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Observation of Transport to Thermal Equilibrium in Pure Electron Plasmas
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Transport of magnetically confined pure electron plasmas to global thermal equilibrium has recently
been observed. In equilibrium, the ExB and diamagnetic drifts calculated from the measured tempera-
ture and density profiles combine to give rigid rotation (i.e., (ve) =wr), as expected. However, the densi-
ty profile relaxes towards equilibrium up to 5000 times faster than predicted by Boltzmann transport
theory: Over a decade range of magnetic field, the density equilibration time is always less than predict-

ed, and scales as B! rather than as B*.

PACS numbers: 52.25.Fi, 52.25.Wz

Charged-particle traps are widely used to study plas-
ma wave, transport, and equilibrium properties,'™’ to
measure the fundamental®'° or chemical!' properties of
particles, and to store or manipulate particles for various
technologies. '>!3 These devices have been used to con-
tain electrons,' %3 jons of one or more species,>”!%!!
positrons,’> and antiprotons,®!® with the number of
trapped particles varying from 1 to 10' or more. In
these traps, a uniform axial magnetic field BZ provides
radial confinement, and voltages applied to the end elec-
trodes provide axial confinement. In the present experi-
ment, the contained plasma is an elongated spheroid, ro-
tating about the axis of symmetry because of the radial
electric field arising from the totally unneutralized
charges.

Many applications rely on an exceptional property of
unneutralized plasmas, namely, that the plasma can re-
lax to global thermal equilibrium and still remain con-
fined. The plasma may be thought of as an isolated sys-
tem of N classical particles interacting with the ap-
paratus only through stationary, azimuthally symmetric
fields. In this idealization, the total energy H and the to-
tal angular momentum P, of the plasma are conserved
quantities. Interparticle interactions will, in general,
cause internal transport of particles and energy until the
plasma reaches the maximal entropy state consistent
with the given (N,H,Py), i.e., global thermal equilibri-
um. The equilibrium may be a plasma, liquid, or crystal
state, depending on the temperature. >

Since both H and Py are conserved, they enter the
thermal equilibrium partition function on an equal foot-
ing, 231415 a5 expl — (H — weqPs)/kTeql. In the plasma
regime of interest here, the particles are uncorrelated,
and the equilibrium velocity distribution is a Maxwellian
at temperature Teq, superimposed on a *rigid” average
rotation given by (vg) =weqr.'” The equilibrium density
is given by

n(r) =neqexpi{—Iqo(r) +ar?l/kTcq}, (1)

where a=+m(Q | weq| —wZ). The equilibria are par-
ametrized by the three constants (neq, weq, and Teq)

which are determined by N, H, and P, Here, Q
= |q | B/mc is the cyclotron frequency, r=(r,6,z), and
the potential ¢(r) is determined by Poisson’s equation.
The density of Eq. (1) is uniform to within a few Debye
lengths of the plasma edges, after which the density falls
exponentially. '¢

In this paper, we report observations of pure-electron-
plasma equilibria, and quantify the rate at which elec-
tron-electron interactions cause particle transport across
the magnetic field, towards the confined equilibrium
state. When first captured, the plasma is generally not
near thermal equilibrium, although it would be a stable
dynamical equilibrium in the absence of collisions.
Electron-electron collisions first cause the thermal-
velocity distribution to become Maxwellian along each
field line separately; this has been measured previously,
and is found to occur on the time scale of v !=4
msec.!” On a longer time scale of interest here,
electron-electron interactions cause transport of heat and
particles across the magnetic field: The temperature be-
comes uniform, and the density profile becomes such as
to produce rigid drift rotation of the plasma. This equili-
bration time teq Will be seen to be seconds in our ap-
paratus. On a yet longer time scale, weak external cou-
plings which break azimuthal symmetry cause Py to
change, causing radial expansion and loss of plasma to
the walls. At base pressures of 5% 10 ~!! Torr, we obtain
empirical plasma expansion (or “mobility”) times 7,
scaling as®

m =(130 sec) [B/(100 G)1%[L,/(5 cm)] ~2

For the present experiment, we utilize axially short plas-
mas so that 7,,>> 7q, in which case most effects from the
weak asymmetries can be ignored.

The plasmas are contained in a cylindrical apparatus,
as shown schematically in Fig. 1. The apparatus is
operated in an inject, hold, and dump-and-measure cy-
cle. For injection, cylinder A is briefly grounded, result-
ing in a column of electrons from the negatively biased
filament to cylinder C. When a negative voltage is ap-
plied to cylinder A, the plasma is trapped within cylinder
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FIG. 1. The cylindrical containment apparatus.

B. For all data presented here, cylinder B had equal
length and diameter of 7.6 cm, and the containment volt-
ages were —80 V. The plasmas typically have densities
n=1x10" cm ~? and temperatures k7=0.8 eV, with di-
ameters =4 cm and lengths L, =5 cm. After a contain-
ment time ¢, cylinder C is pulsed to ground potential,
and the electrons stream along the magnetic field to the
collimator, velocity analyzer, and collector. Repetition
of the cycle with varying containment times ¢ and with
the collimator hole at varying radii r allows us to con-
struct the time evolution of the plasma. Typically, shot-
to-shot variations in the charge collected at any radius
are less than 1%. This lack of variation indicates that
the plasma is rotationally quite symmetric, and we as-
sume 8/86 =0 throughout this paper.

Our basic density measurement is the total charge
Q(r,t) which exits along a field line at radius r and
passes through the collimator hole of area 4, =7.9 mm?.
This is the z integral of the plasma density, i.e.,
Q(r)=qAy fdzn(r,z). To obtain n(r,z), we assume

n(r,z) =n(r,0)exp{—qlo(r,z) —¢(r,0)1/kT ()},

since for £>> vy ! the plasma is in local thermal equilibri-
um along each line separately. The measured Q(r)
essentially determines the unknown n(r,0). More
specifically, we solve Poisson’s equation in (r,z) to obtain
the self-consistent n(r,z) and ¢(r,z), given the measured
Q(r), T(r), and wall potentials ¢(R,,z). Typically,
Q(r) is measured at fifty different radii, 7(r) is mea-
sured at twelve radii, and Poisson’s equation is solved on
a 128 %128 grid.

We measure the temperature T(r,z) of the plasma
by performing parallel-energy discrimination on the
dumped electrons as they pass through a secondary axial
magnetic field B;.!” The additional field B, changes the
parallel energy of each exiting electron by an amount
AE,=(1—9y)E ., where y=(B;+B)/B and E, is the
perpendicular energy of the electron in the plasma. We
obtain the temperature T=(E )/k by measuring the
variation in the collected charge Q(Vg,y) as y and the
analyzer voltage Vg are varied. We typically take
sufficient data at each radius so that a statistical evalua-
tion of the variations gives T to an accuracy of * 10%

The plasma rotation rate wg(r,z,¢) can be computed
from the experimental data, as the sum of ExB and di-
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FIG. 2. Experimental plasma density profiles n(r,t) and ro-
tation profiles wg(r,z) at three different times ¢, showing the
evolution to equilibrium. Also shown is the diamagnetic drift
wp(r) at =10 sec.

amagnetic (or pressure) drifts:
or(r,z,t)=we(r,z,t) +op(r,z,t)

=<9, ¢ 98
rB or + rBgn or (akT). @
One can deduce from Eq. (1) that wg(r,z) =we in
thermal equilibrium. In general, there will be radial
shears; but the rotation is quite uniform in z, since
9¢/8z = 0 in the body of the plasma, and the assumption
of local equilibrium and Eq. (1) imply

dwr _ 1 9T do
9z rT Oor 0z

For simplicity, we consider here only the central radial
profiles, i.e., n(r,0,¢) and wg(r,0,t).

We are able to identify unambiguously the approach
to global thermal equilibrium, as characterized by the
density profile becoming such as to give radially uniform
rotation and by the temperature becoming radially uni-
form. In Fig. 2, we show the experimental density and
rotation profiles during a typical evolution. At 7 =0,
n(r) is peaked near the edge, and the corresponding
wgr(r) is also peaked. By =3 sec, one can see that
some particles have been transported inward to fill in the
center, while others have moved outward; and the rota-
tion profile has smoothed correspondingly. At =10 sec,
the plasma is essentially in equilibrium, with wg(r) con-
stant to the accuracy of our measurements. We note
that in equilibrium, the diamagnetic drift is about 30%
of the total drift at the edge of the plasma.

During this particular evolution, the temperature was
initially radially uniform at 0.8 eV, and it remained radi-
ally uniform throughout the evolution, but it had risen to
1.1 eV by t =10 sec. For a similar evolution at B =47
G, the initial temperature varied from 1.3 eV at r =0 to
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FIG. 3. Measured “distance” from equilibrium D(¢) vs time
for B=47, 188, and 470 G. The dashed lines show exponential
fits to obtain 7eq.

2.5 eV at r =2 cm, but by r =1 sec, the temperature be-
came radially uniform at 2.5 eV to within the 10% accu-
racy of the diagnostic.

To obtain a characteristic time 7eq for the particle
transport towards equilibrium, we focus on the measured
Q(r,t) rather than on the derived quantities n and wg.
We characterize each Q(r,z) by a “distance” from equi-
librium D(¢), and find that D(¢) decreases approximate-
ly exponentially with time, giving teq. There is no
uniquely valid definition of D(¢), but we use a linear pro-
jection operator which is insensitive to errors in the data.
Specifically, from the measured Q(r,z) we calculate
D()=[drsQ(r,1)60(r,0), where &Q(r,1)=0Q(r,)
—Q(r,tr). Here t7 is a final time large enough so that
the profile has essentially reached equilibrium, but small
enough that external couplings remain unimportant.
Typically, we calculate D for 8-10 experimental profiles
taken at different times . We then obtain 7eq and Do as
the least-squares fit by

D(t) =Dglexp(—1/7eq) —exp(—ts/7eg)].

The last term merely corrects for the fact that D(¢) =0
at t =ty rather than at t =oo,

Figure 3 shows the experimental D(¢) and the ex-
ponential fits for three different magnetic fields. The
data are well fitted by the exponential curves over the 1-
to 1+ -decade range of D(¢). The three examples shown
have ty=2, 10, and 50 sec. In each case, the resulting
Teq Is insensitive to the choice for tr as long as 7R 27eq,
and we would characterize the accuracy of 7eq as +25%.
Other reasonable definitions of D, such as D(t)
=[drrsQ(r,1)50(r,0), give essentially the same results
for zeq. Of course, as is apparent from Fig. 2, the evolu-
tion to equilibrium is not just exponential relaxation at
all radii; rather, the radial integral in D averages over
details of the transport.
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FIG. 4. Experimental density equilibration times 7eq vs mag-
netic field B. The dashed line through the data represents
TeqxB'; the upper dashed line is the prediction of traditional
Boltzmann theory, scaling as B*.

We have obtained characteristic times z.q over a range
of fields B from 47 to 470 G, as shown in Fig. 4. We find
that 7eq scales closely as B!, implying transport rates
scaling as B ~!. For this series, we tried to keep the ini-
tial plasmas as alike as possible as B was varied. For all
but the lowest magnetic fields, the initial Q(r) was uni-
form out to the plasma edge, after which it dropped
sharply; for the lowest fields, Q(r) was more nearly
Gaussian. Initial plasma temperatures were typically
uniform at about 0.8 e€V; however, for the lowest fields,
the initial temperature ranged from 1 eV in the center to
2 eV at the edges. For perspective, we note that force-
balance considerations give a “Brillouin limit”? of
nmc*8x/B2<1,or B>15G at n=10"7 cm ~3. Our data
thus range from 3 to 30 times the minimum field, or
from 10 ! to 10 73 times the maximum density.

These transport results contrast sharply with the
predictions of traditional like-particle transport the-
ory.!>1819 1 ocal transport theory predicts a particle flux
given by

rznr%a)R(r)]. 3)

Here, the flux is a radial drift due to 6 forces in the
stress tensor P; the off-diagonal terms of interest can be
expressed as a viscosity coefficient n times the shear in
the plasma-rotation velocity. Collisional theory based on
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the Boltzmann (or Lenard-Balescu) equation gives 7
= 2 viwnmrt, where

vih =4~/7ng *InA/3vm (kT)3/?

is the Spitzer rate of thermal energy equipartition due to
collisions, "2 and r.=(7/m) 2/ is the Larmor radius
of electron cyclotron orbits. The effective interaction
distance for viscosity is approximately ry, and the result-
ing particle fluxes of Eq. (3) scale as B ™%, since n<B 2
and wg=B "L

The data of Fig. 4 clearly show that Boltzmann theory
does not describe the dominant transport occurring in
these plasmas. The upper dashed line in Fig. 4 is the ex-
ponential relaxation time obtained from Eq. (3), with
densities, temperatures, and gradient scales appropriate
to this experiment. At high fields, the observed transport
to equilibrium occurs 5000 times faster than predicted
by this theory. Furthermore, the observed zeqxB! scal-
ing strongly disagrees with the B* scaling appropriate to
this mechanism.

In contrast, recent nonlocal transport theories
consider interactions between electrons separated by dis-
tances which are much larger than ri. and which are in-
dependent of B. The resulting particle fluxes scale with
B as vegB ~2, where the interaction rate veg scales as ei-
ther BY, InB, or B!, depending on the interaction mecha-
nism considered. The last scaling, which agrees with the
present experiments, arises when the bounce-averaged
component of the interaction is considered? and is close-
ly related to the idealized case of 2D transport of
charged rods.?"?> However, the present data are not
sufficiently detailed to verify any one transport mecha-
nism.

In summary, we have observed confined thermal equi-
librium plasma states characterized by uniform fluid ro-
tation and uniform temperature. The cross-field particle
transport towards equilibrium scales as B ~! and is much
larger than that predicted by Boltzmann transport
theory.
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