in the first-order analysis. In general, it
is zero and thus we obtain €, (7) = 0. The equation for €} is
then the same as that for €} and without loss of generality we
canset e (r) =

The inhomogeneous terms in the Eqs. (20a) and (20c)
are now completely determined and we can solve for
€ and € subject to the boundary conditions (14) and (15).
Again, since €} is subject to the single boundary condition
(15), it can be determined only to within an arbitrary multi-
ple of the homogeneous equation solution. This indetermin-
acy is removed via an integral constraint in the third-order
analysis.

The validity of our perturbation theory requires that the
second-order quantities € be smaller than the first-order
quantities €'. From Eqgs. (18) and (20),

e F%! dF/dr R
— ~€. ~E—.
e FO F L
where L is the characteristic length of variation of the equi-
librium density profile. Thus, it is really é=¢(R /L) that is
the expansion parameter and we must have

é=¢€(R/L) <], (23)

for our theory to be valid.

’
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C. Third-order analysis

Using previous arguments, we find that
€ (r) = €5,4 (r) = 0. Also €} () is in general restricted to be
zero by a condition analogous to (22) in the fourth-order
analysis. The function €} satisfies the equation

12 1\3
=F(2)(€}e(2) n 5122> +F(3)(%) ) (24)

As before, the right-hand side has to satisfy the orthogona-
lity condition

R 1 3
f rdre! [F(Z)( le ik €2>+F‘3’(2) ] =0,
0

which fixes the multiplicative factor in €5. Not surprisingly,
itis ~O(€?). With the value of €} determined by Eq. (25),
we can solve Eq. (24) for €] . Note that we can restrict € to
be orthogonal to €} without a loss of generality.

The last remaining third-order quantity is €3 (), which
satisfies the equation

_l_irié’ __?__6- F(1)€ F(Z)

6162 (3) 61 3
r dr dr 7 2 3 \2
(26)

The perturbation analysis can be continued along these
lines to any order desired. The general trend should be clear
by now. In the ith order, €}, (#) is uniquely determined, but
€, (r) is determined only to within a multiple of the homo-
geneous equation solution. This indeterminacy is removed
by demanding that the inhomogeneous term in the equation
for €7 ! be orthogonal to €] . Furthermore, without loss of
generality, we restrict €;> ! to be orthogonal to €] .

(25)

IV. FREQUENCY SHIFT

The frequency shift resulting from the nonlinearity is
determined in a perturbation series using the physical re-
quirement that the total number of particles be the same with
and without the wave, i.e.,

2 R R
f dGJ rdrng, (r,6,t) = Zﬁf rdrnd, (r), (27
(4] (]

0

where, from Eq. (12),
4aen,,, (r,6,t) = F[¢(r,0 — Q)] + (2B /c)Q).

We use the expansion (10) for ) and the Taylor expansion
[right-hand side of Eq. (12)] for Fin Eq. (27) and equate
terms of the same order to obtain ' in terms of the integrals
of the known functions €} (). For example, keeping terms up
to the third order, Eq. (27) implies

fR r dr(F‘”e2 + F(Z)el €
4

(o]

+ Bty 03)) -
(4

Therefore, ' = Q3 =0 and
Q — R rdr(FVel + F2€l el /4) (28)
0° Amef8rdrnl, (r) '

There has been some speculation® that the linear diocotron
frequency might remain unchanged in the nonlinear regime.
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FIG. 2. Typical experimental equilibrium density profile modeled by
i, (r) = [1+ exp( —a,)1/{1 + exp(a,”/R? — a,)] with a, =20 and
@, = 3.2 (dotted line). The calculated perturbed density profile for € = 0.07
is plotted along the 6 — Q¢ = 0, 7 axis (solid line).

From (28), it is clear that, in general, there is an amplitude
dependent frequency shift. However, if F? = F® = ... =0
[i.e,if F(¢°) = ap® + B, itfollows from Eq. (12) that €}>
obey the same differential equations (and boundary condi-
tions) as €/ and thus are just multiples of €}. Without loss of
generality, we can set the multiplicative constants to zero.
We also note that the functions € (i = 1,2,...) satisfy the
same equation as (¢° + B /&) and without loss of generality
can be set equal to zero. From the structure of the above
equations for {0/, itis clear that ' = 0> = 0° = ... = 0, and
the frequency shift is zero independent of the amplitude € of
the wave. In fact, the speculation in Ref. 9 was based on an
analysis of this particular choice for F(¢°). A linear depen-
dence on ¢° does not, however, describe a realistic situation
because the corresponding density n,,, (#,6,¢) cannot satisfy
the condition n,,, (r = R,6,¢) = 0 without becoming nega-
tive somewhere within the boundary.

r 3Id
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FIG. 3. Contributions of the first four orders of perturbation to the per-
turbed density profile (Fig. 2) for € = 0.07.
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FIG. 4. The frequency shift 2/Q° — 1 versus A/R, where 0° is the Jinear
diocotron frequency and A is the displacement of the density peak fromaxis
axis of the conducting tube.

V. NUMERICAL RESULTS

We use a two-parameter smooth curve representation
[1+exp(—ay)]/[1 + exp(a,?/R? —a,)]

for n,,, (r). Its profile (with a; = 20, a, = 3.2) displayed in
Fig. 2 as the dotted line, models a typical experimental pro-
file. The calculated perturbed density profile (including
terms up to the third order) along the 8 — Q¢ = 0,7 axis is
shown in Fig. 2 as the solid line for the value € = 0.07 (or
€~0.3). For small values of ¢, the perturbed profile looks
like the equilibrium profile displaced to one side with no
change in shape. With increasing e, the profile tends to get
deformed with a tail appearing on the inner edge. However,
for these values of €, higher-order corrections may have to be
included.

The contributions of the various orders of perturbation
to the density for the case € = 0.07 are displayed in Fig. 3.
The first-order term is sizable compared to the zeroth order
term and the mode is far from being linear. Since é~0.3, the
contribution of each order of perturbation is approximately
one third that of the preceding order.

There is no specific condition in our theory that forces
niy, (1,0 — Q1) to satisfy the physical requirement of being
nonnegative for 0<r<R. However, our numerical solutions
seem to satisfy this requirement very well. Regions of nega-
tive density in a given order of perturbation tend to fill up in
the next higher order (see Fig. 3). We do not, however, have
a mathematical proof that if we sum all orders, the resultant
density is always non-negative.

The nonlinear frequency shift given by Eq. (28) is illus-
trated in Fig. 4 where we have plotted Q/0° — 1 versus
A/R, where Q° is the linear / = 1 diocotron frequency and A
is the experimentally measurable displacement of the density
maximum from the axis of the conducting tube. Since
0 « (€)?, the frequency shift is a quadratic effect in terms of
the wave amplitude. The value of € ranges from 0 to 0.15 in
Fig. 4 and thus the next nonvanishing correction Q* < (€)*is
small.
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VI. SUMMARY

We have developed a perturbative method for treating
the / = 1 nonlinear diocotron mode. The theory is used to
find the nonlinear steady-state dynamic equilibrium that can
be continuously approached from a linear diocotron mode
having azimuthal mode number / = 1. The theory predicts
the density profile as well as the frequency shift for this mode
as a function of amplitude.
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