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Symmetrization of 2D Vortices by Beat-Wave Damping
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Magnetized electron columns evolve in (r,6) as 2D vortices in an incompressible inviscid fluid.
Over a wide range of parameters, beat-wave resonance damping is observed to be the dominant vortex
symmetrization mechanism. In this process, a (Kelvin or diocotron) surface wave decays to another
surface wave of longer wavelength, with concomitant transport of vorticity.

PACS numbers: 47.32.Cc, 52.25.Wz, 52.35.Mw

Vortices are ubiquitous in energetic flows, and vortex
dynamics strongly influence the energy transfers among
long and short spatial scales. In 2D incompressible flow
at high Reynolds numbers, merger and symmetrization
of single-sign vorticity regions transfer energy to longer
wavelengths, whereas filamentation and stretching gen-
erates mean-square vorticity and vorticity gradients on
short spatial scales [1-3]. Here, we measure vortex sym-
metrization, and find that resonances, or “critical layers
[4],” are crucial to understanding the decay of surface
waves on an isolated, nominally circular vortex. These
surface waves are called Kelvin waves in the fluids com-
munity [5] and diocotron waves in the plasma community
[6-8].

For the historically useful idealization of a spatially
constant 2D vorticity patch, one finds stable small am-
plitude Kelvin waves varying as sin(m6). The Kirchoff
ellipse is an exact nonlinear solution [5] for m = 2, and
nonlinear solutions for m = 3 have been found numeri-
cally and analytically [9]. However, this idealization pre-
cludes resonance between the wave and the fluid rotation
at a radius where the vorticity is not spatially constant
[10]. This “direct” resonance is now understood to give
rise to inviscid spatial Landau damping of the wave [6].
For even moderate wave amplitudes, this damping is typi-
cally nonlinear, and the damping may either decrease [7]
or cease [8] when the resulting “cat’s-eye” flows generate
fine-scale filaments inside (or partially outside [9,11]) the
vortex. For “sharp-edged” vorticity profiles, the resonant
radii can be completely outside the vortex, in which case
no direct resonance damping occurs.

For general vorticity profiles, however, we find that
a single-excited wayve varying as sin(m@) will decay
into a daughter wave varying as sin[(m — 1)@], through
“beat-wave” resonance damping of the nonlinear beat at
frequency w, — wm-1 [12]. In this paper, we present
observations of this decay instability and quantify the
resulting exponential growth rates of the daughter waves.
When the resonant coupling exists, a single Kelvin wave
is an unstable equilibrium, and no equilibrium exists
with two waves. This decay process is seen to give
global symmetrization of an asymmetric vortex, while
presumably also generating fine-scale resonance filaments
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within the vortex. For many vortex profiles, this beat-
wave damping is observed to be the fastest mechanism
for symmetrization.

The experimental apparatus [8,13,14] is shown in
Fig. 1. A column of electrons is confined inside a
series of conducting tubes of radius R, = 3.81 cm and
total length L, = 35 cm, in a uniform axial magnetic
field B. = 381 Ga. The magnetic field provides radial
confinement, and negative voltages applied to end tubes
provide axial confinement. The rapid axial bounce motion
of individual electrons effectively averages over any :
variations, allowing a 2D description of the system.

The r, 6 flow of the electrons is described by the 2D
drift Poisson equations,

an

+v-Vn=0. v:—é-Vd)X'Z.
Vi = 4aren.

Jat n
where n(r, 8) is the (z-averaged) electron density, v(r,0)
is the E X B drift velocity, and ¢ (r, 8) is the electrostatic
potential. The vorticity of the flow, { =2 -V X v =
n(4mec/B), is proportional to the electron density, which
is directly measured. These equations are isomorphic
to the Euler equation [6,8]. A column of electrons in
vacuum surrounded by a conductor thus evolves as would
a 2D vortex in an incompressible inviscid fluid surrounded
by a circular free-slip boundary.

In the experiments described here, an electron column
is first injected and trapped, then azimuthally symmetrized
using wall sectors to detect and damp any 6 variations.
A single mode with chosen azimuthal mode number m
is then excited and allowed to evolve, while various
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FIG. 1. Schematic of the cylindrical confinement geometry.
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FIG. 2. Density (i.e., vorticity) contours showing an initial
m = 3 excitation and the m = 2 wave plus diffuse halo, which
evolves spontaneously in about 10 7. Measurements are
averaged over a collimator hole of area a.

mode amplitudes A,, are monitored with tuned filters.
Finally, the electron column is dumped axially, and the
charge which passes through a collimator hole of area
ap = (1.6 mm)? at a particular r, § position is measured.
Wave growth and damping rates are obtained from a
single evolution, but about 500 separate plasmas with
identical initial conditions are required to generate a
complete image of n(r,8) [14].

We find that, in general, a single wave on a vortex
will damp while causing exponential growth of waves
with lower azimuthal mode number. Figure 2 shows the
measured density (i.e., vorticity) distribution before and
after beat-wave damping of an m = 3 perturbation on an
otherwise symmetric column. This m = 3 parent mode
decays rapidly to an m = 2 daughter mode plus a diffuse
halo, on a time scale of 10 rotations of the vortex. The
resultant m = 2 mode is then unstable to decay into an
m = 1 mode. We note that the initial condition exhibits
slight filamentation, due to direct resonance damping of
the large m = 3 mode. This damping has saturated, since
the resonant particles are all executing nonlinear orbits
in the spatial cat’s eye and is therefore incidental to the
decay instability considered here.

-40
@ -50
£ 6o
12}
<
3 =70
>
i
E 80
Q
B
S -90
—100 A I

0 0.05 0.1 0.15 0.2
Time (sec)

FIG. 3. Received wave amplitudes A” vs time as an m = 3
wave decays to an m = 2 wave.

Figure 3 shows an example of the wave amplitudes
A}, received from wall sectors during a 3 — 2 decay
instability. For this evolution, the m = 3 wave was
initially weak, with AY = —53 dB, whereas the initial
excitation of Fig.2 was Ay = —37dB. The m =2
daughter mode grows exponentially with time until it
becomes comparable in amplitude to the parent wave.
Here, exponential growth is observed over 30 dB in
daughter mode power (32X in amplitude), with a growth
rate y, = 75 s7L.

Figure 4 shows the measured amplitude growth rates of
the daughter waves vy,,—;7g versus the normalized ampli-
tudes of the parent wave A,,, for m = 2, 3, and 4. Here,
the growth rates y are scaled by the central rotation time
TR = 47/{(0) = 27 /wg(0) = 5.5 us. For comparison to
theory, the mode amplitudes A,, are calculated from the
6 components 8n,(r) of the measured n(r,0) by A2 =
[ d*r|8n,(r)2/ [ d®rlng(r)l>. These measured density
perturbations are directly proportional to the received wall
signals, i.e., A,, = gnAl, with g, = 3.5, g3 = 7.8, and’
g4 = 24. These growth rates are all observed to depend on
the vorticity profile; the profile for Figs. 3 and 4 is shown
below in Fig. 5. Each data point is the average of three to
five evolutions such as shown in Fig. 3, and the scatter in
the measured rates is about the size of the symbols.

The 3 — 2 growth rate data are seen to scale as y, < A3
(shown by the dashed lines) over two decades in growth
rate; for large As, the growth rates increase more rapidly.
The 3 — 2 evolution of Fig. 3 corresponds to the A symbol
at A3 = 1.7 X 1072, and the large amplitude excitation of
Fig. 2 is similar to the A symbol at A; = 0.11.

A similar growth rate scaling is observed for the decay
of an m = 2 wave into an m = 1 wave, shown as open
circle symbols in Fig. 4. The data are close to y; x A3,
again increasing more rapidly at the largest excitations.
The largest m = 2 mode shown, with A, = 0.44, is an
elliptical vortex with length/width aspect ratio b/a =
1.6. The smallest y; growth rates have large error bars
because the receiver electronics induces a damping y; =
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FIG. 4. Measured growth rates vy,-, for daughter mode
m — 1 (normalized to the vortex rotation time 7 = 5.5 us)
vs normed amplitude A,, of parent mode, for m = 2, 3, and 4.
The dashed lines indicate y,,—1 = [, n-142,.
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FIG. 5. Measured density profile n(r); calculated fluid rotation

wg(r)/2m, with m = 1, 2, 3 direct resonance radii, and 2 — 1,
3 — 2 beat resonance radii; and measured perturbations An(r)
from 2 — 1 and 3 — 2 decay instabilities.

—4.8 s7!, and this rate has been subtracted from the data
of Fig. 4. We note that the m = 1 mode exists only
because our circular boundary breaks the translational
symmetry of the system and that the characteristics of this
one mode depend strongly on the wall position.

The same instability process is observed for m = 4 de-
caying to m = 3 (shown as squares in Fig. 4), although
direct m = 4 resonance damping and low receiver sensi-
tivity limit the range of data attainable. The largest m = 4
excitations here are quite weak, with diagonal/side ratios
of about 1.04, yet the m = 3 mode e-folds in about nine
vortex rotation times.

In general, the resonance damping results in an “inverse
cascade” from high to low azimuthal mode numbers m,
i.e., from shorter to longer wavelengths. To obtain the
data for Figs. 2, 3, and 4, we often needed to limit
this inverse cascade to one step by applying negative
feedback at the m — 2 wave frequencies. In addition to
the transfer to larger spatial scales, there is presumably
transfer to short scales, due to the filamentary nature of
the resonant damping; when spatially coarse grained, due
to the collimator hole, this appears as a “halo” in Fig. 2.

Linear surface (Kelvin) waves on an isolated vortex
with profile n(r) are eigenfunctions &n,(r) and &¢,,(r)
multiplying exp(imé — iwpt). Linearizing Egs. (1) then
gives an eigenvalue equation [6] for w,,,

1 9 9 m2> _ (4arecm)
(r ar ' ar r2 O¢m = rB
on/or

wn — mog(r)
where the fluid rotation frequency is

oLl 2£[27rr’dr’n(r’)- &)

we(r) = rB r’B
For the theoretical construct of a circular constant
vorticity “patch” of radius R, surrounded by a wall
at R,, one obtains linear mode frequencies [15] w, =
wglm — 1 + (R,/R,)*™]. In the absence of a wall,
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exact nonlinear solutions to Egs. (1) can be obtained: An
elliptical (Kirchoff) patch [5] with aspect ratio b /a rotates
with frequency w; = wg4ab/(a + b)?, and this has been
generalized to higher m modes [9]. The vortex patch
approximation predicts frequencies [8] and motions [16]
reasonably close to those measured experimentally on
vortices with monotonically decreasing profiles, although
3D axial confinement corrections may need to be included
for both plasmas [14,17] and fluids [18].

A direct resonance between surface waves and the fluid
flow occurs at a radius ry, where w,, = mwg(r;). When
the vorticity profile is not constant near ry, i.e., dn/drl|, #
0, this resonance results in inviscid Landau damping [6] of
the wave, with concomitant radial (and angular) transport
of vorticity. This damping is represented schematically in
Fig. 6(a). When this damping is present, the Kelvin wave
is not strictly a normal mode of the system. Resonant
damping of the wave results in spatial cat’s eye [6,10]
extending between flow x points separated by 66 =
27 /m, with radial extent dependent on wave amplitude.
Linear damping treats the case where the wave damps
before a cat’s-eye trapping oscillation occurs. Larger
amplitude waves result in cat’s-eye flows which when
averaged over @ appear as radial transport from slightly
inside to slightly outside the resonance [7]. For very large
amplitude waves, this resonance may occur even when no
resonance exists for the circular profile, and the cat’s-eye
flows appear as external filaments [8,11].

The decay instability observed here is apparently due
to resonant damping of the beat wave resulting from non-
linear interaction of the pump and growing mode, shown
schematically in Fig. 6(b). The nonlinear couplings
involved in beat-mode damping have been treated the-
oretically by Crawford and O’Neil [12], although no
quantitative coupling rates I';; have yet been calculated.
Energy and angular momentum conservation between
waves and particles predicts that the coupling between
pump mode i and daughter mode j will occur at a radius
r., where

w, — w; = w(r”)0 - j). 4
The unstable mode j is predicted to grow as
d
EA] :(—’)/] + F,JA?)AJ. (5)
where v; is the linear damping of mode j and the coupling
rate I';; is independent of amplitude A; for small A;. A
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FIG. 6. Diagrammatic representation of (a) direct spatial
Landau damping and (b) beat-wave damping.
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similar nonlinear coupling to external field asymmetries
A; gives rise to an “induce scattering instability” which
has been previously observed on these electron systems
[191.

The predicted dependence on the square of the pump
mode amplitude A; in Eq. (5) agrees with the experimen-
tal data of Fig. 4. This allows us to estimate the cou-
pling rates I';;: The dashed lines in Fig. 4 give I';; =
0.025/7‘R, F32 = 1.3/TR, and F43 = 120/TR AlSO, it is
observed experimentally that there is generally a thresh-
old in mode amplitude below which no decay instability
is observed. This presumably is due to the —v; term,
although this is sensitive to apparatus setup and has not
been investigated quantitatively.

Most significantly, the beat-mode damping resonance
signature of Eq. (4) is clearly seen in the measured
perturbations in vorticity induced by the decay process.
Figure 5 shows the measured z-averaged density profile
n(r) before any waves are excited, and the vortex rotation
frequency wg(r) calculated from n(r). The initial density
profile was chosen so as to have no direct spatial
resonances for modes m =< 3, i.e., the measured mode
frequencies projected onto wg(r) give resonant radii r
at which there is essentially no vorticity. (For this profile,
we measure f; = w,/27 = 48.4, f, = 188.3, f3 = 344.2,
and f4 = 514.5 kHz.) In contrast, the beat frequencies
w; — w; and w3 — w; have resonant radii r>~! and r>—2
from Eq. (4) on the edge of the vorticity profile.

To obtain the vorticity perturbation induced by the de-
cay instability, we subtract n(r) from the profile measured
after mode m is excited and decays to mode m — 1, and
mode m — 1 is damped by applied feedback. To mini-
mize systematic errors due to naturally occurring trans-
port, n(r) is actually measured after growing mode m,
suppressing the growth of mode m — 1 and then damp-
ing mode m. Furthermore, the process is sequentially
performed 10 times to obtain a measurable An from low-
amplitude excitations. The measured An,—.; shows par-
ticles transported from immediately inside to immediately
outside r>~"!. The same signature is seen for Ans_.,, with
an apparent error of 0.3 mm in the calculation of r>~2.
The true structure of the perturbation is probably narrower
than the features in Fig. 5, due to averaging over the col-
limator area ay;; also, the effects of fine-scale diffusion or
viscosity [13] are not resolved.

In conclusion, we find that the relaxation of surface
waves on an isolated magnetized electron column within
a circular boundary is dominated by damping from beat
wave resonances. Damping from direct resonances is
also observed, but with a relatively sharp-edged vortic-
ity profile, this damping saturates with the transport of all
available resonant particles. Our observations show that
surface wave damping from direct and beat-wave reso-
nances should contribute significantly to the relaxation
of vortices in inviscid 2D flows. Indeed, the beat-wave

damping measured here suggests that, when there are
available longer-wavelength modes, surface waves of fi-
nite amplitude will always be damped, and fine-scale fila-
mentation or cat’s eye within or outside the vortex will be
generated. One consequence of this beat-wave damping
is that a long-wavelength mode (such as an m = 2 ellipse)
would appear to actively damp or suppress shorter wave-
length modes such as m = 3. Finally, we note that these
shape distortions are an inherent result of vortex-vortex
interactions [16], including those leading to merger [20]
or filamentation [21], so direct damping and beat-wave
damping may affect these interaction processes.
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FIG. 2. Density (i.e., vorticity) contours showing an initial
m = 3 excitation and the m = 2 wave plus diffuse halo, which
evolves spontaneously in about 10 7,. Measurements are
averaged over a collimator hole of area a,.



