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Abstract

Electron columns confined magnetically in vacuum evolve in ðr; hÞ as N � 109 field-aligned rods of charge, or point

vortices. Neglecting discreteness, the column evolves as would vorticity in an inviscid, incompressible fluid, governed by

the Euler equations. The macroscopic flow dynamics is readily imaged, including effects such as surface waves and

inviscid damping, two vortex merger, and gradient-driven vortex motion. Turbulent initial states are observed to relax

to ‘‘vortex crystal’’ meta-equlibria, due to vortex ‘‘cooling’’ from entropic mixing of background vorticity; and char-

acteristics of this process are predicted by theory. The microscopic discreteness gives rise to point-vortex diffusion,

which is strongly affected by the overall flow shear. Macroscopically and microscopically, the vortex dynamics depends

critically on whether the vortex is prograde or retrograde with respect to the flow shear. � 2001 Elsevier Science B.V.

All rights reserved.
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1. Electron plasmas as Euler flows

Magnetically confined pure electron columns
are excellent systems for quantitative observations
of 2D fluid vortices, turbulence and self-organiza-
tion [1]. A ‘‘generic’’ experimental apparatus is
shown schematically in Fig. 1. The electrons of
density ~nn � 107 cm�3 are contained in vacuum
(P � 10�10 Torr) within a grounded conducting
wall (2Rw ¼ 7 cm). A uniform axial magnetic field
ðBK 1 TÞ provides radial confinement, and nega-
tive voltages (V � 50 V) applied to end cylinders
provide confinement at the ends. The confined
plasma is diagnosed and manipulated by antennas

on the wall. Finally, the z-integrated electron den-
sity nðr; h; tÞ is measured (destructively) by accel-
erating the electrons onto a phosphor screen and
imaging the resulting light with a CCD camera.

The ðr; hÞ flow of the electrons across the mag-
netic field occurs due to the strong electric field Eðr;
h; tÞ ¼ �r/ðr; h; tÞ from the unneutralized electron
plasma. The cross-magnetic-field ‘‘drift’’ velocity is
vðr; h; tÞ ¼ E� B=B2, giving a bulk plasma rotation
fRðrÞ 	 vhðrÞ=2pr � 104 s�1. Since the individual
electrons bounce axially along the magnetic field
lines in about 1 ls, electrons behave as rigid ‘‘rods’’
of charge, or ‘‘point vortices’’ in ðr; hÞ.

In this approximation, the ðr; hÞ flow of the elec-
trons is described by the 2D drift-Poisson equa-
tions [1], which can be written in terms of the
vorticity fðr; h; tÞ 	 ð4pec=BÞn and the scaled elec-
trostatic potential wðr; h; tÞ 	 ðc=BÞ/ as
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þ v � rf ¼ 0; v ¼ �rw � ẑz;

r2w ¼ f:

These equations are isomorphic to the 2D Euler
equations for an incompressible, inviscid fluid. The
flow vorticity f is proportional to the electron
density n, which is directly measured.

A column of electrons in vacuum surrounded
by a conducting wall thus evolves as would a 2D
vortex in an incompressible inviscid fluid sur-
rounded by a circular free-slip boundary. We em-
phasize that here, there is only one sign of vorticity
(taken to be positive), because the density of
electrons can only be positive, and there are no
charges of opposite sign.

There are also small unwanted drifts due to the
end confinement fields [2], and weak ‘‘viscous’’
effects on small spatial scales due to electron–
electron collisions [3], but these are not modelled
by the Euler or the Navier–Stokes equation. This
collisional point-vortex diffusion will be described
below.

Euler flows are strongly constrained by integral
invariants. The total circulation (number of elec-
trons) Ctot, angular momentum Ph, and energy H
are well conserved in the experiments. However,
less robust invariants such as the entropy S and
enstrophy Z2 vary significantly, due to measure-
ment coarse-graining or dissipation of small spa-
tial scales [4].

2. Waves on a vortex

The simplest stable flow is a circular region of
vorticity with monotonically decreasing vorticity

profile fðrÞ and azimuthal flow velocity vhðrÞ,
consisting of 109 ‘‘point-vortex’’ electrons. Small
shape distortions of this nominally circular vor-
tex can be analyzed as a spectrum of waves with
azimuthal and radial mode numbers ðm; kÞ, vary-
ing as gkðrÞ expðimh � ixktÞ.

A large-amplitude m ¼ 2 distortion is shown in
Fig. 2. These waves are generalizations of the
surface distortions on vortex patches referred to as
Kelvin waves [5]. Recent analyses have elucidated
the process of inviscid damping [6,7] due to wave–
fluid interactions at critical radii rc where xk=2p ¼
mfRðrcÞ, and this damping is routinely observed in
electron plasma experiments [8]. These modes have
recently been analyzed in terms of ‘‘discrete’’ and
‘‘continuum’’ eigenfunctions [9], with application
to atmospheric circulations [10].

For even moderate wave amplitudes, this ob-
served damping is typically non-linear, and the
damping may decrease [7,8] or cease when the
resulting ‘‘cat’s-eye’’ flows generate fine-scale fila-
ments inside the vortex. For ‘‘sharp-edged’’ vortic-
ity profiles, the resonant radii rc can be completely
outside the vortex, in which case no direct reso-
nance damping occurs except at large amplitudes,
as shown in Fig. 2. Also, experiments have shown
the importance of non-linear wave–wave cou-

Fig. 2. Measured electron density (vorticity) for an m ¼ 2 wave

with cat’s eyes from saturated inviscid damping.

Fig. 1. The cylindrical experimental apparatus with phosphor

screen/CCD camera diagnostic.
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plings: even otherwise stable modes may exhibit
‘‘beat-wave damping’’ [11], whereby energy is ob-
served to flow to longer azimuthal wavelengths.

If the vorticity profile fðrÞ is ‘‘hollow’’ rather
than monotonically decreasing, some of these
modes may be unstable, giving the Kelvin–Helm-
holtz (shear-flow) instability [12,13]. Both the fre-
quencies and growth rates of these unstable modes
are reasonably well characterized by computa-
tional solution of the eigenvalue equation using
the measured density profiles [14]. One exception is
m ¼ 1, where we observe a robust exponential in-
stability [15] where cold fluid theory predicts only
algebraic growth; here, finite length effects may
cause the instability [16,17].

3. Vortex merger

The merger of like-sign macroscopic vortices as
shown in Fig. 3 is fundamental to the relaxation of
2D turbulence at high Reynolds numbers. Exper-
imentally [4], two vortices are observed to merge
within a few orbit times when the spacing between
vortex centers D is less than 1.6 times the indi-
vidual vortex diameter 2Rv; and to orbit without
merger for more than 104 orbits when D=2Rv >
1:7. Of course, point vortices with Rv ¼ 0 could
never merge. The merger after 104 orbits appar-
ently results from weak non-ideal effects causing
Rv to increase, thereby satisfying D=2Rv < 1:6.

However, the 104:1 ratio attests to the weakness of
‘‘viscous’’ effects, and suggests an effective Rey-
nolds number Re � 104–105.

Some of the circulation originally trapped in
the two individual vortices is ‘‘lost’’ to filamenta-
tion; these filaments eventually get stretched and
mixed to finer spatial scales than can be imaged, so
they form a weak ‘‘background’’ of vorticity. This
background then influences the dynamics of the
intense vortices.

4. Vortex/background dynamics

The dynamics of intense positive vortices
(clumps) or negative vortices (holes) on a non-
uniform background of vorticity has been exten-
sively analyzed [18,19]. The analysis clearly shows
that clumps move up the background vorticity
gradient, and holes move down the gradient. Fig. 4
shows this effect in a numerical simulation.

This interaction of clumps and holes with a
background vorticity gradient plays an important
role in 2D hydrodynamics. For example, the mo-
tion of hurricanes on a rotating planet is influ-
enced by the north–south gradient in the Coriolis
parameter, which can be thought of as a (poten-
tial) vorticity gradient [18].

These clumps and holes must be classified as
prograde or retrograde, depending on whether
they rotate with or against the local background
shear [19]. A straightforward linear analysis of the
flow perturbation generated by the vortex cor-
rectly gives the motion of a retrograde vortex. In
contrast, prograde vortices are always non-linear
and move at a slower rate; and this slower rate is
given by a simple ‘‘mix-and-move’’ estimate.

Fig. 3. Merger of two vortices in 1/2sR.
Fig. 4. Gradient-driven radial motion of a clump and hole in a

circular shear flow.
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Fig. 5 shows the (scaled) vortex velocity _rrv 	
ðdrv=dtÞ in terms of the vortex intensity as repre-
sented by its trapping length l 	 ðCv=2pSÞ1=2.
Here, Cv is the vortex circulation, and S 	 2pr�
ðofR=orÞ is the shear in the background flow.

5. Relaxation of turbulence

Fig. 6 shows the relaxation of fully developed
turbulence. Highly filamented initial conditions
rapidly form many individual vortices, which then
freely relax toward a 2D meta-equilibrium [20]. In
this inviscid relaxation, chaotic mutual advection
and vortex merger are clearly important dynamical
processes. The final ‘‘generic’’ meta-equilibrium is

typically strongly peaked on center, reflecting the
single intense vortex resulting from repeated
mergers, superimposed on a weaker background
vorticity.

Surprisingly, this relaxation is sometimes halted
when individual vortices settle into a stable, rotat-
ing ‘‘vortex crystal’’ pattern which persists for
thousands of rotation times sR. The observed
vortex crystal states consist of Nv ¼ 5–20 individual
vortices each 4–6 times the background vorticity,
arranged in a lattice pattern which rotates with the
background flow. Since the surviving vortices all
have about the same circulation, the patterns are
quite regular, as seen at 600sR in Fig. 6.

In each sequence, the unstable filamentary ini-
tial condition forms Nv ¼ 50–100 vortices of
roughly equal circulation, after which Nv initially
decreases as Nv � t�n. This relaxation is generally
consistent with a dynamical punctuated scaling
theory (PST) based on conserved quantities in re-
peated vortex merger [21]. The observed n range
from 0.2 to 1.1 as the initial conditions are varied,
with 0.8 being commonly observed.

The measured integral quantities for both se-
quences are consistent with 2D inviscid motion on
large scales and dissipation on fine scales. Experi-
mentally, the circulation, angular momentum, and
energy are robust invariants. In contrast, the ens-
trophy Z2 is a ‘‘fragile’’ invariant, and initially
decays a factor of about 2 in both sequences.

Fig. 6. Inviscid relaxations to ‘‘vortex crystals’’ and to a single vortex.

Fig. 5. Radial velocity of clumps and holes from theory, sim-

ulation, and experiments.
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‘‘Cooling’’ of the chaotic advective motions of
the individual vortices is required to form the
vortex crystal states. These random velocities de-
crease by a factor of 6 between 2sR and 100sR for
the crystals sequence, whereas only slight cooling
is seen before relaxation to Nv ¼ 1 for the mono-
tonic sequence.

This cooling and cessation of relaxation
through mergers is a near-inviscid 2D fluid effect,
i.e. it conserves energy H and is independent of the
details of the fine-scale dissipation. It has now
been observed in 2D simulations [22]. Only after
104sR does Nv decrease to 1 as the individual vor-
tices decay away in place due to non-ideal ‘‘vis-
cous’’ effects.

However, the non-zero total circulation is es-
sential: because there is no ‘‘negative’’ vorticity,
the diffuse background necessarily persists, and the
vortex/background interactions are more pro-
nounced. Cooling apparently occurs through the
chaotic mixing of background vorticity by the
strong vortices, as opposed to processes such as
deformations of individual vortices in the crystal
pattern.

6. Dynamics and entropy

In recent years, two radically different theories
have had some success in describing the free re-
laxation of 2D turbulence. One is the PST referred
to above [21], which postulates that the turbulent
flow is dominated by strong vortices which gener-
ally follow Hamiltonian dynamics of macroscopic
point-like vortices, punctuated by the occasional
merger of like-sign vortices. The relaxed state is
then one single extended vortex of each sign, or
just one vortex in our case as opposed to vortex
crystals.

A diametrically opposite approach is incor-
porated in the global maximum fluid entropy
(GMFE) theory [23]. This approximates the tur-
bulent flow as a collection of non-overlapping,
incompressible microscopic vorticity elements that
become ergodically mixed in the relaxed state.
Clearly, the GMFE theory cannot explain the
vortex crystals, since the theory predicts a smooth
vorticity distribution.

A new regional maximum fluid entropy
(RMFE) theory approach [24,25] characterizes the
vortex crystal states by maximizing the fluid en-
tropy S [23] of the background. The key idea is
that some regions of the flow are well mixed, while
other regions are not. This statistical theory treats
the flow only after the mergers of the strong vor-
tices have ceased. The strong vortices then ergod-
ically mix the background, driving it into a state
of maximum fluid entropy. This mixing, in return,
affects the punctuated dynamics of the strong vor-
tices, ‘‘cooling’’ their chaotic motion, and driving
them into an equilibrium pattern.

The diffuse background vorticity is assumed to
consist of incompressible microscopic vorticity el-
ements of fixed strength ff . Coarse-graining over
these randomized vorticity elements then gives the
observed background vorticity fbðrÞ.

Given these inputs, two properties of the re-
laxed vortex crystal state can be predicted: the
coarse-grained vorticity distribution of the back-
ground fbðrÞ, and the equilibrium positions fRig
of the strong vortices [24]. The resulting back-
ground distributions are of the form

fbðrÞ ¼ ff=ðebffW þ 1Þ; ð1Þ

where W 	 w þ 1
2
Xr2 þ l is the stream function in

the rotating frame, and ðb;X; lÞ are parameters.
This ‘‘Fermi distribution’’ occurs because the mi-
croscopic vorticity elements are assumed to be
incompressible. Surprisingly, the RMFE solutions
reproduce the observed vortex crystal patterns and
background distribution quite well.

Thus, the following physical picture of vortex
crystal formation emerges: the strong vortices
undergo chaotic mergers described by PST, but
they also ergodically mix the low vorticity back-
ground. The mixing of the background, in return,
cools the chaotic motion of the vortices, and drives
the vortices into a vortex crystal equilibrium. The
interaction between the strong vortices and the
background, a process neglected in the PST, may
be important in understanding the relaxation of
2D turbulence in other situations as well.

Interestingly, this approach [25] gives estimates
for the number Nc of vortices which survive to
form the vortex crystal state, by equating the time
to merge to the time to cool. Here, the estimates
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are based on the dynamical scaling exponents n
and g, which determine the number of surviving
vortices NvðtÞ and their total circulation CvðtÞ as

NvðtÞ ¼ Nvðt0Þ t
t0

� ��n
;

CvðtÞ ¼ Cvðt0Þ t
t0

� �ng
:

ð2Þ

Note that the assumptions of PST imply g ¼ 1=2,
but somewhat different values ð0:2 < g < 0:8Þ are
observed in experiments and simulations. The time
to merge is given by 1=smðtÞ ¼ �ðd=dtÞNv, and the
cooling time is estimated from mixing arguments
as scðtÞ ¼ A=aNvCv, where A is the area of the
vorticity patch, and a � 0:03. Surprisingly, these
simple estimates predict Nc to within about a fac-
tor of 2, as shown in Fig. 7.

7. Point-vortex diffusion and viscosity

The microscopic discreteness of the point vor-
tices (individual electrons) leads to ‘‘collisions’’
between point vortices, giving macroscopic effects
such as diffusion and viscosity. These transport
coefficients are now known to depend on the shear
in the overall flow generated by the point vortices
themselves.

The self-diffusion of a two-dimensional gas of
interacting point vortices is a classic problem in
non-equilibrium statistical physics, with relevance

to the behavior of type-II superconductors, dislo-
cations in solids, rotating superfluid helium, and
turbulence and transport in Euler fluids and plas-
mas. Early work on this problem focused on the
case of a quiescent, homogeneous shear-free gas
[26,27]. In this shear-free limit, the diffusion coef-
ficient has the following simple form:

DTM ¼ 1

8p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc2=p

p
; ð3Þ

where N is the number of point vortices, each with
circulation c. The diffusion coefficient is not an in-
tensive quantity because the diffusion process is
dominated by large ‘‘Taylor vortices’’ (regions with
higher or lower density n of point vortices) whose
size is of order the system size.

In electron plasmas, each electron has 2D cir-
culation c ¼ 4pce=BL. A dimensionless measure of
the shear is

sðrÞ ¼ 2prðofR=orÞ
nc

; ð4Þ

i.e. the shear rate scaled by the rotation frequency
of a plasma of density n in the absence of shear.

For moderate to strong shear, i.e. jsjJ 1, the
diffusion from multiple distant collisions can be
obtained [28] from a quasilinear calculation based
on the Kubo formula, giving

DK ¼ c
2jsj ln

r
d

� �
: ð5Þ

Here, d is the minimum distance for which the
vortex–vortex interaction is well described by
vortices streaming past one another in the shear
flow (unperturbed orbits).

Molecular-dynamics and vortex-in-cell simula-
tions agree with this theory, provided that the shear
s is negative. Fig. 8 shows the shear-free diffusion
coefficient near DTM, reduced in agreement with
Eq. (5) for s ¼ �1:2 and �12. Surprisingly, how-
ever, when the shear s is positive the diffusion ob-
served in the simulations is roughly an order of
magnitude smaller than this theory predicts. Here,
the analysis of vortex ‘‘collisions’’ must apparently
include vortices in trapped orbits around each
other.

Thus, the microscopic collisional transport the-
ory is essentially similar to the macroscopic dy-

Fig. 7. Observed and predicted numbers Nc of strong vortices

in the vortex crystals for simulations and experiments.
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namics of 2D vortices on a background gradient,
and the effects of flow shear are similar on both.
Macroscopically, clumps (or holes) move up (or
down) a background vorticity gradient at a rate
which depends critically on whether the vortices
are prograde or retrograde with respect to the over-
all flow shear. This distinction is new to fluid
theory, but is crucial to the dynamics: a simple
linear analysis predicts the motion of a retrograde
vortex, but inherently non-linear trapping effects
must be included to predict the (much slower)
motion of a prograde vortex.

Microscopically, theory and simulations show
that retrograde point vortices diffuse more rapidly
than prograde vortices. A rigorous kinetic analysis
predicts the diffusion of retrograde vortices, quan-
tifying the effects of the shear in the flow; but no
kinetic analysis is yet available for the diffusion of
retrograde point vortices, due to the dominance of
non-linear trapped orbits.
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