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Free Expansion of a Pure Electron Plasma Column
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The collective free expansion of a magnetized pure electron plasma column along the confining axial
magnetic field is experimentally and theoretically investigated. A new hydrodynamic theory for non-
linear plasma wave evolution in a bounded cylinder is described which predicts the experimental results.
The plasma free expansion is initially characterized by a self-similar plasma flow resulting in a perturbed
density and velocity with no characteristic length scale.

PACS numbers: 52.35.Mw, 52.25.Fi, 52.25.Wz, 52.35.Fp

Large-amplitude (nonlinear) electron plasma wave dis-
turbances in a magnetized plasma column represent a
broad area of interesting plasma physics phenomena.
Three types of nonlinear disturbances which have been
studied in detail in neutral plasmas are (1) electron plas-
ma solitons [1-3], (2) electron holes [3-6], and (3) elec-
tron plasma shock waves [7]. We have experimentally in-
vestigated another type of large amplitude electron plas-
ma wave phenomenon which has received a considerable
amount of theoretical attention in neutral plasmas [8-11]
but little experimental study in either neutral or nonneu-
tral plasmas [12]. This phenomenon, which is character-
istically different from the three phenomena just listed,
is the free expansion of a pure electron plasma column
along the axial confining magnetic field.

Measurements of the radially averaged density made at
several positions along the plasma column indicate that
during plasma free expansion, a rarefaction disturbance
propagates into the plasma at a speed which is within
+10% of the phase speed of long-wavelength electron
plasma waves. The average plasma density behind the
disturbance decreases to ~ 3 of the initial average densi-
ty. When the disturbance reaches the other end of the
plasma column it is reflected, causing the remaining plas-
ma density to decrease, eventually emptying the con-
finement region of plasma.

Figure 1 shows a schematic view of the experimental
apparatus used in this study. The pure electron plasma
column is contained radially by a uniform axial magnetic
field and axially by electrostatic potentials applied to seg-
ments of a conducting cylinder surrounding the plasma.
The properties of a pure electron plasma confined in this
type of device have been extensively investigated [13].
The conducting cylinder diameter is 6.1 cm. The plasma
radial density profile is typically bell shaped with a

FWHM of about 3 cm. The axial confinement potentials
range between —50 and —150 V and the plasma column
is either 113 or 100 cm long, contained between rings G1
and S2 or G4. The experiments were conducted with the
following plasma parameters: axial magnetic field 280
< B < 630 G; central plasma density 3x10% cm ~3<n,
<8x10% cm ~3; space charge potential on axis [14] of
about —12 V for n0=7x106 cm 3 parallel electron
temperature 1 eV < T, <18 eV; electron collision fre-
quency 6 sec ~' < v, < 7x10%s 7!, and background neu-
tral pressure of ~5x%107'" Torr.- While the axial
confining potentials and magnetic field are applied, the
background transport of the plasma causes the central
density to decrease to 3 of its initial value in about 200
ms.

The plasma typically undergoes a three-stage life cycle
consisting of injection, hold, and dump. The cycle-to-
cycle variation in plasma parameters is about 0.1%. The
plasma temperature at the beginning of the hold cycle is
1 eV+0.2 eV. Compressional heating is sometimes used
to increase the temperature up to a maximum of 18
eV X2 eV. This is done by applying a 10-kHz square-
wave voltage, which oscillates between ground and —40
V, to either ring L1 or L4. The signal is applied for up to
40 ms depending on the desired final temperature. The
temperature is determined by measuring the charge
which escapes from the confinement region when the
confinement potential is switched to an intermediate
value between ground and the initial confinement poten-
tial [15].

Time-dependent changes in the radial average plasma
density at a particular axial location are measured by
monitoring the image charge on the ring at the corre-
sponding axial position. A cable with stray capacitance
of about 1x10™'® F connects the ring to the input of a
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FIG. 1. Schematic view showing the conducting ring structure of the experimental apparatus.
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low-noise, 30-dB inverting amplifier with a 5-MHz band-
width. The amplifier input capacitance is about 2.3
x10 7' F and the input is grounded through a 20-M 0
resistor. The ring capacitance is negligible. Plasma in-
jection produces a negative radial electric field at the sur-
face of the ring. This field causes positive image charge
to be drawn off of the amplifier input and the connecting
cable and accumulate almost instantly on the ring. A
voltage (typically —10 to —20 mV) appears on the ring,
cable, and amplifier input which exponentially decays to
0 V with an RC time constant of about 6 ms. The image
charge Qo on the ring is equal and opposite to the total
charge contained in a length of plasma equal to the
length of the ring.

The free expansion is initiated by grounding the con-
finement ring at the collector plate end. A mechanical
relay is used to achieve a switching time of approximately
25 ns. The collector plate is biased at a constant +90 V
in order to reduce the effect of secondary electron emis-
sion from the plate. As the plasma expands out of the
confinement region the negative radial electric field at the
ring surfaces decreases in magnitude. This causes posi-
tive image charge to leave the ring and accumulate al-
most instantly on the cable and amplifier input. A posi-
tive voltage develops on the ring, cable, and amplifier
which decays with about a 6-ms time constant. This volt-
age is closely proportional to Q(1) —Qy for the entire
duration of the free expansion (<40 to 50 us) since
there is negligible voltage decay during this time. The
quantity Q(¢) represents the total charge at time ¢ con-
tained in a length of plasma equal to the ring length. The
voltage at the amplifier input is inverted and amplified.
The output is then normalized to |Qo| and offset by unity
giving a signal equal to Q(¢)/Qo. The traces displayed in
Fig. 2 are plots of Q()/Qg versus time 1.

Figure 2(a) shows that when ring G4 is grounded, the
signal on S2 remains unchanged for a short time while
the rarefaction front propagates from ring G4 to S2. The
signal then drops quickly and approaches a plateau value.
After some additional time delay the signal on R2 begins
to drop and approaches the same plateau level. There is
a longer time delay of about 780 ns before the signal on
ring R1 begins to drop. The propagation speed of the
front is calculated from this 780-ns delay time and the
distance between rings to be 1.3x10% cm/s. Separate
measurements using various electrodes indicate that the
front propagates at a constant speed through the plasma
column. The R2 and S2 signals continue to approach the
plateau value until the rarefaction front returns from
reflection off of the confined end of the plasma column.
At this time, the R2 and S2 signals drop below the pla-
teau value with R2 dropping slightly earlier than S2. The
three signals then merge as they asymptotically approach
zero. The R1 signal at the far end of the column never
¢xhibits a plateau but drops steadily.

Figure 2(b) shows measurements from a shorter plas-
raa column. A shorter column allows a measurement to
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FIG. 2. Experimental and theoretical ring signals as a func-
tion of time for a typical plasma free expansion. Also shown is
the confinement potential on ring G4, S2, or G3. (a) The plas-
ma column is 113 c¢cm long (confining potentials applied to G1
and G4). (b) The plasma column is 100 cm long (confining po-
tentials applied to G1 and S2). (c) The plasma column is 100
cm long (confining potentials applied to G2 and G3) and T =15
eV (Ap/a~0.95).
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be made at ring G3 where initially there is no confined
plasma. The R1 and R2 signals for this case are similar
to the longer column case. The G3 signal is initially zero
but begins to rise approximately 50 ns after ring S2 is
grounded. Both G3 and R2 then approach the same pla-
teau value. The return of the reflected rarefaction front
is marked by G3 and R2 falling away from the plateau
value. All three signals then merge as they approach
their asymptotic value indicating zero remaining plasma
density.

We have measured the speed of the rarefaction front
for central plasma densities ranging from 4 X 106cm 3 to
8% 10® cm ~3, magnetic fields ranging from 280 to 560 G,
and temperatures ranging from 1 to 18 eV. The speed
(which ranges between 1 and 5 times the thermal speed)
is always within 10% of the measured phase speed of a
small amplitude long wavelength electron plasma wave in
the same plasma column. We have numerically calculat-
ed the dispersion relation of linear standing waves in the
pure electron plasma column [16] and the results agree
with the measured dispersion. As expected from the re-
sults of Trivelpiece and Gould [17] the dispersion relation
is acousticlike for long wavelength modes.

The basic physics of the free expansion process is that
the electrons escape from the confinement region as a re-
sult of (1) electrostatic pressure and (2) ballistic free
streaming. The effect of electrostatic pressure dominates
the dynamics for plasma temperatures less than about 15
eV, where Ap/a <1 (Ap is the plasma Debye length and a
is the plasma radius), and this suggests a hydrodynamic
description. We have developed a hydrodynamic theory
which contains this basic physics and which predicts the
experimental results at low to moderate plasma tempera-
tures. Previously, Manheimer has described one hydro-
dynamic model for the nonlinear steepening of an elec-
tron plasma wave in a bounded cylindrical cold plasma
[18]. His theory retains only the lowest-order linear radi-
al mode for describing the nonlinear radial evolution. In
contrast, the theory described here determines the exact
radial evolution during free expansion of a bounded cylin-
drical warm plasma. Finite temperature is included by a
scalar pressure term in the momentum conservation equa-
tion and an adiabatic equation of state.

The plasma dynamics are described by the four hydro-
dynamic equations:

E=-a—z(nv), (1)
dv dv , e 0¢ 1 oP

o __ v, 00 1 oF

ot Y9z m 8z mn 0z’ @
V3¢=V2p=4nen, (3)
d{p)_

=0, )

where ¢, v, n, and P are the plasma potential, axial
directed local fluid velocity, density, and pressure; 7 is the

ratio of specific heats, m is the electron mass, and e is the
magnitude of the electron charge. The large magnetic
field confines the particle dynamics to be one dimensional
so that the ratio of specific heats, 7, is taken to be 3. The
two S rings in Fig. 1 are divided into four equal azimu-
thal sectors. Separate measurements from each sector on
both rings indicate that the plasma free expansion is cy-
lindrically symmetric. As a result we assume cylindrical
symmetry in the theory. The initial temperature (prior to
free expansion) is known to be about 30% higher at the
plasma edge than at the plasma center. This temperature
variation is assumed to have only a minor effect on the
theoretical predictions so that a constant initial tempera-
ture is assumed in the theory. The axial density variation
of the rarefaction disturbance in a length of one plasma
radius is typically small. This allows V29 in the Poisson
equation to be replaced with Vi¢. Equation (4) indicates
that the plasma flows along each field line at constant en-
tropy. This allows us to write the last term in Eq. (2) as
—(3xT/m)(1/n)0n/dz where the local temperature
and density during free expansion are related as T
=T0(n/no)2.

We use the fluid model to describe the free expansion
of a plasma column confined between z =0 and z=—L.
The plasma density is assumed to be constant along each
field line and to fall abruptly to zero at either end of the
column. The plasma is assumed to have zero initial fluid
velocity. At ¢t =0 the confinement is instantaneously re-
moved from z =0 allowing the plasma to freely expand.
These initial and boundary conditions possess no scale
length so that the solution to Egs. (1)-(4) is of the self-
similar type [19] with z and ¢ appearing only as the ratio
z/t.

The self-similar solution to Egs. (1)-(4) is obtained by
converting the partial differential equations to ordinary
differential equations with the independent variable §
=z/t. The density and pressure are written as n(r,z,t)
=&(r)alr,z,t) and  P(r,z,t) =&(r)P(r,z,t) [where
i(r,z,t) =no+6én(r,z,t) and P(r,z,t) =Po+6P(r,z,t)
and &(r) gives the equilibrium density radial depen-
dencel. The continuity equation (1) can be integrated to
give 1/ng=co/(v —¢), where c¢ is the rarefaction front
speed. Using Egs. (2), (4), and the expression for 7/ny,
the ¢ derivative of the Poisson equation (3) is written as

1d dfde
rdr dr|d¢

and the momentum conservation equation is written as
dii/dp=—(e/m)(a/V?), where @j=4nne*/m and V2
=(cono/n)*— (3xTo/m)(ii/ny) % The solution to Eq. (5)
with zero radial nodes is chosen to construct the self-
similar solution so as to agree with the measured front
propagation speed. The numerical solution to Eq. (5)
gives 7, v, and ¢ as functions of {. The actual solution for
n, v, and ¢ at any value of z and ¢ can then be determined
from these three functions.

—2
Dp p(,) 40 _
+ Vzé(')dg (5)
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The plasma flow velocity at z = — L is set to zero caus-
ing a reflection to occur when the rarefaction front
reaches this point. The evolution of the density and ve-
locity in the region between z= —L and the reflected
front is no longer self-similar but can be determined from
Egs. (1)-(4) by using the method of characteristics
[20-22].

The radially averaged density predicted by the new hy-
drodynamic theory is compared with the measurements in
Fig. 2. The theory closely predicts (1) the initial time at
which the signals on R1, R2, S2, and G3 begin to change,
(2) the approach of the signals toward a plateau, (3) the
duration of this plateau before the reflected front returns
to the location of each ring, and (4) the long-time behav-
ior of the signals. Agreement between the fluid model and
the measurement at higher temperature where ballistic
effects begin to become important is also good, as is
shown in Fig. 2(c). This suggests that the new fluid model
works well in the warm as well as the cold plasma re-
gimes. A plot of the data in Fig. 2(a) with {=z/t as the
x axis would show the signals from R2 and S2 to lie on
top of each other for S 1.4 us, confirming that the free
expansion is self-similar during this time.

We have made a number of measurements to deter-
mine the sensitivity of our results to the assumptions in
the theory. For example, we have varied the end shape of
the plasma column by varying the confinement potential
from —30 to — 180 V and found only a few percent varia-
tion in the measured signals. In addition, we have varied
the voltage switching time on the confining ring (ring G4
or S2 in Fig. 1) from about 10 to 100 ns and found that
the measured signals experienced only a shift in time.
We have also produced a slightly non-Maxwellian initial
distribution function by plasma wave heating and found
that this resulted in only a few percent change in the
measured signals. We have additionally checked one in-
teresting result from the hydrodynamic theory which is
that a small amplitude plasma wave excited in the region
z >0 cannot propagate into the region z <0 for times
during which the self-similar solution is valid at z~0.
Using the same experimental arrangement as used for the
results shown in Fig. 2(b) we have applied varying ampli-
tude positive voltage pulses to rings R3 and G3 during
plasma free expansion and have observed no measurable
response on rings L4, R2, and L3.

In summary, we have described a new hydrodynamic
theory for nonlinear plasma wave evolution in a bounded
cylinder which shows good agreement with the free ex-
pansion measurements. We believe that for low to
moderate plasma temperatures the basic physics of the
free expansion process is contained in this new theory.
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