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Diocotron modes are discussed for a finite length nonneutral plasma column under the assumption
of bounce averageld X B drift dynamics and small Debye length. In this regime, which is common

to experiments, Debye shielding forces the mode potential to be constant along field lines within the
plasmai.e.,d54/dz=0). One can think of the plasma as a collection of magnetic-field aligned rods
that undergoEX B drift across the field and adjust their length so as to maintain the condition
d8¢ldz=0 inside the plasma. Using the Green functiéor a region bounded by a conducting
cylinden to relate the perturbed charge density and the perturbed potential, imposing the constraint
d6¢ldz=0, and discretizing yields a matrix eigenvalue problem. The mode eigenvector
ON| ,(r;)=Jdzén, ,(r;,2) is the Ith azimuthal Fourier component of theintegrated density
perturbation, and the frequenay is the eigenvalue. The solutions include the full continuum and
discrete stable and unstable diocotron modes. Finite column length introduces a new set of discrete
diocotron-like modes. Also, finite column length makes possible the exponential grovthlof
diocotron modes, long observed in experiments. The paper focuses on these two problems. To
approach quantitative agreement with experiment foif th# instabilities, the model is extended to
include the dependence of a particle’s bounce averaged rotation frequency on its axial energy. For
certain distributions of axial energies, this dependence can substantially affect the instability.
© 2001 American Institute of Physic§DOI: 10.1063/1.1340856

I. INTRODUCTION for a particle,w,,. In accord with experimerft® we assume
that the frequencies are ordered Qs> wp> wg~w. The
This paper provides a description of diocotron and conmode evolution can then be treated with bounce aveEage
tinuum modes for a finite length nonneutral plasma coldmn. x B drift dynamics.
The plasma is confined in a Malmberg—Penning trap with the  Also in accord with experiment, we assume that the De-
configuration shown in Fig. 1. The wall is a conducting cyl- bye length is small compared to the plasma dimens{pbes
inder of radiusR that is divided axially into three sections, \p<<r,,l,). At first glance, the two inequalities,> wg and
with the central section grounded and the two end sectionsp<I, look contradictory, but they both can be satisfied
held at a positive potentiaf (to confine a plasma of positive provided w,/Q <\p/l,, where w, is the plasma fre-
charges The central section has an axial length & @nd  quency. Here, we have used,~v/l,, wE~w§/QC, and
the end sections extend to infinity. The plasma resides in tth:v_/wp, whereuv is the thermal velocity. The frequency
region of the central grounded section, with axial Conﬁne'ordering and the smallness of the Debye length justify a re-
ment prOVided by electrostatic fields and radial Conﬁnemenauced description of the p|asma. In this Zero Debye Length
by a uniform axial magnetic field. Reduced Description, the plasma cannot toleraigields
Because the plasma is nonneutral, there is a substantiglit) any electric field §¢/9z) along the magnetic field. The
radial electric field, and the plasma experiencesEanB plasma densityn(z,6,r,t), is constant along within the
drift rotation, wg= — (c/Br)(d¢o/dr). Here,¢o(z,r) is the  plasma and drops abruptly to zero at the plasma émlshe
equilibrium plasma potentiaB= —zB is the magnetic field, scalexp,—0). Along each field line, the plasma is charac-
and @z, 6,r) is a cylindrical coordinate system with tkexis  terized by a well-defined lengthL.Z 6,r,t). For convenience,
coincident with the axis of the trap. For a plasma of positivewe useL (4,r,t) for the half-length.
charges, it is convenient to choose the magnetic field in the The plasma can be thought of as a collection of
—7 direction; this makes the rotation frequentand the ~Magnetic-field aligned rods that move across the field
mode frequencigspositive. The frequencies are the same forthrough EXB drift motion and adjust their length so that
a plasma of negative charges if the sign of the confinemerft®/ 9z vanishes everywhere inside the plasma. We will see
fields is reversedi.e., B——B andV— — V). that this constraint is satisfied #¢/dz vanishes on the

The modes of interest are characterized by frequencie@l@Sma surfacgi.e., for|z|=L(6,r,1)].
that are comparable to the rotation frequefiog., w~ wg). With L(#6,r,t) determined in this way, the plasma state

The other important dynamical frequencies are the cyclotrofs SPecified by the two-dimensionzintegrated density dis-
frequency 2., and the characteristic axial bounce frequency!fiPution

N(e,r,t)=J

+ 00

dzn(z,0,r,t)=2n(6,r,t)L(0,r,t), (1
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27 measure of the end shape curvature a0. Neglecting any
perturbation in the plasma length, they then obtained a
R simple dispersion relation for the modes that predicts a
T 0 T Lo - dependent shift in the azimuthal phase velo¢iglative to
- = @ — — =B the plasma rotation The predicted frequencies are in quali-
__________ - tative agreement with our numerical results when the end

shape is well-approximated by a quadratic function, but can
| _J_ | differ significantly in other cases.
—_— For example, the end shape can increase with radius on-
- axis (corresponding to negative curvatuend decrease with
FIG. 1. Malmberg—Penning confinement geometry. The end cylinders exfadius off-axis(corresponding to positive curvatyrén this
tend out to infinity. case, we find some modes that have a positive phase velocity
shift and others that have a negative shift, whereas the dis-
persion relation predicts a single sign for the shift. The
wheren(4,r,t) is the particle density inside the plasma. Themodes with negative shift “live” in a radial region where the
electric potentialp(z, 0,r,t) is expressed as a functional of equilibrium length is a decreasing function of radius, and the
N(o,r,t) and L(#0,r,t) through an integral over a Green modes with positive shift live in the region where the length
function for the trap geometry. The advantage of the reducet increasing. The significance of the modes with positive
description is that it captures the three-dimensional nature oghift is that they are more able to withstand small shear in the
modes on a finite length plasma, while using a two-rotational flow. They rotate faster that the plasma.
dimensional(2D) distribution to describe the plasma state. Next we focus on a particular instability that exists be-

To discuss the modes, this distribution is written ascause of finite column length. In general, a necessary condi-
N(6,r,t)=Ng(r)+ N, ,(r)exp(l —iwt), where the first tion for diocotron-like instabilities in an infinitely long col-
term describes the equilibrium and the second describes wmn is that the column densitpg(r), be nonmonotonic in
mode. Likewise,L(#6,r,t) is written as the sumlLy(r) r.l For example, a hollow column satisfies this criterion.
+ 6L, ,(r)exp(l 6—iwt), and the equations are linearized in Likewise, a necessary condition for such instabilities in a
SN, , and éL, . The analysis is implemented numerically, finite length column is thaNy(r) be nonmonotonié.” De-
with functions evaluated at a set of discrete radial pointdailed stability analyses for an infinitely long, hollow column
{rj}. The mode eigenvectg®N, ,(r;)} is determined as the have been carried out previoust§ The modes for azimuthal
solution to a matrix eigenvalue problem, where the fre-mode numbef=1 are special in that analytic solutions are
guencyw is the eigenvalue. In the usual manner, eigenvecpossible for any density profile,(r). Surprisingly, the
tors for different eigenvalues are orthogonal, and a generalnalysis predicts that the=1 modes are neutrally stable,
linear solution can be written as a superposition of modes. that is, the imaginary part of the mode frequeneys zero

The set of modes includes what in an analytic theoryeven for hollow column&:!® An initial value solution of the
would be called continuum modes as well as discrete modefinite length, | =1 diocotron instability yields algebraic
In this sense, the work extends recent work on 2D modes fogrowth!! However, exponential growth df=1 modes is
an infinitely long columrf. observed experimentally for hollow columns of finite length.

We focus on two aspects of the modes that are due to  Smith? predicted exponential growth when the plasma
finite column length. The first is the existence of a new set ofotation frequency differs from that given by Gauss’ law for
discrete diocotron-like modes that appear in plasmas witlan infinite column. He included a small shift in the rotation
very low shear in the rotational flow. The prototype of suchfrequency arguing heuristically that it was due to the end
a plasma is the uniform density plasma, for which the flow isconfinement fields. Finet al®> also considered this problem
a shear-free rigid rotation. It is well known that an infinitely and obtained exponential growth. Again their analysis ap-
long column of uniform density supports only one discreteproximated the plasma length by a quadratic function. A
diocotron-like mode for each azimuthal wave numbén. mode induced perturbation in the plasma length was in-
contrast, a uniform density column of finite length supportscluded for this analysis, but was implemented by a clever
many additional discrete diocotron-like modes, with azi-technique chosen for analytic convenience rather than ex-
muthal phase velocities that are shifted from the rotatiorperimental fidelity.
frequency by a small amount that depends on the plasma end In contrast, our model accepts an arbitrary plasma shape
shape. The shift tends to zero as the number of nodes in trend our axial boundary conditions are realistic. Also, our
radial eigenmodegN, ,,, becomes large. A density variation model incorporates the perturbation of the plasma length
in the equilibrium introduces shear in the rotational flow, andself-consistently using a Green function. Nevertheless, the
the new modes are absorbed into the continuum, as theyo models find similar growth rates for plasmas with sig-
become resonant with the fluid at some critical radius. nificant curvature.

These new modes were predicted by Fatral,> who Although consideration of finite length effects predicts
drew an analogy between the modes and Rossby waves the existence of ah=1 instability, good quantitative agree-
the quasigeostrophi@-plane approximatiofi.For analytic  ment with experiments has not been achieved. In general, the
convenience, these authors approximated the plasma lenggfnowth rates due to finite length effects alone are several
by a quadratic functionlo(r)=Lo(1—«r?), wherex is a  times smaller than the experiments measure. Also, the calcu-
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lated real frequencies are very near the maximum rotation te o fem (RO
frequency of the plasma, while the experiment may observe ~ ¢(Z,0.1,t)= ¢T(Z:r)+eﬁx dz fo do fo r'dr
a frequency 25% lower.

In Sec. VII, we shall see that the incorporation of kinetic XG(z,0,r|2',6",r')n(z',0"r'1), (6)
effects and the details of how the hollow columns are pre- . . Do
pared have a significant impact on the instability. The impor—Whered)T(z'r) is the trap potential anG(z,0,r|z',6",r") is

S . o a Green function that vanishes on the wall. Hetg(z,r)
tant kinetic effect is the dependence of a particle’s bounce _,. . .
) . . Satisfies the Laplace equation and matches the boundary con-

averaged rotation frequency on its axial energy. The faster g... -

. : : itions specified forp on the wall. The second ter(Green

particle strikes the end of the column, the larger radial elec; . e . . .
. . . . . . function tern) satisfies the Poisson equation and vanishes on
tric force it experiences. Thus, a spread in axial particle en: : .
the wall, so the sum of the two provides the correct solution.

ergies p_roduces a broaden!ng of the unstable mode’s reso- The Green function for the interior of an infinitely long,
nance with the plasma rotation. In order to create the hollow

; ; i 3
profile columns, the axial confining potential is lowered andgrounded, conducting cylinder, of radi@ is well-knowrt
the highest energy particles escape. This process essentia(z,6,r|z',6",r")

cools the column near the trap axis and can significantly
change the growth rate and frequency of the instability.

+ oo o

"= 3 (xR Iy (X1l 'IR)

2
R1==x n=1 Xln‘]|2+1(Xln)
Il. BASIC EQUATIONS x e~ n/R(z=—2) 7

Because the cyclotron frequency is large and the cyclogy equivalently

tron radius is small, the guiding center drift approximation o

can be used to follow the particle dynamics. Since the mag- . 2 o0 ~qhtkro)
netic field is uniform, the guiding center drift Hamiltonian G= a;x 0 dke cogk(z=2")] I,(kR)
can be written as
02 XLH(kr>)Ki(kR) =K (kr-) 1 (KR)], ®
H=-=+ed(z,0,py.1), (2)  wherey, is thenth zero ofJ,. Herez. (z.) is the greater

2m (lessey of zandz’, and the same is true for the radial coor-

where the ordered pairs zp,=m2 and (4,p, dinate. In using the boundary condition for an infinitely long,
= —eBr?/2c) are canonically conjugate coordinates and mo-grounded, conducting cylinder, we are assuming that the
menta andyp is the electric potential. gaps in the electrodes are negligibly small. Furthermore, we
Let f=f(z,p,,0,py,t) be the distribution of guiding assume the plasma column is always contained within the
centers. For convenience, we normalizeo that the total central conducting cylinder and that the length of the end

number of particles is given by cylinders is greater than their diameter. These conditions are
experimentally typical. The sum ovar in form (7) con-
Nzif fdp,dzded pazf fdp,d’r, (3)  Vverges rapidly wheriz—z'[ is large, and thé-integral in
eB form (8) when|r —r’| is large. For future reference, we note
whered3r=dzdgrdr is the configuration space volume ele- thatG depends on{,6") and ,z") only through the com-
ment. The plasma density is then given by binations #— ¢’ and z—z'. This is a consequence of the
rotational and translational invariance of the boundary con-
+ o0 oy . - . .
n(z,e,r,t)zj dp,f. 4) ditions. In the following analysis, we will need the quantity
- S 2nd(6—60") —il(o—0")
Also for convenience, we will denote the radial dependence ~ Ci(Zf|2",r")= o 27 °© G. ©

of various quantities interchangeably @g) andg(py), al- _ o
though different functional dependencies are impliedgfar ~ AlSO, an expression foi(z,r) is given by
the two cases.

. r/IR z

On the time scale of the modefsevolves according to ¢T(Z,r):2V2 olXon )cosr( Xon )e‘ (xonZ/R)
the collisionless drift kinetic equation n=1 XonJ1(Xon) R 10

ﬂ+[f,H]=o, (5 WwhereV is the voltage on the end capR,is the cylinder

at radius andZ is the central cylinder half-length. This expres-
where[ f,H] is a Poisson bracket sion is valid in the regionz|<Z.

[(fFH=S ot oH ot H lIl. EQUILIBRIA

T d0i Ip;  dp; dq

_ _ ) We look for cylindrically symmetric equilibria setting
The electric potential,», must be determined self- 4— 4 (7 p,) and correspondingly

consistently from the Poisson equation and the boundary
conditions specified fogp on the conducting wall of the trap.
The solution can be written formally as

2
p
H=Ho=>—+edo(z,p,). (11)
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FIG. 2. Gaussiamz-integrated density profile.
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Here, ¢o(z,py) is given by the sum ofp(z,r) and a cylin- ' _ _ _
drically symmetrical space charge potential due to the Greeﬁ'G- 3. Poisson—Boltzmann solution for constant den@jyand potential
function term in Eq(6). Since[p,,Hg] vanishes, any distri- (b) contours =3.5 cm.Z=17.3 cm.T=1 eV).

bution of the formf="fy(py,H;) is an equilibrium.

To further specify the equilibrium, considerations be-gcripeq in the previous paragraph is clearly visible. Away
yond the collisionless drift k_metlc equa_\tlon must be takengom the plasma ends the contours run parallel to the mag-
intoaccount. In the experiments of interest, modes argqic field (parallel to thez axis), but near the ends the con-
launched on both stable and unstable plasmas, and the prepgys cut across the field and are tightly bunched indicating a

ration of the equilibrium i_s djfferent in the two. cases. For theSteep gradient. The gradient extends over a few Debye
stable case, the plasma is injected, held until collisions haVFengths.

established a local thermal equilibrium along each field line  “£4; the case of unstable modes. the equilibrium is not of
(a few collision time$ and then modes are launched. They,e gojizmann form. In Sec. VII, we will discuss the prepa-
equilibrium for the stable modes is then the Boltzmann disyation of the equilibrium for unstable modes in detail. Here,

tribution we need only the fact that the equilibrium distribution satis-
f (g, Ho) = No(pg)exd —Ho/T(py)] fies _the inequality&fO/.qugo. This is the feature that is
o{Pg,Mo [FZdzf T 2dp,exd —Ho(.p,.Pa) T(Pa) ]’ required for Debye shielding.

Incidentally, if fo(py,Hp) were not monotonically de-
_ _ _ creasing inHg, the plasma would be subject to velocity
whereT(py) is t+h°ce local temperature along a field linemt  gpace instabilities that would develop much more rapidly
and No(pg) =/_.dz my(z,py) is the zintegrated density han the modes of interest here. Thus, basing a theory of

along this field line. For given functior$y(py) andT(py), low-frequency modes on the assumptiaiy/JHy<0 is not
Eq. (6) is an integral equation for the self-consistent poten-rea”y a loss of generality.
tial, ¢o(z,r). A numerical solution forgo(z,r) can be ob- To understand the connection of this assumption to

tained by iteration of Eq(6), or of the Poisson equation shielding, first define the density
itself. In turn, the solution fokpy(z,r) completes the speci-
. . . . . . + o

fication of the distributionfy(p,,z,r) and the density ol Py,ebo(z p")]:f dp,folpy p§/2m+e¢o(z Dyl
nO(Z,r)- ’ ' o ! ! ’

In the limit where the Debye length is small, the solu- (13
tions have a simple universal character. The charge density is,§ note thating/ dede=J *2dp,dfe/dH, is negative. The
arranged so that the component of the electric field along thBotentiaI can be written as
magnetic field(i.e., —d¢y/9z) is Debye shielded out in the
interior of the plasma. The potential is nearly constant along ~ Po(Z,1)= ¢o(r) +Ado(zZ.1), (14

z and then rises abruptly at the plasma ends over a lengifjhere thez-dependent part of ¢o(z,r) is presumed small
scale of a few Debye lengths. As implied by HG2), the i, the plasma interior. This must be verified posteriori
densityng(z,r) is nearly constant alongand then falls off  Taylor expanding the density with respectAap, and sub-

sharply near the ends. stituting into the Poisson equation yields the result
As a specific example for numerical solution, we choose

the z-integrated densityNy(r) shown in Fig. 2, the radially lir%ﬂ%rre [r.d (r)])

independent temperatufie=1.0 eV, the voltage on the end [r dr dr Mol T Po

cylindersV= 60 Volts (the central cylinder is groundgdand

the trap aspect ratiB/Z=5.086. Figures @& and 3b) show +

contour plots forgy(z,r) andng(z,r), and the behavior de-

1
2 S —— =
VAo Ag(r)wo] 0, 15)
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where we have defined the effective Debye length
1 4me’ng[r,éo(r)]

= , 16
N3(D) T (10
in terms of the effective temperature
1 1 dng
=_ _ a7

W: No F%'

In writing )\ZD(r) as a positive quantity use has been made of
the fact thatdny/de¢, is negative.

We choosegy(r) so that the first bracket in Eq15)
vanishes. The second bracket is then zeraA gg(z,r) sat- 2 (cm)
isfies the equation for Debye shielding. In the limit where the o _ _
Debye shielding is small corpared (0 the plasma dimef[S, &, SR fiesne gt . Fasso Botnant souter
sions, numerical solutiofi$show thateA ¢o(z,r)/T is €Xpo-  pescription(solid).
nentially small in the plasma interior and grows exponen-
tially as the plasma surface is approached, reaching the value
eA ¢,/ T~1 at the surface. Near the surface an analytic so-
lution is possib|eA¢o(Z,r) depends primar"y on the coor- onstrates the basic principle used to find the equilibrium
dinate&, measured along the local normal to the surface, s¢engthLo(r). Initially, Lo(r) is approximated by some arbi-

Eq. (15) reduces to the form trary, smooth curvel_go)(r) (usually a sphepe Next, the
2 1 axial electric field is computed along this curve. The curve is
—Apo— —5Apy=0, (18) then adjusted using the normalized electric force at the sur-
dé \p face

for which the solution is exponential growth on the spatial
scaleNp. WheneA ¢, /T reaches unity, the density drops Lg‘“)(r):Lg)(r) 1+e€ :
(and the simple linearization procedure used here breaks ESLLS(r).r]
down). (21

In the experiments of intere$t the Debye length is

EPLS (r),r1+EYLS (r),r]

, , whereE} is the trap field EP is the plasma field, and is a
small compared to the plasma dimensions, so we develop dmall parameter chosen for convergefggually one tenth

r_ed_uced description in which the Debye length |s_taken to th‘?—|ere, the total electric field is normalized by the field due to
limit )‘D_>O'. The_ plasma then has a yvel_l-de_flned Iengththe plasma in order to speed up convergence in region where
along each field line Bo(r) and the density is given by the field is smalle.g., near the wall This procedure is iter-
No(r) ated untilLy(r) is found[i.e., L{*(r)=L{(r)].
No(z,r)= r(r)u[l—o(r)—hﬂi 19 The axial electric field component generated by the trap
0 is obtained by differentiating the analytic expression for the

whereU(x) is a step function. In this Zero Debye Length potential in Eq.(10). The potential created by the plasma is
Reduced Description, the equilibrium is specified by thegjven by the Green function from definitici). The equilib-
single functionNo(r). The functionLo(r) is determined by  rium plasma density is axisymmetric and uniform along the

the requirement thai¢,/9z=0 everywhere on the plasma field lines. The potential produced by such a plasma inside a
surface, that is, fofz|=Lo(r). The fact thatdo/dz van-  conducting cylinder is

ishes on the surface implies that it vanishes throughout the
plasma volume.

R [t No(r')
To prove this statement, note that the Poisson equation ®p(Z.1)=¢€ o 2mr'dr dz

plus thez-independence afy(z,r) inside the plasma implies o 2Lo(r)
the equation X Go(z,r|Z' 1), (22
VZL%: _4776@:0 (20) where G is defined in Eq.(9). The axial electric field is
0z Jz ' obtained by differentiating Eq.22) with respect toz, and

Since a9z satisfies the Laplace equation throughout the[sing the translational invariance of the Green function

— ’
plasma volume and vanishes on the plasma surface, it mug?/az 9l9z")

vanish throughout the volume. i R No(r’)

The method of obtainind.o(r) begins by recognizing ——p=ef 271 dr’— {Golz,r|Lo(r"),r']
that at each point along the correct equilibrium length func- 9z 0 2Lo(r")
tion, the axial electric fields gen_erated _b_y the trap an_d _the —Go[z,r|—Lo(r"),r' 1. (23)
plasma exactly cancel. Should this condition not be satisfied,
the plasma would expand or contract axially, until force bal-  In Fig. 4, the zero temperature soluti¢z}=L(r) ob-

ance is achieved. This heuristic dynamical description demtained in this way is compared to a succession of Poisson—
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Boltzmann solutions in which the temperature is varied. For ~ Since the transformation is canonical, the drift kinetic
each finite temperature solution, we define a half-density surequation is still given by Eq(5), but the Poisson bracket
face,|z|=Lq(r), where must be evaluated for the variableg, (, 6,p,).

N We assume that there is a small amplitude mode charac-
n[z=Ly/5(r),r1=2n(0r). (24 terized by the potentiab(z,6,p,,t). The Hamiltonian is

The dashed curves in Fig. 4 are these surfaces for the s&€n given by
quence of temperaturesT€1.0,0.1,0.01eV). The solit_j H=Ho(l,py)+ SH(,1,0,p,,0), (31)
curve is theT=0 or Zero Debye Length Reduced Descrip- o o _
tion solution. This comparison indicates that our equilibriumWheresH =eds¢. The perturbation in the Hamiltonian gives
length function is a reasonable zero Debye length approxiliSé 0 @ perturbation in the distributiodf (i,1,6,p,,1).
mation to the plasma density for sufficiently low tempera_Lmeanzmg the drift kinetic equation in the smallness of the
ture. In the experiments of interest, the plasma temperature Rerturbation yields
typically 0.5eV. In regions where the plasma density be-
comes small, the Debye length is large and our reduced de-
scription fails. However, we suppose that these low density
regions have a small effect on the overall plasma dynamics. By taking into account the functional dependeridg
=Hq(l,py) andfy="1y(l,py), the equation can be rewritten

98
— o T[8f Hol +[fo,8H]=0. (32

as
IV. MODES
Th turbed HamiltoniaF = Ho( ) is int i +aHoa+aHoa}5f doH afg  asH of,

e unperturbed HamiltoniaH,=H(z,p,,py) is inte- - S T
grable, so we can obtain a canonical transformation t gt ol ay dpy 39 ay 90 9Py 33
action-angle variables. The first step is to define the bounce
action as Finally, by usingdfq/dl=(dHq/dl)(dfq/dH,) we obtain

1 the result
1= 57 § 2P o) @ o (o) (0 o 0| o0 ity
al g Hg at - Ipy 30 0 dpy

wherep,[z,Hq,py] is obtained by solving Eq.11) for p,.
Both Hy and p, are held constant while carrying out the =0. (34)
integral. A generating function for a canonical transforma-

tion from (z.p,,6,p,) 10 (i5,],0.,Pg) is given by We solve this equation through an expansion in the

small parametewg/wp~ w/wp<1l, where w,=dHy/dl is
the axial bounce frequencyye=dHq/dp, is the rotation
frequency and/dt~ w is the characteristic frequency of the
modes. In zero order, the equation reduces to the form

z
W:f dz'p,[z',Ho(l,Pe),Pe]+ 0Pg . (26)
0

Taking partial derivatives in the prescribed marthgields

! dHy 4 of
the transformation 07 sf—sH-2|=0, (35)
al oy IHo
_ (9W_ JZ dz’ (9H0 2 i .
y=—r= Om o (27)  which has the solution
W PPAL —<5f SH af°> (36)
Po="59 ~Pe: (28) Ho Mol ,
or equivalently
JW z dz'
on M [t
) ov[z',Hg,Pe] 5f=(6f)¢+(5H—(5H)¢)a—|_|O. (37)
" dHo(1,Pg) _eacﬁo(z,P@) . (290 Here, the bracket(g),(I,0,py,t) is the y-average
IPe dPe (3m) [2"dyrg(4,1,0,p,.t), Where (,6,p,,t) are held con-

stant in evaluating the integral. For eadhd,p,,t), solution

(37) determines they-dependence obf(#,1,0,py,t) rela-

tive to the y-average( 6f) ,(1,60,p,,t). To obtain an equa-
tion for (6f),, we integrate Eq(34) over ¢, projecting out
the large first term. The result is

is the difference between the bounce averaged rotation fre- 5 5 g A SHY, otq

guency and the instantaneous rotation frequency. The second 5 + 0. 70 (6f),= YRR
term on the right in Eq(29) is no larger thandwg/wy,, Po Po
which is small according to our assumed ordering, (

Here, use has been made of the relatipn/oHqy=1/v,.
In Eqg. (29), the bracket

dHo(1,Pg) B e5'¢o(2, Pe)
IPe Po

Swg, (30)

(39

In the Zero Debye Length Reduced Description for the

>wg). Thus, we drop the second term and €st 6. For
convenience, we continue to use the old varialplggand 6.

equilibrium, the transformationi,!,0,p,) — (z,p;,0,p,) IS
such thatz-dependence for a function enters only through
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-dependence. Thus, E(B7) implies that allz-dependence tinuous across a sheet of surface charge. One can show that
in the perturbationst is included in the term this constraint implies thaté¢/dz vanishes throughout the
plasma interior.
5 5 afg a5’ afg 39) To include the effect of the modified lengtfi.e.,
oG (OP))o =eo Fh Lo(Pa)—Lo(Pa)+8L(8,p, 1) =L(8,p,,1)] in the Hamil-

, _ tonian, we must use the modified length in the definition of
where 8¢ E(é(ﬁ_—<5¢>¢) is the z-dependent part of the e action,| = (3m)$dzp,=|p,|2L(6,p,,t)/ . The Hamil-
perturbed potential. In turn thedependent portion of the tonian is then ai

. o given by
perturbed densitygn= [dp,5f, is given by

ang esp’ 12772

®00 Gegs T ™ 40 N BmiZa.p,.0

+e¢( 01p6)1t): (43)

whereT(r) is the effective temperature defined in Ef7). ) _ o
Substituting this density perturbation into the Poisson equahere ¢(6.py.t) is the zindependent potential inside the
tion shows thad¢’ satisfies the equation for Debye shield- Plasma. This Hamiltonian describes the bounce averaged
ing [see Eq.(18)]. Thus, we conclude that the mode pertur- ransverse motion a!qd assumes the ordeing wg~ w.
bation exhibits such shieldingi.e., 95¢/dz—0) in the The ratio of the first term to the second i¥/edq
plasma interior. Equatiof37) then implies thatsf and n T()\D/rp)z’ so in the limit of zero Debye length we drop the
= [dp,5f are independent af (or ¢) in the plasma interior. first term and sel@-lze¢(0,p,,,t). We will discuss the effect
Within a few Debye lengths of the enf}d¢/dz| can be-  Of the first term in Sec. VII. 3 _ .
come large, either adding to or subtracting frem, /9z and, Just as the equilibrium is specified by the single function
thereby, increasing or decreasing the plasma length locallyNo(r), the modes are specified by the single function
These are the conclusions that are necessary to exterfN(¢.1.t). The reduced description is completed by an
the Zero Debye Length Reduced Description to includetquation for the evolution 06N(6,r,t), which we obtain
modes. We allow for an increment to the plasma half-lengthfrom Eq. (38). In this equation, we setwe=dHo/dp,
L(0,r,t)=Lo(r)+5L(6,r,t), and for an increment to the =?9€do/dp, and (SH)=esp(6,p,,t), where ¢o(p,) and
z-integrated densityN(8,r,t)=Ng(r)+ N(6,r,t). Substi- 6¢(.0,p9,t) are thez—lndependgnt equilibrium and mode po-
tuting these expressions into E@.9) and linearizing yields ~tentials, respectively. Integrating E(B8) over 2mdl then

the density increment yields
ON(6,r,t)
on(z,0,r,t)=| ———— 9 1A __C 996 Mo
2L,(T) ot Toe(n) 5 ON(O,r, )= — 5o —0 — = (1), (44)

No(r) oL(6,r,t)
T2y Lo | Ylte(n =] where SN=2[5d1(6f), andNo=27f5d!fo.
No(r)SL(6.r 1) To exar_nine.a single mode, we let perturbed quantities
O—”ﬁ[Lo(r)—|z|], (47y vary as exp(f—iwt), so that Eqs(41), (42), and (44) take
2Lo(r) the form

where the delta function in the second term enters through

the Taylor expansion for the step function. This term repre- ON| o(r)  No(r) oL ,(r)

sents a surface shell of density increment associated with the 5”'*“’(2’”:{ 2Lo(r)  2Lo(r) Lo(r) }U[LOU)
length increment. No(r) 5L, ()
From Eg.(6), we obtain the relation _ ol oL, lr _
21+ =5 oot 2,
+ oo 2w R
5¢(z,0,r,t)=ef dz’f da’f r'dr’ (45
—o 0 0
XG(z,0,r|2',60",r")on(z',6",r' t). +oo R
8, w(z,r)=ef dz’f r'dr’'Gy(zr|z',r")
(42 ' — 0
Substituting forén(z’,6’,r’,t) from Eq.(41) then provides xony (zZ',r',1), (46)
an expression fors¢(z,6,r,t) as a linear functional of
ON(8,r,t) andsL(6,r,t). cl oN
The length increment§L(6,r,t), is determined as a lin- [w—lwg(r)]6N, ,(r)= Br 3_05¢' W1, (47
, ror ,

ear functional of 6N(6,r,t) by the requirement that
d8¢pldz=0 at|z]=Ly(r)—. Here, the minus sign indicates
that the constraints¢/9z=0 is to be imposed just inside where use has been made of definitiep Finally, the length
the shell of surface chardeee second term in E¢41)]. Of  incrementslL, ,(r) is determined as a functional 6N, ,,(r)

course, the normal component of the electric field is disconthrough the constraint
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reduced description, where terms of order~0 are ne-
glected,8¢, ,(r) can be replaced by, ,(z,r) in the inte-
z=Lo(N— grand on the right-hand side of E@9). By using the Green
, , , function relation(46), the right-hand side can be rewritten in
o [Frgp| ONLo(r)  No(r)dLy,u(r’) a symmetric fo?(m ) ’
=e| r'dr - > Yy
0 2Lo(r") 2L5(r")

1 9Nl t
X{G|[Lo(r)—,r|—Lo(r"),r'] wf rdroN; . (1) oNy ()| - — =
—Gy[Lo(r)—,r[Lo(r"),r'1}

R, N(r)8L (1) [ 9Gy
+eJ r'dr —ZLO(I’ ) [ [Lo(r)—.r|

_ 85¢|,w
- 0z

1 dNg| 1
—If rdrwg(r) 6N, ,(r)oN, ‘”(r)r ar

ec(+x» R +o R
=—f dzf rdrf dz’f r'dr’ 6G,(z,r|z',r")
B —00 0 — o0 0

JG,
—Lo(r’),r'J+ E[Lo(r)—,rlLo(f’),r']J, (48)

X o ,(z',r")on ,(z2',r"). (50

where use has been made of the fact Batdepends orz A similar equation is obtained by interchangiagand w’.
andz’ only through the combination—2z’. Subtracting the two equations yields the relation
Before turning to the numerical implementation of these ﬂNo -1

equations, we develop an orthogonality relation for the O=(w—o )j rdréN, ,(r)oN, ,(r)|— = (51

eigenmodeq 6N, ,(r)} and discuss the representation of a
general perturbation as a sum over the eigenmodes. We al3twus, the eigenfunctionsN, ,(r) and 6N, ,.(r) for which
obtain a necessary condition for instabilfiye., Im(w)=y  w# ' satisfy the orthogonality condition
>0]. These results are generalizations of similar results ob- -1

tained earlier for the case of an infinitely long colufrfh. 0= erdr5N| o (NN (N = 1 aNO (52
To start, we multiply Eq(47) by én, ,(z,r)r/Ng and roar
integrate overdrdz, to obtain the relation One might worry that the integrand diverges at a point where
INg| t [(1/r)(dNg/ar)] passes through zero, but this is not the
wf rdr N, ,(r)oN, ‘”(r)[r o case. Equatioi46) implies thatéN, ,(r) and 6N, ,.(r) are

both proportional to (1/r)(dNg/dr)], so in fact the inte-
INg| 1 grand vanishes at a point whefél/r)(dNg/dr)] passes
—If rdrweg(r)oN,; ,/(r)oN, w(r)[ } through zero.
roor .
In the usual manner, a general perturbation can be ex-
¢l [+e R pressed as a sum over the eigenmodes
=§J dzf rdrée, ,(r)on, ,.(zr), (49
e A0 SN(O,r,)=>, a ,oN, ,(r)exdil 6—iwt], (53)
where use has been made of the definition ho
[F2dz on ,(z,r)=06N, ,.(r) on the left-hand side. The where the orthogonality conditiori& r and 6) allow us to
function ¢, ,(z,r) is equal tod¢, ,(r) in the plasma inte- determine the coefficienis ,, in terms of the initial condi-
rior, but can differ by orderT in the end sheath. In our tions

_fg*rdr[(l/r)(aNO/ar)]*15N|,w(r)f3”(d0/2w) e "5N(6,r,t=0)

= 54
" JRrdr[(Lr)(aNg/ar)]6N2 (1) ®4
|
In Eqg. (53), the sum ovemw typically contains a continuum oo (R 1 (9N0 -1
portion. O=(w—w )fo rdr5N W (NON ()] = i
One caveat concerns the completeness of the set (55)

{6N; ,(r)} in the special case whe{gl/r)(dNq/dr)] van- / _ _ _
ishes over a finite interval. Over this interval all of the Settingo=w’=w,+iy and using Eq(46) yields the result
{6I\.l|,w} vanish, S0 suni53) can represent qnly |n|t|gl p.ertur- R 16412y 1 aNg
bations that vanish on the interval. Physically, this is not a O:J rdr[ o+ 2T o
problem, since all perturbations that arise thro&ghB drift @ Qe Y

dynamics[i.e., through Eq(46)] satisfy this condition. Thus, instability ¢>0) is possible only ifiNy/dr changes
An easily obtained variant of E¢51) is the relation sign over the intervdlO,R]. For a confined columniNg/ar

(56)
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must be negative at large so instability requires that there obtained by Dubin. Dubin’s theory assumes a quadratic trap
be a region wheréN,/dr >0. This modified Rayleigh crite- potential and neglects the image charges induced in the con-
rion has been found befotéand has an analogy in the infi- ducting wall. To satisfy these requirements in our system, we
nite length theory;® in which thezintegrated density is re- choose a small plasma whose radius is one tenth of the wall
placed by local density. radius. The solution for such a plasma requires three times
We emphasize that the conditioiNg/dr >0 is neces- more cpu runtime than a similar plasma whose radius is one
sary, but not sufficient, for an instability. For example, ahalf of the wall radius, while 200 radial grid points are used
plasma with a length function that increases with radius neain each case. The solution of the latter requires four minutes
r=0 can have uniform local densityy(r)=ny, and stil on a 300 MHz Pentium II.
havedNg/dr>0 near the axis. Such a plasma is a shear-free  We are not always guaranteed that summation in form
global thermal equilibriun®;*® which is known to be stable. (7) will converge for arbitrarily many terms. For example,
nonmonotonic length functions may havg(r,)="Lq(r,)
V. NUMERICAL IMPLEMENTATION for ry#r,. In this situation, the argument of the exponential
. . ) . . ) vanishes and it becomes advantages to use the integral ex-
The equations are discretized at radial poifits:i  hression for the Green function in fori®). This integral
=1-Nj}. The plasma state is completely determined by the.,verges due to the asymptotic behavior of the modified
vector{dN, ,(r;)}. The vectori L, ,(ri)} is determined by  geagsel functions. For values kf1, the integrand varies as
the discretized form of Eq48) k~texd —k(r-—r.)], which becomes small whe#k>|r
—r'|. Therefore, the integral form of the Green function can

Ei Aii5Ll,w(ri):Z Bji 0N} o(Ti), (570 be used to calculate matrix elements for which the summa-
tion in (7) fails or converges too slowly.
which can be inverted to obtain The discretized surface charge perturbatiof (r;)}
represents a series of ring charges locateflrato(r;)].
SLy (1) =2 Ag'BjidN; (). These coordinates are also the positions at whiglh/ 9z is
B

evaluated in constrain®8). When the charged ring source
Substituting this into Eq(46) then yields an expression for and the observation point are collocated, which is the case

the potential inside the plasma for the diagonal elements &;;, the electric field diverges.
To avoid this situation, we note that in this instance the con-
5¢l,w(rj)zz CjioNy ,(r}). (58)  tribution from the image charge induced in the conducting
' wall is negligible. Therefore, this region of the plasma is
We can now form an eigenvalue equation using &q) well-approximated by the surface charge in free space which
is produced upon rotating the line segment connecting neigh-
@ON) (1) =lwg(rj) 6N (1) boring grid points about theaxis. The field evaluation point
cl Ny is on the interior side of this surface and can be taken arbi-
+ B_rJ 0_r,2| Cji N (r7). (590 trarily close. The axial electric field is dominated by the local

surface charge and we may assume this field is adequately
This matrix can be diagonalized using standard techniquesdescribed assE,=z-2won, wheren is the inward normal

The difficulties encountered in the numerical implemen-to the surface.
tation primarily concern the convergence of the Green func-  In general, the accuracy of a numerical solution to a
tion [see Eqs(7) and(8)] and its axial derivative. The con- discretized equation is determined by the total number of
vergence of these expressions is provided by the spati@valuation points. Higher accuracy can be obtained at the
separation of the source and observation points. In fGbm  cost of larger memory requirements and longer cpu run-
the exponential ensures convergence when its argument bemes. For this calculation, finer grids also increase the diffi-
comes large compared with unity. Fo-1, yj,~nw and  culty of performing the summations. As the grid spacing is
the number of terms required in the matrix element summaeecreased, more and more terms in the sums are needed for
tion is roughlyR/|z—2Z'|. This result illustrates the two main accurate evaluation of the matrix elements. In the solutions
reasons for incurring additional computational costs. First, apresented below no more than one million terms were kept in
the number of radial points is increased, the space betweehe summations. This was sufficient to compute matrices of
nearest neighbors is reduced and more terms will contributerder 400, and achieve convergence in the solutions. As is
in the summation. Therefore, increasing the spatial resolutiogustomary in the numerical solution of equations, conver-
to obtain greater accuracy will not only result in larger ma-gence is assumed when a large increase in spatial resolution
trices, but the summation required to compute neighboringroduces little or no change in the results.
matrix elements converges more slowly as well. Second, as
the size of the plasma is reduced with respect to the cyliny|. RESULTS
drical wall, the spacing of grid points will also decrease. This . .
implies that for g givegn m?mbgr of discretization points, the/N Comparison to Dubin modes
eigenmode solution of smaller plasma requires more compu-  Although our model is analytically intractable for the
tation time. An example will illustrate this point. In Sec. general case, there is a special case for which we can com-
VI A below, we compare our results to an analytic solutionpare our numerical results to the predictions of an analytic
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FIG. 6. Mode potentials along axig €r,/6) produced bysN and 6L
FIG. 5. Comparison to Dubin’s analytic theory of smalj,R/10) sphe- (note: their sum cancels as expegted
roids. Mode frequencies are given for the first five azimuthal wave numbers
and are normalized to the rotation frequency.

their sum vs axial position along an arbitrary field line (

theory. A small uniform density plasma that is confined in="p/6). Thez-electric fields from the two perturbations can-
the central region of a trap, where the trap potential is nearlel everywhere inside as expected. This consistency check
quadratic, has the shape of a spheroid. Using spheroidal c8aS been verified for other modes and along other field lines
ordinates and cold fluid theory, DuBfnobtained the com- @s well.

plete spectrum of electrostatic modes. For a special class of

these modes, the mode potential does not vary axially inside

the plasma(i.e., d6¢/dz=0), so our numerical solutions B. New modes

should include these modes. Figure 5 compares our numeri- o ) )

cal solutions for the frequencies of these modes to the pre- ©One effect of finite column length is to introduce a new

dictions of Dubin. The frequencies are plotted as a functiorf!2Ss Of discrete diocotron-like modes for the case of plasmas
of plasma aspect ratid {/r ), and results for the first five with low shear in the rotational flow. The modes take their

azimuthal mode numberd£1, . .. ,5) areshown. The re- simplest form for a uniform density plasma, which is shear-
sults of our calculations are in excellent agreement with Du{T€€- An infinitely long column of uniform density supports
bin's predictions. only a single discrete diocotron-like mode for each azimuthal
An important distinction between Dubin’s analysis and mode numbe?? In contrast, a fmng_ Iength_ column .of uni-
ours is that he uses cold fluid theory and we use bouncg)rm density supports many additional discrete diocotron-
averaged dynamics. Both of these approximations are usefdiké modes. _ .
but they apply to different classes of experiments. Cold fluid ~ 1€S€ modes were predicted by Fienal,” who drew
theory requires the axial bounce frequency to be sfiial, a0 @nalogy between the new modes and Rossby waves in the
»,we>w,—0), and bounce averaged dynamics requires ifiu@sigeostrophics-plane approximatiofi. To obtain a
to be large(i.e., wp,> w, wg). Note that both Dubin’s analysis S|m_ple _equatlon for the modes, thesg authors set the pertur-
and ours assume that the Debye length is small. As meration in plasma length equal to zefie., 6L,,=0). Al-

tioned earlier, it may seem that large bounce frequency anH'oUgh this approximation is not rigorously correct and we

small Debye length are not compatible, but the two inequali-CannOt expect quantitative agreement with the numerical re-

ties wp>w,we and \p<!, can both be satisfied provided sults, the analysis captures the essence of the new modes and

thatw,/Qc<\p/l,. In cold fluid theory, the potential for a Nas the great advantage of simplicity. '
typical mode admitg-variation inside the plasma, whereas, ~ SettingédL, =0 and using Eqsi45) and(47) yields

such variation is prohibitedDebye shielded owtin our A g
analysis. The fact that Dubin’s analysis leads to a class of 4medn, ,(r)= P— k()6 o(r), (60)
modes with noz-variation is presumably an accident of the E
spheroidal geometry. where
A further check on the validity of our solutions concerns 1 al,

the Debye shielding condition. In our development, we as-  ,(f)=—_——
sumed that the mode potentials are independent of axial po- 2rLo(r) ar
sition inside the plasma. This constraint is imposed by setyside the plasmag¢, ,(r) then satisfies the 2D Poisson
ting the z-electric field equal to zero just inside the S“rface-equation '
After solving for the modes, we can check to see that this

was sufficient to guaranteeindependence throughout the 1 d déé¢; , E
plasma interior. Figure 6 plots the mode potentials due to the dr' dr 122 Pe() lor— o k(r)d¢ ,(r)=0.
z-integrated density perturbation, the length perturbation, and (62

(61)

|2 4l w
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FIG. 7. Equilibrium length function for a uniform density plasmay(  FIG. 8.1=1 eigenmode frequencies for plasma shown in Figndexed by
=10’ cm 3, Z=R=3.5cm,V=27 Volts). a radial wave numben,).

As a further simplification, Finret al. assume thai(r) is  (© the usual diocotron mode. Figure 8 shows the lowest ten

constant out to the wall at=R. The solution is then given €igenfrequenciesnormalized to the plasma rotation fre-

by a Bessel function. quency. The lowest frequency mode is the usual diocotron
mode. Its eigenfunction igNy/dr and its motion is a dis-

S (1) =AJ [ Al wek ; 63) placement of the column off-axis and the subsequent rotation
Lot/ log—w |’ of the entire column about the trap axis. Figure 9 gives the

and the boundary conditiofi, ,(R)=0 then yields the dis- z—mtegrat?ld density pert.urbatlons for thg :lrst three eigen-
persion relation modes. The modes are indexed by a radial wave numper

which indicates the number of radial nodes in the eigenfunc-
4l wgkR? tion. As the radial index increases, the mode frequencies ap-
— (64 proach the rotation frequency. These modes are all discrete
Xin modes as opposed to continuum modes which exist for col-
wherey;, is thenth zero ofJ, . For k positive corresponding umns with shear in the rotational flow. Note that all the fre-
to negativeL (r), the modes are down shifted in azimuthal quencies are lower than the rotation frequency of the col-
phase velocity from the plasma rotation frequency by a smalimn. This is a consequence of the monotonically decreasing
amount that tends to zero as the number of radial nodes ilength function(i.e., k>0).
the eigenfunction increases. There are equilibria whose length functions do not de-

For a more realistic case where the plasma does not exrease monotonically with radius. Such equilibria can exist
tend to the wall but is positive, Eq.(62) again describes a in standard Malmberg—Penning traps when the plasma radius
sequence of modes with phase velocities down shifted frons close to that of the trap. However, to better illustrate the
the rotation frequency by a small amount tending to zero agffect of hollow end shape, we will consider a modified
the number of nodes increases. Of courseneed not be Malmberg—Penning trap in which two smail=€ R/50) con-
positive everywhere. We will consider an example where ducting rings are placed just outside the plasma ends and
is negative for smalf and positive for large. In this case, coaxial with the trap. To obtain significantly hollow end
Eg. (62 implies two sets of new modes: A set with down shapes, we bias the rings to an appropriate positive potential.
shifted phase velocity that lives in the region of positive
and a set with up shifted phase velocity that lives in the
region of negative<. The sign of the shift follows from the
requirement thak/(l wg— w) be positive for oscillatory so-
lutions of Eq.(62). We find that these predictions are born
out at least qualitatively by our numerical solutions of the
full equations.

As a first example, we consider the=1 modes of a
uniform density column in a trap characterized By=Z
=3.5 cm andV=27 Volts. Inside this trap we have a non-
neutral plasma whose radius is 1.75 cm and whose uniform -0.5
local density isng=10" cm™3. The equilibrium length.o(r)
is obtained using a slightly modified algorithm which main-
tains a constant local density as opposed to a constant 0 0.5 1 1.5
zintegrated density and is shown in Fig. 7. Note thjtr) r (cm)

is negative corresponding to _positive _AS expecte_d thiS_ _FIG. 9. Z-integrated density perturbations of the first three radial eigen-
plasma supports many new discrete eigenmodes in additianodes in Fig. 8.

o—lwg=—
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FIG. 10. (a) Hollow equilibrium length function R=Z=3.5 cm,V=27
Volts). (b) Eigenfrequencies for hollow end shape column.

FIG. 11. Smoothed local density profile and hollow equilibrium length func-
tion (R=2=3.5 cm,V=21 Volty).

In principle, we should also modify our Green function to continuum. However, hollow end shape plasmas support
account for the image charges induced on these rings by theodes with azimuthal phase velocities above the highest ro-
mode perturbations. However, if the rings are sufficientlytation frequency. These modes remain discrete in the pres-
small we can safely ignore these images. Figur@l§hows ence of shear and may be observable experimentally. Figure
a hollow end shape equilibrium. Here the uniform localll(a) shows a local density profile which is constant
plasma density isng=10"cm 3, R=Z=3.5 cm, V=21  throughout the column and falls smoothly to zero near the
Volts and the additional conductors are located zat edge. Figure 1(b) is the equilibrium length function for this
+2.625 cm. Figure 1®) shows the eigenmode frequencies density profile and is a nonmonotonic function of radius. In
of the system. In addition to the slow modes discussed eafFig. 12a), we plot the spectrum of eigenmodes for this sys-
lier, there are modes which rotate faster than the column. Thiem. Except for the lowest frequency center-of-mass mode,
presence of both slow and fast modes on the same column &l of the discrete modes with frequencies lower than the
a result of the length function having a radial derivativecentral rotation frequency have become part of the con-
which changes sign. As expected, the density perturbationgnuum. The addition of more grid points will fill in the con-
associated with the fagslow) modes are localized where the tinuum with more modes. On the contrary, the modes which
length function is increasin@ecreasingwith radius. rotate faster than the plasma are discrete and remain sepa-
rated from each other by fixed frequency intervals as the

C. Shear profiles spatial resolution is increased. Théntegrated density per-

The discrete modes of a rigid rotor plasma can be de-
stroyed by the introduction of shear into tBe B flow. For (a)

an infinite length column, the>1 diocotron modes are ab- | +
sorbed into the continuutfiwhen they become resonant with m
the plasma rotation frequency. 803

Finite length columns also exhibit this phenomenon. As 0.6
the local density profile is smoothed, the highmodes are "
absorbed into the continuum as they become resonant with 04
the fluid. Thezintegrated density eigenfunctions of these 0 20 40 60 80 100
modes are no longer smooth functions indexed by a radial ' )
wave number, but become discontinuous at the resonant ra- ;
dius. Forl =1, a plasma with significant shear and a mono- 0.5 ;
tonically decreasing length function retains only its center- '
of-mass discrete mode. All other eigenmodes are part of the z P S N "
continuum. Experimentally prepared profiles typically con- p—T—
tain shear and this may explain why the higher order modes --- _continuum :
have not been observed. 03 0.5 1 1.5

For monotonically decreasing,(r), only modes which

rotate slower than the central rotation frequency will becomeg-g 1. (a) Spectrum of eigenmodesb) Eigenfunctions for the highest

r(cm)

resonant with the plasma rotation and are absorbed into thfeequency mode and a continuum mode.
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FIG. 13. Hollow zintegrated density profile and calculated equilibrium FIG. 14. Spectrum of eigenmodes and eigenfunctions for stable and un-
length function R=3.5 cm,Z=10.4 cm,V=60 Volts). stable modesnote: unstable mode eigenfunction showndsl|).

turbations for the fastest mode and one of the discrete modé&éable mode isINy/dr and represents the usual center of
are shown in Fig. 1(). The solid curve represents the fast, mass mode. The unstable mode eigenfunction has a global
discrete eigenmode. The perturbation is most prominent fogharacter and vanishes at the radius whereztiigegrated
small radii where the length function is increasing with ra-density is largest. The-integrated density profile in Fig.
dius and is smallest at larger radii where the length functiort3(@ is a smooth fit to an experimental profile. The experi-
is decreasing. The dashed curve is a continuum eigenmodgent measured a growth rate of 0.045 and a frequency of
and exhibits the characteristic discontinuity at the resonar@-99 [normalized towg(0)=2meny(0)c/B]. These values
radius. are quite different than the computed values of 0.013 and
1.17. These discrepancies are common to other density pro-

_ ) . _ files and length functions. We will return to this subject in
D. Diocotron instability for azimuthal mode number Sec. VI

=1 Finnet al? cite two finite length effects which contribute

Another problem where finite column length plays anto thel=1 instability: Curvature in the end shape and varia-
important role is thé= 1 diocotron instability. As mentioned tion in the plasma length due to the presence of the mode.
earlier, a necessary condition for diocotron instabilities isTheir growth rates due to curvature effects are compared
thatNg(r) be nonmonotonic. For an infinitely long column, a with our results in Fig. 15 for two different hollow density
normal mode analysls predicts neutral stability[i.e.,  profiles. The curvature [defined in Eq(61)] is obtained by
Im(w)=0] for all I=1 modes, and an initial value analysis fitting the equilibrium length function to a quadratic near

predicts the possibility of algebraic growthe., sne \t). =0. For large values ok this is a reasonable approximation
However, experiments clearly exhibit exponential growth and the two theories obtain similar growth rates. As the end
for =1 modes. cap voltages are increased, the curvature near the trap axis

Smitht? and Finnet al® have argued theoretically that
the exponential growth is due to finite column length. Like-
wise, our numerical solutions find the possibility of exponen- x 1072
tial growth forl =1 modes. However, we will find that quan- + — Fimn
titative agreement with the measured growth rates and ogl + +_this paper
frequencies requires the inclusion of a kinetic eff@sete Sec. 1
VII).

First we examine the results from the zero Debye length
theory (no kinetic effect. Consider thez-integrated density
profile in Fig. 13a). Figure 13b) shows the equilibrium
length function calculated foR=3.5 cm,Z=10.4 cm, and
V=60 Volts. The spectrum of eigenmode frequencies for 02
this system is given in Fig. 14). We can clearly see the
continuum, the discrete stable mode frequency and the two o035 1 15 2 25
complex conjugate frequencies of the unstable mode. The K
eigenfunctions of the discrete stable mode and the unstablgg 15 Growth rate vs curvature comparison to the theory of Einal.
mode are shown in Fig. 1d). The eigenfunction of the (Ref. 5.

0.6
>

0.4
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tends to zero and the results differ greatly. Fetral® also

T. J. Hilsabeck and T. M. O'Neil

(wr+iy_|wE)5Nl,w

find that the perturbation of the plasma length is a source of

instability and obtain finite growth rates for plasmas with
zero curvature near=0. However, the length perturbation is

included by using a boundary condition that is chosen for
analytical convenience rather that fidelity to the experimental
geometry. Our method requires numerical implementation,
but more accurately reflects the experimental geometry. This

= —leddy,o(w+iy—lwe)

2 210
—d1 2
Py
1272 dlg

4mLy(pg) IPe

X

(69
° o, tiy—lwg+

distinction makes comparison of growth rates due to length

perturbations not possible.
Although the finite length theory calculations predict the

existence of exponential instabilities in hollow columns, the
guantitative agreement with the experiments is poor. The cal

culations consistently find growth rates 4 to 5 times smalle
and real frequencies 20%—-30% larger than the values me
sured in the experiments. However, these discrepancies m

be the result of kinetic effects and the specific manner irf

which the hollow density profiles are created.

VII. KINETIC CORRECTIONS

In this section, we include a kinetic correction that can
be important even though it is of ordﬂé. Linearizing the
Hamiltonian (43) with respect tod¢ and 6L yieldsH=H,

+ 6H, where

|22

+edo(Py) (65

H =
° 8mLS(p0)

and
12772

oH=ed¢(0,py,t)— oL(8,py,t). (66)

4ng(p0)

Substituting into the kinetic equatidi38) and decomposing
into Fourier components ihand 6 yields the result

1272 dL,
amLy(py) 9Py
|2

T s,
4mL3(py) "

o tiy—logt+ (01, 0)y(Pay1)

’7T2 (?fo( |)
Py Po.1)-

e ,(Pp) — (67)

Since the mode of interest here is unstable, the mode fr
guency is expressed as a complex quantity explicity (
—w,+ivy).

The term involvingdL, , is order \p/A)? smaller than
the 8¢, ,, term and can be ignored\(is the scale length on
which the potential varies and is on the order of the plasm
radiug. However, thd-dependent term on the left-hand side
must be kept since near the resonange- wg vanishes and
the growth ratey is assumed to be small. Thus, we obtain

—ledd , (9to/dpy)

w+iy—lwg+ [12724mL3(py)1(alo/dp,) '( )
68

<5f|,w>¢:

Integrating ovet and multiplying byw, +iy—lwg produces
the kinetic eigenvalue equation

Setting the term involving in the denominator to zero re-
sults in the nonkinetic eigenvalue equati@). The kinetic
correction represents the dependence of the bounce averaged
fotation frequency on the axial particle energy. In order to
gurn around at the ends, the fast particles must receive a
g;grger impulse. Since the electric force providing this change
in, momentum is aligned normal to the surface of the plasma,
P{ere is both an impulse inand inr provided the ends are
not flat (note the dependence on the radial derivative gf
Therefore, particles with different axial energies have differ-
ent bounce averaged rotation frequencies and plasma par-
ticles at several different radii can be in resonance with the
unstable mode. We will show later that the nedependent
term substantially affects the behavior of the unstable mode
and is sensitive to the details of the particle distribution func-
tion.

The inclusion of the kinetic correction to the rotation
frequency in our eigenvalue equation produces a matrix op-
erator which depends functionally on the frequency of the
eigenmode. Since the mode frequency is not knavgmiori,
the discretized operator cannot be diagonalized directly.
However, we are only considering one particular mode in the
eigenspectrum and the kinetic correction to the eigenvalue of
this mode is obtained using the following iterative technique.
First, the nonkinetic unstable mode frequene{®)+iy(® is
substituted into the right hand side of E@9). Next, the
integral overl is performed. The result is a standard eigen-
value problem. After diagonalizing the resulting system of
discretized equations, the adjusted unstable mode frequency,
oW +iyD s identified. The new frequency is then substi-
tuted back into Eq(69) and this procedure is repeated until
the mode frequency converges to a stationary value. This
method is successful provided the temperature is increased
slowly. Also, this method will work for an arbitrary distribu-
tion function, since the integral ovdrmay be performed

eriumerically.

The distribution of axial particle velocities can be greatly
affected by the experimental method used to create the hol-
low zintegrated density profiles. Initially, a monotonic col-
umn is created and held in the trap until local thermal equi-

fbrium is established along the field lines. Therefore, the

initial distribution of axial particle velocities is a Maxwellian
and the temperature is typically uniform in radius. Using
action-angle variables, the initial distribution takes the form

No

fi)(paJ):ﬁ
277l

(70)

where | = (2L5/7)(mT)¥? and the superscrigt stands for

initial. The axial confining potential at one end is then low-
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FIG. 16. An initial zintegrated density profile and the hollow profile ob- [
tained after ejection. 0
0 0.5
T (V)

. . FIG. 17. Effects of finite temperature on the 1 hollow profile instability
ered and the more energetic particles escape from the tragg real frequency(b) growth ratd for a Maxwellian velocity distribution

Since the plasma potential is highéahd the trap potential is and the truncated distribution obtained from the profiles of Fig. 16.
lowes)h on-axis, more particles are lost near the center and
the resultingz-integrated density profile is hollow. In previ-
ous experiments, the confining potentials have been changddie temperature and-integrated density profiles can be
on a time scale comparable to a bounce period and the reneasured experimentally and thHyg,) is known. Figure 16
sulting distribution function of the hollowed column is not shows twoz-integrated density profiles. The solid curve rep-
readily found. resents a likely initial profile before the ejection procése

In order to illustrate the effect the hollowing process canactual initial profile for this experiment was not measured
have on the instability, we will consider an experimental The dashed curve represents the final, hollow profile which
situation for which the distribution function is known. Spe- supports the diocotron instability.
cifically, the confining potential can be lowered and raised Figure 17 shows the corrections to the real frequency
slowly with respect to a bounce period. Under such circum-and the growth rate as the temperature increases. The solid
stances, the bounce action of the remaining particles is inknes represent the kinetic corrections for a plasma whose
variant. Therefore, the number of particles along a giveraxial velocity distribution is a Maxwellian. In this case, the

field line with actionl sf(pg) remains fixed, kinetic effects are insignificant. The dashed curves depict the
: . corrections for a plasma with the truncated distribution de-

¢ fo(Pg,1) Il fined by the profiles of Fig. 16. Here, the growth of the
fo(Pg.1) = 0 1~7/) (72) instability is greatly enhanced and the frequency is shifted

down. In each case, the kinetic effects produced by the trun-
and the superscript indicates final. The final distribution cated distribution are substantially different than the nonki-
function is a truncated Maxwellian. In truth, the bounce ac-netic results and the kinetic effects due to a Maxwellian dis-
tion of particles near the separatrix is not conserved. Presuniribution. This suggests that the instability cannot be
ably, these nonadiabatic particles will smooth out the diStri-Comp|ete|y understood in terms of density profiles alone.
bution function near the truncation point. However, results Exact comparisons between the theory and experiments
obtained for artificially smoothed distribution functions are have not yet been made. The available experimental data on
not substantially different. Because the instability growth|=1 diocotron instabilities does not include the initial
rate is larger than the collision frequency, the velocity distri-zintegrated density profiles before hollowing. Furthermore,
bution does not have a chance to relax back to a Maxwellianthe hollowing processes have not been adiabatic and the final
The maximum action allowed on a field Iirfe(,p(,), is deter-  distribution of axial energies is not known. However, correc-
mined from the initial and finat-integrated density profiles tions have been calculated for various probable initial pro-
and the initial temperature. files and different distribution functions. The results indicate
the hollowing process can substantially affect the instability.

N{)(pg)=J0 2mdIfl(py.l)
VIIl. CONCLUSION

= fl(p")Zq-rdlf‘O(p(,,l) We have developed a Zero Debye Length Reduced De-
0 scription for a nonneutral plasma column confined in a

_ 1(p,) Malmberg—Penning trap. The critical assumption of this
=Np(py)erf —1 (72 model is that the rapid bounce motion along field lines pro-
\/Z(pa) duces axial Debye shielding for the equilibrium and the low-
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