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Theory of Electrostatic Fluid Modes in a Cold Spheroidal Non-Neutral Plasma
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The normal modes of a magnetized spheroidally shaped pure ion plasma have recently been measured.
Here the theory of these modes is presented. Although one might expect that a numerical solution is re-
quired (because the plasma dielectric is anisotropic and the plasma is inhomogeneous), the problem is
actually separable in an unusual coordinate system. The result is a simple electrostatic fluid dispersion

relation for modes in a cloud of any spheroidal shape.

PACS numbers: 52.25.Wz, 32.80.Pj, 52.35.Fp

In recent experiments' a non-neutral plasma is con-
fined for long periods of time in a Penning trap. The
plasma is at sufficiently low temperature 7 and suffi-
ciently high density n¢ so that both the Debye length Ap
=(kT/4rq’ne)"* and the interparticle spacing ng />
are much smaller than the size of the plasma (here g is
the ion charge). However, the plasma is itself much
smaller than the distance of the trap electrodes, so that
induced image charges in the electrodes have a negligible
effect on the plasma dynamics.

Normal modes have recently been excited and mea-
sured in such a plasma cloud.? This paper describes a
simple analytic theory for these modes. Although the
magnetized plasma dielectric is anisotropic (with cylin-
drical symmetry) and the plasma is also bounded (with a
different— spheroidal— symmetry), we show that a sep-
arable solution for the partial differential equation
governing the mode potential exists, albeit in a rather
unusual new coordinate system.

The result is an analytic solution for electrostatic fluid
modes in a realistic confined non-neutral plasma of finite
size. Previous discussions of normal modes in finite-
length plasmas have employed approximations based on
periodic boundary conditions applied to an infinite
column,? or perturbation theory around an approximate
finite-length equilibrium.* Here exact results are ob-
tained using a realistic thermal equilibrium from which,
in the limit of very prolate clouds, one may recover the
familiar Trivelpiece-Gould dispersion relation® for a cy-
lindrical non-neutral plasma, as well as finite-length
corrections to this relation. In the opposite extreme ob-
late limit, the modes connect onto the dispersion relation
of a magnetized slab. In between these limits the modes
exhibit characteristics of both relations.

The modes considered here are similar in some
respects to those which appear in discussions of the sta-
bility of the MacLaurin and Freeman spheroids in the
theory of gravitating systems,® because the gravitational
potential also satisfies a Poisson equation. However,
since the equation of state used here is much simpler
than that required for gravitational equilibrium (we take

the thermal pressure to be identically zero), our normal-
mode problem reduces to a separable problem in the
theory of electrostatics.

The confinement properties of non-neutral plasmas in
Penning traps have been studied extensively. Radial
confinement is provided by a strong uniform magnetic
field B, oriented along the trap axis (taken here to be the
z direction). The plasma rotates through this magnetic
field, providing a confining vXB force which balances
the repulsive radial electric force of the unneutralized
plasma. Confinement in the z direction is provided by dc
voltages applied to end electrodes. The assumption that
the plasma is small implies charges in the electrodes can
be neglected and the trap potential is approximately
quadratic, of the form z2—(x2+4y?)/2. Furthermore,
the existence of a confined thermal equilibrium state for
such plasmas has been demonstrated both theoretically’
and experimentally.®® In thermal equilibrium, the plas-
ma rotates with a uniform “rigid” rotation frequency w,,
and is at constant temperature 7. If both Ap and no_l/3
are much less than the size of the plasma, one may
neglect the effects of finite temperature and correlations
and the resulting cold-fluid thermal equilibrium is a
uniform-density spheroid (ellipsoid of revolution) whose
aspect ratio a determines the cloud’s rotation frequency
o, for given trap fields [see Eq. (15) of Ref. 9]. (The as-
pect ratio «a is defined in terms of the cloud’s axial length
2b and its diameter 2a as a=b/a.) The rotation fre-
quency in turn is related to the density’ by w;=2w,
x(Q.—w,), where Q.=qgB/Mc is the cyclotron fre-
quency, w,=(4rq 2no/M)'"? is the plasma frequency,
and M is the mass of the charges in the plasma.

In order to treat linear dynamics around this equilibri-
um, cold-fluid equations are employed in a frame rotat-
ing with the plasma. Under the assumption that the per-
turbed potential y has a time dependence of the form
exp(—iwt) (in the rotating frame) a differential equa-
tion follows from standard manipulations of the continui-
ty, momentum, and Poisson equations:>

Ve Vy=0, (1a)
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where
& - i82 0
e=lie; & O (1b)
0 0 &3

is the plasma dielectric tensor, & =1—w0}/(0’>—Q2), &
=0.0}/0(0?—02), =1 —w}/o? and Q. =0, 20,
is the “vortex frequency.” Equation (la) is just Max-
well’s equation V- D =0 for a medium with linear aniso-
tropic dielectric tensor &.

Outside the cloud the potential w* satisfies Laplace’s
equation

Viy°=0, (2a)
whereas inside the cloud Eq. (1) becomes
92 92 i 9%
€ + '+ eg3——y'=0. (2b)
Nox2 a2 )V T 2"

The solutions inside and outside the cloud are coupled by
integration of Eq. (1a) across the plasma vacuum inter-
face S:

vi=yls, (3a)
f-& Vy' =h-Vy°ls, (3b)

where fi is a unit vector normal to S. Equations (2) and
(3), together with the condition that w°— 0 at large dis-
tances, constitute the eigenmode problem for the plasma.

Because of the spheroidal symmetry of the plasma and
the cylindrical symmetry of Eq. (2b), this eigenmode
problem does not appear to be separable at first glance.
However, the problem is separable in a rather unusual
coordinate system. Cylindrical symmetry implies that
the dependence of y on the azimuthal angle ¢ can be ex-
pressed as exp(im¢), where m is any integer. Further-
more, outside the plasma the cloud shape suggests the
use of spheroidal coordinates (&;,&£;,¢), defined by the re-
lations '°

x=[t—d) 1 —£H]1"2coso ,
4)
y =0} —d)H U —ED]12sing, z=&&,.

Here, d is a free parameter of the coordinate system,
chosen as d =(b2—a?)'? in order to make S a surface
of constant &, given by &, =b. Surfaces of constant &,
are nested confocal spheroids which become spheres at
large distances (the foci are a distance |d| apart). Sur-
faces of constant &, are hyperboloids which are every-
where normal to the constant-&; surfaces. Equation (2a)
is separable in these coordinates and the solution com-
patible with the boundary condition at infinity is

Vfo=AQ1’"(§1/d)P[m(52)ei(mo_w’), (5)

where P/ and Q" are associated Legendre functions,

and / is a non-negative integer (larger than or equal to
|m]) which specifies the number of oscillations in the po-
tential in the &, direction [P/"(x) has / — |m| zeros in the
range —1 <x <1].

However, inside the plasma Eq. (2b) is not separable
in these spheroidal coordinates. Because the matching
conditions, Egs. (3), mix the inner and outer solutions
and would appear to require the use of these coordinates,
one might despair of finding a separable solution for this
problem. However, one can find a separable solution by
applying the following coordinate transformation within
the cloud: z=z(g/e3)'?, ¥=x, y=y. In these barred
coordinates Eq. (2b) becomes Laplace’s equation. Fur-
thermore, since S is taken to another spheroid by this
transformation, it is useful to define ““scaled” spheroidal
coordinates (&;,&,,¢) which apply within the cloud:

x=[E}—dH 0 —E$]1"2cos¢,
y=ME}—d» (1 —E)]"%sing, 6)
Z(S;/S3)]/2=f_|§_2.

Here, d is chosen to be (62—a?)'2 where b=b(g/
£) '/2, so that the surface of the plasma is also a surface
of constant El, given by 5_1 =p. Coordinate surfaces are
shown in Fig. 1. There are three cases. (1) &/g >0,
a’?> g/e;: Then & € {[—b, —d),[d,b]} and constant-&,
surfaces are prolate near the cloud center. (2) &/g >0,
a?<eg/e;: Then & € [—b,b] and constant-&, surfaces
are oblate. In both cases &€ [—1,11. (3) &3/e,<0: b
is imaginary and the coordinates are double valued.
Within the cloud either & € [—5,6] and &€ {[—1,
—b/d),lb/d 11} or & €fl—d, —b1[b,dl} and &
€ [—b/d,b/d]. Now the points (£,E,,¢) and (d&,,E,/
d,¢) give the same (x,y,z) [see Eq. (4)], so there are
two equivalent values of &, and &, for every point inside
the cloud.

While the coordinates are double valued in case 3, the

FIG. 1. Qualitative behavior of coordinate surfaces within
the cloud. (a) &/e) <0. Solid and dotted lines can be either
surfaces of constant &, and &, respectively, or & and &, re-
spectively (see text) (b) Constant-£, surfaces for &3/, >0 .
Dotted lines, a < (g3/g1) /% solid lines, a > (e3/e1) /2.
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solution of Eq. (2b) is a symmetric product of Legendre
functions,

y/"=BP["(§_|/57)P1'"(§_z)ei(m¢_w') , @)

so ' remains single valued. Furthermore, it is not
difficult to show that the second matching condition, Eq.
(3b), can be expressed in the following simple form:

i

14

—p Do

£ =b 9%

The appearance of the &, and é_l derivatives is not
surprising since both derivatives are partials in the direc-
tions of A. The ¢ derivative arises from the off-diagonal
elements of ¢.

A simple equation for the mode frequencies follows
from substitution of Egs. (5) and (7) into Egs. (3a) and
(8). Here it is important to note that Egs. (4) and (6)
imply that & =¢&, on S, so &, dependences cancel. The
resulting equations for 4 and B are

BP"=AQ[", (9a)
Bl(b/d) e3P + ma’e, Pl = A(b/d) Q" . (9b)

®)

[gsgi__,-azgz_ft

£ =b

Here and in following equations, PJ"=P["(a/(a®— &3/
e)'?), or=0/"(a/(a®*—1)"?), and primes denote
differentiation with respect to the entire argument. The
condition for a nontrivial solution to Egs. (9) leads im-
mediately to the eigenvalue equation

1/ 12 ,
PO

PO
(10)

Equation (10) may be regarded as a finite-length gen-
eralization of the familiar Trivelpiece-Gould (TG)
dispersion relation for an infinitely long cylindrical non-
neutral plasma column, for the case that image charges
on the electrodes are unimportant.'® Indeed, one may
obtain this relation from Eq. (10) by taking the cylindri-
cal limit a— oo, /— oo, keeping the axial wavelength
k:=Il/aa finite. In this limit &/d— 1+p?/2a%a?
(where p is the cylindrical radius), &— z/aa, P/
— (—iD)"I,,((e3/€)) *k,a), and Q" — GI)"K,,(k.a).
Substitution of the latter two limits into Eq. (10) leads
to the required relation.

The opposite, magnetized-slab (MS) limit a— O,
| — oo, k; =al/b finite, is also of interest. In this limit
E— 1 —p2a?/2b?, &— z, PI"— I"\2/xl cosl(U+m)n/
2—ik,bl, and QF'— (=)t Hmn/2l exp(—k L b).
The resulting modes induce ripples in the slab of the
form

Ik p)coslU+m)n/2 —ik  z]exp(ime) .

(12_83/81
a’—1

2
P
i

£3
a’——
€]

&3+ ma &=

In order to understand the behavior of the normal
modes as parameters are varied, it is instructive to plot
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the mode frequencies as a function of / for given m, Q,,
and a. Such a diagram is shown qualitatively in Fig. 2
for any m=0. (For m =0 the diagram is symmetric
about @ =0. It looks like the top half of Fig. 2 reflected
into the bottom half, if one then removes the pair of
modes with lowest |w|.) For finite a the diagram is
qualitatively similar to both the TG and MS relations,
with frequencies quantized by finite size (i.e., finite
length in the case of the former relation, and finite radius
in the latter case). If one connects modes which have the
same number of radial oscillations (in the z =0 plane),
one obtains curves similar to the TG relation (the solid
curves in Fig. 2). Within a given curve the number of
axial oscillations (along p=0) increases linearly with /,
as expected, since / & k, in the cylindrical limit. Howev-
er, if one instead connects modes with the same number
of axial oscillations, one obtains curves similar to the MS
relation (the dotted curves in Fig. 2). Now as / increases
the number of radial oscillations increases along a curve,
since / & k , in the MS relation.

These curves may be classified according to the sign of

(a) —

FIG. 2. Qualitative behavior of mode frequences for any
m#=0, a~1. mQ.>0 assumed. For mQ. <0 invert the dia-
gram about the w=0 axis. Solid and dotted connecting lines
are described in text. Modes are labeled P for plasma, UH for
upper hybrid, and S for surface plasma. (a) [Q.]> w,. (b)
Q.| < wp.
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g3/e;. From Eq. (2b) modes propagate in the plasma
when &3/g; <0, which occurs in the upper hybrid regime

maxlw,,|2.]1 <|o| < oun=(oj+0d'?,

and in the range |w| <minlw,,|Q.|], the regime of
magnetized plasma oscillations (see Fig. 2). These
names refer to mode behavior when | Q.| > w,. Howev-
er, when Q,— 0 (i.e., at the Brillouin limit) the upper
hybrid modes become bulk plasma oscillations at w =w,,
and the ‘“magnetized plasma” modes vanish into the
o =0 resonance.

In addition, evanescent (surface) modes with &3/¢; > 0
exist if | Q.| < ®p, in the range la.] <|w] < wp. These
modes are oscillatory in &, and evanescent in &, [see Fig.
1(b)], and they induce incompressible deformations of
the cloud in the limit @.— 0 (i.e., V2y'=0 in this lim-
it). Furthermore, in the limit that /— oo, asymptotic
analysis of the surface modes implies w?— Qdu/2, in-
dependent of the shape of the cloud.

It is not difficult to show that Eq. (10) can always be
written as a polynomial equation in @, which assists in
finding and counting roots. When m =0 the polynomial
is of degree / in w?, so there are 2/ modes. When m =0
and / —m is even there are 2(l —m)+2 modes, and if
! —m is odd, there are 2(/ —m)+1 modes (see Fig. 2).
For example, when /=|m|=0 Eq. (10) reduces to a
polynomial in w of degree 2. The equation is, for m > 0,
la(g;+ &) =P, where B=(a?—1) "2 0f'/Q]. One root
is a diocotron mode, the other is an upper hybrid mode.
In the limit |Q,.|— oo this equation implies that the
diocotron mode has frequency w=(1—p/la) 'w}/Q.
(m > 0), giving finite-length corrections to the frequen-
cy. It is also instructive to note that when / =|m| one
can obtain a simple form for y' in cylindrical coordinates
by using Egs. (6) and (7), together with the fact that
P/(x) (1 —x2)"2. One finds, after some simple alge-
bra, that y'=Cp!™lexpli(m¢ —wt)], where C is a con-
stant, so the /=|m| modes produce z-independent dis-
placements of the plasma. Thus, these “k,=0" dio-
cotron and upper hybrid modes are incompressible, and
they induce exactly the same displacements within an el-
lipsoidal cloud as in an infinitely long cylinder.

In conclusion, a simple analytic form has been found
for the normal modes of a constant density magnetized
plasma of any spheroidal shape. The theory is directly
applicable to recent experiments? in which the cloud is

near thermal equilibrium, and image charges, tempera-
ture, and correlation effects are negligible. The theory
should also prove valuable as a starting point in inter-
preting the results of several other experiments. For ex-
ample, excitation of normal modes in pure positron'! and
pure antiproton plasmas'? may be a useful nondestruc-
tive diagnostic of properties such as average density,
temperature, or plasma shape. Furthermore, plasma
modes play an important role in field-error-induced
transport>'? and transport to thermal equilibrium.®'* In
these cases this work provides an attractive analytic
benchmark for the effects of finite plasma size on the
modes.
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