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A novel type of guiding-center drift ion is described. These ions occur only in strong magnetic fields.
They consist of a neutral atom to which either an electron or positron is weakly bound, at a sufficiently
large radius that it may be described by E�B drift dynamics. Such ions may occur naturally in
astrophysical plasmas and may have been formed in recent antihydrogen experiments, where their
presence would provide proof that deeply bound �HH atoms are being created.

DOI: 10.1103/PhysRevLett.92.195002 PACS numbers: 52.20.–j, 36.10.–k, 34.80.Lx
[7]. Antimatter guiding-center atoms have been observed
stationary. This dynamics can then be used to find the
motion of e2, averaged over the rapid motion of e1. For
This Letter describes a novel type of ion that exists
only in strong magnetic fields: a guiding-center ion. These
ions consist of a neutral particle (an atom, molecule, or
nanoparticle) to which a single electron or positron is
bound at a distance large compared to the electron cyclo-
tron radius. Stable guiding-center ions can be formed
using any neutral particle, provided that the magnetic
field is sufficiently large.

The outer electron or positron in a guiding-center ion
executes E�B drift rotation around the neutral particle.
The electric field arises from the attractive van der Waals
interaction between the neutral particle and the outer
charge, along with the dipole and quadrupole moments
(if any) of the neutral particle.Without the magnetic field,
these short-range interactions would lead to unstable
classical orbits that either escape to infinity or spiral
into the central neutral particle [1]. However, the applied
magnetic field stabilizes the orbits.

It is conceivable that guiding-center ions may occur in
strong magnetic fields associated with astrophysical phe-
nomena such as neutron stars. A considerable effort over
the years has gone into studying the state of neutral
matter in such strong magnetic fields [2], and while there
has been work on the properties of negative ions in such
fields, little is known concerning positron attachment, as
far as we know. The scaling of bound state negative ion
energies has been considered [3], and there are several
variational calculations of the ground state and the first
few excited states of H� and other negative ions [4]. There
has also been work describing positive ions (atoms that
are missing electrons, not atoms with positrons attached)
and ionic molecules [2,5].

Here, we focus on the regime of guiding-center ions
where the dynamics of the outer charge is quasiclassical–
i.e., the ion is excited well above the ground state. In this
regime these ions have aspects in common with Rydberg
atoms [6], a major difference being that here the inter-
action potential for the outer electron is not Coulombic.

The dynamics of these ions is similar to that of
guiding-center hydrogen atoms, where an electron
E�B drifts in the Coulomb potential of a central proton
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to form in recent experiments that create atomic anti-
hydrogen by recombination of positrons and antiprotons
[8,9]. We will show that it is possible that guiding-center
ions are also formed in these experiments, although they
have not yet been observed.

We first examine a simple classical version of a
guiding-center ion, consisting of a classical guiding-
center atom to which an electron or positron of charge
e2 � �e is attached at a cylindrical radius r2. The elec-
tron in the atom, charge e1 � �e, circles the central
proton (assumed fixed at the origin) at a radius r1 < r2;
but the presence of e2 affects the e1 orbit. A uniform
magnetic field B in the z direction is assumed to be
sufficiently strong so that the electron cyclotron fre-
quency �ce is larger than all other frequencies in the
problem, allowing the guiding-center approximation to
be applied. [Later we will relax this assumption, showing
that it need not hold for the inner electron.We also assume
that r1 is much greater than the Bohr radius; conditions on
e2 for the validity of this classical description are dis-
cussed in relation to Eq. (3).]

The Hamiltonian for this system is

H�r1; vz1; r2; vz2� �
1

2
mv2z1 �

1

2
mv2z2 �	�jr1j�

		�jr2j� �	�jr1 � r2j�; (1)

where r1 � �r1; 
1; z1� and r2 � �r2; 
2; z2�, vz1, and vz2
are the respective velocities parallel to the magnetic
field, 	�r� � e2=r, and the upper and lower signs corre-
spond to e2 � 	e. The equations of motion for e1 and e2
are m�zzi � �@H=@zi, _rri � �c=�eiBri�@H=@
i, and _

i �
c=�eiBri�@H=@ri, i � 1; 2. This system has only two
constants of the motion, the energy H and the quantity
r21 � r22, and so is not generally integrable. (However, if
motion is restricted to the xy plane, the dynamics is
integrable, and will be considered in a future article.)

If e1 is tightly bound at radius r1 
 r2, the drift motion
of e1 is rapid, and we can make a two-time-scale approxi-
mation that considers the dynamics of e1 assuming e2 is
 2004 The American Physical Society 195002-1
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example, one finds that to lowest nontrivial order,
_

1��ce=B�rr31��!1, and r1� �rr1	r2 �rr

3
1 cos�
1�
2�=

�r22�z
2
2�

3=2, where �rr1 is the initial orbit radius of e1. It is
assumed here that 
1 � 
2 at t � 0. If we further assume
that the z position of e1 responds adiabatically to the
motion of e2, neglecting the rapid axial bounce motion
of e1, the resulting slow-timescale motion of e2 is
Hamiltonian in form, with a Hamiltonian

hHi�r2; vz2� �
1

2
mv2z2 	 eQ

z22 � r22=2

�r22 � z22�
5=2

� e2
�rr

2
2 � �zz

2
2

�r22 � z22�
3 �O� �rr41�; (2)

where Q � e �rr21=2 is the axial quadrupole moment of a
ring of charge �e with radius �rr1 (the time average of the
e1 orbit in the absence of e2) and ��r; �z� � �5=4; 1=2� �rr31
are coefficients in the van der Waals interaction between
the guiding-center atom and e2. This attractive interaction
arises from the induced dipole moment of the atom in the
electric field of e2 [10].

If e2 moves only in the xy plane, the charge’s bind-
ing energy (i.e., the value of �hHi) is Eb �
	eQ=2r32 � e2�r=r

4
2. The charge executes E� B drift

rotation about the central atom with a rotation fre-
quency !2 � �c=B��3Q=2r52 	 4�re=r

6
2�. If e2 is a posi-

tron, the dynamics is stable in the z direction: a
positron perturbed slightly from the xy plane will
perform harmonic oscillations in z with frequency
!z2 � ��9eQ=2r52 � �6�r � 2�z�e2=r

6
2�=m�

1=2.
However, if e2 is an electron, the quadrupole term

is repulsive and z motion is stable at z � 0 only if
r2 � 4e�3�r � �z�=9Q � 26�rr1=9. For r2 > 26�rr1=9, the
outer electron is stable at an axial location deter-
mined by the potential minimum in hHi as a func-
tion of z2 (the curve in Fig. 1). To the order given in �rr1,
this minimum is at z2 � ��

��������
3=2

p
r2 � 19�rr1=3

������
15

p
�,

with binding energy Eb � 2
��������
2=5

p
e2 �rr21=25r

3
2 � 16e2 �rr31=

125r42, rotation frequency !2 � �ec=B��6
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FIG. 1 (color online). Axial equilibrium position for the outer
electron in electronic classical guiding center ions. Curve is
theory, dots are simulation results.
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6
2�, and harmonic axial frequency !z2 �

��e2=m��36
��������
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�rr21=125r
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6
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1=2.
We have tested these predictions by numerically simu-

lating a guiding-center ion using the guiding-center
Hamiltonian of Eq. (1). Results are shown in Figs. 1 and
2 for various values of the parameter !1=�ce � mc2=
�rr31B

2. (This parameter must be less than unity in order for
the guiding-center approximation to be valid for e1.) By
varying the initial r2 value, we find stable guiding-center
ions can exist with binding energy (Fig. 2), rotation
frequency, and axial bounce frequency (not shown) that
follow the previous predictions, provided that r2=�rr1 is
sufficiently large. (Binding energy is determined by
slowly moving e2 along a prescribed trajectory to its
equilibrium position, starting from a large distance,
and measuring the change in energy of the system.)

Furthermore, we find that, as expected, an outer posi-
tron is stable only in the xy plane, whereas an outer
electron stably orbits the central particle at a height z2
that follows the previous prediction (Fig. 1).

However, when r2=�rr1 & 10, results begin to diverge
noticeably from the theory predictions. There are initial
values of r2 > 26�rr1=9 where the outer electron is stable at
z2 � 0, at least over several hundred periods of the inner
electron motion (Fig. 1). Furthermore, if r2=�rr1 is too
small initially, the guiding-center ion displays chaotic
behavior. When e2 is an electron, this typically results
in its loss, with an increase in the binding of e1 to
compensate for the lost binding energy of e2. When e2
is a positron, the electron and positron often form a pair
that E�B drifts in parallel away from the central charge
(a ‘‘drifting pair’’ [10]).

This chaotic behavior occurs because the two-
timescale approximation breaks down: the most rapid
dynamics of e2 (i.e., the z motion) has roughly the same
frequency as the rotational motion of the inner charge,
i.e., !z2 �!1. Using our previous theory expressions
for these frequencies, and neglecting constants of or-
der unity, this implies that the ion is stable only if
r2=�rr1 * ��ce=!1�

1=5.
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FIG. 2. Binding energy (affinity) for positronic (upper curve)
and electronic (lower curve) classical guiding center ions. Dots
are simulation results, curves are theory.
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The boundary between stable and unstable ions was
found numerically by performing many simulations with
different randomly chosen initial conditions and values of
!1=�ce, starting with both z1 and z2 within 0:01�rr1 of the
xy plane and jvz1j and jvz2j less than 0:0005ec=B�rr21. For
any given initial value of r2= �rr1 and!1=�ce, the fraction f
of times the outer charge was lost in a time 100=!1 or less
was computed over many simulations. For e2 � �e, con-
tours of constant f are shown in Fig. 3. The f � 0:8
contour is fitted by r2= �rr1 � 2:0��ce=!1�

0:21, in close
agreement to our previous estimate.

We now relax the assumption that the central positive
charge is fixed at the origin. The behavior of the system
now depends on the ratios �ci=!2 and Vi=�r2!2�, where
�ci � eB=Mc is the ion cyclotron frequency, and M
and Vi are the mass and initial velocity of the central
positive charge. When these ratios are small, the approxi-
mation that the central charge is stationary is a good
one: e2 executes roughly circular orbits about the cen-
tral charge, and the entire system executes relatively
slow circular ion cyclotron orbits with frequency �ci.
However, if Vi=�r2!2� * 1, the positive charge and e1
run away from e2, leaving it behind. In what follows we
assume that Vi � 0; i.e., the central positive charge is
initially stationary.

If !2=�ci & 1, the ion cyclotron motion of the system
is distorted, and in particular r2 oscillates with time; the
magnitude of these oscillations tends to increase with
decreasing !2=�ci. If during these oscillations r2=�rr1
decreases below the previously determined stability limit,
e2 is lost. Thus, stable guiding-center ions exist pri-
marily in the range !2=�ci * 1. This rough inequality
defines a maximum value of r2=�rr1 for stability: r2= �rr1 &

�C�M=m�!1=�ce�
1=5, where C is a constant of order unity.

Therefore, the heavier the central charge, or the larger the
value of !1=�ce, the larger the range of stable r2=�rr1
values.

This scaling was tested by running many simulations,
allowing the central positive charge to move. Random
initial conditions were integrated forward for times up to
FIG. 3 (color online). Stability diagram for classical elec-
tronic guiding-center atoms.

195002-3
105=!1. Initial values of r2 and!1=�ce resulting in stable
H� ions are shown on Fig. 3 as points. The clustering is
consistent with our scaling results, taking C � 5 (the
dashed line labeled H�). Also shown are the scaling
curves for M � 4mp and 131mp (labeled He� and Xe�).

One can see from Fig. 3 that stable H� ions exist
primarily in the range !1=�ce * 0:2, a range for which
guiding-center dynamics is a poor approximation for e1.
However, even if!1=�ce > 1, e2 can still be described by
guiding-center dynamics, and stable guiding-center ions
can still be found. An example of a stable guiding-center
H� ion for which !1=�ce � 10 is shown in Fig. 4; now
e1’s dynamics is treated exactly, and motion of the central
proton is allowed. For this simulation, the binding energy
of the outer electron was determined to be 0:017 e2= �rr1,
equal to 10 K when B � 6T.

Thus, the observation of H� ions in a recombining
hydrogen plasma (or the antimatter equivalent) provides
an indicator of the binding depth of the hydrogen (or
antihydrogen) atoms: only if these atoms are bound
such that !1=�ce * 0:2 can H� ions form. In a 6 Tesla
magnetic field, this inequality corresponds to an atomic
binding energy e2=r&macr;1 deeper than 14 meV, roughly
5 times the binding energy estimated using E-field re-
ionization diagnostics in current experiments [8,11].

For stability, the outer electron must be bound with
energy Eb & 0:04e2=�rr1 � 6 K when e2=�rr1 � 14 meV
(see Fig. 2); and Eb can be even greater for greater
e2=�rr1. Thus, guiding-center ions may form in cur-
rent antihydrogen experiments for which the plasma
temperature Tp satisfies Tp & Eb, provided that e2=�rr1 *

14 meV �B=6T�2=3.
When !1=�ce * 1, the inner electron dynamics is not

integrable even in the absence of e2. However, guiding-
center ions may still form whenever e1 is sufficiently
deeply bound that all its dynamical frequencies are
much higher than those of e2. In this case the time-
averaged Hamiltonian of Eq. (2) remains valid: the inner
electron and the central positive charge act as a neutral
FIG. 4 (color online). Orbits in the xy plane of a guiding
center H� ion with !1=�ce � 10. The length scale �rr1 is as
indicated.
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FIG. 5 (color online). Binding energy for the lowest three
states of a quantum guiding-center ion. Inset: Ground state
eigenfunction, at r2=a � 10.
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particle with given quadrupole moment Q and (positive)
van der Waals coefficients �r and �z. However, the values
of these parameters must be determined numerically, and
for very tight binding e1 must be treated quantum me-
chanically; indeed, e2 may require a quantum mechani-
cal description as well if it is sufficiently tightly bound,
even if its xy motion is well described by guiding-center
dynamics. We refer to such ions as quantum guiding-
center ions.

We now consider the unusual wave function of quantum
guiding-center ions. Assume that Q � 0 and �r � �z �
R3 (i.e., the central neutral particle is spherically sym-
metric, with radius of order R). Also, assume that r2 ������������������
�h=m�ce

p
� R, where

�����������������
�h=m�ce

p
is the quantum Larmor

radius. Then the xymotion of e2 can be treated classically;
i.e., the wave function for e2 is localized at some given
radius r2. However, the axial motion of e2 is strongly
affected by quantum uncertainty.

Schrödinger’s equation for the z motion of e2 is

�
�h2

2m
@2 �z�

@z2
�

e2R3

�r22 � z2�2
 �z� � �Eb �z�; (3)

where  �z� is the axial wave function. Equation (3) can be
put in dimensionless form by scaling distances by the
length a �

��������������
R3=aB

p
, and the energy by �h2=ma2, where

aB � �h2=me2 is the Bohr radius. Then Eq. (3) becomes

�
1

2

@2 �ẑz�

@ẑz2
�

1

�r̂r22 � ẑz2�2
 �ẑz� � �ÊEb �ẑz�; (4)

where the hat denotes the use of scaled variables. The
energy levels of the first three excited states are plotted
in Fig. 5 versus r̂r2, and the lowest wave function is
plotted in the inset at r̂r2 � 10. The energy levels can
be understood analytically in two limiting cases: for
r̂r2 
 1, a Taylor expansion about ẑz � 0 gives a harmonic
oscillator potential, with energy levels ÊEb � 1=r̂r42 �
!̂!z�n� 1=2�, where !̂!2

z � 2=r̂r32. This limit connects to
195002-4
the classical z dynamics discussed previously [since
r2=a � �r2=R�

������������
aB=R

p
! 0 in the classical limit].

However, for large r̂r2 �r̂r2 > 0:8165� only a single bound
state exists. Asymptotic analysis of Eq. (4) implies that
this energy level is ÊEb � &2=8r̂r62 (the dashed line in
Fig. 5), and the wave function is  � e�

������
2ÊEb

p
jẑzj for

jẑzj � 1. This wave function is highly elongated along
the z direction due to quantum uncertainty, with an axial
extent of order ar̂r32. For example, consider an atom or
molecule for which R � 4aB (a reasonable value for the
ground state of many common atoms and molecules) and
for which r2 � 10a � 80aB. The outer electron wave
function (inset in Fig. 5) then extends to ẑz� 1000, i.e.,
z� 8000aB � 0:4'm.

Several aspects of these unusual ions remain to be
addressed; such as the effect of cyclotron motion on ion
stability, formation and reionization rates, and inclusion
of radial dynamics in the quantum wave functions. These
and other issues will be examined in forthcoming work.
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Note added in proof.—It has come to our attention that
related work has considered the binding energy and
stability of a central neutral particle in or near the ground
state and a weakly bound electron [12]. This work also
predicts the large r̂r2 limit of the binding energy curve
shown in Fig. 5.
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