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The phonon wake behind a charge moving relative to a two-dimensional
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In a recent experiment a wake was created in a two-dimensional lattice of charged dust grains by a
charge moving parallel to the lattice plane. Multiple “Mach cones” were observed in the wake. This
paper describes a linear theory of the phonon wake caused by a charge moving relative to a
crystalline lattice. The theory predicts multiple structures in the wake that are qualitatively similar

to those observed in the experiments. These structures are caused by constructive interference of
compressional phonons excited by the moving charge, combined with the strongly dispersive nature
of these phonons. @000 American Institute of Physid$1070-664X00)04810-2

I. INTRODUCTION B=06y, c(0)=Usiné,, D

The wake created by an object moving with respect to awhere ¢(0) is the sound speed of long-wavelength
medium is a ubiquitous phenomenon, occurring on astroPhonong. The anglesy and g are defined in Fig. 1[The
nomical scalege.g., the earth’s magnetotail formed by inter- angle_i)f propagation for a wave with wave numbers ¢
action with the solar wing human scalege.q., the shock — @0 (Ky/Ky); the angleg is defined for a given (E|1splace-
wave behind a supersonic airplapnand microscopic scales ment (o.Yo) frpm the moving char_ge ag=tan (Xo/
(e.g., Cherenkov radiation created by a rapidly moving el—(_)y‘))'] Equation (1) merely prescribes that surfaces of

ementary chargeln some cases the dynamics of the wake isconstant phase keep pace with the moving charge, so that the

nonlinear (as in the first two exampleswhereas in other driven wave can be resonant with the charge. However, sev-

cases a linear analysis sufficéss in the last exampleln eral other “"Mach cones” with differentsmallej opening

these(and othey examples the structure of the wake hasangles also appeared in both experiments and simulations,

. ) . L . ?nd these structures were unexplained.
received close scrutiny, and in some cases it is still a topic o . . .
This paper outlines a general linear theory for the wake

current research. . . induced by a charge moving at constant velocity with respect
Recently the wake created in a crystal lattice by a mov-

. h b d and droth d d to a 2D crystalline lattice. The theory should be valid at the
INg charge was observed and meas condensed mat- high densities associated with regular condensed matter.

ter physics, the interaction of moving charges with a lattice iy e, applied to a 2D dust plasma lattice, the theory predicts
clearly of great significance. For example, the excitation Ofy, inje structures in the wake that are qualitatively similar
phonons during ion implantation is known to be an important, those observed in the experiments and simulations. The
process. However,' the spat|aI. characteristics of the W"’.‘kemultiple wake structures are a consequence of the strongly-
created by a moving charge in a crystal has not rece"’eﬁispersive nature of compressional phonéssund waves
much attentiorito our knowledgg possibly because the spa- j, 3 2D Jattice. The excited waves satisfy the Mach condi-
tial scales involved are typically small, and the time scaleqion’ c=Using but c=c(k) so different excited waves
are fast(set by the atomic spacing and the sound speedyqye| at different propagation angleg= 6(k). Phase mix-
respectively. These difficulties were avoided in the afore- jq of the various excited waves causes constructive and de-
mentioned experiments, because the crystal consisted of fyyctive interference. As a result, along a line defined by
two-dimensional (2D) triangular lattice of charged dust ggome given opening angJ@we will show that specific wave
grains (polymer microsphergswith large spacinga=250  numbersk=kq(8) are dominant, and in general the propa-
microns. The grains were levitated against the force of gravgation angled for these wave numbers is not equal go
ity in the sheath of a rf plasma discharge. A chaf@eother  These wave numbers form the observed multiple wakes.
microsphere, or possibly an agglomeration of several micro-  Such structures do not occur in the single Mach cone
spheresmoving parallel to the crystal plane with nearly con- shock wave surrounding a particle in air that moves faster
stant speed of only a few cm/s perturbed the positions of than the speed of sound. This is because air is much less
the dust grains, creating a wake in the lattice that could belispersive than a 2D lattice, so Ed) is nearly correct for
imaged with a digital camera. all significant wave numbers. On the other hand, many other
The wake had some expected features as well as sevenaledia have strong dispersion and therefore also exhibit mul-
unexplained structures. As expected, a “Mach cone” wagiple wake structures. Probably the best known example is
observed, in which a perturbation was concentrated in a congae so-called “Kelvin wedge” that forms behind a ship mov-
with opening angleB, and had an angle of propagatieh ing in deep water, caused by the strong linear dispersion of
= ¢, that obeyed the usual Mach conditions, deep water surface wavés.
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FIG. 1. A moving charge at position,(t) excites a phonon with wave
numberk, propagating at anglé with respect to thex axis. Surfaces of
constant phase are shown as dashed lines. The phonon perturbs a dust grain
located at positionXy,y,), measured with respect to the moving charge.

In a 2D crystal, the phonon wake structure depends on
the speed of the moving particld, WhenU>c(0), we find
that there is a linear Mach cone satisfying [Eh.along with
a secondary “lateral” oscillatory wake with smaller angles
B andé. In addition, there is a narrow wake due to umklapp
phonongphonons from beyond the first Brillouin zone of the
lattice) that is superimposed on the lateral wake. The wave
crests are displayed in Fig(&. The narrow umklapp wake
is sensitive to details such as the direction of motion of the
charge with respect to the lattice. However, the Mach cone
and the lateral wake at larger opening angles are insensitive
to these details.

For U<c(0) the Mach cone disappears and is replaced
by a “transverse” oscillatory wake similar to that behind a
moving ship in deep watérThis sort of wake is displayed in
Fig. 2(b). The theory behind Figs.(&) and Zb) will be the
subject of the next section.

IIl. THEORY

.Cons.lder an infinite lattice of I.demlcal charged duStFIG. 2. Structure of the wake behind a charge moving in the positive
grans, with charg® and massn, confined to thg(—y plane  girection (up in the figures Lines display wave crests; or more precisely,
in the sheath of a background plasma. A moving charge bemaxima of the function sitG(B)-(Xo,Yo) + (7/4)sgn@)), assuming a

low the plane with projected x(y) position r (t) =X )”( Yukawa interaction witti\/a= 1. Gray dots are the positions of charges in
’ ¢ € the triangular lattice, with spacing shown to scale with respect to the wake.

+Uty at timet, creates a force- VO (ri—rc(t)) ontheith (g u/c(0)=1.8; (b) U/c(0)=0.8.
dust grain, at positiom;. The grains interact with one an-
other via a Yukawa potentiap(|r;—r;|), where

e—r/)\

, 2 . : S
r @ Assuming that the perturbed dust grain positiém is

k- Ssmall, ér; satisfies the following linearized equation of mo-

B(r)=Q?

and where\ is the Debye screening length of the bac
ground plasma sheath. This is a good approximation for par2o™

ticles suspended at the same height in the plasma sheath.

The potentiakb (r) is less-well understood, since the moving F Vo E P

charge is at a different height in the sheath than the dust mor; = (ri_rC(t))_-;&- ariari(r‘_rj)

grains. Some research has pointed to an attractive interaction )

between grains at different heigHts! others have observed -[ori—érj]—mvor;,

grain repulsion in some circumstancésn what follows we

will leave @ an unknown function. We will soon see that the wherev is a phenomenological damping rate, caused by col-
wake structure depends @, and the current experimental lisions of the grains with neutral gas. This linear equation
data together with the theory imply th&tcannot be a purely can be solved for the driven response of the dust grains to the
attractive potential; the force between the moving charge antbrce of the moving charge by introducing phonon coordi-
the grains either changes sign or is purely repulsive. nates and Fourier transforming. The result of this analysis is
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FIG. 3. Frequency versus wave numbek in the first Brillouin zone for . _
shear and compressional modes in a 2D triangular dust plasma lattice, fi Fle?j) 1) éC(Zorlgz r)Rgsf?inrcfec%ﬂf([ﬁﬁjg)mmzoo;focw?i]ﬁ forraU/a Crf-:‘oc)(;n%éirs
two angles of propagation with respect to thg axes[k=k(cos#,sin 6)]. »Delg 92 \purpie, ©. \ gray

The lattice is oriented as shown in Fig. 1, and the Yukawa potential withOf constantw.2 )‘/aj,zl is used in the Yukawa potential, and in this case
o c(0)=2.43Q*/ma)~".
Ma=1 is assumed.

The wave number integral in EB) is dominated by the
42K pole, atw’=k;U?~ivk,U. Dropping the imaginary part,
we denotekyo(kx) as the solution to the resonance condition

6ri(t>=—§ f

iD(K)k-e,(k)e,(k)elk (i=re®)
02(K)—K2U2— i vk,U ' ) Note that this resonance condition is just the Mach condition
@ y y c=w/k=U sing, where #=tan *(k,/k,) is the angle of
where (i)(k)zfdzrq)(r)efik-r is the Fourier integral of propagation. Solutions of Ed5) for kyO(kX) for the com-
®(r) and w,(k) ande,(k) are the frequency and polariza- pressional phonons are shown in_Fig. 4 fqr several_ val_ues of
tion unit vector of a phonon with wave numbkr In the U, and for Debye length equa! to mte_rparucle spacing in the
wave number integral in Eq3), o, and éa are periodic Yukawa potential. Only solutions Wltky0.>0 e-lre §hown,
functions ofk, repeating in each Brillouin zone of the 2D 2lthough the symmetry of the lattice implies that
triangular lattice. The subscript denotes the type of pho- —Ky,(~Kx) is also a solution. Wave numbers beyond the

non: wi(k) and éa(k) are the eigenvalue and eigenvector,ﬁrSt Brillouin zone correspond to umklapp phonons, and
respectively, of a matrit (k), where should be referred back to wave numbers in the first Bril-

L 24 louin zone by subtracting out a reciprocal lattice wave vec-
J tor: k—k—g where g=n(0, 47/3a)
M(k)=—= 2, ——(ri—ry)[1—cosk-(ri—rj)]. (4 . ' ’
0= JZ" (Wi&fi( il (=l @ +m(2w/+3a,27/a), andm andn are integers.
One may observe in Fig. 4 that whan>c(0), kyO

phonons, termed compressional and stit@rka<1, e(k)|| —0 ask,—0. This is becaus_ewc(O)k at smallk, so Eq.

or L k, respectively. The frequency of the phonons in the (5) approaches Ed1) and ky0—|kx|tan60 ask—0. On the
first Brillouin zone is shown in Fig. 3 along two directions. Other hand, fotu<c(0), Eq. (1) no longer has a solution,
The lattice is assumed to be oriented with respeotandy ~ andky, no longer approaches zero las—0.

as shown in Fig. 1. Contours of constant frequency are In fact, for sufficiently smalll/c(0), one can seom
shown across several Brillouin zones for the compressiondfig. 4 thatk, is no longer even in the first Brillouin zone for
mode in Fig. 4. The phase velocity of the compressionahny k, value. Referring such high-wave-number solutions
phonons is larger than that of the shear braht®The wake  back to the first Brillouin zone, we see that umklapp phonons
is therefore dominated by the compressional branch, and ware excited nearly isotropically by a slow-moving charge.
will concentrate on the compressional phonons in the reHowever, the experiments were performed ffbrc(0), so
mainder of the paper. Some other numerical and analytigve will concentrate on this case for the moment.

results for the compressional modes are discussed in the Ap- Returning to the evaluation of the, integral in Eq.(3),
pendix. it is convenient to work in a coordinate frame moving with

(2m)?
WKy Ky )= k§0u2. (5)

For a 2D lattice, this matrix is 2, with two types of



3898 Phys. Plasmas, Vol. 7, No. 10, October 2000

the charge, so we defined,yq) =r;—r(t). Equation(3)

Daniel H. E. Dubin

ary phase pointk yield the following value for the integral

shows that the wake is stationary in the moving frame. Then Eq. (6):

location of the pole in thé, integral can be found approxi-
mately assuming v is small; ky= kyo(kx)—iv/Z[U
—vgy(kx,kyo(kx))], wherekyo(kx) is given by EQ.(5), vq
=dw,/dk is the group velocity, and>gy=vg~§/. When U

>vgy, the pole is in the lower-half plane. Keeping only the

contribution from this pole in thé, integral of Eq.(3), the
result is nonzero only foy,=y—Ut<0. Otherwise, ifyq

>0 thek, contour of integration must be closed in the upper

half-plane, where there are no poles. Thus, whén

>vgy(kx,ky0) the wake trails the moving charge; but the

same argument implies thatljf<vgy(kx 'kyo) the wake is in
front of the charge.

Note that in the experiments of Refs. 1 and 2,
>¢(0), and forcompressional modes(0)>|v,| (see Fig.

5\/i:R

 —id(ke)  ko-e(ko)e(ko) Yo
my2m[yeu(ke)| Y —vg,(Ko) U=vg (ko)
X ei ko (Xg.Yo) + (im/4) sgnlygu(kg)]1 + (1/2)[ vyq /(U*Ugy(ko))],

8

where
Ug

d x
u(ko):a_kX(U—vgy) -
~Ko

Note thatky=ky(8) through Eq(7), and that Eq(8) is valid
only where|you(ko)| >aZ.

Equation(8) describes a trailing wakeyf<0) consist-
ing of oscillations that decay like™"Yo/2U=vg)l/ [y [,

9

3), so the above argument implies that the wake should bﬁ/ith distance|y,| behind the moving charge. The oscilla-

trailing, as was in fact observed.
Evaluation of thek, integral in Eq.(3), keeping only the
contribution from the pole, then yields

L dk, i D(K)k-e,(K)e,(K)
5vi=5ri——2Re§ f‘wm U= )

X H

Yo
U-— vgy(k)

Xeikxxo+ikyy0+ (1/2)[Vy0/(Ufugy(k))]|k k()
RN

(6)

whereH(x)=(1—sgn))/2 is a step function, and where
év; is the perturbed velocity of a dust grain at sitéhis is
the observable quantity in the experimen®nly solutions
of Eq. (5) with ky0>0 are required in Eq6). Solutions with

ky0< 0 are already accounted for by taking twice the real part

of the integral, recalling that solutions of E&) have reflec-

tion symmetry through the origin. Also, note that for given

k, there may be more than one positive solution I«fpor(kx)

[see Fig. 4 at smalU/c(0), for exampld. One must then
sum over all such positive solutions in E).

For large values ofxg| or |y,|, the integral in Eq(6)
can be evaluated using the method of stationary phiasea
given location &p,yo) behind the moving charge, thig,
integral is dominated by valg® of k,, kxo' that satisfy
A(KkyXo+ kyo(kx)yo)/&kx|kX:kX0=0. This implies the follow-

ing relation between the opening angdeand the dominant
wave numbekq,

ng

tang= —2
anf=——=
_yo U_Ugy k=ko

: @)

wherekoz(kxo,kyo(kxo)). Here we have used E¢p) to de-
termineakyolékx .

tions have a spatially-varying wave numbgythat depends
on opening anglg through Eq(7). A graphical solution for
ko(B) can be obtained using Fig. 5 for the cada=1. The
figure displays the right-hand side of EJ) versuskxo for
three different values of the speéd A given value of8
determines one(or more values of ke,(B), and then
ky,(B) =ky (ke (B)) through Eq.(5). This value ofg de-
fines a linexo= —ygtang, along whichky(B) is the domi-
nant wave number in the wake. Note that the angle of propa-
gation of kg, 6, is not necessarily the same @ so
wavefronts need not emanate directly from the moving
charge as they do in a Mach cone.

Figure 5 shows that, depending on the valuggpthere
may be no solution, or one or more solutions kgr. Differ-
ent solutions at giver8 correspond to different oscillations

Ala=1

U/c(0)=138

0.4}

tan

0.2+

FIG. 5. For a given value of the opening angbe the curves provide

Keeping only the contribution from the compressionalstationary-phase values for tiecomponent of the wave numbes, . \/a

mode, and dropping the polarization subsctiptthe station-

=1 is assumed.
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that are superimposed on one another. Most of these oscilla 1 : . ‘ ‘ .
tions are at very high wave number, beyond the first Bril-

louin zone, and hence are of low amplitude sidegk) —0

at largek. However, wherlJ>c(0) there is a singldxxo(ﬁ) 0.5

solution at small wave numbers, and tH¢§0 value ap-

proaches zero g8 increases towards a maximum. o
The maximumg value can be determined by using the <7

long wavelength dispersion relatiom,=c(0)k, in Egs.(5) <

and (7). The result is

c(0)

(tanB) max= W )

The line xg= —Yyo(tanB) max defines an opening anglg -8 -6 -4 -_2 0 2 4

= 6, that satisfies the Mach condition, Ed). According to K

our Statlon_ary pha_se approximation, E8). there is no Wal_(e FIG. 6. Functional form of the wake velocif§q. (14)] in the linear Mach
beyond_ th|§ opening angle_ whdn>c(0). However, this  one foru=>c(0), including the first few oscillations in the lateral wake.
approximation is not precisely correct, because E8).  Heresis a coordinate transverse to the cone, scaled by the distab§¥¥3
breaks down ak, — 0, sinceu—0 there[see Fig. 5 and Eq. = (|x,|+y, tandp)/(3b) 3

(9)]. The structure of this linear Mach cone can be deter-

mined analytically by keeping a slightly more accurate ex-

U>c(0). (10)

pression forw, valid at smallk, N &)(O)sin 0 - ,( S
5 M ome(0)(30)22coS 6, | (3b)13
w=c(0)k—Ak>, (11
X e( vyg sin 60/2c(0)co§ 00), (14)

where A>0 for the compressional phononglere we ne- - ] ] ]
glect the slight dependence Afon propagation direction in  Wheres= [Xol + Yo tanéy, $=(Sgn(xo) cosby,sin fp) is a unit
a triangular Yukawa lattice. Examination of the exact disper-YECtor transverse to the Mach cone, pointing in the forward
sion relaton using Eq. (4) reveals that |[A(6) direction, AandAi’(x) is the derivative of an Airy function.
—A(0)]/A(0)|<1% for \/a=1. This is discussed in more Note thatd(0)=[d?rd(r) is a real number. Equatioii4)
detail in the Appendiy. Equation(5) then implies that is only valid near the Mach cone, fts/yo|<1. The form of
the wake is displayed in Fig. 6, assuming no damging0).
One can see that the wake decays exponentially in the for-
) +.., keaa<l, ward direction § increasing and oscillates toward the rear
(s<0). Each crest in the oscillation corresponds to a line in
(12) Fig. 2(@). The distance between crests has a scale length of
(3b)*3, and this scale length is small comparedyg| for
lyol large. Therefore, several oscillations in the lateral wake
are described by Eq14), provided that one looks well be-
hind the moving charge.
One can easily show thﬁvMach-é has an extremum at
s=0, and the extremum value is

2
X

ky, =tan@y|lk,|| 1— ——
Yo o X|( c(0)cog 6,

whereU>c(0) is assumed, ané, is given by Eq.(1). Not-
ing that the compressional mode he(&) =k at long wave-

lengths, Eq.(6) yields the following expression for the ve-
locity of the wake in the linear Mach cone:

(7o sin Bo/2c(0)cog bp) gjn fo

OVnracti= 1M &)(O) mc(0)cos 6
o

®(0) (sin 6 cosb)
6I'(1/3y mo(0)™  (4Alyo|)**

(OVmach g) ext—

s dk ) )
xf Xk el k(1 sgrik,)tandy),

L2 X e( vyg Sin 00/20(0)0052 00), (15)

(13)  wherel'(x) is a gamma function. Therefore, the direction of
SVpach at the extremum depends on the signdaf0). For

where z=x,+sgrlk,|yotané,, b=Asind|y,/c(0)cos 6y, - _ _
andsa<1 is assumed, as we are interested only in the long?(0)>0. Vmacn points forward [along (cosh,siné) for
—Yotanéy, or along (cosfy,sing,)  for

wavelengths that contribute in the stationary phase approx0~ - X

mation to the linear Mach cone aroudy,|=0 (i.e., x  Xo=Yotanf], but for ®(0)<0, 6Vjacn pointsbackward In
~*yytand,). We have used Eq(l) for 6,, along with the experimentsdvy,e, pointed forward, implyingd(0)
vg,~C(0)sinéy (valid for ka<1). Assuming thafyy/>a  >0. o _

(but that|z/|y,|<1), we can then take—=, and the inte- If one assumes thab(r) is either puArer attractive or
gral can be evaluated analytically, yielding purely repulsive, then it is easy to see tdgt0)>0 implies



3900 Phys. Plasmas, Vol. 7, No. 10, October 2000 Daniel H. E. Dubin

a repulsive potential and(0)<0 implies an attractive po- vgm
tential. For instance, for a purely repulsive potential the de- tang=————, (16)
rivative of ®(r) with respect ta is negative at alt >0, and U—vgc/U
®(r) is zero at infinity. This necessarily implies that the Wherevgzc(O)—?}Ak2 is the magnitude of the group veloc-
radial average ofb(r) is greater than zero. Thus, the fact ity, andc=c(k)=c(0)— Ak? is the magnitude of the phase
that évihacn pointed forward in the experiments implies that velocity. We may now regard the opening anglas a func-
the force between the moving charge and the dust graingon of k. This function is double-valued at sméllthere are
cannot be purely attractive; the force must have a significariwo values ofk for every 3, indicating two wakes. This is
repulsive component, and may even be purely repulsive. because a maximum in B(k) exists, at Kpax
In the experiments and simulations of Refs. 1 and 2, the= y3(c(0)—U)/2A, for ¢(0)/U—1 small (but positive.
wake velocity reversed direction in each successive “MachThe rangek> Kk, corresponds to the lateral wake, dut
cone” as one counted back from the initial Mach cone. This<Kmax COrresponds to the new transverse wake. This wake
is consistent with the oscillatory form of the wake, as shownalso _hask bounded from below k=Kkyi,, where Kqy,
in Figs. 2 and 6[Note that in Fig. 2, locations of the wave =+/(c(0)—U)/A, in order thatc(k)*/U?<1. At k=Kp,
crests are drawn, assuming a repulsive interaction betwedan=0, sok= Kk, corresponds to the wave number of the
the grains and the moving charge. There are also trogrgits ~ transverse wake on a line directly behind the moving charge.
shown) between the crests where the wake velocity reverse§he wave numbek= kg, corresponds to the maximum
direction] value of 8, beyond which there is no wake. For small but
Summarizing the results so far, far>c(0) there is a  Positivec(0)/U—1, Eq.(16) implies
linear Mach cone with an extremum iv-s along the lines 1
Xo= FYptand,, together with a set of oscillations behind (tanB) mas= —————. (17)
the cone, determined by the exponential in E). Assum- 4Ve(0)/u—-1
ing that ®(k) is real for allk, the oscillations are propor- This shows that a&) increases and approachef0) from
tional to siriky- (Xo,Yo) + (7/4) sgnf/ou(ke))]. The peaks below,3— /2 and the wake opens up until it fills the entire
(maxima in this function are shown in Fig.(), along with half-plane behind the charge. Ad increases further, Eq.
the Mach cone maximum, for the case=0 (no damping, (10) becomes valid and the wake beings to narrow again.
U/c(0)=1.8, and\/a=1 in the Yukawa potential. At 'kzkmax, the transverse and lateral wakes meet. At
The oscillation at relatively large opening angles behindtis pointu(ko) =0, Eq.(8) breaks down, and the amplitude
the Mach cone is termed a “lateral wake,” in analogy to the©f the wake is large. One can show that 0 for the trans-
similar structure behind a moving sHithe complex set of Verse wake andi<0 for the lateral wakesee Fig. 3 so
criss-crossing extrema directly behind the moving charge ar8¢c0rding to Eq(8) there is a 1/4 period phase shift between
superimposed on the slower-varying lateral wake. They are {1€ tWo wakes. The resulting structure is shown in Fig) 2
result of the large-wave number umklapp phonon soiutiond® the same parameters as Figa)2 except nowU/c(0)

; ; =0.8. As before, the figure shows the maxima offlgn
for k . The extent to which these solutions actually af-
Xo(ﬂ) y -(Xg,Yo) + 74 sgnfyou(ky))]. In addition to the transverse

fect the wake depends on the magnitudebgk) at largek.  and lateral wakes, there is a narrow band of umklapp

For example, if® (k) were zero for wave numbers beyond phonons caused by high wave number componends(éd),

the first Brillouin zone, only the lateral wake and the Machsimilar to that in Fig. 2a). As U/c(0) decreases further, this

cone would appear. band increases in width as the lateral wake decreases in
Note that the wavefronts in the lateral wake curve out-width, and eventually these umklapp phonons dominate the

ward until they are parallel to the Mach cone at large dis-wake structure.

tances behind the moving charge. However, if finite damping

v is added to the solution, these wavefronts decay exponen-

tially before they achieve the same opening angle as th#l- DISCUSSION

Mach cone. The experiments and simulations, which had fi-  \ve have shown that the wake of compressional phonons
nite damping, also observed that the secondary wavefrontsycited in a 2D crystal lattice by a moving charge has a
had smaller opening angles than the Mach cthe. structure which depends on two dimensionless parameters:
We now turn to the case where the grain moves Withine ratio of the speed of the charge compared to the phase
speedU<c(0), acase which has not yet been reported inspeed of long wavelength phonor¢p); and theratio of the
the experiments. In this regime there is no longer a solutiohepye screening length in the intergrain interaction to the
to Eq. (1), and consequently the Mach cone disappésee  spacing between dust grairs, WhenU/c(0)>1, a linear
also Eq.(15) in the limit cosfp—0]. Now a new small-wave- \Mach cone and lateral wake form, along with a series of
number solution fork, (5) appears, corresponding to a relatively high wave number structures directly behind the
transverse wake that is superimposed on the lateral Y& charge[see Fig. 2a)]. This type of wake is qualitatively
Fig. 5. The appearance of the transverse wake can be undesimilar to that observed in recent experiments on 2D plasma
stood analytically when €c(0)/U—1<1. In this regime, crystals. WhenU/c(0)<1, the Mach cone is predicted to
the transverse wake has wave numbgrsa 1, so Eq.(11)  disappear, to be replaced by a transverse wWalkg. 2(b)].
holds. Then Eqs(7) and(11) can be combined to give This type of wake has not yet been observed.
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The structure of the wake also depends on the interactiowell as drag due to neutral gas. The drag from the phonon
between the dust grains and the moving charge. The form ofiake is the condensed-matter equivalent of the drag due to
this interaction is presently the subject of debafeOur  inverse-Landau-damping in a collisionless plasmar the
theory analysis of the wakes observed in Refs. 1 and 2 im“wave resistance” on a moving shiy. The magnitude of
plies that the interaction between the grains and the movinghis drag force, together with its dependence on velocity and
charge cannot be purely attractive; the force either changde particle interaction, will be the subject of future work.
sign or is purely repulsive. The fact that the spatial average
of the effective interaction potential is positiy€ (0)>0]
implies that there must besubstantialrepulsive component ACKNOWLEDGMENTS
to the force. This could be accomplished in several ways:
through a purely repulsive force, or a repulsive tail at large ~ This work was completed with the support of National
radial displacements, or a strong short-range repulsion, fobcience Foundation Grant No. PHY-9876999 and Office of
example. Naval Research Grant No. N0O0014-96-1-0239.

The dependence of the wake structure Xdia can be
understood from Eq(14), whenU>c(0). Thescale length
of the wake appearing in this equationp)3°, depends im-  APPENDIX: THE COMPRESSIONAL PHONONS IN A
plicitly on N/a throughA and c(0). Forfixed U/c(0)>1, 2D TRIANGULAR YUKAWA LATTICE
the scale length increasesX&, increases, varying roughly
as (\/a)?® when\/a>1.[This follows from the mean field In this Appendix we derive several results regarding the
forms ofc(0) andA, Egs.(A6) and(A9).] Since the form of ~ frequencyw(k) for the compressional mode of a 2D trian-
the wake depends on botifa andU/c(0), andsincec(0) gular lattice of charges that interact via a Yukawa potential
measurement of the wake structure could be used to detefompressional phonons(0). A general expression fa(0)
mine bothQ and \, independent from other measurement@n be obtained from the matrid (k) in the limit ask

techniques. —0. We first note that for any central potentig{r), Eq.(4)
A particularly striking example of the dependence of thelMPlies thatM (k) can be written as

wake on the Debye length is the case of a purely Coulombic 5

interaction withA =<. In this limit, long wavelength com- (k)= 1 > {@(M_ 1 @) + ! %1[1—cosk-p],

pressional phonons have infinite phase speed in a 2D lattice m<% [p?lop? PIP) PP

[i.e., c(0)—= (Ref. 12] (see the Appendix Thus, for a (A1)

Coulomb interaction between the charges no Mach Cons'vherep

should be formed, even for very larde, and the wake the sum runs over app#0. Taylor expanding EqA1), and

should be of the type shown in Fig(t. . using the fact that compressional phonons have polarization
While the limit of a pure Coulomb interaction is difficult -
gllk at small wave number, we have

to achieve in dust-plasma experiments due to the shielding

=r;—r; is a lattice vectorl is the unit tensor, and

effect of the background plasma, 2D lattices interacting via a 2 2 2

: _ , i Pp Py ad| ,
Coulomb force have been created in Penning ttapismay c7(0)= >m 2 2t 35, Py - (A2)
be possible to excite a wake in such a 2D Coulomb crystal, Mm“p [p~op= p° 7P

perhaps by using a laser spot moving with respect to therhis phase speed is shown in Fig. 7 as a function of the
lattice, as discussed in Ref. 2. However, the strong impos;egebye length scaled to the interparticle spaciatg.
magnetic field in a Penning trap would affect the form of the  goyerg) analytic or semianalytic approximations(6)

wake, and the theory for this physical situation remains to b‘fandw(k)] can also be obtained. For example, one can keep
worked out. only nearest-neighbor interactions in E@2), which is a

The theory presented here has assumed linear dynamigsasonaple approximation provided thaa<1. In this case
for the dust grains. While this approximation appears to b@q. (A2) reduces to

sufficient to explain qualitative aspects of the wake structure,

nonlinear effects could play an important role if the interac-

tion & between the moving charge and the grains is suffi-  Cnn(0)*=

ciently strong. One might then expect that an elastic shock

could form, similar to those that have been studied in solidComparison of Eq(A3) to the exact result in Fig. 7 shows

materialst* This possibility will be the subject of future that Eq.(A3) works well provided\/a=<0.3.

work. A second analytic approximation can be found using a
The theory presented here also assumes that the movingnean-field” approach. In this approach one entirely ne-

charge has constant velocity. In fact, the wake itself carrieglects the triangular lattice structure and replaces3pen

momentum away, creating a drag force on the charge. Sindgq. (A1) by an integralnpfd?r, noting that the integral is

the charge in the experiment is observed to move at nearlgonvergent as—0. Herenp, is the density per unit area of

constant speed, presumably some external force is acting the dust. The resulting matrix is diagonal with a compres-

the experiments to counteract the effects of the wake drag agonal phonon frequency given by the expression

9a?
Y

Q*
me al)\_ (A3)

151+ -
x
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—— numerical 10 —— numerical
5 ||~ — -mean field _ = - - -mean field
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— ) 7/
= < 0l G
7
~,
/
Ve
0.01 :
0.2 04 06 081 3
: Ala
0 05 1 1.5 2 25 3 35 4 FIG. 9. Variation ofA(#=0) with \/a. Thin solid line, numerically deter-
Ala mined via Eq.(A11). Dashed line, mean field theoftq. (A9)]. Thick solid

line, theory using nearest-neighbor interactipig. (A12)].

FIG. 7. Phase speed for compressional modes=ad versusi/a in the
Yukawa potential. Thin solid line, numerically determined via E42).
Dashed line, mean field theof¥q. (A6)]. Dots, semianalyti¢Eq. (A7)].
Thick solid line, nearest-neighbor interactiditsy. (A3)]. 27TQ2)\nD

Cie(0) = (A6)

m
Comparing to the exact result in Fig. 7 shows thgi(0)
works reasonably well except for a positive offset. This is
caused by the effect of nearby particlesnall r) in the in-

n 2m el
waF(k)=EDfO dofo rdr(1—cogkr cosf))

¢ st oo tegral in Eq.(A4). A semianalytic approximation that works
x| cog a—‘f+ adl (A4 o9 q(A4). ytic app
ar roor well for N/a=0.3 is
For a Yukawa potential these integrals can be performed ) Q?
analytically, yielding Csa(0)=Cyr(0)—1.34 ——|. (A7)
2 o 2mQ%np KA\ Note that for \—o, cie(0)—. In fact, Eq. (A5)
m J1+ K22 shows that in this limi{the limit of a pure Coulombic inter-

. . o action, the mean-field dispersion relatiortis
The long-wavelength limit of this expression yields a mean- L P

field result forc(0), cye(0), _ 5 27Q%npk
lim wpe(k)= ——. (A8)
N m
14 This dispersion relation is identical to that for deep water
S T ] surface gravity wavesy?=gk, with 277Q?np /m taking the
g Ala=02 role of the acceleration of gravitg. Therefore, the long-
“n 1L 1 wavelength features of the wake in a 2D Coulomb crystal
o) should strongly resemble the Kelvin wedge behind a moving
08 T T T T T T T e =05 __] ship in deep water.
g '_"_";‘j;'_‘;'_'L‘_’;’_’_’;‘_‘;‘_’;’_’;‘_‘:ﬂ’_’;ﬁ;’_ Finally, we note that several of our results, such as the
< 06! =4 - functional form of the Mach cone, depend on the cubic term
::‘L in the dispersion relation; Ak® [see Eq(11)]. An analytic
o 041 8 approximation toA can be obtained in the mean-field ap-
< 0.2 proximation from Eq.(A5),
2 1/2
0 5 10 15 20 25 30

O
601 In a triangular latticeA actually varies slightly with propa-
FIG. 8. Variation of cubic ternA with angle of propagatiom for 4 values gatlon_dlre_ctlon. This slight variation is Sh(_)W” for a few
of Ma. Ais divided by\5? so that data are all on the same scale. cases in Fig. 8. Here we have evaluatdd) using the exact
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dispersion relation obtained from E@). This involves Tay-
lor expanding Eq(4) to fourth-order ink. The fourth order
correction to the matrix is

192
Eqﬁ

iZi orior;

1
~ 24m

AM= (ri—rplk-(ri=rpl*%.  (A10)

' . D
Then a standard first-order perturbation theory treatmentg;

yields the following result foA(6):

k-AM -k

A= ok

(A11)

In the limit of small\/a, keeping only nearest-neighbor in-
teractions in Eq(A10) yields

3Nn2
aQ “an
A(O)= ————e &M 10+ cos 69+ 3(6+ cos 69)
256:2¢,,,(0)
)\+)\2 )\<1 Al2
= =) a (A12)

showing that even at small/a there is at most a 20% varia-

tion in A with angle of propagation. Since the variation in

A(0) is small forn/a=1, we compare EqA9) to A(0) as a

The phonon wake behind a charge moving relative . . . 3903

function of A/a in Fig. 9. The mean field approximation is
reasonably accurate, except at snm\ala where Eq.(A12)
works well.
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