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The effect of a radially bounding wall on a magnetically confined single-species plasma near thermal
equilibrium is considered. Solutions to the like-particle collisional transport equation are obtained; the
boundary conditions at the wall follow from simple physical considerations. Integral constraints on the
plasma evolution imply that only a fraction of the plasma can ever be lost to the wall. Analytic estimates and
numerical solutions give the scaled wall flux in terms of the unperturbed equilibrium density at the radius of

the wall.

. INTRODUCTION

Recent theoretical and experimental work has treated
the containment of a nonneutral, single-species plasma
column,!™ The containment geometry is cylindrical,
with an axial magnetic field providing radial confine-
ment, and electrostatic potentials providing axial con-
finement, The plasma column rotates, due to the strong
radial electric field resulting from the unneutralized
space charge,

Radial transport of particles is strongly constrained
by conservation of the total angular momentum of the
plasma and fields,>®™'% [n a cylindrically symmetric
system with no external torques acting on the particles,
there can be no bulk expansion of the plasma. H-theo-
rems have been formulated,*!* demonstrating that like-
particle interactions drive the plasma monotonically to-
ward a confined thermal equilibrium state, In any real
confinement device, there are always small effects such
as collisions with neutrals or wall resistance which ap-
ply torques to the plasma and allow it to expand radially.
However, electron plasma experiments® are now enter-
ing regimes in which like-particle interactions domin-
ate, and it is this regime which will be treated in this
paper.

For a nonneutral plasma free of all external torques,
the equilibrium density profiles decrease exponentially
with radius for large radii, but are never zero.,*® Any
bounding wall at a finite radius will interact with the
plasma and prevent it from being completely in equili-
brium with itself, There will be a transfer of particles
and angular momentum to the wall, and the question
arises as to whether this could lead to rapid radial loss
of the plasma. Confinement theorems have been de-
veloped* which place a bound on the total possible parti-
cle loss, but these give no information as to loss rates.

In this paper, we consider the effect of an absorbing
wall on a single-species plasma which is free from any
other external torques., The like-particle collisional
transport equation® is solved for the radial particle and
angular momentum losses; this transport equation in-
cludes only lowest-order terms in a 1/B expansion, The
plasma is assumed to be quiescent and symmetric in the
axial and azimuthal directions. The wall is assumed to
be perfectly absorbing, and to exert no long-range tor-
ques on the plasma. Further, the plasma-wall interac-
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tion is taken to be weak, in the sense that the resulting
plasma evolution occurs on a time scale long compared
with the time scale for relaxation toward equilibrium;
this will be true if the equilibrium plasma would have a
low density at the radius of the wall.

The boundary conditions at the wall are that the parti-
cle density be zero, and that the angular momentum and
energy lost is just that carried by the particles at the
radius of the wall, The requirement that the radial par-
ticle flux be essentially constant with radius in the low-
density region near the wall determines the density pro-
file near the wall, Matching this constant flux profile
to the equilibrium density profile gives a simple analytic
estimate of the loss rate for any given equilibrium,
These loss-rate estimates are verified by numerical in-
tegration of the radial transport equation with the ap-
propriate boundary conditions.

By considering the radial integrals of particle density,
angular momentum, and energy, constraints are formu-
lated on the time evolution of the plasma: These indi-
cate that the wall losses become exponentially small
with time, and that in general only a small fraction of
the plasma will be lost. The essential results are that
the plasma will tend to move radially inward, away from
the wall, since a disproportionately large angular mo-
mentum per particle is being lost to the wall; and that
the plasma will not heat and thereby extend further to-
ward the wall, since the average thermal energy per
particle is being lost to the wall. While any given ex-
periment might have additional effects which alter the
loss rate for angular momentum and energy these re-
sults indicate that like-particle collisional transport
does not by itself lead to rapid particle losses.

1. TRANSPORT AND EQUILIBRIA

Cross-field particle transport due to like-particle col-
lisions has been derived from the fluid force equations,®
from a random walk equation for the guiding centers,®
and from an explicit perturbation expansion of the Boltz-~
mann equation.® All three derivations give the same
form for the particle flux, which is strongly constrained
by conservation of canonical angular momentum,

The macroscopic force equation for a fluid of particles
of charge — e ond density z{r, ) may be written
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V:P=—en-Vo¢+(1/clWXB], 1)

where P is the stress tensor as derived by Chapman and
Cowling.'? In cylindrical coordinates (r, 0, z) with the
assumed symmetries and B= Bz, the relevant terms are

P, =Pg=nT,
(2)
P,6=Pe,=—% l;jrfn"’mrgi—, %ve 5
The temperature T(t) is independent of radius, since
heat transport is not constrained by conservation of an-
gular momentum, and therefore occurs on a much faster
time scale than does particle transport.® The off-dia-
gonal terms in P represent the force from one fluid ele-
ment to another due to any shear in the fluid velocity
vg(r). Here, we have defined the Larmor radius 7y,
=3/Q=(T/mW?2(eB/mc)™ and the like-particle collision
frequency v =16v7 e*nlnA/15m"2T%/2 where InA is the
Coulomb logarithm, which is assumed to be esgentially
independent of 7.

The v component of Eq. (1) gives

T [n' e¢’
”e="ﬁ(7 -—T—), ®)

where the prime represents 8/87, The 6 component then
gives the radial flux

= l_i 2 1
J(r,t)—nv,_r,arr mQP,e

Savld o, 31(2’ eg’

—87‘}‘"7,371’2 srr\n T

(3emms) L2, BY,21(n zt)
(se 6"01)))‘073377 no>rarr(n - ) @
The derivations of this flux are all expansions in 1/B;

this is most explicitly seen in Ref. 3, in which the ex-

pansion parametersare€=7, /A and 6 =v/Q, where 2%
=T/4ne®n,,

The time evolution of the plasma density is given by

the continuity equation

—+=—7rJ=0. 5)
Two integrals of Eq. (5) are of particular interest,

. R

N@, t)= f amrdrilr, t)=— 2TRI(R, 1), (6)

0

and

. R .

LR, )= -{ 2mrdr r*a(r, t)

=- 27R[R% (R, 1)~ 2RP,o(R, 1)/ m ], (1)

where the dot represents 8/8¢, The integral N(R,¢) is
the total number of particles within radius R (per unit
length in 2); and LR, t) is (- 2/mR) times the total can-
onical angular momentum within radius R (per unit
length in 2), to lowest order in €. The latter follows
from the canonical angular momentum for a single par-
ticle, pg=mrvgo— (e/c)Agr = (- mQ /202, since the sec-
ond term dominates for large B,

The time evolution of the plasma temperature T(t) is
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determined by the time derivative of the total energy
(per unit length),
d

. W 2
W:(—I-t-(gN(RW, t)T(t))+d—dt— f 277 dr ‘gn, @)

where R, is the radius of the bounding wall. The contri-
bution to the energy from the rotation of the plasma has
been ignored, since this term is higher order in €,

For the case where Ry is arbitrarily large and W:O,
H-theorems have been formulated to show that like-par-
ticle interactions drive the plasma monotonically toward
a confined thermal equilibrium distribution,*'! The
equilibrium is given by

fﬂ(r,v)=no(m/21TT)*°'/2 expl- (1/T)H - wpy)], (9)

where H=3muv? - e¢ is the energy of a particle. The
equilibrium velocity distribution is a Maxwellian with
temperature T when viewed from a frame rotating with
angular velocity w; the particle density is given by
n’c('r)=no exp[e¢/T - (m w/2T)(9_ w)rz] Eno EXp[‘p(r)]-

The equilibrium is completely specified by the three pa-
rameters 7n,, w, T. Alternately, the equilibrium can be
specified by the total number of electrons, canonical
angular momentum, and energy per unit length, i.e., by
the complete radial integrals N, L, W,

(10)

With the functional form (10) for the density, Pois-
son’s equation for ¢(r) determines @) as
19 @

Loy
oy ey ¢l - el (1)
with boundary conditions $(0)=/(0)=0. The Debye length
is relative to the central density #,, and the parameter

v is given by
Y= Q2mw/4nein ) Q- w) -1,

As seen from Egs. (11) and (10), the equilibrium density
profiles form a one-parameter family, when the radius
is scaled in terms of the central Debye length, and the
density is scaled to the central density, The parameter
¥ determines the radius of the plasma in Debye lengths:
for y<1, ¥~ 1n@)27R,/Ap]V* expl~ B, /Ap], where n,(,)
=ny/2.

itHl. INTERACTION WITH A WALL

We now consider the case where the wall is at a finite
radius. As an initial value problem, the particle trans-
port equations (4) and (5) are determined by the initial
conditions n(r, 0) and the boundary conditions at =0 and
r =R,. Since the transport is fourth order in /&, with
¢’ completely specified by Poisson’s equation, four
boundary conditions are required. The energy equation
(8) for T(?) is determined by T(0) and the energy loss
rate W(z).

The two boundary conditions at =0 are given by sym-
metry as
n'(0, t)=n"(0, t)=0.

These are implicit in cylindrical coordinates, and are
required for all terms in Egs. (4) and (5) to be finite at
r=0. The two boundary conditions at =R, and the en-

12)
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ergy loss rate W are determined by the physical charac-
teristics of the wall. We assume that the wallis perfectly
absorbing and that it exerts no long-range torques on
the plasma. When a particle is absorbed, it loses only
the angular momentum and energy that it carried: The
angular momentum loss is (- 2/mQ)R3, to lowest order
in €, and the energy loss is $T{#), since the plasma is
isothermal, The two remaining boundary conditions and
the energy loss rate are thus

n(Rwa t)=0,
LR, )=RLNR,,1), (13)
W(t)=3TO NR,,, t).

We note that this boundary condition is equivalent to
specifying that the plasma stress tensor component
P,s(R,, 1) is zero. Using Egs. (7) and (2), the second
wall condition may also be written

nr —a—l-(i—g-qi):O. (14)

One might worry about applying the boundary condi-
tions at the wall, since the transport equation breaks
down in a thin shell near the wall.® This shell is a few
Larmor radii thick, However, by employing continuity
of particle, angular momentum, and energy flow across
the shell, one can check that the boundary conditions as
given are accurate to lowest order in €,

An interesting aspect of the boundary conditions is
that they preclude a solution by separation of variables,
i.e., as n{r, £}=n(r)g(t). For example, when the electric
field is negligible, the particle transport is proportion-
al to 7, and one might attempt a solution® with g(¢)
=(1+at)™. However, the condition L=R2 N cannot be
satisfied by any solution of this form. Specifically, one
obtains N=gN, and L=g(r>N,, or L=(®N. This indi-
cates that the plasma profile n{r) must evolve with time,
since a disproportionate amount of angular momentum
is lost relative to the number of particles lost,

With the boundary conditions in hand, one could at-
tempt a direct initial value solution of Egs. (4), (6), and
(8) by numerical methods. However, the transport is
fourth order in 8/37 and cubically nonlinear in n(r, ¢),
making accurate numerical solutions quite difficult.
Further, we are not interested in the details of the in-
itial evolution, but rather in the rate of particle loss to
the wall, and in the resulting equilibrium evolution,
These questions can be partially answered by simple
analytic considerations.

Near the wall, where the particle density is low, the
density profile will quickly evolve so as to give a flux
which is almost constant with radius; that is, the parti-
cles being lost from the higher density regions merely
pass through the low-density tail. The constant flux
profile is easily seen to be

n,(r)=An R .~ 7)/Ap}*/?, (15)
which has flux
J=(3€%n0)s A2,

where we have ignored terms higher order in R, - 7).

99 Phys. Fluids, Vol. 25, No, 1, January 1982

This solution satisfies both wall boundary conditions
(13).

An estimate of the loss rate to be expected from a
plasma near thermal equilibrium can be obtained by re-
quiring the low-density tail to join smoothly with an
equilibrium profile. The minimum requirements which
uniquely determine the flux are that #» and »’ be continu-
ous; that is, we require

nf (rm)=ne (rm)’ n}(rm)=n;(rm),

varying A and 7, so as to satisfy both conditions, This
match does not, of course, make the stress tensor or
flux continuous, which would be the case if #»” and n”
were continuous, Using n,(r)=n,exp|§(r)], the matching
conditions give A%= (R, ~7,) A} exp| 2¢( )], and
Ryo~7m) == 3W(rn). For equilibria with ¥>1, the
function {r) is known analytically, as P(r)=— (L+yWr?/
4A% . The flux is then

J= <§ €*6n T;) 3 (__e__._." ("m)>2(_.w___R = "»-) -

8 °°/2 no AD

~ (% 635n05> (+7)p/? % e)zp(:i)(1“gf’”2>2
X [_ ln(ne (Rw)/no)]s/zl (1 6)

where the last expression used ¥'(r,,)= ¥'(R,). The flux
is seen to be parametrized by the fractional density
which the unperturbed equilibrium would have at the
radius of the wall. The factor (1+7)*/? appears because
the scale length for the equilibrium is Ap/(1+7)/2, when
y>1,

We define a scaled flux

J=d[3eong(1+yP/?), an)
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FIG. 1. Scaled flux J vs equilibrium density at the radius of
the wall. The dotted line is an analytic estimate, whereas
the points are numerical computations for three separate
equilibria.
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so as to remove the dependence on the magnetic field,
central density, temperature, and equilibrium scale
length, The dashed line of Fig. 1 shows J vs n,(R,)/7,
from Eq. (16). Although this estimate was derived for
equilibria with ¥>1, a similar estimate can be obtained
for arbitrary ¥ using numerical integration for ().
The resulting estimates of J vs n,(R,)/n, are within 50%
of that shown in Fig, 1.

Figure 1 also displays the scaled wall flux results ob-
tained by numerical integration of the transport equa-
tion, as described in Sec. IV. It is apparent that the
analytic estimates give the correct dependence on the
density at the wall over five decades in flux magnitude.
The estimates are approximately a factor of two larger
than the computed fluxes; this discrepancy arises from
the matching of a solution with constant flux to an equi-
librium profile with zero flux.

If the interaction with the wall is weak, then the body
of the plasma will be near an equilibrium at any given
time, and one may consider the evolution of this “equi-
librium” as particles, angular momentum, and energy
are slowly lost to the wall, A simple estimate of the
equilibrium evolution can be obtained from the square
profile (¥<1) integrals N ="R3n,, L=nR%n /2, W=3NT
+e®N*[s+In(R,/R,)]. The first two are easily inverted
to give n,=N2/27L and R3=2L/N.

The particle loss rate may be written

N ﬂui._ 2¢ R Ap 3/2F
N = T7RZn, "(8 )R RO, (18)

where the quantity in large parentheses is the rate of
relaxation toward an equilibrium with gradient lengths
Ap. The evolution of the equilibrium may then be given
in terms of this particle loss rate, Using the boundary
conditions L=R3 N and W= zTN we obtain

Ay o N_L__,N(R%

n PNTTT2N\RE YO

R, Nf{R® 1

Ky NfRy 1

R, N(Rg 2)<°’ 9
SN ezNN[—w 1-21In I—zﬂ]go

3 R r,) =%

The central density increases, since conservation of an-
gular momentum requires that some particles flow in-
ward as others flow out to the wall, The radius of the
plasma is decreasing both due to the decreasing number
of particles, and due to the central density increase.
The work that the inward-flowing particles do on the
electric field is marginally greater than the work done
by the field on the outward flowing particles, causing a
slight decrease in the thermal energy. Although, these
variations were derived for equilibria with ¥<<1, the
same effects would be observed for arbitrary equilibria,
except that the relevant integrals would be less tract-
able,

For all equilibria, the combined effects of the varia-
tions in 7, R,, and T are to move the plasma edge away
from the wall, decreasing the particle loss rate. The
loss rate never becomes zero, but could well become
negligible on the time scale of any experiment. Con-
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tainment theorems have been rigorously formulated*
showing that the total number of particles lost cannot
exceed an upper bound, given approximately by AN/N
<R./2R%. When this number of particles are lost, the
remaining particles must be localized at »=0. This
limiting state is probably less relevant to a laboratory
experiment than is a consideration of the losses on the
time scale of the experiment.

IV. NUMERICAL SOLUTIONS

We have obtained numerical solutions to the transport
equations (4) and (5) for comparison with the loss rate
estimates made in the previous section. Again, we as-
sume the plasma to have reached a quasistatic state
near thermal equilibrium, perturbed only by the losses
to the wall. We solve the transport equation for this
quasistatic state at a particular time ¢ by assuming an
appropriate functional form for the term 9n/9¢, Equa-
tion (5) is then solved as an ordinary differential equa-
tion having a “forcing function” dn/8¢, with spatial
boundary conditions at =0 and =R,

The functional form for 8n/3t is based on the assump-
tion that the plasma is near an equilibrium profile, with
time variations arising solely from the wall interaction,
If we write

n(y, £)=n,{r;n, w, T)+bn(,1), 20)

then the perturbation 67 is comparable to 7, only near
the wall, We use the approximation

’O’

on on on
oF atn (r n,, w, T)_—-—ﬂn +—‘ia w+—‘a .,1 (21)

One expects this approximation to be inaccurate only
near the wall, where the density goes to zero.

In analogy with the initial conditions required for solu-
tion as a partial differential equation, we must specify
which equilibrium the solution will be near: The equi-
librium is characterized either by the parameters n,, w,
T, or equivalently by the complete radial integrals N,,
L,,W,, The “initial conditions” on the profile n(r) are
then that it have the same number of particles, angular
momentum, and energy as the equilibrium profile; that
is, that it have integrals N=N, L=L, W=W,. To the ex-
tent that the perturbation 6n(r) is negligible, these con-
ditions specify the local conditions

n(0, t)=n,,
n"(0, t)=n4(0)=[271e*n,/T — mw(f — w)/Tln,,
T(t)="T.

(22)

These local initial conditions are sufficiently accurate
unless R, >Ap, and will be used in the following discus-
sion for conceptual simplicity. The nature of the error
from 6n{r) will be discussed later.

The functional form (21) for an/8¢ allows us to satisfy
all the initial and boundary conditions on the transport
equation (5). Recall that Eq. (5) is fourth order in 8/87.
At =0, the two boundary conditions (12) and the two in-
itial conditions (22) specify », »’, n", and ", With an/
/8t given for all », Eq. (5) can then be integrated from
=0 to ¥=R,. The solution n(r) will satisfy the three
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wall conditions (13) and (14) only for an appropriate
choice of the three parameters fiy, @, T in Eq. (21). The
two conditions glving L and W in terms of N equivalent-
ly determine @ and T in terms of #,, We then find the
correct value for 7, by the “shooting method”. The in-
tegral from O to R, is repeated for various choices of
#, (and hence various @ and 7') until the final boundary
condition of #(R,)=0 is satisfied. This procedure gives
a density profile n(r) which satisfies all the boundary
conditions, and has an outward flux giving a loss rate

N=27R J(R,).

Computational results for the scaled flux J are shown
as the points in Fig. 1. Here, we have solved the trans-
port equation for plasmas near equilibrium character-
ized by v=39, 0.1, and 4X107* (having scaled radii R,/
R,/Ap=0.3, 4, and 10) for various wall positions. As
with the analytic estimate, the scaled flux essentially
depends only on #,(R,)/n,,

The adequacy of the approximation (21) for 3n/3¢ has
been checked as follows, Having found a solution =(z, t),
we similarly find a second solution #n(r, #,) appropriate
to the plasma having evolved to a later time £,=¢+A¢,
The function [n(r, t,) - n(r, t)]/At isthena closer approxi-
mation to /3¢, Using this new “forcing function” in
Eq. (5), we obtain a more accurate density profile and
particle loss rate, We find that the two sets of results
are essentially equal for small loss rates, and differ by
no more than 10% for the largest rates of Fig, 1.

We now estimate the perturbation 5n(r) which will
occur in the interior of a plasma which is many Debye
lengths in radius. For simplicity, we consider the
twice-integrated transport equation,

)
(23)

If we define n(r)=n,(r)+6n(r), linearize, and then ap-
proximate n,(r)*n, for r<R,, Eq. (23) becomes

3 47\ o1 gt

(srin)r "°8rr( 6¢) 8 . (24)
Aside from the two homogeneous solutions which repre-

sent shifts in the equilibrium, the solution to Eq. (24) is

given by

n AD’Vz

on(r)= T—r_‘n(v/T)n 2( P ) °jR"" 25)
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Here, we have used the approximate expression (19) for
%,, and assumed R, ~R,<R,. This perturbation gives
the flux J ()=~ i /2, which is required to uniformly in-
crease the interior density.

The perturbation remains a small fraction of n, for 0
<r<R, so long as J<1, However, the perturbatlon may
have a significantly large second derivative at the origin:
6n"(0) is comparable to n5(0)=— 7,/2)A} whenever

o3 ) =82,

For scaled fluxes larger than this limit, the local initial
conditions of Eq. (22) do not properly specify a profile
n(r) which is near the desired equilibrium 7,(r). In this
case, the integral initial conditions must be used.

(26)
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