Thermal equilibrium of a cryogenic magnetized pure electron plasma
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The thermal equilibrium correlation properties of a magnetically confined pure electron plasma
(MCcPEP) are related to those of a one-component plasma (OCP). The N-particle spatial
distribution p, and the Helmholtz free energy Fare evaluated for the McPEP to O(4 % /a?), where
A, is the thermal de Broglie wavelength and a is an interparticle spacing. The electron gyromotion
is allowed to be fully quantized while the guiding center motion is quasiclassical. The distribution
P is shown to be identical to that of a classical OCP with a slightly modified potential. To

O(A 2 /a?) this modification does not affect that part of F that is caused by correlations, as long as
certain requirements concerning the size of the plasma are met. This theory is motivated by a
current series of experiments that involve the cooling of a magnetically confined pure electron

plasma to the cryogenic temperature range.

Recent experiments have involved the confinement of
an unneutralized collection of electrons of sufficient density
to be called a plasma, that is, a pure electron plasma.’ In
contrast to the case of a neutral plasma, a pure electron plas-
ma can be confined by static electric and magnetic fields and
also be in a state of thermal equilibrium.?* The experimen-
tally achieved confinement times (10° sec) are such that
these thermal equilibrium states are very likely realized in
practice.

Since there are negligibly few ions in the confinement
region, recombination cannot occur for the plasma even if it
is cooled to very low temperatures, and temperatures in the
cryogenic range have likely been achieved.* As the plasma
cools, one expects the electrons to become strongly correlat-
ed, to develop the short-range order characteristic of a lig-
uid, and ultimately to experience a phase transition to a solid
state.>® Conditions achieved in recent experiments are such
that the physics of strong correlation should be important.*

This letter presents a theoretical discussion of the elec-
tron—electron correlation properties for such a plasma. In
particular we show that the thermal equilibrium correlation
properties of the magnetically confined pure electron plasma
(MCcPEP) are nearly identical to those of a one-component
plasma (OCP), that is, a plasma consisting of point charges
embedded in a uniform neutralizing charge. This relation is
very useful since the OCP has been the subject of extensive
theoretical and computational research, especially in the
correlated regime I'" = ¢®/akT> 1. Here, T is the tempera-
ture and ¢ is a measure of the distance between electrons,
that is, § ma’n, = 1, where n, is the bulk electron density.

For the case where the electron dynamics can be de-
scribed classically, it has been shown previously’ that the
thermal equilibrium correlation properties of a McPEP are
identical to those of an OCP. However, the temperature and
magnetic field strength of recent experiments are such that
the electron cyclotron motion is quantized (i.e., kT ~#Q,,
where (2, is the electron cyclotron frequency), and the con-
ditions for validity of the classical theorem are not satisfied.

In this letter we use the results of Alastuey and Janco-
vici® to extend the theorem to this quantum regime. Under
the assumptions that A,/a<1 (where A 2=#?/mkT is the
thermal de Broglie wavelength) and #iw,, <kT (where w,,
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= 4are’n,/m is the electron-plasma frequency), Alastuey
and Jancovici derived the Wigner function to O(4 2/a?) for
an OCP. By writing the equilibrium density matrix for the
MCcPEP in a suitable form, we are able to use the results of
their calculation and show that the thermal equilibrium cor-
relation properties of a quantum mechanical McPEP are the
same as those of a classical OCP with a slightly modified
potential energy. The modification can be understood as an
averaging of the potential over the quantum uncertainty in
electron position. The modification does not affect the corre-
lation contribution to the free energy to O(A %/a%), so this
contribution is identical to that of a classical OCP. The free
energy of a classical OCP has been evaluated using Monte
Carlo simulations;*® and the other thermodynamic func-
tions follow from the free energy.

Before presenting the results of the quantum calcula-
tion, we first review the classical theorem. The confinement
geometry for the McPEP is cylindrical with radial confine-
ment of electrons provided by a uniform axial magnetic field
and axial confinement by negatively biased end cylinders.

For a classical system of electrons confined in such a
cylindrically symmetric geometry, the distribution for a ca-
nonical ensemble is of the form

p=Z 'expl —B(H—-wL)], (1)
where
N m
H= z ~2—vf + V(X oy Xyy) )

i=1

is the N-particle Hamiltonian, v; is the jth electron’s veloc-
ity, and

Y, m

L= z (mvojrj —ZQJ}Z) 3)
ji=1

is the canonical angular momentum in cylindrical coordi-

nates (r, 8, z). The function V, is the electrostatic potential

energy, and the vector potential

A =0(m/e)Q,(F/2)
has been used. Relativistic and diamagnetic effects are negli-
gible for the low electron velocities under discussion. The

partition function Z(8, N, @) is determined by normaliza-
tion of p to unity taking into account classically identical
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states, B = (kT) ~!, and w is the frequency of rotation of the
plasma about the z axis. (The fact that p describes rigid rota-
tion about the z axis will become apparent shortly.)

A straightforward rearrangement of terms shows that
we may write the function H; = H — oL, which is the Ha-
miltonian in the rotating frame, as

Hy =23 [ +0+ @y =0r)’] +V, )
J
where
Vv, + ST 0, 0. ®
J

Thus the velocity dependence of p is given by a product of
Maxwellians in a frame rotating with angular velocity o, and
the spatial dependence is determined exclusively by ¥. The
term in V' that is quadratic in ; may be interpreted as being
caused by a hypothetical cylinder of uniform positive
charge, the density of which is

n, =(me/2re?)(Q, — )

(2, > w in the experiment ). The canonical ensemble for the
MCcPEP therefore differs only by rotation from that for elec-
trons confined by a cylinder of positive charge, and the bulk
properties of such a system are those of a classical OCP.

The derivation relies on the fact that neither the magnet-
ic field nor the Coriolis force affect the energy of the system
in the classical limit. This is no longer true in the quantum
regime #iQ), ~ kT, since Landau levels appear with energy
eigenvalues that depend on the magnetic field strength; for
an isolated electron they are given by #Q, (n + 1/2). Elec-
tron spin also plays an important role in the quantum re-
gime, since the spin eigenstates for an isolated electron are
also separated by 7€), . Quantum uncertainty in position af-
fects the interaction energy of the system. For the case of
zero magnetic field, this effect can be visualized as a smear-
ing of an average electron’s charge over a sphere of radius
A4.'° The confining effect of a strong magnetic field reduces
the size of this spatial uncertainty in the plane perpendicular
to the magnetic field. There is a corresponding loss of cer-
tainty in the electron’s perpendicular momentum that may
be thought of as an increase in the effective perpendicular
temperature. The final quantum effect is the exchange force
caused by the antisymmetry of the N-electron wavefunction.
This force is important only if a significant fraction of elec-
trons are in nearly identical states. Alastuey and Jancovici
show that mutual repulsion of electrons makes such configu-
rations highly improbable as long as #iw,,, €k T; the exchange
force is therefore neglected.

In order to construct the quantum thermal equilibrium
distribution for the N-particle system, we follow Alastuey
and Jancovici by defining the Wigner distribution

[ (x,p) = fdswe"'"

X (X —8/2, o,|e"PH-=D|x | 5/2, a.), (6)

where

1§ e (2522

J
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> &,-] + V. @)
is the Hamiltonian operator for the system and
A N i~
7= 3 (b +2 5,) (8)
j=1 2

is the canonical angular momentum operator. Both opera-
tors include spin; &, is the Pauli matrix for the jth particle.
The momentum operators are given in cylindrical coordi-
nates, and the ket |x, o, ) means |X,,..., Xy, 0;;,..., 7x ). This
Wigner function can be written in the form used by Alastuey
and Jancovici by rewriting the operator H — wJ as

Fowl= E{ [ +(pe+(m/2)ﬂr2) +13§,]
7
+ #(Q, —w)&,j] +V, )

where V is defined as in Eq. (5) and @ = Q, — 2w is the
vortex frequency. Although Alastuey and Jancovici dealt
with spinless particles, the addition of spin is trivial since the
kets used in the definition of f commute with G,

We may thus simply quote the results of their analysis:
the spatial distribution is given by

Ps (Xpy ooy Xy) = Jdp””f(x, p)

ccni Bhg 12 _p oy
12 ¥laz  2\g

J

+a(ijV—£(Vle)2 ” (10)

where

6 1 2
#OB (tanh(ﬁﬂﬁ/Z) mﬂ) ’
C is a constant independent of position, and V, is the gradi-
ent operator perpendicular to B. This formula is good to
O(A %/a*) and is useful for all magnetic fields. The function
« is always less than or equal to unity and represents the
confining effect of the magnetic field on quantum fluctu-
ations perpendicular to B.

Equation (10) shows that the N-particle spatial distri-
bution for the McPEP is only slightly altered by quantiza-
tion of the gyromotion and to lowest order in A, /a is given
by the distribution for a classical OCP. To O(4 3/a?), p, can
be written as exp( — BYV), where

dsler-n 2y
L)

is the modified potential energy, the modification being
caused by averaging over the quantum uncertainty.

The Helmholtz free energy in the frame rotating with
the plasma is given by

+a(‘7fj (11)

dpsN dx3N f
(27#)* N !

F= —kThh

o= +1
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=F, + Fx + AF, (12a)

where
3N
F= —krlnf%—exp( — BV

is the classical configurational free energy, A is a normaliza-
tion constant,

27fh)*N sinh (%Q8 /2) { B )1/2]
F, = NkT'1
x n[ mQA  cosh[A(Q, — w)B/2]\2mm
(12b)
is the kinetic contribution, and
A |« 9%V
AF = NkT — viy 12
24<Jz_az}+al,> (12¢)

is the small contribution resulting from quantum uncertain-
ty. Here, the brackets denote an average weighted by
exp( — BV). The kinetic contribution contains the effects of
parallel motion and quantized gyromotion as well as quan-
tized spin. By reference to Eq. (5), one can see that there are
two contributions to ¥ and, therefore, to AF. The first is
caused by the positive background charge and may be evalu-
ated explicitly to give

AF, = (NKT/8)['(A%/a%)a . (13)

The second is caused by interelectron interactions; it
may also be evaluated explicitly as long as the dimensions of
the plasma are much larger than both the Debye length and
the interparticle spacing, a condition well satisfied in the
experiments. In this case the two-particle probability distri-
bution P(x,, x,) and the interparticle potential ¢(x,, X,)
can be written as functions of |x, — x,| only and this contri-
bution to AF vanishes. Then AF = AF, and does not depend
on correlations, so the correlation contribution to the free
energy is given by that of a classical OCP to O(A % /a*). Fur-
thermore, AF can be combined with F, to O(w/Q,) to give

2
Fk+AF=NkT1n[ Qm#) ﬂ(ﬁ )m
m(Q, —w) A \2mm

cans (P08

(14)

13 Phys. Fluids, Vol. 29, No. 1, January 1986

so that quantum effects are parametrized by a single variable
#(, — w)B. Note that the ordering used in the quantum
regime (i.e., i), ~kT but #iw,, € kT) taken together with
the relation® 202, ~ & (), — @) implies that w< Q..

In summary, by applying the theory of Alastuey and
Jancovici to a magnetized pure electron plasma, we have
derived the N-particle spatial distribution and the free ener-
gy of a McPEP to O(A 2/a?), including the effects of quan-
tized gyromotion. The N-particle distribution is given by
that of a classical OCP with a slightly modified potential
energy; this modification does not affect the correlation free
energy.
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