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Collisional damping of plasma waves on a pure electron plasma column
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The collisional damping of electron plasma waves (or Trivelpiece-Gould waves) on a pure electron
plasma column is discussed. The damping in a pure electron plasma differs from that in a neutral
plasma, since there are no ions to provide collisional drag. A dispersion relation for the complex
wave frequency is derived from Poisson’s equation and the drift-kinetic equation with the
Dougherty collision operator—a Fokker—Planck operator that conserves particle number,
momentum, and energy. For large phase velocity, where Landau damping is negligible, the
dispersion relation yields the complex frequency w=(k,w,/k)[1+(3/ 2)(kNp)?*(1+10ia/9)(1
+2i a)‘l], where w, is the plasma frequency, k, is the axial wavenumber, & is the total wavenumber,
Ap is the Debye length, v is the collision frequency, and a= vk/w,k,. This expression spans from
the weakly collisional regime (a<< 1) to the moderately collisional regime (@~ 1) and in the weakly
collisional limit yields a damping rate which is smaller than that for a neutral plasma by the factor
k*\jp<1. In the strongly collisional limit (@>1), the damping is enhanced by long-range
interactions that are not present in the Kinetic theory (which assumes pointlike interactions); the
effect of these long-range collisions on the damping is discussed. © 2007 American Institute of

Physics. [DOI: 10.1063/1.2807220]

I. INTRODUCTION

This paper discusses the collisional damping of electron
plasma waves that propagate on a pure electron plasma col-
umn. We have in mind a pure electron plasma (non-neutral
plasma) in a Penning—Malmberg trap conﬁguration.] As we
will see, the collisional damping of electron plasma waves in
a pure electron plasma is fundamentally different from that
in a neutral plasma.

Theory on the collisional damping of electron plasma
waves in a neutral plasma dates back to the pioneering work
of Lenard and Bernstein and extends into recent literature.””
Using an approximate Fokker—Planck collision operator, now
called the Lenard-Bernstein (LB) collision operator, these
authors solved the linearized Boltzmann and Poisson equa-
tions to obtain a dispersion relation for the complex wave
frequency, w. The dispersion relation admits a discrete infin-
ity of roots, the least damped of which corresponds to the
Landau (or Bohm—Gross) root of collisionless theory.6 LB
focused on the least damped root, finding the collisional
damping decrement Im(w)=-v/2, where v is a collision fre-
quency. (Actually, the 3 was omitted in the final step of the
LB analysis, and the omission was corrected only recently.4)
Recent work also showed that there is a complete set of
kinetic eigenfunctions corresponding to the discrete infinity
of roots, and these eigenfunctions replace the Van Kampen
eigenfunctions of collisionless theory.3’5’7

The LB collision operator conserves particle number but
not momentum and energy. Failure of the electron collision
operator to conserve momentum and energy is acceptable for
a neutral plasma, since momentum and energy can be trans-
ferred from the electrons to the ions by collisions. Indeed,
the damping mechanism for a plasma wave involves just
such a transfer of momentum (and, to a lesser extent, en-
ergy). The oscillating electrons experience a collisional
transfer of momentum (and energy) to the relatively immo-
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bile ions, and this transfer (collisional drag) damps the wave.
Although not mentioned explicitly in the LB analysis, ions
play a crucial implicit role in the damping mechanism.

In contrast, the above mechanism is not available for the
damping of plasma waves in a pure electron plasma, since
there are no ions to provide the collisional drag. In a pure
electron plasma, the damping results from the collisional in-
teraction of electrons, so conservation of electron momentum
and energy must be respected. In other words, for the case of
a pure electron plasma, failure of the LB operator to con-
serve momentum and energy is a fatal flaw. Dougherty intro-
duced a modified LB operator that conserves momentum and
energy as well as particle number, and we will use this
operator. 811

The advantage of the LB and Dougherty operators is that
they are analytically tractable. For example, the Hermite
polynomials are a complete set of eigenfunctions of the 1D
LB operator, and these polynomials are a convenient basis
set for expansion of the velocity distribution when using this
operator.3 Here we use an analogous set of orthogonal func-
tions as a basis for expansion of the velocity distribution.

In a Penning—Malmberg trap configuration, the plasma
column is immersed in a large axial magnetic field. In the
collisionless theory of electron plasma waves on such a col-
umn, the electron dynamics are described by the drift-kinetic
equation. To study the effect of collisions on the waves, we
append the Dougherty collision operator to the drift-kinetic
equation, referring to the result as the Dougherty kinetic
equation. To facilitate analytic solution, the electron density
is taken to be constant inside the plasma column. The linear-
ized Dougherty kinetic equation and Poisson’s equation then
yield a dispersion relation for the complex wave frequency.
Like the LB dispersion relation, this dispersion relation ad-
mits a discrete infinity of roots for each wavenumber. We
focus on the least damped root, which again corresponds to
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the Landau root of collisionless theory. For simplicity, we
limit the discussion to waves with azimuthal mode number
mg=0. For large phase velocity [i.e., Re(w)/k.> vy, where
Uy is the thermal velocity], Landau damping is negligible,
and the least damped root of the dispersion equation is given
by the simple approximate expression

k.o, 3 1+10ia/9
w=——1+=\| ——— | |. (1)
k 2 1+2ia

where w, is the plasma frequency, k, and k, are the wave-
numbers along and transverse to the magnetic field, &
= Vk§+ki is the total wavenumber, A, is the Debye length, v
is the collision frequency, and a= v(kzwp/ k)~!is a parameter
characterizing the strength of collisionality. For smaller
phase velocity, the dispersion relation must be solved nu-
merically, and Landau damping is recovered in the limit
a—0.

For weak collisionality (i.e., «<<1), Eq. (1) reduces to
the result

~ k.o 3 242
Re(w) = T 1+ Ek Ap |, (2)

Im(w) = — 3vk°\),. (3)

Equation (2) is the well-known result from collisionless
theory for the frequency of an electron plasma wave—or,
more precisely, a Trivelpiece-Gould (TG) wave—in a pure
electron plasma column.'*™"* Equation (3) gives the colli-
sional damping rate of the wave. The damping rate in Eq. (3)
is reduced from the damping rate for a plasma wave in a
neutral plasma by the small factor kz)\f) < 1. This reduction is
a reminder that the dominant damping mechanism in a neu-
tral plasma is not available in a pure electron plasma.

Note from Eq. (1) that the ordering k./k, <1 implies
that Re(w) < w,,. This is the typical wavenumber ordering for
plasma wave experiments on a long column, and we assume
this ordering here. In fact, this ordering is implicit in our use
of a Fokker—Planck collision operator, since the derivation of
such an operator requires the Bogoliubov ansatz," that is,
that |w| < ).

A weakly damped solution to the dispersion equation
exists even in the limit of strong collisionality [i.e., | <a
= p/Re(w)]. In this limit, Eq. (1) reduces to the result

k,w 5
Re(w) = Tp(l + gk%\é), 4)
2
Im(w)s-%(%>k§. 5)

Here, we implicitly assume that the plasma is weakly corre-
lated (i.e., v<< wp) even though the wave dynamics is
strongly collisional, and this is possible since Re(w) < w,.
Note that the Bohm—Gross correction to the real part of
the frequency, that is the term (3/ 2)k2)\f) in the bracket of
Eq. (2), has been replaced by (5/6)k?\;, in Eq. (4). This
change, which emerges automatically from the kinetic
theory, is easy to understand from an elementary treatment
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that uses the adiabatic law of electron compression.16 The
numerical coefficient of the Bohm-Gross term is (f
+2)/(2f), where f is the number of degrees of freedom that
share the compressional energy. For weak collisionality,
there is negligible equipartition, so f=1 and (f+2)/(2f)
=3/2. Whereas, for strong collisionality, there is nearly com-
plete equipartition, so f=3 and (f+2)/(2f)=5/6.

For large phase velocity, the condition for strongly col-
lisional wave dynamics is equivalent to the conditions for
applicability of fluid theory (i.e., v>|w| and kvy/v<1).
Since the Dougherty collision operator conserves particle
number, momentum, and energy, results from the kinetic
theory should match onto fluid theory in the strongly colli-
sional limit. Indeed, Eqgs. (4) and (5) are recovered by fluid
theory, provided that one uses the expressions for viscosity
and thermal diffusivity that are predicted by the Dougherty
operator.11 From the fluid treatment, we find that the damp-
ing rate (5) results entirely from viscous momentum trans-
port along the magnetic field; heat conduction contributes a
higher-order correction to the damping.

Thus far, transport across the magnetic field has not been
mentioned. The drift-kinetic equation only includes transport
along the magnetic field. A naive estimate suggests that the
correction to the damping from cross-field transport is neg-
ligible. The classical transport coefficient for cross-field vis-
cosity, ¢, is of the order vr?, where r.=vg/ (), is the cyclo-
tron radius. From fluid theory, the corresponding correction
to the damping decrement is Im(Aw)~-¢ k> ~-vrik’,
which is negligible since r, is very small.

However, recent theory and experiment have shown that
the classical coefficients grossly underestimate cross-field
transport in the parameter regime where r.<<\p, and this is
the typical operating regime for non-neutral plasmas.”’18
The new theory predicts larger transport coefficients (e.g.,
L~ V)\,zj), and fluid theory then predicts a larger correction
to the damping decrement, Im(Aw)~—»A5k>. As can be
seen by comparison to Egs. (3) and (5), this correction is not
always negligible—cross-field transport can contribute to the
wave damping.

The enhanced cross-field transport is associated with
long-range interactions (with impact parameter of order \p)
and is not captured by any kinetic theory that uses a Fokker—
Planck collision operator.18 A collision operator that de-
scribes interactions between particles on different field lines
is necessary. Here, we simply use a fluid treatment that em-
ploys the new cross-field transport coefficients obtained pre-
viously. For the waves of interest, the transverse wavelength
is large compared to the scale length for the transport (i.e.,
k Ap<<1), so the cross-field transport is well described by
local transport coefficients even in the limit of weak colli-
sionality.

Il. ELECTROSTATIC MODES IN PENNING-TRAP
GEOMETRY

Following previous theoretical studies of Trivelpiece—
Gould modes, we make several simplifying assumptions in
order that Poisson’s equation may be solved analytically.w’14
In this section, these assumptions and the consequent simpli-
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FIG. 1. Density of the unperturbed plasma column plotted as a function of
radial coordinate r.

fication of Poisson’s equation are discussed; the plasma dy-
namics will be addressed in the following section. We will
consider a cylindrical Penning-trap and thus employ a cylin-
drical coordinate system, (r, #,z), the z-axis of which coin-
cides with the axis of the trap.

First, it is assumed that the ends of the plasma are flat
and rigid, in the sense that each particle undergoes specular
reflection in z at these ends. Under this assumption, one may
equivalently consider an infinitely long plasma column
which is periodic with period 2L, where L, is the length of
the plasma. This periodic plasma admits axial wavenumbers
given by

k,=nmlL,, (6)

where n takes on nonzero integer values. In reality, of course,
the ends of the plasma are rounded and the potential at these
ends is not perfectly hard; as a result, the decoupling of the
Fourier modes is not perfect. These effects are of order
R,/L, so the validity of our Fourier analysis requires that
R,<L,.

In addition, it is assumed that the density of the unper-
turbed plasma is uniform, that is,

" ny forr<R, ™
"= 0 for R, <r<R,,

where R, is the radius of the plasma and R,, is the radius of
the conducting wall of the trap (see Fig. 1).

This second assumption allows us to look for eigen-
modes of the form

8o = 6¢Jo(k et 5f = 8fy(k ek (8)

inside the plasma (i.e., for r<<R,) and

8¢ = 8[Aly(k,r) + BK(k,r)]e' = §f =0, 9)

outside the plasma (for »>R,). Here Jy(x) is a Bessel func-
tion of the first kind, Iy(x) and K,(x) are modified Bessel
functions of the first and second kinds, and A and B are
constants specified by the requirements that the potential and
the electric field be continuous across the radial boundary of
the plasma column. The requirement that the potential vanish
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at the conducting wall imposes on the radial wavenumber,
k |, the well-known constraint' >4

k I(,)(szp)KO(szw) - K(,)(szp)IO(szw)
) pIO(szp)KO(szw) - KO(szp)IO(szw)

J(,)(kLRp)

-k R————= 10
Pk R,) (10

For each axial wavenumber k_, this equation admits an infi-
nite sequence of solutions for k,, each corresponding to a
different radial eigenmode.

Inside the plasma, for a perturbation of the above form,
Poisson’s equation reduces to

—k25¢>=477efd\75f. (11)

Outside the plasma, the perturbation satisfies Laplace’s equa-
tion identically.

lll. THE DOUGHERTY KINETIC EQUATION

The wavenumbers and frequencies of the waves under
consideration are sufficiently small that the dynamics may be
described using the drift approximation. In other words, we
take f to be the distribution of guiding centers with parallel
velocity v, and cyclotron invariant IC:mvzl/ 2B,

f=frzv.07). (12)

The evolution of this distribution is governed by the drift-
kinetic equation

€9 I
m dz dv,

o of cEXVe -
—_— 4+ o 4+ V + = C . 13
ot Ve 0z B ! ) (13)

We will assume that the effect of collisions on the dis-
tribution is given by the Dougherty collision operator, which
in the drift approximation is given by

Colf) = v(n,nvifvi[%mai—f mf]
1 1 1
N v(n,T)anZ[Tij—i + (.- vz[f])f], (14)

where v(n,T) is a collision frequency and n, V_, and T are
given by the functionals

n[f]=[dv.dv, 2mv  f, (15)
VIfl= ifdvzdeZﬂ'vivzf, (16)
M= 3-Sdvdv 2w, [0+ (0.~ VIAPY.  (17)

A comparison with the true Fokker—Planck operator suggests
an approximate expression for the collision frequency,

v(n,T) = e*nm™">T732 In(r/b), (18)

where b=¢%/T is the classical distance of the closest
approach.2
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A steady-state solution to Eq. (13) is given by

no(")

—m(v?+02 /2T,
(277To/m)3/2e @120 (19)

f=folrv,vl)=

and
®=@yr), (20)

where ¢y(r) is determined from ny(r) via Poisson’s equation
and ny(r) is given by Eq. (7). We consider a perturbation to
this steady state of the form

f(rZUZ,UL,) fO(r UUUL)"'(Sf(r Z’UUUL’Z‘) (21)

(,D(V,Z,t) = ()DO(r) + (S(P(V,Z,t), (22)

where Of and d¢ are assumed small and have the space and
time dependence specified by Egs. (8) and (9).

Substituting Egs. (21) and (22) into Eq. (13), using Eq.
(11) to eliminate 8¢, and neglecting nonlinear terms, we ob-
tain the linearized Dougherty kinetic equation

iw6f = ikv,8f - Ci(8f) + 2k v Jo fdz?&f‘, (23)
N2 )
where A, is the Debye length in the unperturbed plasma and
Cg) is the linearized Dougherty operator. This linearized op-
erator takes a relatively convenient form when the perturba-
tion is expressed as 5f‘= fo¢ and the thermal velocity, vy,
=Ty/m, and scaled velocity coordinates, u,=v,/vy, and u
=v /vy, are introduced,

Cp(fod) = fovo T%M% - ”L% + 227? - ”zj_:z
e gl e,
= vofox(4), (24)
where
oV, = ny'vg [du.du 2 mu  u.5f, (25)

ol = (3n0)_1mvt5hfduzduL27Tul[(u§ + ui) -315f, (26)

Vo= V(no, To) . (27)

(Hereafter we omit the subscript on v,.) Equation (23) con-
stitutes an eigenvalue problem; that is,df is an eigenfunction
with eigenvalue w.

IV. DISPERSION RELATION

From Eq. (23) we can obtain a dispersion equation
which relates the complex frequency, w, to the axial and
radial wavenumbers and the collisionality of the plasma. To
this end, we will employ the complete set of orthogonal
functions,

1
B = —%Hemwz)Ln(ui/z), (28)
ym!

where He,,(x) is the mth modified Hermite polynomial, L, (x)
is the nth Laguerre polynomial, and m and n take on non-
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negative integer values. These functions satisfy the orthogo-
nality relation

2
(¢nan’ ¢mimz) = (2ﬂ.)_l/2fduzduluJ_ ¢ninz¢mLmze_u 2

=80, O (29)
The right-hand side of Eq. (23) takes a particularly simple
form in this basis.

In a recent paper, a complete set of eigenfunctions of the
linearized Dougherty operator was found, and it might seem
that these eigenfunctions would constitute the most conve-
nient basis for the problem at hand."! However, while the
collision operator is diagonal in the basis of eigenfunctions,
the streaming term takes a more complicated form in this
basis than it does in the basis given by Eq. (28). As a result,
the algebra required to obtain the desired dispersion relation
is slightly more involved if the basis of eigenfunctions of y is
used.

We express the eigenfunction &f in the basis (28) as

=fo 2

m,n=0

5f(uz5ui amnd’mn(uz»uzi)' (30)

Substituting this series expansion into Eq. (23) and exploit-
ing the orthogonality relation (29), one obtains an infinite-
dimensional matrix equation of the form

Apn = E (d’mn’ z¢m’n')a

m'.n'=0

. S1.nSo
+l/*4‘ E (¢mn’X¢)m’n')a 't ¥ k2)\20 oo (31)

m' .n'=0
for the coefficients «,,, and corresponding eigenvalue ();
here we have introduced the scaled wave frequency ()
= w/k,vy, and collision frequency u= v/k_vy, and the paren-
theses denote the inner product defined by Eq. (29). The first
term on the right-hand side of Eq. (31) is given by

(¢mn’uz¢mrnr) = 5m—1,m’

while the second term is given by

—
6n,n’ \’% + 5m,m’—15n,n’ V’m, > (32)

X(¢19) =0, (33)
4 242

X(¢a0) =~ g‘f’ \ ¢01, (34)
2\2 2

x(o) == " b= S0 (35)

and otherwise

X(¢mn) ==

In particular, for m>2, Eq. (31) reduces to the recursion
relation’

(m+2n). (36)

[Q+i(2n +m)ula,, = \@am_l,n +\Nm+la,,,,. (37)

A necessary condition for the convergence of the series (30)
is that for a given value of n, the coefficients a,,, must ap-
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proach zero as m approaches infinity. With this assumption,
Eq. (37) implies that’

At 1,n !
R = asm — . (38)
Amn mpu

Thus, at some sufficiently large value of m, m,,,,, we “trun-
cate” the recursion relation (37), setting

[Q + 1(2n + mmax)ﬂ]ammax,n = My, (39)

max_l’n

In addition, we will look for eigenfunctions for which a,,,
=0 unless n=0 or n=1. The infinite-dimensional eigenvalue
equation (31) then reduces to a 2(m,+ 1)-dimensional ei-
genvalue equation.

We begin with Eq. (39) and iterate the recursion relation
backwards for n=0 and n=1. For n=0, for example, Eq. (39)
is solved for A 0> yielding

m
max

=— ~1.0- 40
max’0 Q + immaxﬂ Max 1.0 ( )

am
This expression is then substituted in the preceding equation,

[Q + i(mmax - I)M]ammax—l,o = My — 1am -2,0

max

+ \"mmaxammax,os (41)
which is then solved for A 1,00 yielding
—
ammax_l’o = e 1 m mmax_z’o.
. max
Q+i(mpg— D= O+im,
(42)

This expression is then substituted in the preceding equation,
and so on. By means of these recursive substitutions, all but
four of the coefficients a,,, can be eliminated. A by-product
of this procedure is the development of continued fractions,
the beginnings of which can be seen in Eq. (42). The set of
2(myax+ 1) equations given by Eq. (31) [with the truncation
condition (39)] is thereby reduced to the four equations

—Qa00+a10=0, (43)

[1+ (khp)agy — Qajo+ V2 =0, (44)

3V2a0 - 3F (L )z — 21 2ipag, = 0, (45)
[~ _

= 2\2ipay — 3F5(Q, wag =0, (46)

where F[(Q,u) and F,(Q), w) are the continued fractions

4
Fi(Qu) =Q+ 3

4 )

Q+3ip- -
Q+dip— - e
/-L ‘Q’+mmaxllu’

(47)
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FIG. 2. Complex eigenvalues of the linearized Dougherty kinetic equation,
for kNp=0.1 and w=0.1. The dashed line indicates the real-{) axis. The
eigenvalue with smallest imaginary part gives the complex frequency of the
plasma wave (or Trivelpiece-Gould wave).

2
Fy(Q,u) = Q+ M

2

Q+3ip-

mmax

O+ (M +2)ip
(48)

Q+4ip---

Finally, upon elimination of the coefficients ayg, a,g, a-9, and
ag, from Egs. (43)—(46), the following dispersion equation is
obtained:
kZ)\é — FI(QNU')FZ(Q’/*L) + 81"(‘2/9 )
[F1(Q, ) Fy(Q, ) + 8u7/91(Q° = 1) = 2F5(Q, w) Q)
(49)

This result becomes exact in the limit m,,,, — .

In general, for given values of k\j, and w, Eq. (49) must
be solved numerically for the complex frequency (); in prac-
tice, this requires that the continued fractions F;({},u) and
F,(Q, ) be evaluated approximately by carrying out a suf-
ficiently large (but finite) number of iterations. The resulting
dispersion relation is a polynomial equation, the number of
roots of which increases with the number of iterations made
in evaluating the continued fractions; each of these roots lies
in the lower half of the complex () plane (see Fig. 2). In
other words, there appears to be a countable infinite spec-
trum of damped eigenmodes, analogous to that found by Ng,
Bhattacharjee, and Skiff for the one-dimensional LB kinetic
equation.3

The least damped root of Eq. (49) approaches the Lan-
dau root of the collisionless dispersion relation in the limit
pm— 0. In particular, in this limit, the imaginary part of this
root does not approach zero exactly, but instead matches onto
the Landau damping coefficient, as shown in Fig. 3 for
k\p=0.3. Hereafter, we will focus on this least damped root,
which we will refer to simply as the Landau root for the TG
wave.
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FIG. 3. Scaled damping rate —Im({2) plotted as a function of u, for k\j
=0.3. The intercept at u=0 coincides with the Landau damping rate, I';, of
collisionless theory.

In order to isolate collisional effects from resonant par-
ticle effects, we restrict our attention to high-phase-velocity
waves [i.e., Re(Q))> 1], for which Landau damping is negli-
gible. In this limit, a suitable approximation to Eq. (49) may
be obtained by setting F;—Q+4iu/3 and F,—Q+2iu/3,
since retaining the continued fractions only leads to correc-
tions of higher order in Q~'. The resulting dispersion equa-
tion is
\2 = O +2iuQ)

PO 4 2iu0? - 302 - 10ipuQ/3°

K (50)
There exists a weakly damped root to this equation when
kAp<<1, and this is the Landau root. An approximate expres-
sion for this root, valid in both the weakly collisional and
strongly collisional limits, can be obtained by solving Eq.
(50) using perturbation theory. More precisely, one assumes
that Re(Q)) ~ (k\p)~! (this assumption is verified a poste-
riori) and takes u~ Re({2); Eq. (50) can then be solved order
by order in the small parameter kA, << 1. When carried out to
second order, this procedure yields the expression

1 3 1+ 10i pk\ /9
Q= —{1+—k2)\é(#>}, (51)
npl 2 1+ 2ipk\

which is identical to Eq. (1) if the units are restored. In Fig.
4, this expression is plotted as a function of w for k\p
=0.05, and the exact numerical solution of Eq. (49) for the
Landau root is shown for comparison, as are the limiting
expressions given by Egs. (2)—(5).

In the limit <€ 1, we have evaluated the sum in Eq. (30)
to determine the u  -integrated eigenfunction, of=2m
Xfdu,u, 5f, corresponding to the Landau root for several
values of the parameters u and k\p. In Fig. 5, this function is
plotted for u= V2/40 and k\p=1/3. (These values were cho-
sen to facilitate comparison with Fig. 2 in Ref. 3. It should be
noted that the scaled variables w and () defined by these
authors differ by a factor of V2 from those defined here.) We
find that the eigenfunction exhibits the qualitative features of
that determined by Ng et al. using the LB operator.3 In the
vicinity of the resonance (i.e., for u,=(}), the eigenfunction
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20.08r

I\, =0.05

20.06

Re(Q))

20.047¢
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(a)

0.0271 / \
/

Jh, = 0.05

-Im(Q))
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J72
(®)

FIG. 4. Real (a) and imaginary (b) parts of the analytic approximation (51)
to the Landau root, plotted (as solid curve) vs u, for kA,=0.05. The solid
circles represent the exact numerical solution of the dispersion equation
(49). The short-dashed curves give the asymptotic forms (2) and (3), which
are valid for <<€}, while the long-dashed curves give the asymptotic forms
(4) and (5), valid for u>Q.

deviates significantly from the collisionless expression
uze‘”z/ 2[\3“%(]{)\1))2(0—141)]_1, whereas far from the reso-
nance, the collisionless expression is a good approximation.
The width of the “boundary layer” surrounding the reso-
nance increases with collisionality.

In the limit x> (), all of the coefficients in the sum (30)
are of the order of x~! or smaller, with the exceptions of a,
ag, ar, and agy; in this case, the eigenfunction is given by

—(u?+ui)/2

. 1
Sf(upu?) = ——=—1 1+ Qu, + =[Q* = 1 = (k\p)~’]
27 2
Xl +u’ =3) [ +0(u™). (52)

Evidently, as a first approximation, the perturbation to the
distribution is completely characterized by the perturbations
in particle number, momentum, and energy. In other words,
the distribution is simply a Maxwellian with perturbed den-
sity, drift velocity, and temperature, with all other compo-
nents of the perturbation vanishing as u~".
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FIG. 5. Real (a) and imaginary (b) parts of the u | -integrated eigenfunction,
5f 2 fdu u, 5f corresponding to the Landau root, (2, for u= \2/40 and
kNp=1/3. The dashed curves give the real and imaginary parts of the ex-

pression uze”‘g’z[\fﬁ(k)\n)z(ﬂ— u)].

V. FLUID THEORY OF THE TRIVELPIECE-GOULD
WAVE

In this section we derive an expression for the complex
frequency of the TG wave starting from fluid equations, the
result being valid in the limit of strong collisionality. The
drift-kinetic treatment of the preceding section leaves out
cross-field transport, whereas fluid theory incorporates cross-
field transport through the perpendicular viscosity and ther-
mal diffusivity which appear in the fluid equations.

We assume as before that the unperturbed density and
temperature are constant for r<Rp and are zero fgr r>Rp.
The unperturbed fluid velocity is then given by V0=er@?,
where the E X B rotation frequency, wg, is a constant deter-
mined by n,. With the ansatz that the density, fluid velocity,
temperature, and potential perturbations share the parameter
dependence

5n, 8V, 8T, 8 ~ Jo(k  r)e'®e (53)

the linearized continuity, momentum, and heat transfer equa-
tions plus Poisson’s equation reduce to

— iwdn + ngik, 8V, =0, (54)
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) e ik, ik, 4 .,
—iwdV, =ik,— ¢ — on——0T—- = k:6V,
' m mny m 3
-,k 8V, (55)
2
— 10T == Toik.8V. - Xk28T = x I, ST, (56)
— K28 =4medn. (57)

Here £, and {, are the parallel and perpendicular kinematic
viscosities and y, and x, are the parallel and perpendicular
thermal diffusivities. Elimination of the perturbed quantities
from these linearized equations yields the dispersion relation
(kAp)~2+1
(—iQ+4L/3+ )i
2 1
I (iQ+4LB+ DI+ X+ X

1=

(58)

where again Q=w/k vth is the scaled wave frequency and
g é’zkz/vth’ gL ng lk Uth X sz /vth’ and XL
=x Lk2 /k,vy, are the scaled transport rates along and across
the magnetic field. If one assumes further that {Z, § 1 Xo
X1 <Q, Eq. (58) takes the approximate form

Q=——q+ Q

- - 1
k2)\D l(4§z/3+§l)<@+l>

2 _ _
_i§(4§z/3+)?z+§L+)?L)' (59)

Finally, for k\p<<1, this dispersion equation can be solved
perturbatively for the root corresponding to the TG wave,
and one finds (after restoring the units)

k.w, 5 N
Re(w) = T 1+ gk Ap |, (60)

Im(w) = - (302 +50.K2). 61)
Here the real part of the frequency is identical to that ob-
tained by kinetic theory in the limit of strong collisionality,
as one would expect. The damping, at this order in the per-
turbation theory, is due entirely to momentum transport, both
along and across the magnetic field; from Eq. (59), one can
see that the thermal diffusivity imparts a correction to the
damping which is reduced by the factor kz)\,zz,, and this reduc-
tion is a consequence of the large phase velocity of the wave.
Equation (5) is recovered from Eq. (61) by setting £, =0 and
ZZ=(2,U,)_1; these are the values of the parallel and perpen-
dicular viscosity which the Dougherty operator predicts in
the drift approximation.” However, we will see that long-
range collisions (which are not encompassed by the Dough-
erty operator) result in an enhanced perpendicular viscosity
that cannot be neglected in Eq. (61).
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VI. LONG-RANGE INTERACTIONS
AND CROSS-FIELD TRANSPORT

The Dougherty operator is well-suited to describe colli-
sions in which the impact parameter is smaller than r.; in
particular, the velocity scattering in these collisions is nearly
isotropic, since the effect of the magnetic field is negligible
on scales small compared to r,. Cross-field transport due to
these collisions is omitted from the above treatment by the
use of the drift approximation, and this omission is justified
since the corresponding transport rate, which scales as kir?,
is small. However, the typical operating regime for the plas-
mas under consideration is such that

b<rc<)\D, (62)

where b=¢?/T is the classical distance of the closest ap-
proach. In this parameter regime, there are long-range colli-
sions with impact parameter of order A, that cannot be ne-
glected. These collisions cannot be encompassed by any
collision operator which assumes a pointlike interaction; in
particular, they are outside the scope of the Dougherty
operator.18 The cross-field transport rate corresponding to
these long-range collisions scales as k% \7 and is therefore
non—negligible.17 Indeed, in the limit of strong collisionality,
the damping rate is significantly larger than that given by Eq.
(5), and the enhancement is due to cross-field transport.

To incorporate the effect of cross-field transport on the
damping rate, we estimate the perpendicular viscosity as

L, = nvgh\p. (63)

This expression is simply the product of the frequency of
large-angle scattering events, nvmb,2 with the square of the
characteristic transport step size, A\p. (A more rigorous Ki-
netic calculation, analogous to the calculation of the perpen-
dicular thermal conductivity by Dubin and O’Neil, corrobo-
rates this estimate.'”) From Eq. (61), we infer that the
contribution to the damping rate due to cross-field transport
is

Im(Aw) = -3¢, K5 = — Snvgb* )\, (64)

The fluid theory from which Eq. (61) was derived is valid
only in the limit of strong collisionality; otherwise, the as-
sumption that transport along the magnetic field is local
breaks down. However, the cross-field transport is local re-
gardless of the strength of collisionality, provided that the
transverse wavelength is large in comparison to the cross-
field transport step size; for the weakly damped waves of
interest, this requirement is clearly satisfied, since &k Ap
<kNp<<1. Therefore, Eq. (64) gives the correct contribution
from cross-field transport for arbitrary collisionality. (In the
limit of weak collisionality, we have recovered this result
from a perturbative kinetic theory which employs a nonlocal
collision operator to describe long-range interactions.) Add-
ing this expression to the right-hand side of Eq. (1), which,
as it stands, only accounts for transport along the field, we
find
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1+ Ekz)\D — —nvgEb* kNG,

2

~ kzwp 3 5 1+10ia/9 i
1+2ia

(65)

This expression is valid for arbitrary collisionality, provided
that kNp<<1.

VIl. DISCUSSION

In the limit of weak collisionality, the correction (64) is
relatively small, so the order of magnitude of the damping
rate is given by Eq. (3). The smallness of the damping rate
Eq. (3) in comparison to that obtained by LB for a neutral
plasma has been discussed in the Introduction. In addition to
reducing the damping rate, the factor kz)\,% that appears in
Eq. (3) clearly changes the scaling. Most noteworthy is the
fact that the damping rate does not depend on density, since
the density dependence in v is cancelled by that in )\,23. There
is also a partial cancellation of the temperature dependence
in these two quantities, resulting in a 7~ scaling, as op-
posed to the T~ scaling implicit in the LB rate. Finally, our
rate goes as k%, whereas that obtained by LB does not depend
on wavenumber.

In the limit of strong collisionality, cross-field transport
cannot be neglected. The ratio of the contributions to the
damping from cross-field and parallel transport, respectively,
is 3a%/2In(r,/b), where a is the collisionality parameter.
For a>1, this number is larger than one; thus, in the
strongly collisional limit, the dominant contribution to the
damping comes from cross-field transport, and the damping
rate approaches that given by Eq. (64).
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