VOLUME 71, NUMBER 9

PHYSICAL REVIEW LETTERS

30 AUGUST 1993

Experiments on Stability of Equilibria of Two Vortices in a Cylindrical Trap
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We observe the (r,0) drift motion of two nearly identical magnetized electron columns bounded by a
cylindrical wall. In the 2D EXB drift approximation, these columns are vortices evolving according to
the Euler equation. We observe stable and unstable equilibria in which the vortices orbit about the
center of the cylinder. The equilibrium positions, oscillation frequencies, and instability rates for these
spatially extended vortices agree well with the predictions of integrable point vortex theory, apparently
because surface waves and shape distortions do not couple to the center-of-mass motion.

PACS numbers: 47.15.Ki, 52.25.Wz

The dynamics of two-dimensional vortices has been
studied for over 100 years, due to the central role of vorti-
city in fluid dynamics and turbulence. Experiments and
simulations have established that vortices can emerge
from both laminar flows [1] and structureless initial con-
ditions [2]. The subsequent evolution of these systems
can be dominated by the dynamics of the vortices, which
includes merger of like-signed vortices and mutual advec-
tion. A common assumption has been that the advection
can be well described by treating the spatially extended
vortices as Hamiltonian point vortices unless they are
close enough to merge [3]. However, experimental stud-
ies of vortices in water [4], in electrolyte [5], and in
superfluid helium [6] have typically found interactions
quite different from that predicted for point vortices, ap-
parently because of viscous or boundary effects.

In this Letter, we describe experiments on the stability
of two-vortex equilibria, and find quantitative agreement
with point vortex theory. The vortices are electron col-
umns with almost identical bell-shaped vorticity profiles,
inside a cylindrical Malmberg-Penning trap [7-9]. The
equations or (r,8) motion for the columns are isomorphic
to the 2D Euler equations governing the evolution of
patches of vorticity in an inviscid fluid of uniform density
[10]. Correspondence with 2D theory is particularly
close because the electron vortices are reproducibly creat-
ed and accurately measured, show little dissipation even
on time scales of 10 orbits, and have no boundary layers
at the wall to complicate the dynamics [7].

We observe equilibrium orbits in which two vortices or-
bit around the center of the cylinder at constant radius.
Some of these equilibria are linearly stable, others are un-
stable. We have measured both oscillations about stable
equilibria and exponential divergence from unstable
equilibria. The measured equilibrium positions, oscilla-
tion frequencies, and instability rates are well predicted
by treating the spatially extended vortices as if they were
point vortices. The symmetric equilibria of two point vor-
tices within a cylindrical boundary were first analyzed by
Havelock [11]; we have recently extended this analysis to
consider asymmetric equilibria [9]. Point vortex theory
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and the experiments both find that the equilibrium orbits
are unstable when the orbit radius is more than 0.46
times the wall radius. Moreover, the observed global or-
bital motions are well predicted from conservation of
point vortex energy and angular momentum. Departures
from the predictions of the point vortex model occur
when the separation between vortices is less than 1.6
times their diameter and merger is observed to occur
[8,12], and when the vortices ‘“scrape” the cylindrical
wall and circulation (charge) is lost. Also, the axial
confinement fields cause a dynamically unimportant shift
in the orbit frequencies compared to point vortex theory
[13], as will be discussed.

The electron columns are contained in a series of
grounded conducting cylinders of radius R, =3.81 cm, as
shown in Fig. 1. The hot tungsten source gives typical
electron densities 7(R,0,z,t) $6%10% cm 3. A uniform
axial magnetic field B, =375 G provides radial confine-
ment, and negative containment voltages V.= —10 V ap-
plied to end cylinders confine the electrons to a length
L,==20 cm. We create a two-vortex initial condition by
drifting the trapped column a distance D, off center, cut-
ting it in half axially with a negative voltage on cylinder
B, drifting one column to a new radial distance D, ad-
justing the relative phase of the two columns, and then
reexpanding the two columns axially. At any time ¢ dur-
ing the two-vortex evolution, we obtain the z-averaged
electron density n(R,6,t) by grounding cylinder C, and
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FIG. 2. Measured contour plots of Z-integrated vorticity (or
density) showing two vortices near the stable equilibrium orbit
r1=r2=0.36. The small X’s mark the centers of mass of the
individual vortices and of both vortices together. The large X is
the axis of the cylindrical conducting wall, and the arcs indicate
the wall radius.

measuring the charge Q(R,6,t) which exits through a
collimator hole of area A, ==(1.6 mm)? centered at
(R,0).

The electron density gives rise to a (z-averaged) poten-
tial ¢(r,0,1) through Poisson’s equation, V2¢=4rxen,
where —e is the electron charge. This results in cross-
field drifts, with a flow velocity given by

v(r,0,t)=—cV¢xZ/B,. 1)

Mutual advection in this flow field results in the two vor-
tices orbiting around the cylinder axis, with typical fre-
quencies forb = 10 kHz. Additionally, each vortex rotates
about its center of mass, at a frequency frot = 100 kHz.
The vorticity ¢(r,8,t) of this flow is proportional to the
electron density n(r,6,t), i.e.,

=yxy =L y2y=2TEC
(=VXy BV¢ " )
The flow of Eq. (1) is incompressible, and the density (or
vorticity) is merely advected in this flow.

Figure 2 is a contour map of density for typical col-
umns, showing bell-shaped profiles extending over a ra-
dius R, = 0.5 cm, with central density n(R =0) = 3x10°¢
cm 3. The center of mass for each vortex is marked by a
small X; the cylinder axis is marked by a large X. For
convenience, we hereafter normalize radial coordinates by
R,, eg., r.=R,/R, =0.13. We characterize the positions
of the two identical, spatially extended vortices by the
coordinates (r,0,), (r2,0,) of the two centers of mass.

We observe equilibria in which the two vortices orbit
about the center of the cylinder, with either r;=r, or
r1#r,, but always with 6,=60,+z. In equilibrium, each
vortex orbits at a constant radius and with the same fre-
quency forb, SO the two vortices remain diametrically op-
posed. For r; =r,, both stable and unstable equilibria are
observed. That is, if the vortices are initially displaced
from the equilibrium positions, they either oscillate
around the equilibrium points with frequency fosc or
diverge from the equilibrium points with an exponential
rate y.

In Fig. 3, the measured orbit radii of the stable equili-
bria are plotted as circles, and the orbit radii of the un-
stable equilibria as diamonds. No equilibria are observed
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FIG. 3. Measured radial positions of stable (O) and unstable
(®) equilibrium points, where 6;=6,+r for all points. The
size of the symbol indicates the estimated uncertainty. The pre-
dictions of the point vortex model are also plotted for stable
(dashes, dots) and unstable (solid line) points.

for ri=r;,<0.22, since the vortices merge together [8]
for (r1+r;)/2r, S1.6. For larger separations, the r; =r;
equilibria are observed to be stable for radii » < 0.46 and
unstable for »20.46. All r1#r, equilibria are observed
to be stable; in Fig. 3, these equilibria are shown as cir-
cles, with the arbitrary convention of r| > r,.

In Fig. 4, we plot the observed rates of oscillation about
stable equilibria, fosc, and the observed exponentiation
rate from unstable equilibria, y. These rates, measured
in the rotating frame of the orbit, are normalized by the
theoretical  orbit frequency f, h defined below. For
r1=ry, fosc varies from approximately f, down to zero
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FIG. 4. Normalized measured oscillation frequencies fosc (O)
and exponential growth rates y (#). The curves show predic-
tions from an analytic point vortex model, where the solid line
indicates exponential growth and the dashed and dotted lines
are oscillation frequencies. The motions corresponding to the
three marked rates are shown in Figs. 5(a)-5(c).
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as ry is increased from 0.23 to 0.46. For small r, fo is
approximately fg’b because the vortices orbit about the
center of (total) mass, independent of where this center is
relative to the cylindrical wall. As r approaches 0.46, foc
approaches zero, since the restoring forces go to zero as
the influence of the image charges in the wall becomes
important. For r,=r;> 0.46, initial displacements Ax
=(Ar,rA0) from an equilibrium point are observed to
grow exponentially as

Ax=Axyexp(yt)+Bx_exp(—yt),

where x4+ (x-) is the growing (decaying) eigenvector.
Over the accessible range of unstable equilibria, we ob-
serve growth rates y/2nfé?b == 0.2 to 0.4, as shown by the
diamonds in Fig. 4.

The observed motion of these spatially extended vor-
tices is well described by a point vortex approximation.
This approximation neglects the effects of surface waves
and shape distortions, since the fields outside an extended
vortex are the same as the fields outside a point vortex
only if the extended vortex is circular. In this approxima-
tion, we first consider our 3D confined columns as 2D ex-
tended vortices of z-averaged density n(r,0,t). We then
characterize these extended vortices by their area-inte-
grated line density, NLER,ngnrdr n=2x10% ¢cm ™',
and treat the two extended patches as two point vortices
of circulation I'=Qnce/B;)2N = 1%x10® cm?Zsec ™! at
the centers of mass.

A point vortex generates an azimuthal velocity field
with a magnitude inversely proportional to the distance D
from the vortex: |v| =I/2zD [14]. For an equilibrium
characterized by (ry,r,,6,=6,+ ), therefore, point vor-
tex 1 is predicted to orbit about the cylinder axis at a fre-
quency

th _Ir 1 1
forb(r]arz) I 27!"'] R‘g
1 1 1

x — + .
ritr,  ri+1/ry ri—1/r,

(3)

The three terms in brackets are the inverse distances
from vortex 1 to vortex 2, image 2, and image 1, respec-
tively. The orbit frequency of point vortex 2 is given by
interchanging the subscripts 1 and 2, so the equilibrium
positions are given by the solutions to f&,(ri.r2)
=f,(r2,r1). In addition to the symmetric solution with
ri1=rj,, asymmetric solutions exist with »; > 0.4623 > r,,
as shown in Fig. 3.

The stability of circular orbits of two or more point
vortices within a circular boundary was first analyzed by
Havelock [11] in 1931. This linear stability analysis pre-
dicts oscillation frequencies fosc around stable equilibria
with r;=r, <ry=0.4623 and predicts exponentiation
rates * y for unstable equilibria with r;=r,>ry, as
shown by the dashed and solid curves in Fig. 4. We have
extended the linear stability analysis to equilbiria with

ri#ry [9], and find oscillation frequencies fos as shown
by the dotted curve in Fig. 4. Experimentally, both the
stable and unstable dynamics of the 3D electron columns
are well described by the 2D point vortex approximation.

Interestingly, the full nonlinear motion of two point
vortices within a cylindrical boundary can be understood
from phase space maps, since the system is integrable.
There are four variables and two constants of the motion,
the angular momentum per unit length Py, and the in-
teraction energy per unit length # [14,15]. These are
written in scaled variables Py and H as

?
Pi=="=3% (-rd @)
Po  i=12
and
.
H 7,
By (l——rlz)(l—rzz)
=2 In(—rA+In|1+ > )
i=1,2 ri2

Here, Po=(eB/2c)R?XN, is the angular momentum of an
on-axis line charge, and we choose Pg=0 at r=r, =1.
FHo=e?N} is a characteristic energy, and rh =|r1 —r,|?
=rI2+r22 —2riracos(6;—6,).

The motion of the point vortices can be visualized from
contour maps of H(r(,8; —0,,Pg). For any given Pg, the
vortices move along a contour of constant H. Given r,
the second vortex must be at r3 =2—rf — P,. There are
three distinct map topologies over the accessible range of
0<Py<2, and examples of these are shown in Fig. 5.
For P> 2(1 —rj), there is a minimum energy stable
equilibrium (an O point) with the two vortices symmetri-
cally opposite each other, i.e., 8, —8,=n and r;=r,, as
shown in Fig. 5(a). For 1<Py<2(1—rf), the sym-
metric equilibrium is an unstable saddle point (an X
point), and two new O points exist at r=r;, values [Fig.
5(b)]. As Py decreases, the O points move further from
the X point, until for Py < 1.0 there are no stable equili-
bra [Fig. 5(c)l.

Also shown by the O and + symbols in Fig. 5 are the
measured center-of-mass coordinates of the two vortices,
for evolutions with the corresponding Pe. In Fig. 5(a),
the center of mass of each vortex is observed to oscillate
once around the stable equilibrium while the vortices or-
bit 2.7 times around the cylindrical center. The uncer-
tainty in the measured positions corresponds to an uncer-
tainty in energy of §H 50.01. In Fig. 5(b), 3 of an os-
cillation about an asymmetric equilibrium is observed,
with a larger measurement error corresponding to §H
=~ 0.02 due to additional uncertainties introduced while
creating the r #r; equilibria. In Fig. 5(c), the vortices
exponentiate away from the unstable equilibrium, with
the displacements being largely in the 6 direction. The
large measurement errors at long times reflect the
difficulty in repeatedly following the exponentially unsta-
ble trajectories.
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FIG. 5. Energy contours in configuration space for three
values of scaled angular momentum Ps. Minima (O) and sad-
dle points (x) are shown, as are the measured center-of-mass
positions of two vortices (O and +) at a sequence of times. The
energy difference between contours is AH =0.05. (a) Pp=1.74.
One energy minima is at r1 =rz. (b) Pe=1.53. ri=r; is a sad-
dle point, and two energy minima exist with r1=r;. An addi-
tional energy contour (dots) at the value of the saddle point is
included. (c) Ps=0.85. No stable energy minima are seen.

For spatially extended vortices, the energy H will in-
clude self-energy and interaction energy terms which de-
pend on the shapes of the vortices. Experimentally, we
observe elongations away from circularity of <10% in
general, and up to 30% for r; =r,~0.23 (near merger).
These time-varying eccentricities have not, however, been
observed to casue experimentally noticeable departures
from the predictions of the point vortex model. This re-
sult is perhaps because the energies involved in elongation
are relatively small: Using a moment model [12], we esti-
mate 8H ~0.002 and 0.02 for elongations of 10% and
30%, respectively.

The main discrepancy between the observed motions
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and the predicted 2D point vortex dynamics is that the
observed orbit frequencies forp, are uniformly about 2.1
kHz greater than the predicted . This frequency shift
is a 3D (finite length) effect, due to the confinement
forces required at the ends of the columns; it is also seen
in the orbit of a single off-center vortex, i.e., the /=1
diocotron mode [8,13]. This shift in fom is observed to be
nearly independent of the orbit radius [9]. Therefore, the
net effect is just a shift of rotational frame, leaving the
vortex dynamics unchanged with fos and y as predicted
by 2D theory.

In conclusion, we find that the point vortex model ac-
curately predicts the motions of extended vortices as long
as the vortices are not susceptible to merger, or in contact
with the wall. Thus, we find that the overall stability of
this obviously nonintegrable system is well described by
the integrable point vortex approximation. This is ap-
parently because the internal degrees of freedom associat-
ed with (r,0) shape distortions do not significantly couple
to the center-of-mass motion.
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