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The microcanonical ensemble of identical guiding centers in a two-dimensional, circular domain is
characterized by means of a Monte Carlo simulation. For sufficiently large energies, the rotational sym-
metry is spontaneously broken so that a net displacement of the system accounts for a significant frac-
tion of the angular momentum. The transition between axisymmetric and displaced statistical equilibria
resembles a second-order phase transition. The description also applies to point vortices bounded by a

circular equipotential surface.

PACS numbers: 05.70.Fh, 52.25.Kn, 52.25.Wz, 64.60.Cn

In this Letter I present numerical evidence of a quali-
tative change in the statistical equilibria of an isolated,
cylindrically bounded system of two-dimensional guiding
centers (i.e., line charges in a strong magnetic field), or
point vortices in a two-dimensional fluid. Rotational
symmetry is spontaneously broken at large energies,
when the accessible region in phase space is dominated
by configurations in which the particles form a single
cluster away from the center of the domain. This break-
ing of a continuous symmetry is analogous to a second-
order phase transition, in that thermodynamic deriva-
tives are discontinuous and large relative fluctuations
persist in the limit of many particles (although the sys-
tem does not have a well-defined thermodynamic limit
and the order parameter is not a local field). The transi-
tion occurs at a negative effective temperature, which is
small enough that the system would collapse to a single
point vortex if it were coupled to a heat bath. Hence the
behavior of the canonical and microcanonical ensembles
are qualitatively different.

Specifically, I consider N identical guiding centers
with charge e, at positions {r;, i=1, ..., N} confined in a
conducting cylinder of radius R, parallel to a magnetic
induction field BZ. When B is large, inertia may be
neglected. Hence the total canonical angular momen-
tum, which is conserved because of rotational symmetry,
is dominated by the magnetic vector potential contribu-
tions,! and so we write it as Po= — (eB/2c)X;r?, where
the sum is over particles. To leading order in 1/B the ve-
locity of each guiding center is v;=(c/B)ZxV¢(r;),
where ¢ is the electrostatic potential due to other parti-
cles and the boundary charges, which are readily com-
puted by the method of images. The equations of motion
are Hamilton’s equations for canonical coordinates pro-
portional to the Cartesian coordinates of the guiding-
center positions.>™ The Hamiltonian, which is propor-
tional to the total electrostatic energy, is
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where [/ is the length along B over which charge is distri-
buted, rij = Il’,' -rj | N and dij - ll‘,‘ - (Rz/l'jz)l'j | . To
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make the analogy with point vortices, charge is interpret-
ed as circulation and electrostatic potential as a stream
function. Then Py is proportional to the kinetic angular
momentum of the fluid and H to its kinetic energy. This
particular system has been studied previously,>* but the
spontaneously broken symmetry appears to have been
overlooked. (Related phenomena in other vortex
guiding-center systems are discussed in Refs. 2, but
without the present emphasis.) If we suppose that the
energy and angular momentum are the only conserved
quantities, and that evolution of the system is ergodic,
then long-time averages should be statistically equivalent
to averages over the microcanonical ensemble defined by
fixed values E and M of the functions H and Py, respec-
tively.

The model may apply to several physical systems. In
the limit of large magnetic field and rapid equilibrium of
motion along magnetic field lines, a non-neutral plasma
confined in a circular cylindrical Penning trap® can be
represented by two-dimensional guiding centers, for time
scales long compared to the equilibration of the guiding-
center positions, but short compared to the time for ex-
change of energy with velocity-space degrees of freedom.
In particular, the model may describe states resulting
from the nonlinear evolution of diocotron instabilities.®
The vortex gas in statistical equilibrium has been used as
a model for high-Reynolds-number, two-dimensional tur-
bulence.”® A similar model (with the sign of the energy
reversed) could apply to self-gravitating matter, al-
though the boundary conditions are somewhat artificial
in that case.

Because of the long-range character of the Coulomb
interaction, the energy scales with N 2 and thermo-
dynamic quantities must be reinterpreted accordingly.?
The entropy S(E,M) is asymptotically proportional to
N, and the inverse temperature, 8 =9S/9E, to 1/N. It is
also useful to define an effective rotation frequency
o =(1/B8)3S/d0M, which is proportional to V; this quan-
tity relates to the exchange of angular momentum with
external systems, although it is not necessarily the local
rotation rate of any part of the guiding-center system it-
self.® Hereafter energies will be normalized to e?/l,
length to R, and ® to ec/2BR 2, Since phase space is
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bounded, B is negative for large energies, as noted by On-
sager.” There is an extensive literature on negative-
temperature guiding-center and vortex systems, mostly
concerned with the globally neutral, unbounded case (cf.
Refs. 2-4 and 8). Most previous work has employed a
weak-correlation approximation, leading to an equation
for the mean density or one-particle spatial distribution

function n(r) which in this case is
n=noexp{—B(—4re®V *n+wr?)}, 1)

where the inverse Laplacian V ~2 is defined with Dirich-
let boundary conditions. A detailed exposition of the
mean-field theory of the transition will be presented else-
where.® The transition is associated with nonuniqueness
of solutions to Eq. (1); a similar situation in a related
problem is discussed in Refs. 4 and 10.

A simple argument suggests the possibility of dis-
placed equilibria. Large energies correspond to the prox-
imity of many particles. For fixed angular momentum,
energetic axisymmetry equilibria would consist of a
dense core and a halo of particles at large radii. Such a
separation into two populations would decrease the
mean-field entropy (— fd?rnlnn) compared to a single
cluster displaced from the axis, and so the latter should
be more likely. The transition is analogous to the con-
densation of density fluctuations into long wavelengths at
large energies in other guiding-center or vortex config-
urations. >®

I have tested the above picture with a series of numeri-
cal experiments. Creutz’s'! microcanonical Monte Carlo
simulation technique was adapted to approximate the en-
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FIG. 1. Inverse temperature vs system energy. The angular
momentum was fixed so that the mean-square radius was
0.1+0.001. +, N=256; x, N=512; O, N=1024. Solid
line, axisymmetric solutions of Eq. (1); dashed line, near-
critical behavior of displaced solutions to Eq. (1); dot-dashed
line, asymptotic (large energy) behavior (Ref. 9). The mean-
field critical energy is 1.338NV2 Adjusted standard deviations:
NéB=0.01.
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semble specified by given values of the energy, particle
number, and angular momentum defined above. The de-
grees of freedom are 2NV floating-point numbers, viz., N
positions in a disk of unit radius. An initial config-
uration with energy E( and angular momentum M is es-
tablished (ordinarily by annealing a configuration saved
from a previous run). The system is then coupled to a
“demon” whose state is defined by an energy Ep and an-
gular momentum Mp, lying in limited ranges, |Ep ]|
<Eum, |[Mp| <My A candidate for a step to another
configuration is constructed by using a pseudo-random-
number generator to pick two distinct particle indices i
and j, and displacements 6r;,6r; uniformly distributed
on a square of edge length A. (Displacements which
would leave the domain are rejected.) The changes in
the energy and angular momentum associated with the
displacements are computed; the new configuration is ac-
cepted if and only if these amounts can be transferred
from the demon without exceeding its parameter ranges.
Evolution of this sort of “long-range collision” between
two particles is more efficient than single-particle moves,
since it allows for more rapid radial motion consistent
with the fixed value of the mean-square radius. (Some
runs with one-particle moves were done to confirm that
differences between ensemble averages based on the two
schemes were equivalent, within statistical accuracy.) A
“Monte Carlo step per particle,” or MCS, consists of N
such “collisions.” The step scale A is adjusted to main-
tain a rejection ratio consistent with efficient exploration
of phase space. Most of the data presented here were
taken in runs of 40000 MCS at each value of energy and
angular momentum. Although I have no proof that this
algorithm accurately represents the microcanonical en-
semble, the success of similar methods in other con-
texts'"!?2 and the consistency with mean-field theory
away from the transition are encouraging.
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FIG. 2. Rotation frequency vs system energy. Symbols and
parameters are as in Fig. 1. Adjusted standard deviations:
Sw/N = 0.05.
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FIG. 3. Order parameter (average dipole moment) vs sys-
tem energy. Symbols and parameters are as in Fig. 1. Adjust-
ed standard deviations: 8D = 0.001.

As noted by Creutz, the demon is effectively in
thermal equilibrium with a heat bath for large N, and its
energy and angular momentum distributions tend to the
forms exp{—BEp} and exp{—pBwM)p} accordingly. The
temperature and rotation frequency determined from the
demon distributions are shown as functions of energy in
Figs. 1 and 2. The bounds E;; and M,; must be chosen
small enough that the system parameters are accurately
defined; this effectively limits the accuracy of B8 to about
1%, and that of w to about 5% for the data shown. The
relations deduced from the mean-field analysis® are also
shown. The simulation results are consistent with ax-
isymmetric solutions to Eq. (1) below the critical energy,
and asymmetric solutions above. An argument of
Kraichnan® shows that collapse should occur in the
canonical ensemble for NB < —2, which applies to all
the displaced equilibria observed in this study. This has
been substantiated by the failure of a canonical Monte
Carlo simulation to converge at such temperatures; at
lower energies canonical and microcanonical simulations
are consistent. Furthermore, thermodynamic instability
under coupling to a heat bath is indicated by the nega-
tive specific heat —B?%/(8B/8E) of the displaced phase.
Axisymmetric equilibria with NS < —2, but energy
below the critical value, are metastable states.

An appropriate order parameter, or measure of asym-
metry, is the net dipole moment per particle D= | X;r; |/
N. (The modulus avoids difficulties associated with the
ambiguity of direction.) In the non-neutral plasma, D is
proportional to the amplitude of the fundamental diocot-
ron mode. The dependence of ensemble averages of D on
energy is indicated in Fig. 3. In the symmetric phase,
(D) has a small value associated with thermal fluctua-
tions and is approximately proportional to 1/v/N. In the
displaced phase, (D) is nearly independent of N and
grows slowly to the maximum value consistent with the

1.00 I T T 1
<
= o E
X
0.75 — OXX —
i X ]
> L X %532 —
. 050 o ¥
i R ;
X+ %
025 — ¢F + —
. X
- g o § 4
0.00 + | | l L
1 1.25 1.5 1.75 2
E /N

FIG. 4. Scaled susceptibility vs system energy. Symbols and
parameters are as in Fig. 1. Adjusted standard deviations:
6y = 0.05%.

prescribed mean-square radius. The statistical fluctua-
tions of D are measured by y=N|g|{(D—(D))?),
which may be interpreted as a generalized susceptibility
in the usual way. The scaled susceptibility Ny, which is
displayed in Fig. 4, shows no systematic dependence on
N away from the critical regime, but increases roughly
as VN at the transition. As N increases, the locations of
the peak in ¥ and of the minimum of g8 appear to con-
verge to the critical energy of mean-field theory.’

Statistical errors in the data presented here are rela-
tively large, because of correlations which persist over in-
tervals of up to about 100 MCS. The error estimates
given with Figs. 3 and 4 are corrected for these correla-
tions, as described by Binder.!> The correlations are
presumably related to the long range of interaction, and
are exacerbated by critical slowing down near the transi-
tion. The computational expense of high-quality statis-
tics forbids any confident extraction of critical exponents
using phenomenological finite-N scaling arguments'? at
this time.

The configurations which predominate in the high-
energy phase are dynamical equilibria in a frame rotat-
ing at the frequency w. The highest contours of the
ensemble-averaged density (adjusted for the arbitrari-
ness in azimuth) are localized away from the center of
the domain; in the rotating frame, the mean flow follows
the time-independent contours. The configuration is thus
a special case of a finite-amplitude diocotron mode.'*
Analogous configurations in Penning traps have been
shown to last for many rotation periods.® Further
research will be needed to clarify the conditions for the
validity of statistical equilibrium models for such experi-
ments.
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