
Chaotic Transport and Damping from �-Ruffled Separatrices

A.A. Kabantsev, Daniel H. E. Dubin, and C. F. Driscoll

Department of Physics, University of California, San Diego, California, USA

Yu.A. Tsidulko

Budker Institute of Nuclear Physics, Novosibirsk, Russia
(Received 16 June 2010; published 9 November 2010)

Variations in magnetic or electrostatic confinement fields give rise to trapping separatrices, and

neoclassical transport theory analyzes effects from collision-induced separatrix crossings. Experiments

on pure electron plasmas now quantitatively characterize a broad range of transport and wave damping

effects due to ‘‘chaotic’’ separatrix crossings, which occur due to equilibrium plasma rotation across

�-ruffled separatrices, and due to wave-induced separatrix fluctuations.
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Most plasma confinement devices have trapping separa-
trices, arising from variations in magnetic field strength or
external potentials. Separately trapped populations of
particles may then have substantially different drift orbits,
giving rise to large dissipative transport steps when sepa-
ratrix crossings occur. Neoclassical transport (NCT) theory
analyzes the particle transport and wave effects arising
from collisional separatrix scatterings in a variety of ge-
ometries [1–4], and experimental correspondence has been
obtained in some regimes of strong collisions [5,6].
Similarly, recent tokamak experiments have related damp-
ing of toroidal rotation to neoclassical viscosity due to
weak magnetic ripples [7].

Here we present the first experiments characterizing
transport and damping of a novel collisionless form of
NCT, where ‘‘chaotic’’ separatrix crossings occur due
to plasma rotation across �-ruffled separatrices, or due to
wave-induced separatrix fluctuations. This mechanism has
previously been taken to be ineffective because of presumed
symmetries [8].

The experiments are performed on low-collisionality,
strongly magnetized pure electron plasma columns, with
trapping separatrices created by applied wall voltages, or
by weak magnetic field strength variations as small as
�B=B� 10�3. With near perfect cylindrical symmetry,
these plasmas have zero radial expansion, and we apply
controlled ‘‘error fields,’’ such as a tilt of the magnetic field
to induce transport [9]. For wave damping, the error field is
the wave potential itself, and strong damping is observed
for both low-frequency drift waves and high frequency
plasma waves [10].

These experiments with controlled separatrix ruffles and
temporal variations now unambiguously distinguish the
chaotic and collisional contributions to transport and
damping, and distinguish bounce-averaged effects from
bounce-resonant effects. For large B, we find that chaotic
NCT scales with collision rate and magnetic field as

�0B�1, whereas collisional NCT scales as �1=2B�1=2. The

high magnetic field minimizes kinetic bounce-resonance
effects [4,11,12], which typically scale closer to B�2.
Theory analyses of ruffled separatrix effects have now

been developed from two complementary perspectives, and
will be described separately. A dynamical bounce-mapping
approach characterizes the quasi-steady-state density per-
turbations, including bounce-resonant effects in regimes of
ultra-low collisionality. A second simpler approach [13]
assumes random (chaotic) separatrix crossings, connects
smoothly with collisional NCT, and agrees with the dy-
namical approach outside the bounce-resonant regimes.
The pure electron plasma columns utilized here are

confined in a cylindrical Penning-Malmberg trap [9].
Electrons are confined radially by a nominally uniform
axial magnetic field 0:4<B< 20 kG; and are confined
axially by negative voltages on end cylinders of radius
Rw ¼ 3:5 cm. The electron columns have length Lp ¼
49 cm, and radial density profile nðrÞ with central density
n0 ¼ 1:6� 107 cm�3 and line density NL ¼ �R2

pn0 ¼
6:1� 107 cm�1. The unneutralized charge results in an
equilibrium potential energy �eðrÞ with �e0 ¼ þ28 eV
at r ¼ 0 (here, all �’s are in energy units). This gives an
E� B drift-rotation frequency fEðrÞ which decreases
monotonically from fE0 ¼ 230 kHzðB=1 kGÞ�1. The elec-
trons have a near-Maxwellian velocity distribution with
thermal energy T & 1 eV, giving axial bounce frequency
fb ¼ �v=2Lp ¼ 430 kHz.

An electrostatic trapping barrier with separatrix energy
�s is created at z ¼ 0 by a ‘‘squeeze’’ wall voltage Vsq

with adjustable � components. This gives interior separa-
trix energy �sðr; �Þ ¼ �s0ðrÞ þ ��mðrÞ cos½mð�� �mÞ�,
as shown schematically in Fig. 1. Here, we considerm ¼ 2
ruffles only, created by voltages��Vm applied to four 60�
sectors, with �m ¼ 0:22�. At every radius, low energy
particles are trapped in either the left or right end, whereas
higher energy untrapped particles transit the entire length.
This barrier is similar to the asymmetric magnetic trapping
barriers that occur in stellarators and tokamaks.
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Particles change from trapped to untrapped (and vice
versa) due to collisions, drift-rotation across �-ruffles,
or temporal fluctuations ��t in the separatrix energy.
The electron-electron collisionality of the present
experiments is relatively low; collisions acting for a drift-
rotation period spread parallel velocities at the separatrix

by an energy width �Wc � Tð�=2�fEÞ1=2ð�s0=TÞ1=2 �
20 meVðB=1 kGÞ1=2. The chaotic NCT processes will be
important when ��m * �Wc, or when ��t * �Wc.

First, we consider radial particle transport. Radial trans-
port is driven by global ‘‘error fields’’ varying as ��‘ �
ei‘�ZðzÞ; here, we consider ‘ ¼ 1 only, with the three
antisymmetric ZðzÞ dependences shown in Fig. 1.
(Notationally, ��‘ denotes z-antisymmetric fields which
contribute to NCT, and ��m denotes z-symmetric fields
which ruffle the separatrix.) For our transport data, the
error field is created by a small magnetic tilt with con-
trolled magnitude �B � B?=Bz & 10�3 and chosen tilt
direction �B � tan�1ðBy=BxÞ, i.e., rotated by � �
�B � �m relative to the ruffle. This tilt is equivalent to
applying wall voltages VðRw; �; zÞ ¼ ð�BzÞð2eNL=RwÞ�
cosð�� �BÞ, which causes interior Debye-shielded ‘ ¼
1 error fields ��1ðr; zÞ.

Neoclassical transport arises from the difference in drifts

in the left and right z-averaged error fields, ��L and ��R,
randomized collisionally and chaotically over separatrix
energy widths �Wc and ��m. Theory then gives [13] the
radial diffusion coefficient

DrðrÞ ¼ fE½ð��L � ��RÞ=@r�e�2 14FMð�s0Þ
� f�WcDcA þ ��mDmAsin

2‘�g;
(1)

where FM is the Maxwellian distribution of energies,
the over bar indicates z averaging, and 2‘=m 2 Integers.

The collisional bounce-averaged coefficient is DcA �
�f1� exp½�ðy=:71Þ5=6�g, y � �Wc=��m, and the m
ruffle bounce-averaged coefficient is DmA � 4½1�
:215 tanhðy=:6Þ�. These expressions are obtained from the
numerical results of Ref. [13] for m ¼ 2 and ‘ ¼ 1.

The full radial flux has both mobility and diffusive
contributions, as

�r ¼ �Drn@r�e=T �Dr@rn: (2)

Experimentally, we diagnose the bulk expansion rate

�hr2i �
d

dt
hr2i=hr2i ¼

Z
rdrr2

1

r
@rðr�rÞ=

Z
rdrr2n (3)

where hr2i � R
2�rdrnr2=NL. Fortunately, �hr2i can be

accurately and readily obtained from the frequency f20 of
a diagnostic m ¼ 2, k ¼ 0 diocotron mode, as �hr2i ¼
� d

dt f20=f20. This follows from f20 / hni ¼ NL=2�hr2i
with NL constant, and it has been verified to �2% by
camera images of plasma evolutions. The diagnostic
mode amplitude is kept small enough so that its effect on
transport processes is negligible.
Figure 2 shows measured expansion rate �hr2i versus

magnetic tilt direction �B, for various applied wall ruffle
strengths �Vm. The ruffled-induced NCT shows an unam-
biguous sin2� dependence on relative angle �, with mag-
nitude proportional to�Vm; and varying �m in steps of�=2
(not shown) verifies the dependence on relative angle only.
The distinctive sin2� signature, together with control of

Vsq, �Vm, and �B, enables experimental identification of

bounce-averaged NCT effects separately from bounce-
rotation resonance (i.e., kinetic) effects. These transport
processes are all quadratic with respect to error field am-
plitude, so we write

�
ðexptÞ
hr2i ¼ CcA�̂

2
B þ CmA�̂

2
B�V̂msin

2�

þ CcK1�̂
2
B þ CcK2�V̂

2
m þ �

ðbkgÞ
hr2i : (4)

Here,CcA andCmA represent radial integrals of the bounce-
averaged Eqs. (1)–(3). This separatrix-dependent NCT is
called ‘‘superbanana’’ in toroidal systems; and with the
presumption of � ¼ 0, a �0 regime of (weaker) transport

replaces our �1=2 regime [8]. The CcK1 and CcK2

coefficients represent ‘‘standard’’ plateau-regime NCT,

FIG. 2 (color online). Measured expansion rate �hr2i, showing
chaotic NCT varying as sin2ð�B � �mÞ, and �-independent colli-
sional transport.

FIG. 1 (color online). Top: �-symmetric end confinement and
central separatrix potentials, modified by an ‘ ¼ 1
z-antisymmetric error field, and an m ¼ 2 ruffle on the separa-
trix. Bottom: z dependence of three error fields considered here.
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with collisions randomizing bounce-resonant orbits steps
[1,4] driven by the tilt and ruffle error fields. This
separatrix-independent NCT is called ‘‘axi-symmetric’’

in toroidal systems [8]. The residual �
ðbkgÞ
hr2i represents trans-

port from uncontrolled background error fields, separatri-
ces, and ruffles. For dimensional simplicity, �̂B ¼
�Bð1 mRadÞ and �V̂m � �Vm=ð1 VoltÞ.

Experimentally, CmA is readily obtained from the sin2�
dependence as in Fig. 2, and varying �B gives the expected

�2B dependence. Data taken with �B ¼ 0 show a �
ðbkgÞ
hr2i

offset and a parabolic dependence on applied �Vm, giving
CcK2. Varying �B then selects CcA and CcK1; these are
distinguished only by their B scaling (discussed next),
and by the fact that the bounce-averaged differences in
CcA require the separatrix, whereas the kinetic CcK1 de-
pends only weakly on the applied squeeze voltage.

Figure 3 shows the measured transport rates CmA, CcA,
and CcK1 versus magnetic field with empirical scalings
(dashed), compared to theory Eqs. (1)–(3) (lines). At
high B, the chaotic and collisional neoclassical coefficients
CmA and CcA agree closely with theory, scaling as B�1 and

B�1=2 respectively. Here the comparison is limited by
temperature uncertainty, sensitivity to edge density gra-
dients, and induced modification of FMð�s0Þ. At low B, the
kinetic transport labeled CcK1 is observed to depend
strongly on field (� B�2:7), but no simple power law is
expected as bounce-rotation resonances become dominant.
Prior transport scaling experiments have been confused by
the presence of uncontrolled separatrices and ruffles, and
by overlapping transport regimes [9].

Similar enhanced transport is observed when there are
temporal variations ��t in the separatrix energy. Figure 4
illustrates the immediate increase in radial expansion rate
induced when white noise (VRMS ¼ 200 mV, fE0 < f <
20 MHz) is applied to the �-symmetric squeeze ring, caus-
ing chaotic trapped-passing transitions. The 3� increase in

ðd=dtÞhr2i observed here is consistent with a collisional
separatrix layer �Wc � 70 meV fluctuating by ��t �
200 meV. Presumably, any noise or wave-induced fluctua-
tions which change particle kinetic energies relative to the
separatrix energy would be equally effective in enhancing
transport.
Next, we consider wave damping due to chaotic and

collisional separatrix dissipation. Damping has now been
observed for both negative-energy E� B drift waves and
for positive-energy plasma waves. Here, the wave-
potential is the ‘‘error field’’ driving transport [Fig. 1],
and the wave frequency enters the generalization of
Eq. (1). Most thoroughly studied is the ‘ ¼ 1 ‘‘Trapped
Particle Diocotron Mode’’ (TPDM) [3] where end-trapped
particles at large radii experience z-antisymmetric E� B
drifts, while untrapped interior particles provide partial
Debye shielding.
Prior TPDM damping analysis [3] solved for the thin

collisional boundary layer at the separatrix, as is standard
in NCT [1,2]. This gave quantitative agreement with the

experimental observations of �1a / B�1=2 for large B, but
the enhanced damping observed at lower B, scaling as
�1a / B�1, was not understood.
Experiments and theory now quantify the B�1 scaling of

TPDM damping as due to � ruffles on the separatrix.
Figure 5(a) shows the measured TPDM damping rate �1a

versus strength �Vm of an applied m ¼ 2 separatrix ruffle
for two magnetic fields. For �Vm ¼ 0, the damping is
mostly due to collisions; for larger �Vm, the damping
increases linearly with �Vm as expected for chaotic
NCT. Here, �1a 	 B is plotted, so the identical slopes at
B ¼ 0:4 and B ¼ 3 represent the B�1 scaling characteristic
of chaotic separatrix processes, analogous to the �Vm

terms of Eq. (1). In contrast, the collisional �Vm ¼ 0

intercepts scale as B�1=2, and therefore differ by

ð3=0:4Þ1=2 ¼ 2:7. The solid curves of Fig. 5(a) are the

FIG. 3 (color online). Measured transport rates C versus mag-
netic field B, with empirical scalings. Solid lines are theory
predictions.

FIG. 4 (color online). Enhanced expansion rate during two
bursts of 200 mV (rms) noise applied to a 6 V electrostatic
separatrix.
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absolute predictions of the probabilistic theory approach,
including collective effects [14] on nðr; zÞ equilibria.

Similar enhanced damping is seen when a separate wave
ruffles the separatrix. Figure 5(b) shows TPDM damping in
the presence of a separate m ¼ 2, k ¼ 0 diocotron mode
with frequency f20 � fE0 and controlled quadrupole am-
plitude Q. Here Q would be �=R0 for uniform density out
to radius R ¼ R0 þ �cos2�. The diocotron mode creates
an m ¼ 2 potential �2ðr; z; tÞ at all z, which is smallest at
the z ¼ 0 separatrix, inducing chaotic separatrix crossings
proportional to Q. The solid line segments show a Q ¼ 0
intercept predicted by collisional NCT [3], and a ruffle-
induced enhancement predicted by the bounce-mapping
theory, in good agreement with the measurements.

High frequency plasma waves are also strongly damped
by separatrix dissipation, independent of Landau damping
effects, but critically dependent on the characteristics of
the separatrix [10]. Figure 6 shows the measured damping
rate �11 for an ‘ ¼ 1, k ¼ 1�=Lp plasma wave with

f11 ¼ 1:2 MHz. This is a large amplitude wave in a
‘‘BGK state’’ of strong wave-particle trapping. With no

applied electrostatic squeeze, damping at rate �ðMÞ
11 �

�1� 103= sec is observed, due to a naturally occurring
magnetic separatrix �B=B� 10�3 peaking near z ¼ 0.
This magnetic separatrix often dominates background

transport also, and removing the separatrix reduces �ðbkgÞ
hr2i

by up to 5� .
In Fig. 6, adding a ramped positive �-symmetric wall

voltage Vsq has no effect on �11 since it creates no barrier,

but a negative squeeze ramped to �3 Volts immediately

and proportionately increases�11, to amaximumof�ð3VÞ
11 ¼

�8� 103= sec. Here, Zakharov-Karpman [15] collisional
damping predicts negligible damping, at a rate �ZK

11 �
�20= sec. We also note that when a separatrix is present,
excitation of a separate m ¼ 0 plasma wave to even mod-
erate amplitude immediately increases�11 several fold, due
to fluctuations��t in the effective energy of the separatrix.
However, quantitative understanding of separatrix damping
of wave-induced currents is not yet complete.
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FIG. 6 (color online). Separatrix damping of a Langmuir

wave: �ðMÞ
11 from a weak magnetic mirror (red), and �

ðVsqÞ
11 (black)

due to a ramped �-symmetric negative Vsq (blue).

FIG. 5 (color online). (a) (bottom, right scales) TPDM damp-
ing rate �1a times B versus applied m ¼ 2 ruffle �Vm for
B ¼ 0:4 and 3.0 kG. (b) (top, left scales) damping versus
amplitude Q of an excited m ¼ 2 diocotron mode.
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