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Finite length diocotron modes
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Diocotron modes are discussed for a finite length nonneutral plasma column under the assumption
of bounce averagedE3B drift dynamics and small Debye length. In this regime, which is common
to experiments, Debye shielding forces the mode potential to be constant along field lines within the
plasma~i.e.,]df/]z50). One can think of the plasma as a collection of magnetic-field aligned rods
that undergoE3B drift across the field and adjust their length so as to maintain the condition
]df/]z50 inside the plasma. Using the Green function~for a region bounded by a conducting
cylinder! to relate the perturbed charge density and the perturbed potential, imposing the constraint
]df/]z50, and discretizing yields a matrix eigenvalue problem. The mode eigenvector
dNl ,v(r j )[*dzdnl ,v(r j ,z) is the l th azimuthal Fourier component of thez-integrated density
perturbation, and the frequencyv is the eigenvalue. The solutions include the full continuum and
discrete stable and unstable diocotron modes. Finite column length introduces a new set of discrete
diocotron-like modes. Also, finite column length makes possible the exponential growth ofl 51
diocotron modes, long observed in experiments. The paper focuses on these two problems. To
approach quantitative agreement with experiment for thel 51 instabilities, the model is extended to
include the dependence of a particle’s bounce averaged rotation frequency on its axial energy. For
certain distributions of axial energies, this dependence can substantially affect the instability.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1340856#
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I. INTRODUCTION

This paper provides a description of diocotron and c
tinuum modes for a finite length nonneutral plasma colum1

The plasma is confined in a Malmberg–Penning trap with
configuration shown in Fig. 1. The wall is a conducting c
inder of radiusR that is divided axially into three sections
with the central section grounded and the two end sect
held at a positive potentialV ~to confine a plasma of positiv
charges!. The central section has an axial length of 2Z and
the end sections extend to infinity. The plasma resides in
region of the central grounded section, with axial confin
ment provided by electrostatic fields and radial confinem
by a uniform axial magnetic field.

Because the plasma is nonneutral, there is a substa
radial electric field, and the plasma experiences anE3B
drift rotation,vE52(c/Br)(]f0 /]r ). Here,f0(z,r ) is the

equilibrium plasma potential,B52 ẑB is the magnetic field,
and (z,u,r ) is a cylindrical coordinate system with thez axis
coincident with the axis of the trap. For a plasma of posit
charges, it is convenient to choose the magnetic field in

2 ẑ direction; this makes the rotation frequency~and the
mode frequencies! positive. The frequencies are the same
a plasma of negative charges if the sign of the confinem
fields is reversed~i.e., B→2B andV→2V).

The modes of interest are characterized by frequen
that are comparable to the rotation frequency~i.e., v;vE).
The other important dynamical frequencies are the cyclot
frequency,Vc , and the characteristic axial bounce frequen

a!Electronic mail: thilsabeck@ucsd.edu
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for a particle,vb . In accord with experiment,2,3 we assume
that the frequencies are ordered asVc@vb@vE;v. The
mode evolution can then be treated with bounce averagE
3B drift dynamics.

Also in accord with experiment, we assume that the D
bye length is small compared to the plasma dimensions~i.e.,
lD!r p ,l p). At first glance, the two inequalitiesvb@vE and
lD! l p look contradictory, but they both can be satisfi
provided vp /Vc!lD / l p , where vp is the plasma fre-
quency. Here, we have usedvb; v̄/ l p , vE;vp

2/Vc , and
lD5 v̄/vp , wherev̄ is the thermal velocity. The frequenc
ordering and the smallness of the Debye length justify a
duced description of the plasma. In this Zero Debye Len
Reduced Description, the plasma cannot tolerate~shields
out! any electric field (]f/]z) along the magnetic field. The
plasma density,n(z,u,r ,t), is constant alongz within the
plasma and drops abruptly to zero at the plasma ends~on the
scalelD→0). Along each field line, the plasma is chara
terized by a well-defined length 2L(u,r ,t). For convenience,
we useL(u,r ,t) for the half-length.

The plasma can be thought of as a collection
magnetic-field aligned rods that move across the fi
through E3B drift motion and adjust their length so tha
]f/]z vanishes everywhere inside the plasma. We will s
that this constraint is satisfied if]f/]z vanishes on the
plasma surface@i.e., for uzu5L(u,r ,t)].

With L(u,r ,t) determined in this way, the plasma sta
is specified by the two-dimensionalz-integrated density dis-
tribution

N~u,r ,t !5E
2`

1`

dz n~z,u,r ,t !52 n~u,r ,t !L~u,r ,t !, ~1!
© 2001 American Institute of Physics
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wheren(u,r ,t) is the particle density inside the plasma. T
electric potentialf(z,u,r ,t) is expressed as a functional o
N(u,r ,t) and L(u,r ,t) through an integral over a Gree
function for the trap geometry. The advantage of the redu
description is that it captures the three-dimensional natur
modes on a finite length plasma, while using a tw
dimensional~2D! distribution to describe the plasma state

To discuss the modes, this distribution is written
N(u,r ,t)5N0(r )1dNl ,v(r )exp(ilu2ivt), where the first
term describes the equilibrium and the second describ
mode. Likewise,L(u,r ,t) is written as the sumL0(r )
1dLl ,v(r )exp(ilu2ivt), and the equations are linearized
dNl ,v anddLl ,v . The analysis is implemented numericall
with functions evaluated at a set of discrete radial poi
$r j%. The mode eigenvector$dNl ,v(r j )% is determined as the
solution to a matrix eigenvalue problem, where the f
quencyv is the eigenvalue. In the usual manner, eigenv
tors for different eigenvalues are orthogonal, and a gen
linear solution can be written as a superposition of mode

The set of modes includes what in an analytic the
would be called continuum modes as well as discrete mo
In this sense, the work extends recent work on 2D modes
an infinitely long column.4

We focus on two aspects of the modes that are du
finite column length. The first is the existence of a new se
discrete diocotron-like modes that appear in plasmas w
very low shear in the rotational flow. The prototype of su
a plasma is the uniform density plasma, for which the flow
a shear-free rigid rotation. It is well known that an infinite
long column of uniform density supports only one discre
diocotron-like mode for each azimuthal wave number.1 In
contrast, a uniform density column of finite length suppo
many additional discrete diocotron-like modes, with a
muthal phase velocities that are shifted from the rotat
frequency by a small amount that depends on the plasma
shape. The shift tends to zero as the number of nodes in
radial eigenmode,dNl ,v , becomes large. A density variatio
in the equilibrium introduces shear in the rotational flow, a
the new modes are absorbed into the continuum, as
become resonant with the fluid at some critical radius.

These new modes were predicted by Finnet al.,5 who
drew an analogy between the modes and Rossby wave
the quasigeostrophicb-plane approximation.6 For analytic
convenience, these authors approximated the plasma le
by a quadratic function,L0(r ).L0(12kr 2), wherek is a

FIG. 1. Malmberg–Penning confinement geometry. The end cylinders
tend out to infinity.
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measure of the end shape curvature atr 50. Neglecting any
perturbation in the plasma length, they then obtained
simple dispersion relation for the modes that predicts ak
dependent shift in the azimuthal phase velocity~relative to
the plasma rotation!. The predicted frequencies are in qua
tative agreement with our numerical results when the e
shape is well-approximated by a quadratic function, but c
differ significantly in other cases.

For example, the end shape can increase with radius
axis ~corresponding to negative curvature! and decrease with
radius off-axis~corresponding to positive curvature!. In this
case, we find some modes that have a positive phase vel
shift and others that have a negative shift, whereas the
persion relation predicts a single sign for the shift. T
modes with negative shift ‘‘live’’ in a radial region where th
equilibrium length is a decreasing function of radius, and
modes with positive shift live in the region where the leng
is increasing. The significance of the modes with posit
shift is that they are more able to withstand small shear in
rotational flow. They rotate faster that the plasma.

Next we focus on a particular instability that exists b
cause of finite column length. In general, a necessary co
tion for diocotron-like instabilities in an infinitely long col
umn is that the column density,n0(r ), be nonmonotonic in
r.1 For example, a hollow column satisfies this criterio
Likewise, a necessary condition for such instabilities in
finite length column is thatN0(r ) be nonmonotonic.5,7 De-
tailed stability analyses for an infinitely long, hollow colum
have been carried out previously.1,8 The modes for azimutha
mode numberl 51 are special in that analytic solutions a
possible for any density profilen0(r ). Surprisingly, the
analysis predicts that thel 51 modes are neutrally stable
that is, the imaginary part of the mode frequencyv is zero
even for hollow columns.9,10 An initial value solution of the
infinite length, l 51 diocotron instability yields algebraic
growth.11 However, exponential growth ofl 51 modes is
observed experimentally for hollow columns of finite lengt

Smith12 predicted exponential growth when the plasm
rotation frequency differs from that given by Gauss’ law f
an infinite column. He included a small shift in the rotatio
frequency arguing heuristically that it was due to the e
confinement fields. Finnet al.5 also considered this problem
and obtained exponential growth. Again their analysis
proximated the plasma length by a quadratic function.
mode induced perturbation in the plasma length was
cluded for this analysis, but was implemented by a cle
technique chosen for analytic convenience rather than
perimental fidelity.

In contrast, our model accepts an arbitrary plasma sh
and our axial boundary conditions are realistic. Also, o
model incorporates the perturbation of the plasma len
self-consistently using a Green function. Nevertheless,
two models find similar growth rates for plasmas with s
nificant curvature.

Although consideration of finite length effects predic
the existence of anl 51 instability, good quantitative agree
ment with experiments has not been achieved. In general
growth rates due to finite length effects alone are sev
times smaller than the experiments measure. Also, the ca

x-
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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lated real frequencies are very near the maximum rota
frequency of the plasma, while the experiment may obse
a frequency 25% lower.

In Sec. VII, we shall see that the incorporation of kine
effects and the details of how the hollow columns are p
pared have a significant impact on the instability. The imp
tant kinetic effect is the dependence of a particle’s bou
averaged rotation frequency on its axial energy. The fast
particle strikes the end of the column, the larger radial el
tric force it experiences. Thus, a spread in axial particle
ergies produces a broadening of the unstable mode’s r
nance with the plasma rotation. In order to create the hol
profile columns, the axial confining potential is lowered a
the highest energy particles escape. This process essen
cools the column near the trap axis and can significa
change the growth rate and frequency of the instability.

II. BASIC EQUATIONS

Because the cyclotron frequency is large and the cy
tron radius is small, the guiding center drift approximati
can be used to follow the particle dynamics. Since the m
netic field is uniform, the guiding center drift Hamiltonia
can be written as

H5
pz

2

2m
1ef~z,u,pu ,t !, ~2!

where the ordered pairs (z,pz5mż) and (u,pu

52eBr2/2c) are canonically conjugate coordinates and m
menta andf is the electric potential.

Let f 5 f (z,pz ,u,pu ,t) be the distribution of guiding
centers. For convenience, we normalizef so that the total
number of particles is given by

N5
c

eBE f dpzdzdudpu5E f dpzd
3r , ~3!

whered3r5dzdurdr is the configuration space volume el
ment. The plasma density is then given by

n~z,u,r ,t !5E
2`

1`

dpzf . ~4!

Also for convenience, we will denote the radial depende
of various quantities interchangeably asg(r ) andg(pu), al-
though different functional dependencies are implied forg in
the two cases.

On the time scale of the modes,f evolves according to
the collisionless drift kinetic equation

] f

]t
1@ f ,H#50, ~5!

where@ f ,H# is a Poisson bracket

@ f ,H#[(
i

] f

]qi

]H

]pi
2

] f

]pi

]H

]qi
.

The electric potential,f, must be determined self
consistently from the Poisson equation and the bound
conditions specified forf on the conducting wall of the trap
The solution can be written formally as
Downloaded 14 Mar 2001 to 132.239.69.90. Redistribution subject to
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f~z,u,r ,t !5fT~z,r !1eE
2`

1`

dz8E
0

2p

du8E
0

R

r 8dr8

3G~z,u,r uz8,u8,r 8!n~z8,u8,r 8,t !, ~6!

wherefT(z,r ) is the trap potential andG(z,u,r uz8,u8,r 8) is
a Green function that vanishes on the wall. Here,fT(z,r )
satisfies the Laplace equation and matches the boundary
ditions specified forf on the wall. The second term~Green
function term! satisfies the Poisson equation and vanishes
the wall, so the sum of the two provides the correct soluti

The Green function for the interior of an infinitely long
grounded, conducting cylinder, of radiusR, is well-known13

G~z,u,r uz8,u8,r 8!

5
2

R (
l 52`

1`

(
n51

`
eil (u2u8)Jl~x lnr /R!Jl~x lnr 8/R!

x lnJl 11
2 ~x ln!

3e2 ~x ln /R!(z.2z,), ~7!

or equivalently

G5
2

p (
l 52`

1` E
0

`

dkeil (u2u8)cos@k~z2z8!#
I l~kr,!

I l~kR!

3@ I l~kr.!Kl~kR!2Kl~kr.!I l~kR!#, ~8!

wherex ln is thenth zero ofJl . Herez. (z,) is the greater
~lesser! of z andz8, and the same is true for the radial coo
dinate. In using the boundary condition for an infinitely lon
grounded, conducting cylinder, we are assuming that
gaps in the electrodes are negligibly small. Furthermore,
assume the plasma column is always contained within
central conducting cylinder and that the length of the e
cylinders is greater than their diameter. These conditions
experimentally typical. The sum overn in form ~7! con-
verges rapidly whenuz2z8u is large, and thek-integral in
form ~8! whenur 2r 8u is large. For future reference, we no
that G depends on (u,u8) and (z,z8) only through the com-
binations u2u8 and z2z8. This is a consequence of th
rotational and translational invariance of the boundary c
ditions. In the following analysis, we will need the quanti

Gl~z,r uz8,r 8!5E
0

2pd~u2u8!

2p
e2 i l (u2u8)G. ~9!

Also, an expression forfT(z,r ) is given by

fT~z,r !52V(
n51

`
J0~x0nr /R!

x0nJ1~x0n!
coshS x0nz

R De2 ~x0nZ/R!,

~10!

where V is the voltage on the end caps,R is the cylinder
radius andZ is the central cylinder half-length. This expre
sion is valid in the regionuzu,Z.

III. EQUILIBRIA

We look for cylindrically symmetric equilibria setting
f5f0(z,pu) and correspondingly

H5H05
pz

2

2m
1ef0~z,pu!. ~11!
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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Here,f0(z,pu) is given by the sum offT(z,r ) and a cylin-
drically symmetrical space charge potential due to the Gr
function term in Eq.~6!. Since@pu ,H0# vanishes, any distri-
bution of the formf 5 f 0(pu ,H0) is an equilibrium.

To further specify the equilibrium, considerations b
yond the collisionless drift kinetic equation must be tak
into account. In the experiments of interest, modes
launched on both stable and unstable plasmas, and the p
ration of the equilibrium is different in the two cases. For t
stable case, the plasma is injected, held until collisions h
established a local thermal equilibrium along each field l
~a few collision times!, and then modes are launched. T
equilibrium for the stable modes is then the Boltzmann d
tribution

f 0~pu ,H0!5
N0~pu!exp@2H0 /T~pu!#

*2`
1`dz*2`

1`dpz exp@2H0~z,pz ,pu!/T~pu!#
,

~12!

whereT(pu) is the local temperature along a field line atpu

and N0(pu)5*2`
1`dz n0(z,pu) is the z-integrated density

along this field line. For given functionsN0(pu) andT(pu),
Eq. ~6! is an integral equation for the self-consistent pote
tial, f0(z,r ). A numerical solution forf0(z,r ) can be ob-
tained by iteration of Eq.~6!, or of the Poisson equatio
itself. In turn, the solution forf0(z,r ) completes the speci
fication of the distribution f 0(pz ,z,r ) and the density
n0(z,r ).

In the limit where the Debye length is small, the sol
tions have a simple universal character. The charge dens
arranged so that the component of the electric field along
magnetic field~i.e., 2]f0 /]z) is Debye shielded out in the
interior of the plasma. The potential is nearly constant alo
z and then rises abruptly at the plasma ends over a le
scale of a few Debye lengths. As implied by Eq.~12!, the
densityn0(z,r ) is nearly constant alongz and then falls off
sharply near the ends.

As a specific example for numerical solution, we choo
the z-integrated densityN0(r ) shown in Fig. 2, the radially
independent temperatureT51.0 eV, the voltage on the en
cylindersV560 Volts~the central cylinder is grounded!, and
the trap aspect ratioR/Z55.086. Figures 3~a! and 3~b! show
contour plots forf0(z,r ) andn0(z,r ), and the behavior de

FIG. 2. Gaussianz-integrated density profile.
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from the plasma ends the contours run parallel to the m
netic field ~parallel to thez axis!, but near the ends the con
tours cut across the field and are tightly bunched indicatin
steep gradient. The gradient extends over a few De
lengths.

For the case of unstable modes, the equilibrium is no
the Boltzmann form. In Sec. VII, we will discuss the prep
ration of the equilibrium for unstable modes in detail. He
we need only the fact that the equilibrium distribution sat
fies the inequality] f 0 /]H0<0. This is the feature that is
required for Debye shielding.

Incidentally, if f 0(pu ,H0) were not monotonically de-
creasing inH0 , the plasma would be subject to veloci
space instabilities that would develop much more rapi
than the modes of interest here. Thus, basing a theor
low-frequency modes on the assumption] f 0 /]H0<0 is not
really a loss of generality.

To understand the connection of this assumption
shielding, first define the density

n0@pu ,ef0~z,pu!#5E
2`

1`

dpzf 0@pu ,pz
2/2m1ef0~z,pu!#,

~13!

and note that]n0 /]ef05*2`
1`dpz] f 0 /]H0 is negative. The

potential can be written as

f0~z,r !5f0~r !1Df0~z,r !, ~14!

where thez-dependent part ofDf0(z,r ) is presumed smal
in the plasma interior. This must be verifieda posteriori.
Taylor expanding the density with respect toDf0 and sub-
stituting into the Poisson equation yields the result

H 1

r

]

]r
r

]f0

]r
14pen0@r ,f0~r !#J

1H ¹2Df02
1

lD
2 ~r !

Df0J 50, ~15!

FIG. 3. Poisson–Boltzmann solution for constant density~a! and potential
~b! contours (R53.5 cm,Z517.3 cm,T51 eV!.
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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where we have defined the effective Debye length

1

lD
2 ~r !

[
4pe2n0@r ,f0~r !#

T~r !
, ~16!

in terms of the effective temperature

1

T~r !
[2

1

n0

]n0

]ef0
. ~17!

In writing lD
2 (r ) as a positive quantity use has been made

the fact that]n0 /]ef0 is negative.
We choosef0(r ) so that the first bracket in Eq.~15!

vanishes. The second bracket is then zero, soDf0(z,r ) sat-
isfies the equation for Debye shielding. In the limit where t
Debye shielding is small compared to the plasma dim
sions, numerical solutions14 show thateDf0(z,r )/T is expo-
nentially small in the plasma interior and grows expone
tially as the plasma surface is approached, reaching the v
eDf0 /T;1 at the surface. Near the surface an analytic
lution is possible.Df0(z,r ) depends primarily on the coor
dinatej, measured along the local normal to the surface
Eq. ~15! reduces to the form

d2

dj2 Df02
1

lD
2 Df050, ~18!

for which the solution is exponential growth on the spat
scalelD . When eDf0 /T reaches unity, the density drop
~and the simple linearization procedure used here bre
down!.

In the experiments of interest,2,3 the Debye length is
small compared to the plasma dimensions, so we devel
reduced description in which the Debye length is taken to
limit lD→0. The plasma then has a well-defined leng
along each field line 2L0(r ) and the density is given by

n0~z,r !5
N0~r !

2L0~r !
U@L0~r !2uzu#, ~19!

whereU(x) is a step function. In this Zero Debye Leng
Reduced Description, the equilibrium is specified by t
single functionN0(r ). The functionL0(r ) is determined by
the requirement that]f0 /]z50 everywhere on the plasm
surface, that is, foruzu5L0(r ). The fact that]f0 /]z van-
ishes on the surface implies that it vanishes throughout
plasma volume.

To prove this statement, note that the Poisson equa
plus thez-independence ofn0(z,r ) inside the plasma implies
the equation

¹2
]f0

]z
524pe

]n0

]z
50. ~20!

Since]f0 /]z satisfies the Laplace equation throughout
plasma volume and vanishes on the plasma surface, it m
vanish throughout the volume.

The method of obtainingL0(r ) begins by recognizing
that at each point along the correct equilibrium length fu
tion, the axial electric fields generated by the trap and
plasma exactly cancel. Should this condition not be satisfi
the plasma would expand or contract axially, until force b
ance is achieved. This heuristic dynamical description de
Downloaded 14 Mar 2001 to 132.239.69.90. Redistribution subject to
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onstrates the basic principle used to find the equilibri
lengthL0(r ). Initially, L0(r ) is approximated by some arb
trary, smooth curveL0

(0)(r ) ~usually a sphere!. Next, the
axial electric field is computed along this curve. The curve
then adjusted using the normalized electric force at the
face

L0
( i 11)~r !5L0

( i )~r !F11e
Ez

p@L0
( i )~r !,r #1Ez

t @L0
( i )~r !,r #

Ez
p@L0

( i )~r !,r #
G ,

~21!

whereEz
t is the trap field,Ez

p is the plasma field, ande is a
small parameter chosen for convergence~usually one tenth!.
Here, the total electric field is normalized by the field due
the plasma in order to speed up convergence in region w
the field is small~e.g., near the wall!. This procedure is iter-
ated untilL0(r ) is found @i.e., L0

(n11)(r )5L0
(n)(r )].

The axial electric field component generated by the t
is obtained by differentiating the analytic expression for t
potential in Eq.~10!. The potential created by the plasma
given by the Green function from definition~7!. The equilib-
rium plasma density is axisymmetric and uniform along t
field lines. The potential produced by such a plasma insid
conducting cylinder is

fp~z,r !5eE
0

R

2pr 8dr8E
2L0(r 8)

L0(r 8)
dz8

N0~r 8!

2L0~r 8!

3G0~z,r uz8,r 8!, ~22!

where G0 is defined in Eq.~9!. The axial electric field is
obtained by differentiating Eq.~22! with respect toz, and
using the translational invariance of the Green funct
(]/]z52]/]z8)

2
]fp

]z
5eE

0

R

2pr 8dr8
N0~r 8!

2L0~r 8!
$G0@z,r uL0~r 8!,r 8#

2G0@z,r u2L0~r 8!,r 8#%. ~23!

In Fig. 4, the zero temperature solutionuzu5L0(r ) ob-
tained in this way is compared to a succession of Poiss

FIG. 4. Equilibrium plasma lengths for Poisson–Boltzmann solutio
~dashed!. Equilibrium plasma length for the Zero Debye Length Reduc
Description~solid!.
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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Boltzmann solutions in which the temperature is varied. F
each finite temperature solution, we define a half-density
face,uzu5L1/2(r ), where

n@z5L1/2~r !,r #5 1
2 n~0,r !. ~24!

The dashed curves in Fig. 4 are these surfaces for the
quence of temperatures (T51.0,0.1,0.01 eV). The solid
curve is theT50 or Zero Debye Length Reduced Descri
tion solution. This comparison indicates that our equilibriu
length function is a reasonable zero Debye length appr
mation to the plasma density for sufficiently low tempe
ture. In the experiments of interest, the plasma temperatu
typically 0.5 eV. In regions where the plasma density b
comes small, the Debye length is large and our reduced
scription fails. However, we suppose that these low den
regions have a small effect on the overall plasma dynam

IV. MODES

The unperturbed HamiltonianH05H0(z,pz ,pu) is inte-
grable, so we can obtain a canonical transformation
action-angle variables. The first step is to define the bou
action as

I 5
1

2p R dz8pz@z8,H0 ,pu#, ~25!

wherepz@z,H0 ,pu# is obtained by solving Eq.~11! for pz .
Both H0 and pu are held constant while carrying out th
integral. A generating function for a canonical transform
tion from (z,pz ,u,pu) to (c,I ,Q,PQ) is given by

W5E
0

z

dz8pz@z8,H0~ I ,PQ!,PQ#1uPQ . ~26!

Taking partial derivatives in the prescribed manner15 yields
the transformation

c5
]W

]I
5E

0

z dz8

vz@z8,H0 ,PQ#

]H0

]I
, ~27!

pu5
]W

]u
5PQ , ~28!

Q5
]W

]PQ
5u1E

0

z dz8

vz@z8,H0 ,PQ#

3F]H0~ I ,PQ!

]PQ
2e

]f0~z,PQ!

]PQ
G . ~29!

Here, use has been made of the relation]pz /]H051/vz .
In Eq. ~29!, the bracket

F]H0~ I ,PQ!

]PQ
2e

]f0~z,PQ!

PQ
G[dvE , ~30!

is the difference between the bounce averaged rotation
quency and the instantaneous rotation frequency. The se
term on the right in Eq.~29! is no larger thandvE /vb ,
which is small according to our assumed ordering (vb

@vE). Thus, we drop the second term and setQ.u. For
convenience, we continue to use the old variablespu andu.
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Since the transformation is canonical, the drift kine
equation is still given by Eq.~5!, but the Poisson bracke
must be evaluated for the variables (c,I ,u,pu).

We assume that there is a small amplitude mode cha
terized by the potentialdf(z,u,pu ,t). The Hamiltonian is
then given by

H5H0~ I ,pu!1dH~c,I ,u,pu ,t !, ~31!

wheredH5edf. The perturbation in the Hamiltonian give
rise to a perturbation in the distributiond f (c,I ,u,pu ,t).
Linearizing the drift kinetic equation in the smallness of t
perturbation yields

]d f

]t
1@d f ,H0#1@ f 0 ,dH#50. ~32!

By taking into account the functional dependenceH0

5H0(I ,pu) and f 05 f 0(I ,pu), the equation can be rewritte
as

F ]

]t
1

]H0

]I

]

]c
1

]H0

]pu

]

]uGd f 2
]dH

]c

] f 0

]I
2

]dH

]u

] f 0

]pu
50.

~33!

Finally, by using] f 0 /]I 5(]H0 /]I )(] f 0 /]H0) we obtain
the result

]H0

]I

]

]c S d f 2dH
] f 0

]H0
D1S ]

]t
1

]H0

]pu

]

]u D d f 2
]dH

]u

] f 0

]pu

50. ~34!

We solve this equation through an expansion in
small parametervE /vb;v/vb!1, wherevb5]H0 /]I is
the axial bounce frequency,vE5]H0 /]pu is the rotation
frequency and]/]t;v is the characteristic frequency of th
modes. In zero order, the equation reduces to the form

]H0

]I

]

]c S d f 2dH
] f 0

]H0
D50, ~35!

which has the solution

d f 2dH
] f 0

]H0
5 K d f 2dH

] f 0

]H0
L

c

, ~36!

or equivalently

d f 5^d f &c1~dH2^dH&c!
] f 0

]H0
. ~37!

Here, the bracket ^g&c(I ,u,pu ,t) is the c-average

( 1
2p)*0

2pdc g(c,I ,u,pu ,t), where (I ,u,pu ,t) are held con-
stant in evaluating the integral. For each (I ,u,pu ,t), solution
~37! determines thec-dependence ofd f (c,I ,u,pu ,t) rela-
tive to thec-averagê d f &c(I ,u,pu ,t). To obtain an equa-
tion for ^d f &c , we integrate Eq.~34! over c, projecting out
the large first term. The result is

S ]

]t
1

]H0

]pu

]

]u D ^d f &c5
]^dH&c

]u

] f 0

]pu
. ~38!

In the Zero Debye Length Reduced Description for t
equilibrium, the transformation (c,I ,u,pu)→(z,pz ,u,pu) is
such thatz-dependence for a function enters only throu
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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c-dependence. Thus, Eq.~37! implies that allz-dependence
in the perturbationd f is included in the term

e~df2^df&c!
] f 0

]H0
5edf8

] f 0

]H0
, ~39!

where df8[(df2^df&c) is the z-dependent part of the
perturbed potential. In turn thez-dependent portion of the
perturbed density,dn5*dpzd f , is given by

edf8
]n0

]ef0
52

edf8

T~r !
n0 , ~40!

whereT(r ) is the effective temperature defined in Eq.~17!.
Substituting this density perturbation into the Poisson eq
tion shows thatdf8 satisfies the equation for Debye shiel
ing @see Eq.~18!#. Thus, we conclude that the mode pertu
bation exhibits such shielding~i.e., ]df/]z→0) in the
plasma interior. Equation~37! then implies thatd f and dn
5*dpzd f are independent ofz ~or c) in the plasma interior.
Within a few Debye lengths of the end,u]df/]zu can be-
come large, either adding to or subtracting from]f0 /]z and,
thereby, increasing or decreasing the plasma length loca

These are the conclusions that are necessary to ex
the Zero Debye Length Reduced Description to inclu
modes. We allow for an increment to the plasma half-leng
L(u,r ,t)5L0(r )1dL(u,r ,t), and for an increment to the
z-integrated density,N(u,r ,t)5N0(r )1dN(u,r ,t). Substi-
tuting these expressions into Eq.~19! and linearizing yields
the density increment

dn~z,u,r ,t !5FdN~u,r ,t !

2L0~r !

2
N0~r !

2L0~r !

dL~u,r ,t !

L0~r ! GU@L0~r !2uzu#

1
N0~r !dL~u,r ,t !

2L0~r !
d@L0~r !2uzu#, ~41!

where the delta function in the second term enters thro
the Taylor expansion for the step function. This term rep
sents a surface shell of density increment associated with
length increment.

From Eq.~6!, we obtain the relation

df~z,u,r ,t !5eE
2`

1`

dz8E
0

2p

du8E
0

R

r 8dr8

3G~z,u,r uz8,u8,r 8!dn~z8,u8,r 8,t !.

~42!

Substituting fordn(z8,u8,r 8,t) from Eq. ~41! then provides
an expression fordf(z,u,r ,t) as a linear functional of
dN(u,r ,t) anddL(u,r ,t).

The length increment,dL(u,r ,t), is determined as a lin
ear functional of dN(u,r ,t) by the requirement tha
]df/]z50 at uzu5L0(r )2. Here, the minus sign indicate
that the constraint]df/]z50 is to be imposed just insid
the shell of surface charge@see second term in Eq.~41!#. Of
course, the normal component of the electric field is disc
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tinuous across a sheet of surface charge. One can show
this constraint implies that]df/]z vanishes throughout the
plasma interior.

To include the effect of the modified length@i.e.,
L0(pu)→L0(pu)1dL(u,pu ,t)5L(u,pu ,t)] in the Hamil-
tonian, we must use the modified length in the definition

the action,I 5( 1
2p)rdzpz5upzu2L(u,pu ,t)/p. The Hamil-

tonian is then given by

H5
I 2p2

8mL2~u,pu ,t !
1ef~u,pu ,t !, ~43!

where f(u,pu ,t) is the z-independent potential inside th
plasma. This Hamiltonian describes the bounce avera
transverse motion and assumes the orderingvb@vE;v.
The ratio of the first term to the second isT/ef0

;(lD /r p)2, so in the limit of zero Debye length we drop th
first term and setH.ef(u,pu ,t). We will discuss the effect
of the first term in Sec. VII.

Just as the equilibrium is specified by the single funct
N0(r ), the modes are specified by the single functi
dN(u,r ,t). The reduced description is completed by
equation for the evolution ofdN(u,r ,t), which we obtain
from Eq. ~38!. In this equation, we setvE5]H0 /]pu

5]ef0 /]pu and ^dH&5edf(u,pu ,t), where f0(pu) and
df(u,pu ,t) are thez-independent equilibrium and mode po
tentials, respectively. Integrating Eq.~38! over 2pdI then
yields

F ]

]t
1vE~r !

]

]uGdN~u,r ,t !52
c

Br

]df

]u

]N0

]r
~r !, ~44!

wheredN52p*0
`dI^d f &c andN052p*0

`dI f 0 .
To examine a single mode, we let perturbed quantit

vary as exp(ilu2ivt), so that Eqs.~41!, ~42!, and ~44! take
the form

dnl ,v~z,r !5FdNl ,v~r !

2L0~r !
2

N0~r !

2L0~r !

dLl ,v~r !

L0~r ! GU@L0~r !

2uzu#1
N0~r !dLl ,v~r !

2L0~r !
d@L0~r !2uzu#,

~45!

df l ,v~z,r !5eE
2`

1`

dz8E
0

R

r 8dr8Gl~z,r uz8,r 8!

3dnl ,v~z8,r 8,t !, ~46!

@v2 lvE~r !#dNl ,v~r !5
cl

Br

]N0

]r
df l ,v~r !, ~47!

where use has been made of definition~9!. Finally, the length
incrementdLl ,v(r ) is determined as a functional ofdNl ,v(r )
through the constraint
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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05
]df l ,v

]z U
z5L0(r )2

5eE
0

R

r 8dr8F dNl ,v~r 8!

2L0~r 8!
2

N0~r 8!dLl ,v~r 8!

2L0
2~r 8!

G
3$Gl@L0~r !2,r u2L0~r 8!,r 8#

2Gl@L0~r !2,r uL0~r 8!,r 8#%

1eE
0

R

r 8dr8
N0~r 8!dLl ,v~r 8!

2L0~r 8!
H ]Gl

]z
@L0~r !2,r u

2L0~r 8!,r 8#1
]Gl

]z
@L0~r !2,r uL0~r 8!,r 8#J , ~48!

where use has been made of the fact thatGl depends onz
andz8 only through the combinationz2z8.

Before turning to the numerical implementation of the
equations, we develop an orthogonality relation for t
eigenmodes$dNl ,v(r )% and discuss the representation of
general perturbation as a sum over the eigenmodes. We
obtain a necessary condition for instability@i.e., Im(v)5g
.0]. These results are generalizations of similar results
tained earlier for the case of an infinitely long column.1,4

To start, we multiply Eq.~47! by dnl ,v8(z,r )r /N08 and
integrate overrdrdz, to obtain the relation

vE
0

R

rdrdNl ,v8~r !dNl ,v~r !F1

r

]N0

]r G21

2 l E
0

R

rdrvE~r !dNl ,v8~r !dNl ,v~r !F1

r

]N0

]r G21

5
cl

BE
2`

1`

dzE
0

R

rdrdf l ,v~r !dnl ,v8~z,r !, ~49!

where use has been made of the definit
*2`

1`dzdnl ,v8(z,r )5dNl ,v8(r ) on the left-hand side. The
function df l ,v(z,r ) is equal todf l ,v(r ) in the plasma inte-
rior, but can differ by orderT in the end sheath. In ou
s

e
-
t
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reduced description, where terms of orderT→0 are ne-
glected,df l ,v(r ) can be replaced bydf l ,v(z,r ) in the inte-
grand on the right-hand side of Eq.~49!. By using the Green
function relation~46!, the right-hand side can be rewritten
a symmetric form

vE
0

R

rdrdNl ,v8~r !dNl ,v~r !F1

r

]N0

]r G21

2 l E
0

R

rdrvE~r !dNl ,v8~r !dNl ,v~r !F1

r

]N0

]r G21

5
ec

lBE2`

1`

dzE
0

R

rdr E
2`

1`

dz8E
0

R

r 8dr8dGl~z,r uz8,r 8!

3dnl ,v~z8,r 8!dnl ,v8~z8,r 8!. ~50!

A similar equation is obtained by interchangingv and v8.
Subtracting the two equations yields the relation

05~v2v8!E
0

R

rdrdNl ,v8~r !dNl ,v~r !F1

r

]N0

]r G21

. ~51!

Thus, the eigenfunctionsdNl ,v(r ) and dNl ,v8(r ) for which
vÞv8 satisfy the orthogonality condition

05E
0

R

rdrdNl ,v8~r !dNl ,v~r !F1

r

]N0

]r G21

. ~52!

One might worry that the integrand diverges at a point wh
@(1/r )(]N0 /]r )# passes through zero, but this is not t
case. Equation~46! implies thatdNl ,v(r ) anddNl ,v8(r ) are
both proportional to@(1/r )(]N0 /]r )#, so in fact the inte-
grand vanishes at a point where@(1/r )(]N0 /]r )# passes
through zero.

In the usual manner, a general perturbation can be
pressed as a sum over the eigenmodes

dN~u,r ,t !5(
l ,v

al ,vdNl ,v~r !exp@ i l u2 ivt#, ~53!

where the orthogonality conditions~in r andu) allow us to
determine the coefficientsal ,v in terms of the initial condi-
tions
al ,v5
*0

Rrdr @~1/r !~]N0 /]r !#21dNl ,v~r !*0
2p~du/2p! e2 i l udN~u,r ,t50!

*0
Rrdr @~1/r !~]N0 /]r !#21dNl ,v

2 ~r !
. ~54!
In Eq. ~53!, the sum overv typically contains a continuum
portion.

One caveat concerns the completeness of the
$dNl ,v(r )% in the special case where@(1/r )(]N0 /]r )# van-
ishes over a finite interval. Over this interval all of th
$dNl ,v% vanish, so sum~53! can represent only initial pertur
bations that vanish on the interval. Physically, this is no
problem, since all perturbations that arise throughE3B drift
dynamics@i.e., through Eq.~46!# satisfy this condition.

An easily obtained variant of Eq.~51! is the relation
et

a

05~v2v8* !E
0

R

rdrdNl ,v8
* ~r !dNl ,v~r !F1

r

]N0

]r G21

.

~55!

Settingv5v85v r1 ig and using Eq.~46! yields the result

05E
0

R

rdr
u ldf l~r !u2g

@v r2vE~r !#21g2

1

r

]N0

]r
. ~56!

Thus, instability (g.0) is possible only if]N0 /]r changes
sign over the interval@0,R#. For a confined column,]N0 /]r
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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must be negative at larger, so instability requires that ther
be a region where]N0 /]r .0. This modified Rayleigh crite-
rion has been found before5,7 and has an analogy in the infi
nite length theory,1,8 in which thez-integrated density is re
placed by local density.

We emphasize that the condition]N0 /]r .0 is neces-
sary, but not sufficient, for an instability. For example,
plasma with a length function that increases with radius n
r 50 can have uniform local density,n0(r )5n0 , and still
have]N0 /]r .0 near the axis. Such a plasma is a shear-f
global thermal equilibrium,1,16 which is known to be stable

V. NUMERICAL IMPLEMENTATION

The equations are discretized at radial points$r i : i
51•••N%. The plasma state is completely determined by
vector$dNl ,v(r i)%. The vector$dLl ,v(r i)% is determined by
the discretized form of Eq.~48!

(
i

Aji dLl ,v~r i !5(
i

Bji dNl ,v~r i !, ~57!

which can be inverted to obtain

dLl ,v~r k!5(
i , j

Ak j
21Bji dNl ,v~r i !.

Substituting this into Eq.~46! then yields an expression fo
the potential inside the plasma

df l ,v~r j !5(
i

Cji dNl ,v~r i !. ~58!

We can now form an eigenvalue equation using Eq.~47!

vdNl ,v~r j !5 lvE~r j !dNl ,v~r j !

1
cl

Br j

]N0

]r j
(

i
Cji dNl ,v~r i !. ~59!

This matrix can be diagonalized using standard techniqu
The difficulties encountered in the numerical impleme

tation primarily concern the convergence of the Green fu
tion @see Eqs.~7! and ~8!# and its axial derivative. The con
vergence of these expressions is provided by the sp
separation of the source and observation points. In form~7!,
the exponential ensures convergence when its argumen
comes large compared with unity. Forn@1, x ln;np and
the number of terms required in the matrix element summ
tion is roughlyR/uz2z8u. This result illustrates the two mai
reasons for incurring additional computational costs. First
the number of radial points is increased, the space betw
nearest neighbors is reduced and more terms will contrib
in the summation. Therefore, increasing the spatial resolu
to obtain greater accuracy will not only result in larger m
trices, but the summation required to compute neighbor
matrix elements converges more slowly as well. Second
the size of the plasma is reduced with respect to the cy
drical wall, the spacing of grid points will also decrease. T
implies that for a given number of discretization points, t
eigenmode solution of smaller plasma requires more com
tation time. An example will illustrate this point. In Se
VI A below, we compare our results to an analytic soluti
Downloaded 14 Mar 2001 to 132.239.69.90. Redistribution subject to
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obtained by Dubin. Dubin’s theory assumes a quadratic t
potential and neglects the image charges induced in the
ducting wall. To satisfy these requirements in our system,
choose a small plasma whose radius is one tenth of the
radius. The solution for such a plasma requires three tim
more cpu runtime than a similar plasma whose radius is
half of the wall radius, while 200 radial grid points are us
in each case. The solution of the latter requires four minu
on a 300 MHz Pentium II.

We are not always guaranteed that summation in fo
~7! will converge for arbitrarily many terms. For exampl
nonmonotonic length functions may haveL0(r 1)5L0(r 2)
for r 1Þr 2 . In this situation, the argument of the exponent
vanishes and it becomes advantages to use the integra
pression for the Green function in form~8!. This integral
converges due to the asymptotic behavior of the modifi
Bessel functions. For values ofk@1, the integrand varies a
k21 exp@2k(r.2r,)#, which becomes small whenk.ur
2r 8u. Therefore, the integral form of the Green function c
be used to calculate matrix elements for which the summ
tion in ~7! fails or converges too slowly.

The discretized surface charge perturbation$dL(r i)%
represents a series of ring charges located at@r i ,L0(r i)#.
These coordinates are also the positions at which]df/]z is
evaluated in constraint~48!. When the charged ring sourc
and the observation point are collocated, which is the c
for the diagonal elements ofAji , the electric field diverges
To avoid this situation, we note that in this instance the c
tribution from the image charge induced in the conduct
wall is negligible. Therefore, this region of the plasma
well-approximated by the surface charge in free space wh
is produced upon rotating the line segment connecting ne
boring grid points about thez axis. The field evaluation poin
is on the interior side of this surface and can be taken a
trarily close. The axial electric field is dominated by the loc
surface charge and we may assume this field is adequa
described asdEz5 ẑ•2psn̂, wheren̂ is the inward normal
to the surface.

In general, the accuracy of a numerical solution to
discretized equation is determined by the total number
evaluation points. Higher accuracy can be obtained at
cost of larger memory requirements and longer cpu r
times. For this calculation, finer grids also increase the d
culty of performing the summations. As the grid spacing
decreased, more and more terms in the sums are neede
accurate evaluation of the matrix elements. In the soluti
presented below no more than one million terms were kep
the summations. This was sufficient to compute matrices
order 400, and achieve convergence in the solutions. A
customary in the numerical solution of equations, conv
gence is assumed when a large increase in spatial resol
produces little or no change in the results.

VI. RESULTS

A. Comparison to Dubin modes

Although our model is analytically intractable for th
general case, there is a special case for which we can c
pare our numerical results to the predictions of an anal
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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theory. A small uniform density plasma that is confined
the central region of a trap, where the trap potential is ne
quadratic, has the shape of a spheroid. Using spheroida
ordinates and cold fluid theory, Dubin17 obtained the com-
plete spectrum of electrostatic modes. For a special clas
these modes, the mode potential does not vary axially in
the plasma~i.e., ]df/]z50), so our numerical solution
should include these modes. Figure 5 compares our num
cal solutions for the frequencies of these modes to the
dictions of Dubin. The frequencies are plotted as a funct
of plasma aspect ratio (l p /r p), and results for the first five
azimuthal mode numbers (l 51, . . . ,5) areshown. The re-
sults of our calculations are in excellent agreement with D
bin’s predictions.

An important distinction between Dubin’s analysis a
ours is that he uses cold fluid theory and we use bou
averaged dynamics. Both of these approximations are us
but they apply to different classes of experiments. Cold fl
theory requires the axial bounce frequency to be small~i.e.,
v,vE@vb→0), and bounce averaged dynamics require
to be large~i.e.,vb@v,vE). Note that both Dubin’s analysi
and ours assume that the Debye length is small. As m
tioned earlier, it may seem that large bounce frequency
small Debye length are not compatible, but the two inequ
ties vb@v,vE and lD! l p can both be satisfied provide
that vp /Vc!lD / l p . In cold fluid theory, the potential for a
typical mode admitsz-variation inside the plasma, wherea
such variation is prohibited~Debye shielded out! in our
analysis. The fact that Dubin’s analysis leads to a class
modes with noz-variation is presumably an accident of th
spheroidal geometry.

A further check on the validity of our solutions concer
the Debye shielding condition. In our development, we
sumed that the mode potentials are independent of axial
sition inside the plasma. This constraint is imposed by s
ting thez-electric field equal to zero just inside the surfac
After solving for the modes, we can check to see that t
was sufficient to guaranteez-independence throughout th
plasma interior. Figure 6 plots the mode potentials due to
z-integrated density perturbation, the length perturbation,

FIG. 5. Comparison to Dubin’s analytic theory of small (r p5R/10) sphe-
roids. Mode frequencies are given for the first five azimuthal wave num
and are normalized to the rotation frequency.
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their sum vs axial position along an arbitrary field liner
5r p/6). Thez-electric fields from the two perturbations ca
cel everywhere inside as expected. This consistency ch
has been verified for other modes and along other field li
as well.

B. New modes

One effect of finite column length is to introduce a ne
class of discrete diocotron-like modes for the case of plas
with low shear in the rotational flow. The modes take th
simplest form for a uniform density plasma, which is she
free. An infinitely long column of uniform density suppor
only a single discrete diocotron-like mode for each azimut
mode number.10 In contrast, a finite length column of uni
form density supports many additional discrete diocotro
like modes.

These modes were predicted by Finnet al.,5 who drew
an analogy between the new modes and Rossby waves i
quasigeostrophicb-plane approximation.6 To obtain a
simple equation for the modes, these authors set the pe
bation in plasma length equal to zero~i.e., dLl ,v50). Al-
though this approximation is not rigorously correct and
cannot expect quantitative agreement with the numerical
sults, the analysis captures the essence of the new mode
has the great advantage of simplicity.

SettingdLl ,v50 and using Eqs.~45! and ~47! yields

4pednl ,v~r !5
4lvE

lvE2v
k~r !df l ,v~r !, ~60!

where

k~r ![2
1

2rL 0~r !

]L0

]r
. ~61!

Inside the plasma,df l ,v(r ) then satisfies the 2D Poisso
equation

1

r

d

dr
r

ddf l ,v

dr
2

l 2

r 2 df l ,v~r !1
4lvE

lvE2v
k~r !df l ,v~r !50.

~62!

rs

FIG. 6. Mode potentials along axis (r 5r p /6) produced bydN and dL
~note: their sum cancels as expected!.
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As a further simplification, Finnet al. assume thatk(r ) is
constant out to the wall atr 5R. The solution is then given
by a Bessel function.

df l ,v~r !5AJlFA 4lvEk

lvE2v
r G , ~63!

and the boundary conditiondf l ,v(R)50 then yields the dis-
persion relation

v2 lvE52
4lvEkR2

x ln
2

, ~64!

wherex ln is thenth zero ofJl . Fork positive corresponding
to negativeL08(r ), the modes are down shifted in azimuth
phase velocity from the plasma rotation frequency by a sm
amount that tends to zero as the number of radial node
the eigenfunction increases.

For a more realistic case where the plasma does not
tend to the wall butk is positive, Eq.~62! again describes a
sequence of modes with phase velocities down shifted f
the rotation frequency by a small amount tending to zero
the number of nodes increases. Of course,k need not be
positive everywhere. We will consider an example wherek
is negative for smallr and positive for larger. In this case,
Eq. ~62! implies two sets of new modes: A set with dow
shifted phase velocity that lives in the region of positivek
and a set with up shifted phase velocity that lives in
region of negativek. The sign of the shift follows from the
requirement thatk/( lvE2v) be positive for oscillatory so-
lutions of Eq.~62!. We find that these predictions are bo
out at least qualitatively by our numerical solutions of t
full equations.

As a first example, we consider thel 51 modes of a
uniform density column in a trap characterized byR5Z
53.5 cm andV527 Volts. Inside this trap we have a non
neutral plasma whose radius is 1.75 cm and whose unif
local density isn05107 cm23. The equilibrium lengthL0(r )
is obtained using a slightly modified algorithm which mai
tains a constant local density as opposed to a cons
z-integrated density and is shown in Fig. 7. Note thatL08(r )
is negative corresponding to positivek. As expected this
plasma supports many new discrete eigenmodes in add

FIG. 7. Equilibrium length function for a uniform density plasma (n0

5107 cm23, Z5R53.5 cm,V527 Volts!.
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to the usual diocotron mode. Figure 8 shows the lowest
eigenfrequencies~normalized to the plasma rotation fre
quency!. The lowest frequency mode is the usual diocotr
mode. Its eigenfunction is]N0 /]r and its motion is a dis-
placement of the column off-axis and the subsequent rota
of the entire column about the trap axis. Figure 9 gives
z-integrated density perturbations for the first three eig
modes. The modes are indexed by a radial wave numbenr

which indicates the number of radial nodes in the eigenfu
tion. As the radial index increases, the mode frequencies
proach the rotation frequency. These modes are all disc
modes as opposed to continuum modes which exist for
umns with shear in the rotational flow. Note that all the fr
quencies are lower than the rotation frequency of the c
umn. This is a consequence of the monotonically decrea
length function~i.e., k.0).

There are equilibria whose length functions do not d
crease monotonically with radius. Such equilibria can ex
in standard Malmberg–Penning traps when the plasma ra
is close to that of the trap. However, to better illustrate
effect of hollow end shape, we will consider a modifie
Malmberg–Penning trap in which two small (r 5R/50) con-
ducting rings are placed just outside the plasma ends
coaxial with the trap. To obtain significantly hollow en
shapes, we bias the rings to an appropriate positive poten

FIG. 8. l 51 eigenmode frequencies for plasma shown in Fig. 7~indexed by
a radial wave numbernr).

FIG. 9. Z-integrated density perturbations of the first three radial eig
modes in Fig. 8.
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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418 Phys. Plasmas, Vol. 8, No. 2, February 2001 T. J. Hilsabeck and T. M. O’Neil
In principle, we should also modify our Green function
account for the image charges induced on these rings by
mode perturbations. However, if the rings are sufficien
small we can safely ignore these images. Figure 10~a! shows
a hollow end shape equilibrium. Here the uniform loc
plasma density isn05107 cm23, R5Z53.5 cm, V521
Volts and the additional conductors are located atz5
62.625 cm. Figure 10~b! shows the eigenmode frequenci
of the system. In addition to the slow modes discussed
lier, there are modes which rotate faster than the column.
presence of both slow and fast modes on the same colum
a result of the length function having a radial derivati
which changes sign. As expected, the density perturbat
associated with the fast~slow! modes are localized where th
length function is increasing~decreasing! with radius.

C. Shear profiles

The discrete modes of a rigid rotor plasma can be
stroyed by the introduction of shear into theE3B flow. For
an infinite length column, thel .1 diocotron modes are ab
sorbed into the continuum18 when they become resonant wi
the plasma rotation frequency.

Finite length columns also exhibit this phenomenon.
the local density profile is smoothed, the highnr modes are
absorbed into the continuum as they become resonant
the fluid. Thez-integrated density eigenfunctions of the
modes are no longer smooth functions indexed by a ra
wave number, but become discontinuous at the resonan
dius. Forl 51, a plasma with significant shear and a mon
tonically decreasing length function retains only its cent
of-mass discrete mode. All other eigenmodes are part of
continuum. Experimentally prepared profiles typically co
tain shear and this may explain why the higher order mo
have not been observed.

For monotonically decreasingn0(r ), only modes which
rotate slower than the central rotation frequency will beco
resonant with the plasma rotation and are absorbed into

FIG. 10. ~a! Hollow equilibrium length function (R5Z53.5 cm, V527
Volts!. ~b! Eigenfrequencies for hollow end shape column.
Downloaded 14 Mar 2001 to 132.239.69.90. Redistribution subject to
he

l

r-
e
is

ns

-

s

ith

al
ra-
-
-
e

-
s

e
he

continuum. However, hollow end shape plasmas supp
modes with azimuthal phase velocities above the highest
tation frequency. These modes remain discrete in the p
ence of shear and may be observable experimentally. Fig
11~a! shows a local density profile which is consta
throughout the column and falls smoothly to zero near
edge. Figure 11~b! is the equilibrium length function for this
density profile and is a nonmonotonic function of radius.
Fig. 12~a!, we plot the spectrum of eigenmodes for this sy
tem. Except for the lowest frequency center-of-mass mo
all of the discrete modes with frequencies lower than
central rotation frequency have become part of the c
tinuum. The addition of more grid points will fill in the con
tinuum with more modes. On the contrary, the modes wh
rotate faster than the plasma are discrete and remain s
rated from each other by fixed frequency intervals as
spatial resolution is increased. Thez-integrated density per

FIG. 11. Smoothed local density profile and hollow equilibrium length fun
tion (R5Z53.5 cm,V521 Volts!.

FIG. 12. ~a! Spectrum of eigenmodes.~b! Eigenfunctions for the highes
frequency mode and a continuum mode.
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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turbations for the fastest mode and one of the discrete mo
are shown in Fig. 12~b!. The solid curve represents the fa
discrete eigenmode. The perturbation is most prominent
small radii where the length function is increasing with r
dius and is smallest at larger radii where the length funct
is decreasing. The dashed curve is a continuum eigenm
and exhibits the characteristic discontinuity at the reson
radius.

D. Diocotron instability for azimuthal mode number
lÄ1

Another problem where finite column length plays
important role is thel 51 diocotron instability. As mentioned
earlier, a necessary condition for diocotron instabilities
thatN0(r ) be nonmonotonic. For an infinitely long column,
normal mode analysis9 predicts neutral stability @i.e.,
Im(v)50] for all l 51 modes, and an initial value analys
predicts the possibility of algebraic growth~i.e., dn}At).
However, experiments2,3 clearly exhibit exponential growth
for l 51 modes.

Smith12 and Finnet al.5 have argued theoretically tha
the exponential growth is due to finite column length. Lik
wise, our numerical solutions find the possibility of expone
tial growth for l 51 modes. However, we will find that quan
titative agreement with the measured growth rates
frequencies requires the inclusion of a kinetic effect~see Sec.
VII !.

First we examine the results from the zero Debye len
theory ~no kinetic effect!. Consider thez-integrated density
profile in Fig. 13~a!. Figure 13~b! shows the equilibrium
length function calculated forR53.5 cm,Z510.4 cm, and
V560 Volts. The spectrum of eigenmode frequencies
this system is given in Fig. 14~a!. We can clearly see the
continuum, the discrete stable mode frequency and the
complex conjugate frequencies of the unstable mode.
eigenfunctions of the discrete stable mode and the unst
mode are shown in Fig. 14~b!. The eigenfunction of the

FIG. 13. Hollow z-integrated density profile and calculated equilibriu
length function (R53.5 cm,Z510.4 cm,V560 Volts!.
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stable mode is]N0 /]r and represents the usual center
mass mode. The unstable mode eigenfunction has a gl
character and vanishes at the radius where thez-integrated
density is largest. Thez-integrated density profile in Fig
13~a! is a smooth fit to an experimental profile. The expe
ment measured a growth rate of 0.045 and a frequenc
0.99 @normalized tovE(0)52pen0(0)c/B]. These values
are quite different than the computed values of 0.013 a
1.17. These discrepancies are common to other density
files and length functions. We will return to this subject
Sec. VII.

Finn et al.5 cite two finite length effects which contribut
to the l 51 instability: Curvature in the end shape and var
tion in the plasma length due to the presence of the mo
Their growth rates due to curvature effects are compa
with our results in Fig. 15 for two different hollow densit
profiles. The curvaturek @defined in Eq.~61!# is obtained by
fitting the equilibrium length function to a quadratic nearr
50. For large values ofk this is a reasonable approximatio
and the two theories obtain similar growth rates. As the e
cap voltages are increased, the curvature near the trap

FIG. 14. Spectrum of eigenmodes and eigenfunctions for stable and
stable modes~note: unstable mode eigenfunction shown isudNu).

FIG. 15. Growth rate vs curvature comparison to the theory of Finnet al.
~Ref. 5!.
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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tends to zero and the results differ greatly. Finnet al.5 also
find that the perturbation of the plasma length is a source
instability and obtain finite growth rates for plasmas w
zero curvature nearr 50. However, the length perturbation
included by using a boundary condition that is chosen
analytical convenience rather that fidelity to the experimen
geometry. Our method requires numerical implementat
but more accurately reflects the experimental geometry. T
distinction makes comparison of growth rates due to len
perturbations not possible.

Although the finite length theory calculations predict t
existence of exponential instabilities in hollow columns, t
quantitative agreement with the experiments is poor. The
culations consistently find growth rates 4 to 5 times sma
and real frequencies 20%–30% larger than the values m
sured in the experiments. However, these discrepancies
be the result of kinetic effects and the specific manner
which the hollow density profiles are created.

VII. KINETIC CORRECTIONS

In this section, we include a kinetic correction that c
be important even though it is of orderlD

2 . Linearizing the
Hamiltonian~43! with respect todf anddL yields H5H0

1dH, where

H05
I 2p2

8mL0
2~pu!

1ef0~pu! ~65!

and

dH5edf~u,pu ,t !2
I 2p2

4mL0
3~pu!

dL~u,pu ,t !. ~66!

Substituting into the kinetic equation~38! and decomposing
into Fourier components int andu yields the result

Fv r1 ig2 lvE1
l I 2p2

4mL0
3~pu!

]L0

]pu
G^d f l ,v&c~pu ,I !

52 l Fedf l ,v~pu!2
I 2p2

4mL0
3~pu!

dLl ,vG ] f 0

]pu
~pu ,I !. ~67!

Since the mode of interest here is unstable, the mode
quency is expressed as a complex quantity explicitlyv
→v r1 ig).

The term involvingdLl ,v is order (lD /D)2 smaller than
the df l ,v term and can be ignored (D is the scale length on
which the potential varies and is on the order of the plas
radius!. However, theI-dependent term on the left-hand sid
must be kept since near the resonancev r2vE vanishes and
the growth rateg is assumed to be small. Thus, we obtai

^d f l ,v&c5
2 ledf l ,v ~] f 0 /]pu!

v1 ig2 lvE1 @ l I 2p2/4mL0
3~pu!#~]L0 /]pu!

.

~68!

Integrating overI and multiplying byv r1 ig2 lvE produces
the kinetic eigenvalue equation
Downloaded 14 Mar 2001 to 132.239.69.90. Redistribution subject to
of

r
l
,
is
h

l-
r
a-
ay
n

e-

a

~v r1 ig2 lvE!dNl ,v

52 ledf l ,v~v r1 ig2 lvE!

3E
0

`
2pdI

] f 0

]pu

v r1 ig2 lvE1
l I 2p2

4mL0
3~pu!

]L0

]pu

. ~69!

Setting the term involvingI in the denominator to zero re
sults in the nonkinetic eigenvalue equation~47!. The kinetic
correction represents the dependence of the bounce aver
rotation frequency on the axial particle energy. In order
turn around at the ends, the fast particles must receiv
larger impulse. Since the electric force providing this chan
in momentum is aligned normal to the surface of the plasm
there is both an impulse inz and in r provided the ends are
not flat ~note the dependence on the radial derivative ofL0).
Therefore, particles with different axial energies have diff
ent bounce averaged rotation frequencies and plasma
ticles at several different radii can be in resonance with
unstable mode. We will show later that the newI-dependent
term substantially affects the behavior of the unstable m
and is sensitive to the details of the particle distribution fun
tion.

The inclusion of the kinetic correction to the rotatio
frequency in our eigenvalue equation produces a matrix
erator which depends functionally on the frequency of
eigenmode. Since the mode frequency is not knowna priori,
the discretized operator cannot be diagonalized direc
However, we are only considering one particular mode in
eigenspectrum and the kinetic correction to the eigenvalu
this mode is obtained using the following iterative techniqu
First, the nonkinetic unstable mode frequency,v (0)1 ig (0) is
substituted into the right hand side of Eq.~69!. Next, the
integral overI is performed. The result is a standard eige
value problem. After diagonalizing the resulting system
discretized equations, the adjusted unstable mode freque
v (1)1 ig (1), is identified. The new frequency is then subs
tuted back into Eq.~69! and this procedure is repeated un
the mode frequency converges to a stationary value. T
method is successful provided the temperature is increa
slowly. Also, this method will work for an arbitrary distribu
tion function, since the integral overI may be performed
numerically.

The distribution of axial particle velocities can be grea
affected by the experimental method used to create the
low z-integrated density profiles. Initially, a monotonic co
umn is created and held in the trap until local thermal eq
librium is established along the field lines. Therefore, t
initial distribution of axial particle velocities is a Maxwellia
and the temperature is typically uniform in radius. Usi
action-angle variables, the initial distribution takes the fo

f 0
i ~pu ,I !5

N0
i

A2p3 Ī 2
expS 2

I 2

2 Ī 2D , ~70!

where Ī 5(2L0
i /p)(mT)1/2 and the superscripti stands for

initial. The axial confining potential at one end is then low
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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ered and the more energetic particles escape from the
Since the plasma potential is highest~and the trap potential is
lowest! on-axis, more particles are lost near the center
the resultingz-integrated density profile is hollow. In prev
ous experiments, the confining potentials have been chan
on a time scale comparable to a bounce period and the
sulting distribution function of the hollowed column is n
readily found.

In order to illustrate the effect the hollowing process c
have on the instability, we will consider an experimen
situation for which the distribution function is known. Sp
cifically, the confining potential can be lowered and rais
slowly with respect to a bounce period. Under such circu
stances, the bounce action of the remaining particles is
variant. Therefore, the number of particles along a giv
field line with actionI< Î (pu) remains fixed,

f 0
f ~pu ,I !5S f 0

i ~pu ,I ! I< Î

0 I . Î
D , ~71!

and the superscriptf indicates final. The final distribution
function is a truncated Maxwellian. In truth, the bounce a
tion of particles near the separatrix is not conserved. Pres
ably, these nonadiabatic particles will smooth out the dis
bution function near the truncation point. However, resu
obtained for artificially smoothed distribution functions a
not substantially different. Because the instability grow
rate is larger than the collision frequency, the velocity dis
bution does not have a chance to relax back to a Maxwell
The maximum action allowed on a field line,Î (pu), is deter-
mined from the initial and finalz-integrated density profiles
and the initial temperature.

N0
f ~pu!5E

0

`

2pdI f 0
f ~pu ,I !

5E
0

Î (pu)
2pdI f 0

i ~pu ,I !

5N0
i ~pu!erfF Î ~pu!

A2 Ī ~pu!
G . ~72!

FIG. 16. An initial z-integrated density profile and the hollow profile o
tained after ejection.
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The temperature andz-integrated density profiles can b
measured experimentally and thusÎ (pu) is known. Figure 16
shows twoz-integrated density profiles. The solid curve re
resents a likely initial profile before the ejection process~the
actual initial profile for this experiment was not measure!.
The dashed curve represents the final, hollow profile wh
supports the diocotron instability.

Figure 17 shows the corrections to the real frequen
and the growth rate as the temperature increases. The
lines represent the kinetic corrections for a plasma wh
axial velocity distribution is a Maxwellian. In this case, th
kinetic effects are insignificant. The dashed curves depict
corrections for a plasma with the truncated distribution d
fined by the profiles of Fig. 16. Here, the growth of th
instability is greatly enhanced and the frequency is shif
down. In each case, the kinetic effects produced by the tr
cated distribution are substantially different than the non
netic results and the kinetic effects due to a Maxwellian d
tribution. This suggests that the instability cannot
completely understood in terms of density profiles alone.

Exact comparisons between the theory and experim
have not yet been made. The available experimental dat
l 51 diocotron instabilities does not include the initi
z-integrated density profiles before hollowing. Furthermo
the hollowing processes have not been adiabatic and the
distribution of axial energies is not known. However, corre
tions have been calculated for various probable initial p
files and different distribution functions. The results indica
the hollowing process can substantially affect the instabil

VIII. CONCLUSION

We have developed a Zero Debye Length Reduced
scription for a nonneutral plasma column confined in
Malmberg–Penning trap. The critical assumption of th
model is that the rapid bounce motion along field lines p
duces axial Debye shielding for the equilibrium and the lo

FIG. 17. Effects of finite temperature on thel 51 hollow profile instability
@~a! real frequency,~b! growth rate# for a Maxwellian velocity distribution
and the truncated distribution obtained from the profiles of Fig. 16.
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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422 Phys. Plasmas, Vol. 8, No. 2, February 2001 T. J. Hilsabeck and T. M. O’Neil
frequency diocotron modes. Using this model, an eigenva
equation for linear diocotron modes was obtained for a fin
length plasma column. A Green function formulation w
used and the eigenmodes were obtained from a matrix di
nalization of the discretized system of equations.

The solutions revealed the existence of many disc
modes in rigid rotor plasmas not found in the infinite leng
theory. It was also shown that these are absorbed into
continuum when shear in the plasma rotation velocity p
duces resonances with the modes. Discrete modes rot
faster than the plasma were observed in hollow end sh
plasmas. It was further demonstrated that these modes
not destroyed by a small amount of shear and might be
servable experimentally.

We have also found instabilities for hollow density pr
file columns and verified that finite length columns are e
ponentially unstable even forl 51. Furthermore, we have
shown that, in some cases, kinetic effects and the detai
the axial velocity distribution function can have importa
consequences on the growth rate and real frequency o
unstable diocotron modes.
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