
Stability theorem for a single species plasma in a toroidal magnetic 
configuration 

T. M. O’Neil 
Department of Physics, University of California at San Diego, La Jolla, California 92093-0319 

R. A. Smith 
Arete Associates, RQ. Box 6024, Sherman Oaks, California 91413 

(Received 20 December 1993; accepted 26 April 1994) 

A stability theorem is developed for a single species plasma that is confined by a purely toroidal 
magnetic field. A toroidal conductor is assumed to bound the confinement region, and frequencies 
are ordered so that the cyclotron action and the toroidai action for each particle are good adiabatic 
invariants. The cross-field motion is described by toroidal-average drift dynamics. In this situation, 
it is possible to find plasma equilibria for which the energy is a maximum, as compared to all 
neighboring states that are accessible under general constraints on the dynamics. Since the energy 
is conserved, such states must be stable to small-amplitude perturbations. This theorem is developed 
formally using Arnold’s method, and examples of stable equilibria are obtained. 

I. INTRODUCTiON 

A recent paperr discussed a new stability theorem for a 
single species plasma column that is confined by a uniform 
axial magnetic field. The theorem guarantees stability against 
two-dimensional EX B drift perturbations such as diocotron 
modes. To understand the theorem, we first note that EXB 
drift dynamics in a uniform B field conserves the electro- 
static energy and generates an incompressible velocity flow. 
Thus, a given plasma equilibrium is stable against hvo- 
dimensional EXB drift perturbations if the electrostatic en- 
ergy is a maximum, as compared to neighboring states that 
are accessible under incompressible flow. In the space of 
accessible states, the system trajectory must evolve along a 
contour of constant electrostatic energy, but at a maximum of 
this quantity such a contour shrinks to a point (the top of a 
peak), so no change in the state is possible; the state is a 
stable equilibrium. 

There is support for this theorem in recent 
experiments.“.’ In these experiments, a pure electron plasma 
column was confined by a uniform axial magnetic field in a 
region of space that was bounded by a conducting cylinder. 
The cylinder was divided azimuthally into sectors, and azi- 
muthally asymmetric equilibria were produced by holding 
different sectors at different values of the electric potential. 
These equilibria were observed to survive stabIy for long 
periods (seconds), and the observed cross-sectional shapes 
were predicted, at least approximately, by maximizing the 
electrostatic energy. A convincing qualitative feature was that 
an electron plasma distended toward a negatively biased sec- 
tor, which is what one expects for a state of maximum elec- 
trostatic energy. 

The purpose of this paper is to extend the theorem to the 
case where the plasma is confined in a toroidal magnetic 
field configuration. Figure 1 shows a schematic diagram of a 
toroidal trap used to confine an electron plasma in recent 
experiments4 The confinement region is bounded by a toroi- 
da1 conductor that is rectangular in cross section, and the 
magnetic field (i.e., B=B,ROIp) is purely toroidal. Here, Be 
and R are constants, and (z,p,@) is the cylindrical coordinate 

system that is defined in the figure. A suitable vector poten- 
tial for this field is A=2Az(p), where A,(p) =I!?,$ ln(R/p). 
For a non-neutral plasma, the rotational transform is pro- 
duced by EXB drifts in the poloidal direction. Details of this 
configuration, such as the rectangular cross section of the 
conducting boundary, are not crucial to the arguments that 
follow, but we do assume that the magnetic field is purely 
toroidal and that the system is invariant under rotation in 0. 

We assume that dynamical frequencies are ordered so 
that the plasma evolution can be foilowed by toroidal- 
average guiding center drift dynamics. To be specific, we 
assume that R,&u+o~ and w, where a, is the cyclotron 
frequency, ur-rilp is the characteristic toroidal rotation fre- 
quency for particles, WE -6.$Cln, is the characteristic fre- 
quency associated with the cross-field drift dynamics, and o 
is the frequency of temporal variations in the electric poten- 
tial. Here, L; is the thermal velocity, wP is the characteristic 
plasma frequency, and for the diocotron-like modes for 
which this analysis is designed, o-w,. Also, we assume that 
parameters are ordered so that diamagnetic corrections to the 
magnetic field are negligible, that is, (&w~ w:)/ 
(0~c’)-d2&c’~ 1, where d is the characteristic minor 
radius of the toroidal plasma. This condition is very well 
satisfied for plasmas of interest. 

For a non-neutral plasma, EXB drifts are much larger 
than curvature and gradient ]B] drifts, so as a first approxi- 
mation we retain only the EXB drifts and write the toroidal- 
average guiding center drift Hamiltonian as5 

~=eqi[~d~,~l, (1) 
where pt = (e/c}A,(p) is the momentum conjugate to z and 
4 is the toroidal-average potentia1 [i.e.. $(z,p) =( 1/ 
2n)$d@ (P(.z,p,@)]. One can easily check that this Hamii- 
tonian gives the correct EXB drift equations. Also, the 
reader should note that the charge e carries a sign. In Appen- 
dix A, we will include the effect of curvature and gradient ]BI 
drifts and argue that these small corrections typically do not 
change the answer to the question of whether or not the 
plasma is stable. 
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FIG. 1. Schematic diagram of a toroidal confinement device, showing a 
grounded conducting shell with rectangular cross section and the coordi- 
nates used in the text. 

The toroidal-average potential satisfies Poisson’s equa- 
tion, 

i 
Id a a’ 
prlppcirp+s 4=- I 

24+3”W  
P2C ’ 

subject to the boundary conditions imposed on C$ at the wall 
that surrounds the confinement region. Here, f=f(z,~, ,t) is 
the toroidal-average particle distribution in (z,p,) space; it is 
related to the toroidal-average density through the equation 
n27Jpjdz dpl =fjdz dp,\. 

For times that are short compared to the collisional time 
scale, the particle distribution evolves according to the equa- 
tion 

where [f,H] is the Poisson bracket.6 This equation states that 
the flow is incompressible in (z,p,) space. Since an element 
of area in this space is a constant times an element of mag- 
netic flux (i.e., Idz dp,]=]e/cl~ dz dp), the equation sim- 
ply expresses the well-known fact that the number of par- 
ticles in a flux tube is conserved under EXB drift dynamics. 

It is convenient to write the potential as the sum of an 
external potential and a space charge potential (i.e., 
+= +be+ 4,). The external potential satisfies Laplace’s equa- 
tion and is equal to the potential specified on the boundary 
wall; the space charge potential satisfies Eq. (2) and vanishes 
on the boundary wall. From Eqs. (l)-(3) it then follows that 
the electrostatic energy, 

W=cj- dz dpz[ A++jf, 
is constant in time, provided that the potential specified on 
the boundary is constant in time. 

We are now in a position to state the stability theorem 
for a toroidal trap. An equilibrium state is stable, to small- 
amplitude perturbations, under toroidal-average drift dynam- 
ics if W  is a local maximum, as compared to neighboring 
states that are accessible under incompressible flow in a 
space where flux is the measure of area [e.g., (z,p,) space]. 

The stability theorem is developed formally by using a 
variational analysis to establish that W  is a local maximum 
subject to the constraint of incompressible flow. We will see 
that the first-order variation of W  vanishes for any state, with 
a particle distribution of the form f=f(e+). This is just the 
condition that the state is an equilibrium, that is, that df/& 
vanishes in Eq. (3). For W  to be a local maximum, the 
second-order variation of W  must be negative (i.e., SW<0 
for all allowed Sf ). 

This can be true only when df/d(eqb)>O throughout the 
plasma, so we consider only such equilibria. If dfld(eq5) 
were negative near some equipotential contour, then an in- 
terchange of two flux tubes of plasma near the contour would 
lead to an increase in W. An eigenvalue problem can be 
associated with the variational problem, and this enables us 
to write the second-order variation of W  as 

(5) 

where the first-order variation in the distribution has been 
expanded in the eigenfunctions (i.e., Sf=Xjnj Sf,) and the 
X,‘s are the corresponding eigenvalues. Thus, SW is negative 
and the plasma is stable if the eigenvalues are all positive, or 
more simply, if the lowest eigenvalue is positive. The eigen- 
value equation depends on df/d(ec$) and on the geometry of 
the wall that bounds the confinement region. In fact, we con- 
sider two forms of the eigenvalue equation by implementing 
the constraint of incompressible flow in two different ways. 
In the more general formulation, each of the eigenfunctions 
Sfj can be realized through incompressible flow, and the 
eigenfunctions can be thought of as a set of orthogonal vec- 
tors that locally span the space of accessible states. 

There are many examples of this kind of stability theo- 
rem in the literature, and the review article by Holm et al. 
has an extensive bibliography.7 From the reasoning given in 
the first paragraph, one can see that stability is implied when- 
ever the energy is either a maximum or a minimum, and for 
most examples in the literature the criterion that the energy 
be a minimum is established. Formally, this is the easier of 
the two cases. Nevertheless, both cases were discussed in the 
pioneering works by Lord Kelvin8 and Arnold.’ 

The well-known stability theorem of Davidson and 
Krall” is an example where the criterion that the energy be a 
minimum was established. This theorem was developed for 
the case of a long single species column that is confined by a 
uniform axial magnetic field. The confinement region is as- 
sumed to be bounded by a conducting cylinder that is coaxial 
with the magnetic field. The theorem has the advantage that 
it applies to general collisionless dynamics, not just to EXB 
dynamics. On the other hand, the theorem relies on cylindri- 
cal symmetry about the direction of the magnetic field, and 
for the plasmas of interest here, such symmetry is spoiled by 
the toroidal curvature. We will see explicitly that the stability 
criterion of Davidson and Krall cannot be satisfied for these 
plasmas. 

Before proceeding to the formal analysis, it is worth not- 
ing some effects that can circumvent the new theorem. The 
basic idea of the theorem is that the plasma cannot change 
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out of a state of maximum electrostatic energy because there 
is nowhere to deposit the energy that would be liberated 
under such a change. Within the context of EXB dynamics, 
the plasma kinetic energy cannot change. More generally, 
when magnetic drifts are included (see Appendix A), the ki- 
netic energy is bound up in the adiabatic invariants, 

mu: 1 
‘= 2B - and 9rr d@ pm/t, 

and cannot accept the liberated energy. However, if there is 
some other energy sink in the system, the theorem can fail. 
For example, if there is finite resistance between sectors of 
the wall, a negative energy diocotron mode can grow expo- 
nentially by depositing the liberated electrostatic energy as 
heat in the resistor.“*r2 If a non-neutral electron plasma is 
contaminated with a substantial number of nonadiabatic im- 
purity ions and the ion motion resonates with a diocotron 
mode, the mode can grow by dumping electrostatic energy 
into ion kinetic energy.13*14 

In Sec. II, the variational analysis is developed. In Sec. 
III, sample equilibria are obtained for the toroidal trap shown 
schematically in Fig. 1, and one or the other of the eigen- 
value problems is solved to prove stability. In Appendix A, 
the analysis is generalized to include the effect of magnetic 
drifts, and in Appendix I3 contact is made with previous re- 
sults obtained for the case of a long column in a uniform 
magnetic field.le3 We also show how the current results ex- 
tend those obtained earlier. 

II. VARIATIONAL ANALYSIS 

In this section, we adapt Arnold’s variational analysis’ to 
the toroidal plasma, as described by Eqs. (l)-(4). Suppose 
that some equilibrium distribution f= f(e$) undergoes the 
variation Sf and that the space charge potential undergoes 
the variation S& . Here, &!+ and Sf are related through Eq. 
(2), subject to the boundary condition SC$~=O on the sur- 
rounding conductor. Of course, there is no variation in the 
external potential (i.e., &&=O). From Eq. (4), it follows that 
the resulting change in the electrostatic energy W is given by 

6W= e 
.I- 

dz dp, & Sf + z 
I 

dz dp, SC+ Sf, (7) 

where we have used integration by parts and have set 
c$= c#J,+ C#J, and &5= SC,&. From Eq. (3), it follows that any 
functional of the form 

I dz dM(f ) (8) 

is time independent; this is a constraint associated with the 
fact that the flow is incompressible. Thus, any variation of Sf 
that can be realized dynamically must be such that 

0= 
I 

dz dp, K’(f ,Sff; 
I 

dz dp, K”(f )( af j2, 

(9) 
where terms up to second order in Sf have been retained. 
Subtracting this equation from Eq. (7) yields the resuIt 

6~= I dt dp,[e4--K’(f 118 

+i [ dz dpl[e Sq5 8f-K”(f )(Sf )2]. (10) 

It is easy to see that the first-order variation vanishes for 
any equilibrium. By using the relation f = f(eg), one can 
find a function K(f ), such that e+=K’(f ). For this choice 
the first integral in Eq. (10) vanishes, and the second reduces 
to the form 

4646) 

To prove stability, one must show that this remaining second- 
order variation is either positive for all Sf or negative for ail 
Sf* 

To see that the first term in integral (11) is positive for all 
Sf, we rewrite it as 

1 (VW2 
z 

dzdp,e &bcTf=j2rpdpdzF, (12) 

where use has been made of Eq. (2) and of integration by 
parts. If dfld(e4) were negative everywhere in the plasma, 
the second term in integral (11) would be positive for all Sf, 
so that SW itself would be positive for all Sf. In other words, 
the electrostatic energy would be a local minimum. This is 
the stability theorem of Davidson and Krall” for the present 
situation. Unfortunately, the condition df/d(ec#) <O cannot 
be satisfied everywhere in the plasma. 

To understand why, consider a small equipotential con- 
tour that surrounds the peak value of f(eq5). The contour is 
to be chosen so that f( e+) decreases as a point passes 
through the contour from the interior to the exterior. It fol- 
lows that JVf .dS<O, where the integral is over the flux tube 
that is defined by the magnetic field lines that pass through 
the contour and dS is directed outward. From Gauss’ law, it 
follows that 

I df 
O> Vf.dS=,o 

f 
df 

V(e$)*dS= -4ae’N d(e~) , 

(13) 
where N is the number of charges within the flux tube. Thus, 
the criterion of Davidson and Kral18 [i.e., df/d(eq5)<0] is 
not satisfied at this potential contour. 

Of course, the theorem of Davidson and Krall was origi- 
nally developed for a system with cylindrical symmetry 
about the direction of the magnetic field. A cylindrically 
symmetrical equiiibrium in such a system is stationary in any 
rotating frame, so the stability analysis can be carried out in 
a rapidly rotating frame. It is easy to see that the criterion 
df/d(e &I <O can be satisfied, where 4 is the potential in the 
rotating frame.’ For example, for a uniform axial magnetic 
field, r$=q5+wBr2/2c, where -w is the rotation frequency. 
The extra term is associated with the electric field that is 
induced by rotating through the magnetic field. For suffi- 
ciently Iarge weB, th$ extra term makes it possible to satisfy 
the criterion dfld(e#)<O everywhere in the plasma. Physi- 
cally, the extra term provides a potential well in which the 
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plasma can reside in a state of minimum energy. For a toroi- 
da1 trap and for any trap that lacks symmetry about the di- 
rection of the magnetic field, the stability analysis must be 
carried out in the laboratory frame, because that is the only 
frame in which the equilibrium is stationary. 

We take an approach that is opposite to that of Davidson 
and Krall; we assume that df/d(e+)>O everywhere in the 
plasma and then attempt to prove that W is a local maximum, 
that is, that SW<0 for all allowed Sf. Note that the condition 
df/d( e4) >O is natural for a non-neutral plasma, that is, in 
accord with Poisson’s equation. The two terms in integral 
(11) have opposite sign, and it is necessary to show that the 
second term is larger in magnitude than the first. This is the 
reason that the case of maximum energy is more difficult 
formally than the case of minimum energy. 

Since the second term in integral (11) is negative, we 
need only consider cases where the first term is nonzero. 
Since the sign of SW is not changed by multiplying Sf by a 
real number, we can limit our consideration to Sf that satisfy 
the normalization condition 

I= 
I 

e a# sf 
dz dp, 2 = 

I 
(VW2 

27rp dp dz ___ 
8n ’ 

(14) 

This condition defines a manifold of functions {Sf}, and SW 
is bounded from above on the manifold (i.e., SWSl). We 
want to find the condition that the maximum value of SW on 
the manifold is negative. To this end, we consider the varia- 
tional problem, 

&SW=] d.z dp,(e(l+A)S@y Sf )s(af ), 

(15) 
where A is an undetermined multiplier associated with con- 
straint (14). The variation q&V) is zero, if Sf satisfies the 
eigenvalue problem 

d(e+) 
e(l+A)W= df af, 

where &5 and Sf are related through the variation of Eq. (2) 
and &$=O on the boundary surface. Eliminating Sf in favor 
of SC+ yields the single equation 

i 

ld d a2 
prlpp-$+-jgz fv= 1 

-2e21elBoR df 

P2C 
m (l+A)W 

(17) 

From Eq. (16), it follows that eigenfunctions for differ- 
ent eigenvalues are orthogonal: 

O=(Xi-Aj) 
I 

dz dp, Sfi S+j. (1% 

Degenerate eigenfunctions must be made orthogonal “by 
hand” in the usual manner. The eigenfunctions then satisfy 
the orthonormality condition 

8ij=f dz dp, SfiS~j. 
I 

sf=C "j afj, S@= 2 aj S+j 

i j 

into Eq. (ll), then yields the result 

SW= - C Aja;, 

(20) 

(21) 

where CjaT=l. The lowest eigenfunction, say Sfl, yields 
the maximum value of SW on the manifold. The second 
eigenfunction yields the maximum value of SW on that sub- 
set of the manifold that is orthogonal to Sf 1, and so on. 
Thus, SW is negative for all Sf on the manifold if X,>O. If 
Sf is known to be orthogonal to Sf 1, say as a requirement of 
incompressible flow, then SW is negative on the allowed 
portion of the manifold if h,>O. We will see in the next 
section that this latter case can arise, in practice. 

The difficulty with this approach is that the eigenfunc- 
tions Sfj are not necessarily consistent with the constraint of 
incompressible flow. Some Ai’s can be negative, even though 
the plasma is stable. As mentioned, it is sometimes possible 
to invoke incompressibility a posteriori by excluding Sf,. 
However, a better and more general approach is to limit the 
manifold { Sfj} at the outset to include only functions that are 
accessible through incompressible flow. To accomplish this 
we replace (z,p,) by the action-angle variables (&J), 
whereI 

J=& f dz p2[e~~zl~ 

@=$ I idz' p,[e&W'l. 

(22) 

Here, the function e+(J) is obtained by inverting Eq. (22). 
This is a canonical transformation, so the flow is incompress- 
ible in the (@,I) space. Thus, to first order in smallness, Sf 
can be expressed as 

sf=(Sh(~,J),f[e~(J)l), (24) 

where Sh( $,J) is a generating function for an infinitesimal 
canonical transformation.‘” Note from Eq. (11) that Sf need 
only be known to first order to obtain SW to second order. 
Equation (24) implies that Sf satisfies the constraint 

O= I d$ dJ r(J)~f(hJ), (25) 

where r(J) is an arbitrary function. Previously, we consid- 
ered the manifold of functions { Sf} that satisfy normaliza- 
tion condition (14); here, we further restrict the manifold by 
excluding any functions that do not satisfy constraint (25). 

Thus, 6W is an extremum on this restricted manifold, 
provided that 

d(e+) 
e(l+A)S@= df 8f+r(J), 

where r(J) is introduced by use of the constraint. From the 
constraint, it follows that Substituting the expansion 
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de W(cjr,JL (27) 

so that the eigenfunction equation for 84 takes the form 

Id a a* pap p ap fs 

x(&b-;*1;; /02nd+ 64). (28) 

Alternatively, we can obtain an eigenfunction equation 
for Sf. The Green’s function G(p,zlp’,z’) is defined as 

= -4rr S(p-p’)4z-z’) 
27rp ) (29) 

where G =0 on the boundary surface, and Poisson’s equation 
provides the relation 

W( PJ) = e 
I 

dz’ 0: Sf(z’,p:)Grz,plz’,p’(p:)l. 
(30) 

Using dz dp, = d Ji dJ together with Eqs. (26) and (27) then 
yields the result 

X 
I 

d$’ dJ’ G(&JI$‘,J’)Sf($‘,J’) =Sf(+,J). 
I 

(31) 
Since 9 is an angle variable, Sf and G can be expanded in 
the Fourier series, 

aft Jr,J) = c Sf,(J)e”6, 

G( $,Jj t,b’,J’) = c GI,It(J/J’)ei’)-“‘ti’. 
1,l’ 

Constraint equation (25) implies that Sf,=O for Z=O, and for 
IjtO, eigenfunction equation (31) reduces to 

= dfi(J). 
Equations (26) and 

I dJ’ G,,lr(JIJ’)Sflt(J’) 

(33) 
(25) imply orthogonality condition _. . 

(18), and with the proper normalization we obtain orthonor- 
mality condition (19). Substituting the expansion 
Sf= C ja j Sf j into Eq. (11) again yields Eq. (21). The plasma 
is stable if the lowest eigenvalue is positive. 

III. EXAMPLES OF STABLE EQUILIBRIA 

In this section, we obtain sample equilibria for a plasma 
that is confined in the toroidal configuration of Fig. 1, and we 

h 

FIG. 2. The radial eigenfunction for the case of a linear function f(e#), 
with other parameters given in the text. 

solve one or the other of the eigenvalue problems to prove 
that the equilibria are local energy maxima. A particular 
equilibrium is determined by the choice of the functional 
form f(e4), where Qf, is determined self-consistently from 
Poisson’s equation [i.e., Eq. (211. For simplicity, we assume 
here that $=O on the conducting boundary (i.e., r$c=O). 

A simple choice for f(eg5) is the linear relationship 

f(e#)=[ 
2ele(B0R -’ 

c ) r#, 

where y is a positive constant. This choice has been used 
previously for similar probiems.13 Note that our condition 
df/d(e@) >O is satisfied, since +O. Substituting into Eq. 
(2) yields a linear equation for the self-consistent potential, 

i 

1 d 2 
-- -J-L +d +4 
pdpPdp dz2 p i 

#=O, (35) 

that must be satisfied everywhere within the conducting 
boundary. We want to find a solution for which #=a on the 
boundary and for which f o( (p is a non-negative interior to the 
boundary. Equation (35) is an eigenfunction equation for 
which y is the eigenvalue, and we are looking for the lowest 
eigenfunction. The desired solution can be written as 
Cp=C cos(rz/22)h(f3, where we have introduced the scaled 
variable 5=(7r/21)p, and the function h(l) satisfies the 
Bessel-like equation 

1 d -- -5 
5 dt; ‘d5 

(36) 

Here y must be chosen so that h( 11) =h( 12) = 0 and h(L)>0 
for & < 5~ 12, where J1 = ( 7r,/2/21)p1 and & = (~42 r)p, . Inciden- 
tally, such a solution is possible only for r>O, which is con- 
sistent with our condition df/d(e4)>0, but not with the 
condition dfld( e+) CO. 

As a specific numerical example, we take dimensions 
from the toroidal apparatus used in the recent experiments4 
(i.e., 2=15 cm, p1=2 cm, and p2=22 cm). A numerical so- 
lution of Eq. (35) yields the eigenvalue y=2.531 and the 
solution for h(l) that is plotted in Fig. 2. Figure 3 shows a 
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P 

Z 

FIG. 3. Potential contours for the case of a linear function f(e~#~). 

contour plot for &C =cos( 7~2121). h( mp/21). 
Substituting Eq. (34) into Eq. (17) yields the eigenfunc- 

tion equation 

( ld a d2 
--p z f-$7 +(l+h); w=o, 
P JP I 

(37) 

where S@O on the conducting boundary. This equation dif- 
fers from Eq. (36) only in that y is replaced by (1 +X)7. 
Thus, the equilibrium potential itself is the lowest eigenfunc- 
tion, and it corresponds to the eigenvalue X=0. The higher 
eigenvalues are all positive. For the dimensions used above, 
the second eigenvalue is X=0.610. 

The lowest eigenfunction can be excluded from the sum 
in Eq. (21) on the grounds that Sf is orthogonal to the lowest 
eigenfunction. A first-order constraint of incompressible flow 
is that 

(38) 

This corresponds to the choice K(f ) = (f )2 in Eq. (8). Since 
f is proportional to 4, and 4 is proportional to S&, Eq. (38) 
implies that 

0= I dz dp; p&, Sf. (39) 

Note that the essential feature of this discussion is the 
linear relationship specified in Eq. (34). The rectangular 
cross section of the conducting boundary simplified the 
analysis, but was not crucial. One expects that the same re- 
sult could be obtained for conducting boundaries of various 
shapes. It is only necessary that the eigenfunction for the 
lowest eigenvalue have a single peak, and this is typically the 
case. 

Next we consider the waterbag model, 

f(e+)=( 
2elelBfi -’ E, 

c ) (,ju(E2-e4L (40) 

2 

FIG. 4. Potential contours for the case of a “waterbag” equilibrium with 
E,IE, = 1.065; the plasma boundary is bold. 

where E, and E, are positive constants and U(x) is a step 
function. The distribution is equal to a positive constant in- 
side the potential contour e$(z,p)=E2 and is zero outside. 
The potential is determined self-consistently from Poisson’s 
equation 

i 

16, 
,~P$+-gj(g)=-+[gy($j], (41) 

subject to the condition that 4 vanish on the conducting 
boundary. Figure 4 shows a numerical solution for the con- 
tour levels of (e&E,) for the case E,/E, =1.065 and the 
dimensions used above (i.e., I=15 cm, p1=2 cm, and pz=22 
cm). The solid curve shows the special contour e+= E, that 
marks the outer boundary of the plasma. Figure 5 shows this 
contour for various values of the ratio E2/E1 . Since the 
boundary of the plasma is an equipotential contour, the tan- 

Z 

30 
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P 

FIG. 5. Locations of the plasma boundary for the “waterbag” equilibria 
listed in Table I. 
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TABLE I. Calculated parameters for the “waterbag” equilibria, whose 
boundaries are shown in Fig. 5: Normalized flux, potential at the interface, 
and principal eigenvalue for the stability problem. 

@  km) EzfEt A 

2.4 0.532 0.091 
8.8 1.127 0.110 

18.2 1.395 0.214 
29.2 1.381 0.490 
44.6 1.065 0.965 

gential component of the electric field must vanish on the 
boundary. Numerically, we found the boundary curve by 
minimizing the square of the tangential component inte- 
grated over the curve, while holding constant the flux linked 
by the plasma. Table I provides a listing of the normalized 
flux (i.e., (D=$dz dplpU) for each value of E,IE,. As Q, 
increases, E,IE r first increases and then decreases. 

To determine the stability of these equilibria, we use 
eigenfunction equation (33). Since df/d(ec$) is proportional 
to 6(e~,lE,-E2/EI),~fi(J) must be of the form 

Sf,(J)=S(e~/E1-E21E*)Sf,. (42) 
Substituting this form into Eq. (33) reduces the integral 
equation to a matrix equation, 

(43) 
where J, is defined through the relation e+(J2)=E,. This 
equation must be complemented by the constraint associated 
with incompressible flow (Le., Sf,=O for i=O). 

To determine the eigenvalues for the matrix equation, 
one need only know the Green’s function for the field point 
and the source point both on the boundary contour of the 
plasma (i.e., for J=J, and J’ =J2). In terms of the variables 
(p,z), the Green’s function can be written as a Fourier- 
Bessel expansion. To obtain numerical values for the matrix 
elements GI.,l(J2 ,J,), the equilibrium interface J =J2 was 
first discretized into 64 uniformly spaced Hamilton-Jacobi 
angles. The Fourier-Bessel expansion was evaluated on this 
grid, retaining 32 terms at each point, and the matrix ele- 
ments were then obtained by Fourier analyzing with respect 
to the angle variables. Standard QR routines from the EIS- 
PACK library were used to find the eigenvalues of the result- 
ing discretized operator, and the computation was repeated at 
other resolutions to ensure that the results should be accurate 
to within a few percent. Table I reports the values of the 
lowest eigenvalues for each of the equilibria shown in Fig. 5. 
The eigenvalues are all positive, implying that the equilibria 
are local energy maxima. 

Passage to the limit of a step function distribution 
greatly simplifies the eigenvalue problem; integral equation 
(33) reduces to matrix equation (43). However, in the pas- 
sage to this limit, infinitely many eigenvalues are lost, and it 
is necessary to ask what happened to these eigenvalues. We 
will see in Appendix B that these eigenvalues are large and 
positive for a step function distribution with a slightly 

rounded edge, and that they are pushed off to positive infin- 
ity in the limit of an exact step function. Consequently, the 
lost eigenfunctions are not important for the issue of stability. 
The lowest order eigenfunction for these equilibria is mainly 
a displacement along the z direction. 

Finally, a speculation concerning the waterbag equilibria 
may point the way to a useful theorem. Our experience in 
searching numerically for equilibria suggests that the three 
conditions f= f(e+), df/d(eqb) >O, and fixed Q, uniquely 
determine an equilibrium, at least for the boundary condition 
used in the above examples. If a theorem guaranteed that the 
three conditions uniquely determine an equilibrium, then it 
would follow immediately that the equilibrium is a state of 
maximum energy. The point is that there must exist at least 
one maximum energy equilibrium that satisfies the three con- 
ditions. To generalize beyond the waterbag model, one 
would replace the condition fixed Q, with the condition fixed 
a>(f ), where @ (f ) is the flux linked by distribution with 
value greater than or equal to f. This condition, like the 
condition of fixed Q>, is a constraint of incompressible flow, 
We hasten to add that it is quite easy to invent boundary 
conditions for which the equilibrium is not uniquely deter- 
mined by the three conditions. Consequently, the theorem, if 
it exists, is nontrivial, in the sense that it must take into 
account both the shape of the boundary wall and the poten- 
tial specified on the wall. 
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APPENDIX A: INCLUSION OF THE CURVATURE AND 
GRADIENT lBj DRIFTS 

In this appendix, we include the effect of the curvature 
and gradient /BI drifts. The toroidal-average drift Hamil- 
tonian is given by5 

Pi @ O R  
H= 2mp2(p,) + P(P,) 

where z and pr are 

+~l;bhO,)l~ (Al) 

canonically conjugate and 
pZ= (eB&/c)ln(R/p). The magnetic moment, 

mu: f?kiP 
~=-s-=- 2Bt9 

is an adiabatic invariant, and the toroidal angular momen- 
tum, 

d@ Pa=& d@ pmq, 

is an adiabatic invariant. Here, UII and vL are the velocity 
components paralle1 and perpendicular to the magnetic field, 
One can easily check that this Hamiltonian gives the correct 
guiding center drift equations of motion; the first term gives 
the curvature drift, the second the gradient /BI drift, and the 
third the EXB drift. 
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We introduce the distribution function 
F= F(z,p, ,p,P@ ,t), which evolves according to the equa- 
tion 

This equation describes an incompressible flow in (z,p,) 
space separately for each class of particles specified by val- 
ues of the pair (p,P&. Thus, the functional form, 

I dr WF,d=‘,L (A3 

is time independent under the flow for an arbitrary function 
K, where dT=dz dp, dp dP@ . 

The electric potential must be determined self- 
consistently from Poisson’s equation, 

we need only consider variations SF for which the first term 
is nonzero. The sign of 6W is not effected when 6F is mul- 
tiplied by a real number, so we can limit our consideration to 
variations that satisfy the normalization 

I I (va)2 
dT SF Sc,5= 27~~ dp dz F. (MO) 

This normalization defines a manifold of functions {SF}. 
Here SW is bounded from above on the manifold (i.e., 

SWcl), and we want to determine the condition that the 
maximum value of SW on the manifold is negative. In addi- 
tion, SW is an extremum on the manifold if 

e(l+X)Sc$=$ SF, (All) 

1 d -- a+ 
P dP p dP 

where A is a Lagrange multiplier. Substituting for 6F in 
Poisson’s equation yields the eigenfunction equation, 2eJeJBoR 

P2C I 
FdE.Ldf’e, 

(A6) 
2e2jeJBoR( 1 +X)&5 

P2C 
subject to the boundary condition on the conducting wall. It 
is convenient to express the potential as the sum of an exter- 
nal potential and a space charge potential (i.e., #=4,+ 4,). 
The total energy (electrostatic plus kinetic) is then given by 

X 
I 

dp dPo $. 6412) 

This is the generalization of eigenfunction equation (17). 
Equation (All) implies that eigenfunctions for different 

eigenvalues are orthogonal, W= 1 dI’ F(r,t)( & +F +egSe+%), (A7) 

and Eqs. (Al), (A4), and (A6) imply that W is conserved. 
Here, we assume that d+,ldt=O, that is, that the potential 
specified on the wall is time independent. Note that the elec- 
trostatic energy is not conserved separately when the curva- 
ture and gradient [B[ drifts are included. 

We are now in a position to generalize the stability theo- 
rem. A given equilibrium is stable, to small-amplitude per- 
turbations, under toroidal-average drift dynamics if the total 
energy is a maximum, as compared to neighboring states that 
are accessible under incompressible flow. The flow must be 
incompressible in a space for which flux is the measure of 
area [e.g., (z,p,) space], and it must be incompressible sepa- 
rately for each class of particles specified by values of the 
pair Wd. 

To implement this theorem formally, we proceed with a 
variational analysis as in Sec. II. The variation of W minus 
the variation of the functional in Eq. (A5) is given by 

6W= 1 d,[H-$]c3F 

648) 

where SF and &$ are related through Poisson’s equation. For 
any equilibrium F=F(H,p,Pa), one can find a function 
K(F,p,P,), such that the bracket in the first integral van- 
ishes. For this choice, Eq. (A8) reduces to 

(A9) 

We assume that dFldH>O and try to show that SW<0 
for all allowed SF. The second term cannot be positive, so 

O=(Xi-Xj) 
I 

dr SFi S#jp 

and we choose the degenerate eigenfunctions to be orthogo- 
nal. The eigenfunctions then satisfy the orthonormality con- 
dition, 

8ij=i dT SF, “pi. 
I 

Substituting the expansion 

(A14) 

SF=C aj SF,, S$S=C aj ~~j 
i i 

into Eq. (A9) then yields the familiar result, 

SW=-C Xja2, (Al% 

where CjaT=l. 
To obtain the generalization of eigenfunction equation 

(33), we further restrict the manifold {SF} to allow only 
functions that are accessible under incompressible flow. To 
this end, it is useful to introduce the action angle variables, 

1 
J=G 

f 
dz P&,PJ’o ,W, 6416) 

c=$ I’ dz’ f’z[z’,~,Po ,ff(J,,Mdl, (A17) 0 

where p,(z,,u,PO ,H) is obtained by inverting Eq. (Al), and 
H(J,,u,P,) is obtained by inverting Eq. (A16). These equa- 
tions define a canonical transformation from (z,p,) to (&J) 
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for each value of p and PO. Thus, the flow is incompressible 
in (&J) space for each value of f~ and PO, and SF can be 
expressed as 

d6h dF 
8F=*aJ, (MS) 

where Sh(s,/r,J,p,Po) is a generating function.16 Thus, 6F 
satisfies the equation 

O= 
I 

dl? r(J,~,P,)6F(~,J,EttPo), (A19) 

where dI’=dt,b dJ dp dP, and r(J,p,P@) is an arbitrary 
function. We further restrict the manifold {SF} so that con- 
straint (A19) is satisfied. 

Thus, SW is an extremum on the manifold if 

dH 
e(l+X)Sqb=~ SF-tr(J,,u,P0), (-420) 

where X and r(J,,u,P@) are Lagrange multipliers introduced 
through constraints (AlO) and (A19). According to Eq. 
(AN), r(J,p,,P(,,) must be chosen, so that 

r(J,p,P~))=e(l+h) & 
I 

277 
dslr W $,J,M’o). o 

(A211 
Relating S# and 6F through the Green’s function then yields 
the eigenfunction equation 

e’(l+h) dF 
dH (121;; ,:“d*j 

X I dr’ G(rp-‘)syr’)= m(r), (A221 

where G(F]F’)=G[r(F’)](r’(I”)]. 
Since $ is an angle variable, SF and G can be expanded 

in Fourier series, 

SF= c SFI(J,,u,Pe)ei”, 

G= c GI,it(J,p,POIJ’,p’,P&)ei’@-i”@‘. 
1.P 

(A231 

Constraint equation (A19) implies that 6F,=O for l=O, and 
for E+O eigenfunction equation (A22) reduces to 

27z2(1 +x) $ W,P&‘~ j” dJ’ dfi’ d% 9 

This equation is the generalization of Eq. (33). We can again 
choose the eigenfunctions to satisfy orthonormality condition 
(A14), and can obtain result (AU). 

= h(J), om 

These results generalize the results in the body of the where the factor (27rR) appears because Sn, refers to den- 
paper to include the effect of the curvature and gradient ]BI sity per unit length and the Green? function, as defined in 
drifts. Formally, these drifts arise from the two kinetic en- Eq. (29), is to be integrated over density. 
ergy terms in the Hamiltonian [see Eq. (Al)]. For a non- Taking the limit R-m in Eq. (29) yields the equation 

neutral plasma, these two terms tend to be small compared to 
the electric potential term, or more precisely, the cross-field 
variation of these terms is small compared to that of the 
electric potential. Consequently, the curvature and gradient 
IBI drifts provide only a small correction to the ExB drift, 
and one expects that this small correction typically does not 
change the answer as to whether or not the plasma is stable. 

Formally, this is seen most easily by comparing eigen- 
function equation (A12) with eigenfunction equation (17). TO 
make the comparison, we first associate a reduced distribu- 
tion, 

f(e&)= I dp dfa FCdwd’d, 

with the distribution F(H,,u,P,). On the right-hand side, the 
kinetic energy terms in H have been set equal to zero. The 
electric potential for the reduced distribution, 4, must be 
determined self-consistently from Poisson’s equation and the 
boundary condition on the wall. This potential differs only 
slightly from the self-consistent potential for the distribution 
F(H,p,P@). We use F(H,pxP,) and f(e$) as the equilib- 
rium distributions in Eqs. (A12) and (17), respectively. Since 
the kinetic energy terms are small, we can set 

d,u dP@ df; = 
df 

- fO,PZ) 
dH d(e$) 

in Eq, (A12), where E(.z,p,) is small. One can then see that 
the eigenvalues for the two equations are related by pertur- 
bation theory. If the lowest eigenvalue for Eq. (17) is sufft- 
ciently far above zero, the lowest eigenvalue for Eq. (AU) 
must also be positive. A similar comparison can be made 
between the eigenvalues of Eq. (A24) and Eq. (33). 

APPENDlX B: LONG PLASMA COLUMN IN A UNIFORM 
AXIAL MAGNETIC FIELD 

In this appendix, we make contact with and extend re- 
sults that were obtained earlier for the case of a long plasma 
column that is confined by a uniform axial magnetic field.‘-3 
Formally we reduce the toroidal geometry to this geometry 
by setting p=R+r cos B and taking the limit R--+m. Here, 
(r,6) are polar coordinates in a plane that is orthogonal to the 
uniform magnetic field B=OB,. In passing to this limit, the 
quantity n=(lelBo12?rRc)f is identified as the density per 
unit length along the column. Eigenfunction equation (33) 
reduces to the form 

(1+x) -- dJ’ Gl,lr(J[J’)271-R Snl(J’) 
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( ; 2 r 1 +$ $ 
1 

[27TRG(r,e\r’,e’)] 

-476(r-r’)S(8- e’) = 
r 032) 

In accord with the previous work,lV3 we assume that the 
confinement region is bounded by a conducting cylinder that 
is coaxial with the magnetic field. The wall may be divided 
azimuthally into sectors, with the different sectors held at 
different values of the potential c$, say, to produce an asym- 
metric equilibrium. However, &$ must vanish at the wall, so 
we require that G(r, t9lr’, 0’) vanish at the wall. For a wall at 
r=a, the method of images yields the well-known Green’s 
function,” 

2rrRG(r,81rr,t9’)=ln 
r2rr2/a2+a2-2rr’ c0s(e- et) 

r2+rr2-2rr’ c0s(e-8’) ’ 
(B3) 

This function must be rewritten in terms of the action-angle 
variables J and (I/ as defined for the equilibrium under con- 
sideration, and the Fourier components, 

(B4) 

must be substituted into Eq. (Bl). 
There is no assumption here that the equilibrium is 

nearly cylindrically symmetrical. The previous work argues 
stability by continuity from a cylindrically symmetrical equi- 
librium and in that sense is limited to weak asymmetry.1-3 
The present formulation is an extension to allow for large 
asymmetry. 

To make contact with the previous work, let us consider 
the case of a cylindrically symmetrical equilibrium. For this 
case, the action-angle variables are simply J=(eB,/2c)r2 
and J/= 0. This follows from Eqs. (22) and (23) by taking the 
limit R-m and integrating around a contour of constant r. 
Alternatively, one can simply note that dJ dt+b 
= (cB,,/c)r dr de is e/c times the element of magnetic flux 
(so that J and $ are canonically conjugate) and that J is 
constant along an equipotential contour. Since $=S and 
I$ = t9’, the required Fourier components may be obtained 
directly from Eq. (B3), 

(2?rR)Gl.lt(rlr’)=y [ ($($)‘], W 

where r, is the smaller of r and r’ and r, is the larger. Since 
G/./r is diagonal in I and I’, the Sn, for different 1 decouple 
in Eq. (Bl), which is what one expects for a cylindrically 
symmetrical equilibrium. 

For the simple case of the step function equilibrium, 
n,-,(r) = neU( ro- r), Eq. (Bl) reduces to the form 

277lelc no&r-ro) 
-(]+A) ~ 

BO dte4o)ldro I 
dr’ $ 

I I 

X(2rR)G,,l(rlr’)Gnl(r’)=8nL(r). 

The solution is given trivially by 

036) 

sn,(r)=Snl S(r-ro), (B7) 

where 

(l-th) 
i 

(2~R)Gl,drolrd= 1. 

ON 

The quantity in large parentheses is unity, so we obtain 

h=-l+l/[l-(ro/a)2’]>0. (B9) 

This same inequality was obtained earlier by directly calcu- 
lating the energy change associated with sinusoidal ripples 
on the circumference of the step function density 
distribution.3 

Since the eigenvalues are all separated from zero by a 
finite amount, one can argue by continuity that a weakly 
asymmetric equilibrium n(r, t9) = noU[e+o(r, 0) -E] also is 
stable. The 8 dependence in q!+(r,e) is produced by an asym- 
metric boundary condition at r = a. For example, if the 
boundary condition is &(a,@= E cos 0, where E is small, one 
expects the first-order correction to the Green’s function to 
be of the form 

By perturbation theory, it then follows that the corrections to 
the eigenvalues enter as G(2). 

In passing to the limit of a step function equilibrium, 
infinitely many eigenvalues are lost. To understand this 
point, it is useful to consider the differential form of the 
eigenvalue problem. In the limit R-w, Eq. (28) takes the 
form 

i 

ld d l2 
--zr z---g 

i 
S&=-4rre2(1+X) 

(dnldr) 
‘[d(eqb)/dr] “” 0311) 

where we have assumed that the equilibrium is cylindrically 
symmetrical and have set &5( r, 0) = SqS[(r) exp( iZf3). The 
constraint of incompressible flow excludes the I=0 modes. 
For the step function distribution, no(r) = n,U( r. - r), Eq. 
(Bll) reduces to the form 

la d l2 -2(1+x) 
; z r z-7 Wi= r0 6(r-r,-,)SqSi. (B12) 

We must require that S&(a) =0, that 6qb1(r) be regular at 
r=O, and that Sqb[(r) be continuous at r= ro. For each 1, 
there is a single solution, 

SqS/(r) = 
for ro<r<a. tB13) 

’ 
This solution has a discontinuous derivative at r = ro, and 
integrating both sides of the equation across the point r=ro 
yields the expression for X given in Eq. (B9). From Sturm- 
Liouville theory, one expects that Eq. (Bll) has infinitely 
many eigenvalues when dnld(e4) is smooth, but all except 
one of these is lost in passage to the step function limit. 
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FIG. 6. Plasma density versus radius. 

To find the missing eigenvalues, we consider a step func- 
tion with a rounded edge of width A, where A+, (see Fig. 
6). In Eq. (B12), the delta function is replaced by a smooth 
function of width A and of height l/A. Eigenfunction (B13) 
is relatively uneffected by this change. According to Sturm- 
Liouville theory, this eigenfunction must be the lowest eigen- 
function, since it has no zero between r =0 and r=a. The 
second eigenfunction must have one zero, and the third must 
have two zeros, etc. Since all these eigenfunctions must be of 
the form r’ to the left of the edge region and of the form 
(r/a)‘-(a/r)’ to the right, the zeros must occur within the 
edge region. For an eigenfunction with n zeros, we set 
d26qS1/dr2- n2A2 and qr-ro)-l/A in Eq. (B12) to find 
the eigenvalue A,,- n2/A. Thus, all these higher eigenvalues 
are pushed off to positive infinity, as we pass to the limit of 

a step function distribution (i.e., A--+0). For a distribution 
with a smooth but reasonably sharp edge, these eigenfunc- 
tions are large and positive, and are not important for the 
issue of stability. 
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