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The phonon wake behind a charge moving relative to a two-dimensional
plasma crystal
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In a recent experiment a wake was created in a two-dimensional lattice of charged dust grains by a
charge moving parallel to the lattice plane. Multiple ‘‘Mach cones’’ were observed in the wake. This
paper describes a linear theory of the phonon wake caused by a charge moving relative to a
crystalline lattice. The theory predicts multiple structures in the wake that are qualitatively similar
to those observed in the experiments. These structures are caused by constructive interference of
compressional phonons excited by the moving charge, combined with the strongly dispersive nature
of these phonons. ©2000 American Institute of Physics.@S1070-664X~00!04810-2#
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I. INTRODUCTION

The wake created by an object moving with respect t
medium is a ubiquitous phenomenon, occurring on as
nomical scales~e.g., the earth’s magnetotail formed by inte
action with the solar wind!, human scales~e.g., the shock
wave behind a supersonic airplane!, and microscopic scale
~e.g., Cherenkov radiation created by a rapidly moving
ementary charge!. In some cases the dynamics of the wake
nonlinear ~as in the first two examples!, whereas in other
cases a linear analysis suffices~as in the last example!. In
these~and other! examples the structure of the wake h
received close scrutiny, and in some cases it is still a topi
current research.

Recently the wake created in a crystal lattice by a m
ing charge was observed and measured.1,2 In condensed mat
ter physics, the interaction of moving charges with a lattice
clearly of great significance. For example, the excitation
phonons during ion implantation is known to be an import
process.3 However, the spatial characteristics of the wa
created by a moving charge in a crystal has not recei
much attention~to our knowledge!, possibly because the spa
tial scales involved are typically small, and the time sca
are fast~set by the atomic spacing and the sound spe
respectively!. These difficulties were avoided in the afor
mentioned experiments, because the crystal consisted
two-dimensional ~2D! triangular lattice of charged dus
grains ~polymer microspheres! with large spacing,a.250
microns. The grains were levitated against the force of gr
ity in the sheath of a rf plasma discharge. A charge~another
microsphere, or possibly an agglomeration of several mic
spheres! moving parallel to the crystal plane with nearly co
stant speedU of only a few cm/s perturbed the positions
the dust grains, creating a wake in the lattice that could
imaged with a digital camera.

The wake had some expected features as well as se
unexplained structures. As expected, a ‘‘Mach cone’’ w
observed, in which a perturbation was concentrated in a c
with opening angleb, and had an angle of propagationu
5u0 that obeyed the usual Mach conditions,
3891070-664X/2000/7(10)/3895/9/$17.00
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b5u0 , c~0!5U sinu0 , ~1!

@where c(0) is the sound speed of long-waveleng
phonons#. The anglesu and b are defined in Fig. 1.@The
angle of propagation for a wave with wave numberk is u
5tan21(ky /kx); the angleb is defined for a given displace
ment (x0 ,y0) from the moving charge asb5tan21(x0 /
(2)y0).# Equation ~1! merely prescribes that surfaces
constant phase keep pace with the moving charge, so tha
driven wave can be resonant with the charge. However, s
eral other ‘‘Mach cones’’ with different~smaller! opening
angles also appeared in both experiments and simulati
and these structures were unexplained.

This paper outlines a general linear theory for the wa
induced by a charge moving at constant velocity with resp
to a 2D crystalline lattice. The theory should be valid at t
high densities associated with regular condensed ma
When applied to a 2D dust plasma lattice, the theory pred
multiple structures in the wake that are qualitatively simi
to those observed in the experiments and simulations.
multiple wake structures are a consequence of the stron
dispersive nature of compressional phonons~sound waves!
in a 2D lattice. The excited waves satisfy the Mach con
tion, c5U sinu but c5c(k) so different excited waves
travel at different propagation angles,u5u(k). Phase mix-
ing of the various excited waves causes constructive and
structive interference. As a result, along a line defined
some given opening angleb we will show that specific wave
numbersk5k0(b) are dominant, and in general the prop
gation angleu for these wave numbers is not equal tob.
These wave numbers form the observed multiple wakes.

Such structures do not occur in the single Mach co
shock wave surrounding a particle in air that moves fas
than the speed of sound. This is because air is much
dispersive than a 2D lattice, so Eq.~1! is nearly correct for
all significant wave numbers. On the other hand, many ot
media have strong dispersion and therefore also exhibit m
tiple wake structures. Probably the best known example
the so-called ‘‘Kelvin wedge’’ that forms behind a ship mo
ing in deep water, caused by the strong linear dispersion
deep water surface waves.4
5 © 2000 American Institute of Physics
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In a 2D crystal, the phonon wake structure depends
the speed of the moving particle,U. WhenU.c(0), we find
that there is a linear Mach cone satisfying Eq.~1! along with
a secondary ‘‘lateral’’ oscillatory wake with smaller angl
b andu. In addition, there is a narrow wake due to umkla
phonons~phonons from beyond the first Brillouin zone of th
lattice! that is superimposed on the lateral wake. The wa
crests are displayed in Fig. 2~a!. The narrow umklapp wake
is sensitive to details such as the direction of motion of
charge with respect to the lattice. However, the Mach c
and the lateral wake at larger opening angles are insens
to these details.

For U,c(0) the Mach cone disappears and is replac
by a ‘‘transverse’’ oscillatory wake similar to that behind
moving ship in deep water.4 This sort of wake is displayed in
Fig. 2~b!. The theory behind Figs. 2~a! and 2~b! will be the
subject of the next section.

II. THEORY

Consider an infinite lattice of identical charged du
grains, with chargeQ and massm, confined to thex–y plane
in the sheath of a background plasma. A moving charge
low the plane, with projected (x,y) position r c(t)5xcx̂

1Utŷ at time t, creates a force2¹F(r i2r c(t)) on thei th
dust grain, at positionr i . The grains interact with one an
other via a Yukawa potentialf(ur i2r j u), where

f~r !5Q2
e2r /l

r
, ~2!

and wherel is the Debye screening length of the bac
ground plasma sheath. This is a good approximation for p
ticles suspended at the same height in the plasma she5

The potentialF(r ) is less-well understood, since the movin
charge is at a different height in the sheath than the d
grains. Some research has pointed to an attractive intera
between grains at different heights;7–9 others have observe
grain repulsion in some circumstances.5,6 In what follows we
will leave F an unknown function. We will soon see that th
wake structure depends onF, and the current experimenta
data together with the theory imply thatF cannot be a purely
attractive potential; the force between the moving charge
the grains either changes sign or is purely repulsive.

FIG. 1. A moving charge at positionr c(t) excites a phonon with wave
numberk, propagating at angleu with respect to thex axis. Surfaces of
constant phase are shown as dashed lines. The phonon perturbs a dus
located at position (x0 ,y0), measured with respect to the moving charge
n
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Assuming that the perturbed dust grain positiondr i is
small, dr i satisfies the following linearized equation of m
tion:

md r̈ i52¹F~r i2r c~ t !!2(
j Þ i

]2f

]r i]r i
~r i2r j !

•@dr i2dr j #2mnd ṙ i ,

wheren is a phenomenological damping rate, caused by c
lisions of the grains with neutral gas. This linear equati
can be solved for the driven response of the dust grains to
force of the moving charge by introducing phonon coor
nates and Fourier transforming. The result of this analysi

rain

FIG. 2. Structure of the wake behind a charge moving in the positivy
direction ~up in the figures!. Lines display wave crests; or more precisel
maxima of the function sin(k0(b)•(x0 ,y0)1(p/4)sgn(u)), assuming a
Yukawa interaction withl/a51. Gray dots are the positions of charges
the triangular lattice, with spacing shown to scale with respect to the w
~a! U/c(0)51.8; ~b! U/c(0)50.8.
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dr i~ t !52(
a

E d2k

~2p!2

3
i F̂~k!k•êa~k!êa~k!eik•(r i2rc(t))

va
2~k!2ky

2U22 inkyU
, ~3!

where F̂(k)5*d2rF(r )e2 ik"r is the Fourier integral of
F(r ) andva(k) and êa(k) are the frequency and polariza
tion unit vector of a phonon with wave numberk. In the
wave number integral in Eq.~3!, va and êa are periodic
functions ofk, repeating in each Brillouin zone of the 2
triangular lattice. The subscripta denotes the type of pho
non; va

2(k) and êa(k) are the eigenvalue and eigenvecto
respectively, of a matrixM (k), where

M ~k!5
1

m (
j Þ i

]2f

]r i]r i
~r i2r j !@12cosk•~r i2r j !#. ~4!

For a 2D lattice, this matrix is 232, with two types of
phonons, termed compressional and shear@for ka!1, ê(k)i
or ' k, respectively#. The frequency of the phonons in th
first Brillouin zone is shown in Fig. 3 along two direction
The lattice is assumed to be oriented with respect tox andy
as shown in Fig. 1. Contours of constant frequency
shown across several Brillouin zones for the compressio
mode in Fig. 4. The phase velocity of the compressio
phonons is larger than that of the shear branch.1,10 The wake
is therefore dominated by the compressional branch, and
will concentrate on the compressional phonons in the
mainder of the paper. Some other numerical and anal
results for the compressional modes are discussed in the
pendix.

FIG. 3. Frequencyv versus wave numberk in the first Brillouin zone for
shear and compressional modes in a 2D triangular dust plasma lattice
two angles of propagation with respect to thex,y axes@k5k(cosu,sinu)#.
The lattice is oriented as shown in Fig. 1, and the Yukawa potential w
l/a51 is assumed.
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The wave number integral in Eq.~3! is dominated by the
pole, at va

25ky
2U22 inkyU. Dropping the imaginary part

we denoteky0
(kx) as the solution to the resonance conditi

va
2~kx ,ky0

!5ky0

2 U2. ~5!

Note that this resonance condition is just the Mach condit
c[v/k5U sinu, where u5tan21(ky /kx) is the angle of
propagation. Solutions of Eq.~5! for ky0

(kx) for the com-
pressional phonons are shown in Fig. 4 for several value
U, and for Debye length equal to interparticle spacing in
Yukawa potential. Only solutions withky0

.0 are shown,
although the symmetry of the lattice implies th
2ky0

(2kx) is also a solution. Wave numbers beyond t
first Brillouin zone correspond to umklapp phonons, a
should be referred back to wave numbers in the first B
louin zone by subtracting out a reciprocal lattice wave v
tor: k→k2g, where g5n(0, 4p/A3a)
1m(2p/A3a,2p/a), andm andn are integers.

One may observe in Fig. 4 that whenU.c(0), ky0

→0 askx→0. This is becausev'c(0)k at smallk, so Eq.
~5! approaches Eq.~1! andky0

5ukxutanu0 askx→0. On the
other hand, forU,c(0), Eq. ~1! no longer has a solution
andky0

no longer approaches zero askx→0.
In fact, for sufficiently smallU/c(0), one can seefrom

Fig. 4 thatky0
is no longer even in the first Brillouin zone fo

any kx value. Referring such high-wave-number solutio
back to the first Brillouin zone, we see that umklapp phono
are excited nearly isotropically by a slow-moving charg
However, the experiments were performed forU.c(0), so
we will concentrate on this case for the moment.

Returning to the evaluation of theky integral in Eq.~3!,
it is convenient to work in a coordinate frame moving wi

for

h

FIG. 4. ~Color! Resonance curves@solutions of Eq.~5!#, for U/c(0)51.8
~red!, 0.8 ~green!, 0.2 ~purple!, 0.1 ~blue!. Also shown in gray are contours
of constantv. l/a51 is used in the Yukawa potential, and in this ca
c(0)52.43(Q2/ma)1/2.
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the charge, so we define (x0 ,y0)5r i2r c(t). Equation~3!
shows that the wake is stationary in the moving frame. T
location of the pole in theky integral can be found approxi
mately assuming n is small; ky.ky0

(kx)2 in/2@U

2vgy
(kx ,ky0

(kx))#, whereky0
(kx) is given by Eq.~5!, vg

5]va /]k is the group velocity, andvgy
5vg• ŷ. When U

.vgy
, the pole is in the lower-half plane. Keeping only th

contribution from this pole in theky integral of Eq.~3!, the
result is nonzero only fory05y2Ut,0. Otherwise, ify0

.0 theky contour of integration must be closed in the upp
half-plane, where there are no poles. Thus, whenU
.vgy

(kx ,ky0
) the wake trails the moving charge; but th

same argument implies that ifU,vgy
(kx ,ky0

) the wake is in
front of the charge.

Note that in the experiments of Refs. 1 and 2,U
.c(0), and forcompressional modesc(0).uvgu ~see Fig.
3!, so the above argument implies that the wake should
trailing, as was in fact observed.

Evaluation of theky integral in Eq.~3!, keeping only the
contribution from the pole, then yields

dvi[d ṙ i522 Re(
a

E dkx

4pm

i F̂~k!k"êa~k!êa~k!

U2vgy
~k!

3HS y0

U2vgy
~k! D

3eikxx01 ikyy01 ~1/2!@ny0 /~U2vgy
(k) !#uky5ky0

(kx) ,

~6!

where H(x)5(12sgn(x))/2 is a step function, and wher
dvi is the perturbed velocity of a dust grain at sitei ~this is
the observable quantity in the experiments!. Only solutions
of Eq. ~5! with ky0

.0 are required in Eq.~6!. Solutions with
ky0

,0 are already accounted for by taking twice the real p
of the integral, recalling that solutions of Eq.~5! have reflec-
tion symmetry through the origin. Also, note that for give
kx there may be more than one positive solution forky0

(kx)
@see Fig. 4 at smallU/c(0), for example#. One must then
sum over all such positive solutions in Eq.~6!.

For large values ofux0u or uy0u, the integral in Eq.~6!
can be evaluated using the method of stationary phase.11 At a
given location (x0 ,y0) behind the moving charge, thekx

integral is dominated by value~s! of kx , kx0
, that satisfy

](kxx01ky0
(kx)y0)/]kxukx5kx0

50. This implies the follow-

ing relation between the opening angleb and the dominant
wave numberk0 ,

tanb[
x0

2y0
5

vgx

U2vgy

U
k5k0

, ~7!

wherek0[(kx0
,ky0

(kx0
)). Here we have used Eq.~5! to de-

termine]ky0
/]kx .

Keeping only the contribution from the compression
mode, and dropping the polarization subscripta, the station-
e

r

e

rt

l

ary phase pointsk0 yield the following value for the integra
in Eq. ~6!:

dvi5Re
2 i F̂~k0!

mA2puy0u~k0!u

k0•ê~k0!ê~k0!

U2vgy
~k0!

HS y0

U2vgy
~k0! D

3eik0•(x0 ,y0)1 ~ ip/4! sgn[y0u(k0)] 1 ~1/2!@ny0 /~U2vgy
(k0) !#,

~8!

where

u~k0![
]

]kx
S vgx

U2vgy

D U
k5k0

. ~9!

Note thatk05k0(b) through Eq.~7!, and that Eq.~8! is valid
only whereuy0u(k0)u @a2.

Equation~8! describes a trailing wake (y0,0) consist-
ing of oscillations that decay likee2nuy0 /2(U2vgy

)u/Auy0u,
with distanceuy0u behind the moving charge. The oscilla
tions have a spatially-varying wave numberk0 that depends
on opening angleb through Eq.~7!. A graphical solution for
k0(b) can be obtained using Fig. 5 for the casel/a51. The
figure displays the right-hand side of Eq.~7! versuskx0

for
three different values of the speedU. A given value ofb
determines one~or more! values of kx0

(b), and then
ky0

(b)5ky0
(kx0

(b)) through Eq.~5!. This value ofb de-
fines a linex052y0 tanb, along whichk0(b) is the domi-
nant wave number in the wake. Note that the angle of pro
gation of k0 , u, is not necessarily the same asb, so
wavefronts need not emanate directly from the mov
charge as they do in a Mach cone.

Figure 5 shows that, depending on the value ofb, there
may be no solution, or one or more solutions fork0 . Differ-
ent solutions at givenb correspond to different oscillation

FIG. 5. For a given value of the opening angleb, the curves provide
stationary-phase values for thex-component of the wave number,kx0

. l/a
51 is assumed.
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that are superimposed on one another. Most of these osc
tions are at very high wave number, beyond the first B

louin zone, and hence are of low amplitude sinceF̂(k)→0
at largek. However, whenU.c(0) there is a singlekx0

(b)
solution at small wave numbers, and thiskx0

value ap-
proaches zero asb increases towards a maximum.

The maximumb value can be determined by using th
long wavelength dispersion relation,v5c(0)k, in Eqs. ~5!
and ~7!. The result is

~ tanb!max5
c~0!

AU22c~0!2
, U.c~0!. ~10!

The line x052y0(tanb)max defines an opening angleb
5u0 that satisfies the Mach condition, Eq.~1!. According to
our stationary phase approximation, Eq.~8!, there is no wake
beyond this opening angle whenU.c(0). However, this
approximation is not precisely correct, because Eq.~8!
breaks down askx0

→0, sinceu→0 there@see Fig. 5 and Eq
~9!#. The structure of this linear Mach cone can be det
mined analytically by keeping a slightly more accurate e
pression forv, valid at smallk,

v5c~0!k2Ak3, ~11!

where A.0 for the compressional phonons.~Here we ne-
glect the slight dependence ofA on propagation direction in
a triangular Yukawa lattice. Examination of the exact disp
sion relation using Eq. ~4! reveals that u@A(u)
2A(0)#/A(0)u,1% for l/a*1. This is discussed in mor
detail in the Appendix.! Equation~5! then implies that

ky0
5tanu0ukxuS 12

Akx
2

c~0!cos4 u0
D 1•••, kxa!1,

~12!

whereU.c(0) is assumed, andu0 is given by Eq.~1!. Not-
ing that the compressional mode hasê(k)5 k̂ at long wave-
lengths, Eq.~6! yields the following expression for the ve
locity of the wake in the linear Mach cone:

dvMach.Im F̂~0!
e~ny0 sin u0/2c(0)cos2 u0! sinu0

mc~0!cos2 u0

3E
2«

« dkx

2p
kx eikxz1 ibkx

2ukxu~1,sgn~kx!tanu0!,

~13!

where z5x01sgnukxuy0 tanu0 , b5A sinu0uy0u/c(0)cos5 u0,
and«a!1 is assumed, as we are interested only in the lo
wavelengths that contribute in the stationary phase appr
mation to the linear Mach cone aroundz/uy0u50 ~i.e., x
'6y0 tanu0). We have used Eq.~1! for u0 , along with
vgy

.c(0)sinu0 ~valid for ka!1). Assuming thatuy0u@a

~but thatuz/uy0u!1), we can then take«→`, and the inte-
gral can be evaluated analytically, yielding
la-
-

r-
-

-

g
i-

dvMach52
F̂~0!sinu0

2mc~0!~3b!2/3cos3 u0

ŝ Ai8S s

~3b!1/3D
3e~ny0 sin u0/2c(0)cos2 u0!, ~14!

wheres5ux0u1y0 tanu0 , ŝ5(sgn(x0)cosu0,sinu0) is a unit
vector transverse to the Mach cone, pointing in the forw
direction, andAi8(x) is the derivative of an Airy function.

Note thatF̂(0)5*d2rF(r ) is a real number. Equation~14!
is only valid near the Mach cone, forus/y0u!1. The form of
the wake is displayed in Fig. 6, assuming no damping~n50!.
One can see that the wake decays exponentially in the
ward direction (s increasing! and oscillates toward the rea
(s,0). Each crest in the oscillation corresponds to a line
Fig. 2~a!. The distance between crests has a scale lengt
(3b)1/3, and this scale length is small compared touy0u for
uy0u large. Therefore, several oscillations in the lateral wa
are described by Eq.~14!, provided that one looks well be
hind the moving charge.

One can easily show thatdvMach• ŝ has an extremum a
s50, and the extremum value is

~dvMach• ŝ!ext5
F̂~0!

6G~1/3! mc~0!1/3

~sinu0 cosu0!1/3

~4Auy0u!2/3

3e~ny0 sin u0/2c(0)cos2 u0!, ~15!

whereG(x) is a gamma function. Therefore, the direction

dvMach at the extremum depends on the sign ofF̂(0). For

F̂(0).0, dvMach points forward @along (cosu0,sinu0) for
x052y0 tanu0 , or along (2cosu0,sinu0) for
x05y0 tanu0#, but for F̂(0),0, dvMach pointsbackward. In
the experiments,dvMach pointed forward, implyingF̂(0)
.0.

If one assumes thatF(r ) is either purely attractive or

purely repulsive, then it is easy to see thatF̂(0).0 implies

FIG. 6. Functional form of the wake velocity@Eq. ~14!# in the linear Mach
cone forU.c(0), including the first few oscillations in the lateral wake

Heres̄ is a coordinate transverse to the cone, scaled by the distance (3b)1/3:

s̄5(ux0u1y0 tanu0)/(3b)1/3.
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a repulsive potential andF̂(0),0 implies an attractive po
tential. For instance, for a purely repulsive potential the
rivative of F(r ) with respect tor is negative at allr .0, and
F(r ) is zero at infinity. This necessarily implies that th
radial average ofF(r ) is greater than zero. Thus, the fa
that dvmach pointed forward in the experiments implies th
the force between the moving charge and the dust gr
cannot be purely attractive; the force must have a signific
repulsive component, and may even be purely repulsive

In the experiments and simulations of Refs. 1 and 2,
wake velocity reversed direction in each successive ‘‘Ma
cone’’ as one counted back from the initial Mach cone. T
is consistent with the oscillatory form of the wake, as sho
in Figs. 2 and 6.@Note that in Fig. 2, locations of the wav
crests are drawn, assuming a repulsive interaction betw
the grains and the moving charge. There are also troughs~not
shown! between the crests where the wake velocity rever
direction.#

Summarizing the results so far, forU.c(0) there is a

linear Mach cone with an extremum indv• ŝ along the lines
x057y0 tanu0 , together with a set of oscillations behin
the cone, determined by the exponential in Eq.~8!. Assum-

ing that F̂(k) is real for all k, the oscillations are propor
tional to sin@k0•(x0 ,y0)1(p/4) sgn(y0u(k0))#. The peaks
~maxima! in this function are shown in Fig. 2~a!, along with
the Mach cone maximum, for the casen50 ~no damping!,
U/c(0)51.8, andl/a51 in the Yukawa potential.

The oscillation at relatively large opening angles beh
the Mach cone is termed a ‘‘lateral wake,’’ in analogy to t
similar structure behind a moving ship.4 The complex set of
criss-crossing extrema directly behind the moving charge
superimposed on the slower-varying lateral wake. They a
result of the large-wave number umklapp phonon soluti
for kx0

(b). The extent to which these solutions actually a

fect the wake depends on the magnitude ofF̂(k) at largek.
For example, ifF̂(k) were zero for wave numbers beyon
the first Brillouin zone, only the lateral wake and the Ma
cone would appear.

Note that the wavefronts in the lateral wake curve o
ward until they are parallel to the Mach cone at large d
tances behind the moving charge. However, if finite damp
n is added to the solution, these wavefronts decay expon
tially before they achieve the same opening angle as
Mach cone. The experiments and simulations, which had
nite damping, also observed that the secondary wavefr
had smaller opening angles than the Mach cone.1,2

We now turn to the case where the grain moves w
speedU,c(0), a case which has not yet been reported
the experiments. In this regime there is no longer a solu
to Eq. ~1!, and consequently the Mach cone disappears@see
also Eq.~15! in the limit cosu0→0]. Now a new small-wave-
number solution forkx0

(b) appears, corresponding to

transverse wake that is superimposed on the lateral wake~see
Fig. 5!. The appearance of the transverse wake can be un
stood analytically when 0<c(0)/U21!1. In this regime,
the transverse wake has wave numbersk0!a21, so Eq.~11!
holds. Then Eqs.~7! and ~11! can be combined to give
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tanb5
vgA12c2/U2

U2vgc/U
, ~16!

wherevg5c(0)23Ak2 is the magnitude of the group veloc
ity, and c5c(k)5c(0)2Ak2 is the magnitude of the phas
velocity. We may now regard the opening angleb as a func-
tion of k. This function is double-valued at smallk; there are
two values ofk for every b, indicating two wakes. This is
because a maximum in b(k) exists, at kmax

5A3(c(0)2U)/2A, for c(0)/U21 small ~but positive!.
The rangek.kmax corresponds to the lateral wake, butk
,kmax corresponds to the new transverse wake. This w
also has k bounded from below,k>kmin , where kmin

5A(c(0)2U)/A, in order thatc(k)2/U2<1. At k5kmin ,
tanb50, sok5kmin corresponds to the wave number of th
transverse wake on a line directly behind the moving char
The wave numberk5kmax corresponds to the maximum
value of b, beyond which there is no wake. For small b
positivec(0)/U21, Eq. ~16! implies

~ tanb!max5
1

4Ac~0!/U21
. ~17!

This shows that asU increases and approachesc(0) from
below,b→p/2 and the wake opens up until it fills the enti
half-plane behind the charge. AsU increases further, Eq
~10! becomes valid and the wake beings to narrow again

At k5kmax, the transverse and lateral wakes meet.
this pointu(k0)50, Eq.~8! breaks down, and the amplitud
of the wake is large. One can show thatu.0 for the trans-
verse wake andu,0 for the lateral wake~see Fig. 5!, so
according to Eq.~8! there is a 1/4 period phase shift betwe
the two wakes. The resulting structure is shown in Fig. 2~b!
for the same parameters as Fig. 2~a!, except nowU/c(0)
50.8. As before, the figure shows the maxima of sin@k0

•(x0 ,y0)1p/4 sgn(y0u(k0))#. In addition to the transverse
and lateral wakes, there is a narrow band of umkla
phonons caused by high wave number components ofF(k),
similar to that in Fig. 2~a!. As U/c(0) decreases further, thi
band increases in width as the lateral wake decrease
width, and eventually these umklapp phonons dominate
wake structure.

III. DISCUSSION

We have shown that the wake of compressional phon
excited in a 2D crystal lattice by a moving charge has
structure which depends on two dimensionless parame
the ratio of the speedU of the charge compared to the pha
speed of long wavelength phonons,c(0); and theratio of the
Debye screening lengthl in the intergrain interaction to the
spacing between dust grains,a. When U/c(0).1, a linear
Mach cone and lateral wake form, along with a series
relatively high wave number structures directly behind t
charge @see Fig. 2~a!#. This type of wake is qualitatively
similar to that observed in recent experiments on 2D plas
crystals. WhenU/c(0),1, the Mach cone is predicted t
disappear, to be replaced by a transverse wake@Fig. 2~b!#.
This type of wake has not yet been observed.
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The structure of the wake also depends on the interac
between the dust grains and the moving charge. The form
this interaction is presently the subject of debate.5–9 Our
theory analysis of the wakes observed in Refs. 1 and 2
plies that the interaction between the grains and the mov
charge cannot be purely attractive; the force either chan
sign or is purely repulsive. The fact that the spatial aver
of the effective interaction potential is positive@F̂(0).0#
implies that there must be asubstantialrepulsive componen
to the force. This could be accomplished in several wa
through a purely repulsive force, or a repulsive tail at lar
radial displacements, or a strong short-range repulsion,
example.

The dependence of the wake structure onl/a can be
understood from Eq.~14!, whenU.c(0). Thescale length
of the wake appearing in this equation, (3b)1/3, depends im-
plicitly on l/a throughA and c(0). For fixed U/c(0).1,
the scale length increases asl/a, increases, varying roughl
as (l/a)2/3 whenl/a.1. @This follows from the mean field
forms ofc(0) andA, Eqs.~A6! and~A9!.# Since the form of
the wake depends on bothl/a andU/c(0), andsincec(0)
depends on the chargeQ on the dust grains, experiment
measurement of the wake structure could be used to d
mine bothQ and l, independent from other measureme
techniques.

A particularly striking example of the dependence of t
wake on the Debye length is the case of a purely Coulom
interaction withl5`. In this limit, long wavelength com-
pressional phonons have infinite phase speed in a 2D la
@i.e., c(0)→` ~Ref. 12!# ~see the Appendix!. Thus, for a
Coulomb interaction between the charges no Mach c
should be formed, even for very largeU, and the wake
should be of the type shown in Fig. 2~b!.

While the limit of a pure Coulomb interaction is difficu
to achieve in dust-plasma experiments due to the shield
effect of the background plasma, 2D lattices interacting vi
Coulomb force have been created in Penning traps.13 It may
be possible to excite a wake in such a 2D Coulomb crys
perhaps by using a laser spot moving with respect to
lattice, as discussed in Ref. 2. However, the strong impo
magnetic field in a Penning trap would affect the form of t
wake, and the theory for this physical situation remains to
worked out.

The theory presented here has assumed linear dyna
for the dust grains. While this approximation appears to
sufficient to explain qualitative aspects of the wake structu
nonlinear effects could play an important role if the intera
tion F between the moving charge and the grains is su
ciently strong. One might then expect that an elastic sh
could form, similar to those that have been studied in so
materials.14 This possibility will be the subject of future
work.

The theory presented here also assumes that the mo
charge has constant velocity. In fact, the wake itself car
momentum away, creating a drag force on the charge. S
the charge in the experiment is observed to move at ne
constant speed, presumably some external force is actin
the experiments to counteract the effects of the wake dra
n
of
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well as drag due to neutral gas. The drag from the pho
wake is the condensed-matter equivalent of the drag du
inverse-Landau-damping in a collisionless plasma,15 or the
‘‘wave resistance’’ on a moving ship.16 The magnitude of
this drag force, together with its dependence on velocity a
the particle interaction, will be the subject of future work.
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APPENDIX: THE COMPRESSIONAL PHONONS IN A
2D TRIANGULAR YUKAWA LATTICE

In this Appendix we derive several results regarding
frequencyv(k) for the compressional mode of a 2D trian
gular lattice of charges that interact via a Yukawa poten
f(r ). First, we consider the phase speed of long-wavelen
compressional phonons,c(0). A general expression forc(0)
can be obtained from the matrixM (k) in the limit as k
→0. We first note that for any central potentialf(r ), Eq.~4!
implies thatM (k) can be written as

M ~k!5
1

m (
p

Fpp

p2 S ]2f

]p2
2

1

p

]f

]p D 1
1

p

]f

]p G @12cosk"p#,

~A1!

wherep5r j2r i is a lattice vector,1 is the unit tensor, and
the sum runs over allpÞ0. Taylor expanding Eq.~A1!, and
using the fact that compressional phonons have polariza
êik at small wave number, we have

c2~0!5
1

2m (
p

F px
2

p2

]2f

]p2
1

py
2

p3

]f

]p Gpx
2 . ~A2!

This phase speed is shown in Fig. 7 as a function of
Debye length scaled to the interparticle spacing,l/a.

Several analytic or semianalytic approximations toc(0)
@andv(k)] can also be obtained. For example, one can k
only nearest-neighbor interactions in Eq.~A2!, which is a
reasonable approximation provided thatl/a!1.1 In this case
Eq. ~A2! reduces to

cnn~0!25F15S 11
a

l D1
9a2

l2 G Q2

8ma
e2a/l. ~A3!

Comparison of Eq.~A3! to the exact result in Fig. 7 show
that Eq.~A3! works well providedl/a&0.3.

A second analytic approximation can be found using
‘‘mean-field’’ approach. In this approach one entirely n
glects the triangular lattice structure and replaces the(p in
Eq. ~A1! by an integral,nD*d2r , noting that the integral is
convergent asr→0. HerenD is the density per unit area o
the dust. The resulting matrix is diagonal with a compre
sional phonon frequency given by the expression
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vMF
2 ~k!5

nD

m E
0

2p

duE
0

`

rdr ~12cos~kr cosu!!

3Fcos2 u
]2f

]r 2
1

sin2 u

r

]f

]r G . ~A4!

For a Yukawa potential these integrals can be perform
analytically, yielding

vMF
2 ~k!5

2pQ2nD

m

k2l

A11k2l2
. ~A5!

The long-wavelength limit of this expression yields a mea
field result forc(0), cMF(0),

FIG. 7. Phase speed for compressional modes atk50 versusl/a in the
Yukawa potential. Thin solid line, numerically determined via Eq.~A2!.
Dashed line, mean field theory@Eq. ~A6!#. Dots, semianalytic@Eq. ~A7!#.
Thick solid line, nearest-neighbor interactions@Eq. ~A3!#.

FIG. 8. Variation of cubic termA with angle of propagationu for 4 values
of l/a. A is divided byl5/2 so that data are all on the same scale.
d

-

cMF
2 ~0!5

2pQ2lnD

m
. ~A6!

Comparing to the exact result in Fig. 7 shows thatcMF(0)
works reasonably well except for a positive offset. This
caused by the effect of nearby particles~small r ) in the in-
tegral in Eq.~A4!. A semianalytic approximation that work
well for l/a*0.3 is

cSA
2 ~0!5cMF

2 ~0!21.32S Q2

maD . ~A7!

Note that for l→`, cMF
2 (0)→`. In fact, Eq. ~A5!

shows that in this limit~the limit of a pure Coulombic inter-
action!, the mean-field dispersion relation is12

lim
l→`

vMF
2 ~k!5

2pQ2nDk

m
. ~A8!

This dispersion relation is identical to that for deep wa
surface gravity waves,v25gk, with 2pQ2nD /m taking the
role of the acceleration of gravityg. Therefore, the long-
wavelength features of the wake in a 2D Coulomb crys
should strongly resemble the Kelvin wedge behind a mov
ship in deep water.

Finally, we note that several of our results, such as
functional form of the Mach cone, depend on the cubic te
in the dispersion relation,2Ak3 @see Eq.~11!#. An analytic
approximation toA can be obtained in the mean-field a
proximation from Eq.~A5!,

AMF5
1

2
l5/2 S pQ2nD

2m D 1/2

. ~A9!

In a triangular latticeA actually varies slightly with propa-
gation direction. This slight variation is shown for a fe
cases in Fig. 8. Here we have evaluatedA(u) using the exact

FIG. 9. Variation ofA(u50) with l/a. Thin solid line, numerically deter-
mined via Eq.~A11!. Dashed line, mean field theory@Eq. ~A9!#. Thick solid
line, theory using nearest-neighbor interactions@Eq. ~A12!#.
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dispersion relation obtained from Eq.~4!. This involves Tay-
lor expanding Eq.~4! to fourth-order ink. The fourth order
correction to the matrix is

DM52
1

24m (
j Þ i

]2f

]r i]r i
~r i2r j !@k•~r i2r j !#

4. ~A10!

Then a standard first-order perturbation theory treatm
yields the following result forA(u):

A~u!52
k̂•DM• k̂

2c~0!k4
. ~A11!

In the limit of smalll/a, keeping only nearest-neighbor in
teractions in Eq.~A10! yields

A~u!5
a3Q2

256l2cnn~0!
e2a/lF101cos 6u13~61 cos 6u!

3S l

a
1

l2

a2D G ,
l

a
!1 ~A12!

showing that even at smalll/a there is at most a 20% varia
tion in A with angle of propagation. Since the variation
A(u) is small forl/a*1, we compare Eq.~A9! to A(0) as a
nt

function of l/a in Fig. 9. The mean field approximation i
reasonably accurate, except at smalll/a where Eq.~A12!
works well.
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